Controlled Homomorphic Encryption:
Definition and Construction

Yvo Desmedt! Vincenzo Iovino? Giuseppe Persiano®

Ivan Visconti®

! University of Texas at Dallas, USA and University College London, UK,
yvo.desmedt@utdallas.edu
2 University of Luxembourg, vinciovino@gmail.com
3 Dipartimento di Informatica, University of Salerno, Italy,
{giuper,visconti}@dia.unisa.it

Abstract. Fully Homomorphic Encryption schemes (FHEs) and Func-
tional Encryption schemes (FUNCTEs) have a tremendous impact in
cryptography both for the natural questions that they address and for
the wide range of applications in which they have been (sometimes crit-
ically) used.

In this work we put forth the notion of a Controllable Homomorphic
Encryption scheme (CHES), a new primitive that includes features of
both FHEs and FUNCTEs. In a CHES it is possible (similarly to a FHE)
to homomorphically evaluate a ciphertext Ct = Enc(m) and a circuit C
therefore obtaining Enc(C(m)) but only if (similarly to a FUNCTE) a
token for C' has been received from the owner of the secret key.

We discuss difficulties in constructing a CHES and then show a con-
struction based on any FUNCTE.

As a byproduct our CHES also represents a FUNCTE supporting the re-
encryption functionality and in that respect improves existing solutions.

Keywords: Functional Encryption, Non-malleability, Fully Homomor-
phic Encryption.

1 Introduction

Fully Homomorphic Encryption has received a lot of attention and even was
mentioned in the New York Times. We first briefly argue that in many real life
applications, Fully Homomorphic Encryption is not a very useful primitive. In
particular we look at issues involving financial issues and issues that are money
related.

For privacy reasons many utility bills and bank statements, sent electroni-
cally, are now encrypted. In practice such bills and other documents are based
on standard sub-documents that have been carefully checked by the legal de-
partment of the utility corporation or the bank. The other parts are based on

the amount due, or the transactions made by the bank’s customer. Obviously,
very different type of standard letters, checked by the legal department, are sent
to customers who are not paying their bills, and in the worst case a disconnect
letter is sent.

To maintain privacy as much as possible the original standard letters should
be stored on the corporation’s company under encrypted form. So, it seems that
Fully Homomorphic Encryption is ideally suited to modify the standard letter to
include the name and address of the customer and to also add other encrypted
information, e.g., obtained from an electronic utility meter. We now explain why
this is a bad idea.

Now that Podesta’s (the chairman of the 2016 Hillary Clinton presidential
campaign) e-mails were hacked many people have realized how vulnerable sys-
tems are. Moreover, similar phishing attacks have been used against large cor-
porations. So, in case the computer used to make encrypted utility bills and
bank statements is hacked and Fully Homomorphic Encryption is used, then the
hacker can completely change the letter! Obviously, the legal department does
not want to have potentially very offensive letters to be produced. In the case of
manual editing of the standard file, digital signature could be used, but if many
parties are authorized, then that would require to keep track of all changes made
and to keep the digital signatures for these intermediately produced messages.
We now briefly motivate our approach.

In our approach, we will avoid the aforementioned use of digital signatures.
Instead, using a new primitive, we will restrict what changes can be made. So, no
hacker, even having full control of the computer, will be able to drastically change
the encrypted document. The worst that can happen is that the wrong (slightly
modified) standard letter will be sent. However, in our system, if the status of
the customer is maintained under encrypted form, it will even be impossible that
the complete wrong standard letter is sent to the customer. Similar protecting
mechanisms can be used such that in case of utility bill, the encrypted data
provided by the meter has to be used.

In this paper we put forth the notion of a controllable homomorphic en-
cryption scheme (CHES, in short) that blends together the notion of a fully
homomorphic encryption scheme [I5] (FHE, in short) and of a functional en-
cryption scheme [5/17] (FUNCTE, in short). Specifically, like in a FHE, a CHES-
ciphertext of plaintext m can be homomorphically transformed into a ciphertext
of plaintext C(m), for every efficiently computable function C'; on the other hand,
like in a FUNCTE, the homomorphic transformation can only be efficiently per-
formed by a party that has a special token for function C that is released by
the owner of the master secret key. Except for the token for C, no other secret
information is needed to homomorphically transform a ciphertext according to
function C.

Non-triviality The following scheme is a straightforward (albeit inefficient) con-
struction of a CHES derived from any standard public key encryption scheme
& = (GenKey, Enc, Dec) and any secure signature scheme S = (SigKeyGen, Sign, Verify).
The public key of the CHES consists of a pair (pk, vk) of a randomly generated

public key pk of £ and of a randomly generated verification key vk of S. To
encrypt message m, one simply computes an encryption of m with respect to
key pk. The token for function C'is simply a signature o¢ of C and to homomor-
phically transform ciphertext ctg, one simply appends an encryption ct; of the
pair (C, o¢) to cty. The decryption function takes a pair of ciphertexts (cto, cty),
decrypts both and obtains (m, C,c¢). If o¢ is a correct signature of C, then the
decryption function outputs C(m); otherwise, it outputs L.

There is a clear drawback in the above construction: the size of the ciphertext
depends on the size of the description of the function C. In this paper, to avoid
triviality, we require ciphertext size and decryption time to be upper bounded
by a polynomial of the security parameter and be independent of the function
C. This is the same requirement that makes the construction of a FHE non-
trivial [I5].

1.1 Contribution

The contribution of this work consists of the following three steps. We introduce
and define this new primitive, we discuss some interesting applications, and
provide a construction based on any FUNCTE. Our main result is the above last
step, indeed we will show a general procedure that builds a CHES starting from
a general functional encryption scheme.

Limitations of FUNCTEs w.r.t. CHESs At first, one might think that a CHES
is just a special case of a functional encryption scheme: the token to transform
an encryption of m into an encryption of C(m) is simply a token for the func-
tion that first computes C(m) and then re-encrypts the result. Such a direct
construction suffers of two major problems.

Probabilistic and re-encryption functionalities One first problem posed by this
simple construction is that randomness must be used to construct the resulting
ciphertext and this would require a notion of functional encryption for proba-
bilistic functionalities proposed in two independent works. Alwen et al. [3] put
forward a definition of randomized functional encryption but they are able to
construct it only for very restricted classes of functionalities. In another work,
Goyal et al. [19] propose functional encryption schemes for randomized function-
alities for two different notions of security, both suffering from some limitation.
The first one is simulation-based but stated in the selective model. This is the
best one can hope for simulation-based security since, due to the impossibility
result of Agrawal et al. [I] and Boneh et al.[5], for non-selective security it is
necessary to put a bound on the number of queries the adversary can ask (see
also Gorbunov et al. [18], De Caro et al.[IT] and De Caro and Iovino [10]). The
second definition they propose is indistinguishability-based but is affected by
the severe problem of forbidding the adversary to ask queries for computation-
ally indistinguishable distributions, thus not providing any guarantee of security
in applications where the server is provided with a token for the re-encryption
function. Therefore, for the scope of our applications the solution of Goyal et al.

is not satisfactory unless one wants to resort to bounded security (i.e., putting a
bound on the number of ciphertexts and tokens generated by the system) that
represents a strong limitation. Instead, our approach does not suffer from this
problem. In fact, we are able to prove the security of our scheme under a notion
of security that (1) is not selective, (2) allows the adversary to ask an unbounded
number of queries and (3) does allow the adversary to request token for the re-
encryption function. We also mention that in the context of verifiable secure
outsourcing of computation, Barbosa and Farshim [4] have studied the concept
Delegatable Homomorphic Encryption (DFE) which is conceptually very similar
to CHES. The security of their construction of a DFE is based on the existence
FUNCTE that are CCA1 secure and on the existence of an FHE (in contrast,
we only require INDCPA secure FUNCTE). As a byproduct our CHES offers a
solution to the problem of providing a FUNCTE supporting the re-encryption
functionality that improves the previous works as discussed above.

Another more serious problem in using functional encryption naively is made
evident by looking at the following example. Suppose an adversary obtains a
token for the increment function C(m) := m+ 1. Clearly, for every two messages
my # my the output range of the evaluation of the token for C' are disjoint (as one
contains encryptions of m; + 1 and the other encryptions of my +1). This makes
the security requirement of the functional encryption scheme vacuous. Indeed,
security for functional encryption schemes is only with respect to adversaries that
obtain tokens for which the two challenge plaintexts give the same result and,
quite understandably, no guarantees is given for adversaries that have requested
and obtained tokens for which the two challenge plaintexts give different resultsﬂ
Therefore, if the token for the innocent looking increment function is released,
all security disappears.

Tricks to construct a CHES We obtain a CHES by solving the two major prob-
lems of the above direct construction of a CHES from a FuNcTE. Concerning
the first problem, we will make use of pseudorandom functions in order to provide
to the evaluation process a pseudorandom string to be used for re-encryption.
Concerning the second problem, we exploit the fact that even though the two
output ranges are disjoint they are still indistinguishable. Interestingly, a similar
observation could be used for functional encryption in order to have a relaxed
(and therefore easier to achieve) but still fully meaningful definition.

In sums, our construction considers as starting point the problematic con-
struction described above and will leverage on various techniques in order to
obtain the desired security. Our construction is proved secure against an ad-
versary that receives tokens for circuits of his choice after seeing the challenge
ciphertext. We leave open the problem of constructing a CHES where the ad-
versary can ask encryption and token queries in any order.

Targeted malleability In a recent paper, Boneh et al. [6] put forward the notion
of targeted malleability that generalizes the notion of non-malleability [12] by

1 Here we only consider game-based notions of security as simulation-based ones suffer
of more serious limitations [GI2ITTI20/T0].

ensuring that the malleability of an encryption scheme is limited to a set of
legal functions F, specified in the public key. We note that, unlike in CHES,
in targeted malleability the set F of legal functions is specified during the key-
generation phase and then any party can efficiently homomorphically transform
any ciphertext according to any function in F without receiving any secret in-
formation from the owner of the secret key. Thus the two primitives are quite
different in scope. Boneh et al. [6] show how to transform any FHE scheme
into one that offers targeted malleability based on the existence of succinct
non-interactive arguments that are known to exist under non-falsifiable assump-
tions [2I]. We are aware that such assumptions could ease the construction of a
CHES but one of our goals is to avoid them.

We also notice that in their construction [6], ciphertexts obtained through
homomorphic transformations can themselves be transformed again and this
process can be repeated up to a constant number ¢ of times; the value ¢ must
be specified during the generation of the public key that grows with ¢ but the
length of the ciphertexts is independent of .

In this work, we do not concentrate on this property and give a construction
of CHES in which the mauling procedure can only be applied to ciphertexts
output by the encryption procedure. We mention though (and do not elabo-
rate further) that our construction can be modified so that the homomorphic
transformation procedure can be applied any constant number of times, starting
from a ciphertext generated by the encryption procedure. We stress that in our
case this number does not affect the length of the ciphertexts nor the one of the
public key.

Application scenarios The notion of a CHES finds natural applications in the
problem of outsourcing computation on private data to an untrusted server.

In the first scenario we consider a user U that has one message m and stores
it in encrypted form Ct on an untrusted server S using a CHES. At some later
point, U wishes to compute value C'(m) and sends a CHES token Tok¢ for C'
(i.e., the token that when applied on a ciphertext for m returns a ciphertext
for C(m)). The server S applies the token Toke to Ct and returns the resulting
ciphertext to U. If the server S is honest-but-curious, the above scheme guar-
antees that U gets the desired result without revealing anything about m (not
even the value C(m)). The same would work with a FHE. However, a malicious
server S could just pick an arbitrary value, encrypt it using the CHES and then
return the value to U. Against such a dishonest adversary, we can use the stan-
dard trick of adding a MAC as follows. U sends S an encryption Ct of m and of
a random value R (i.e., Ct is an encryption of the concatenation of m and R).
To compute the value C(m), for some circuit C, U picks an arbitrary value x
and generates a token for the circuit that returns an encryption of C'(m) and
of F(R,z), where F is a pseudo-random family of functionsﬂ In other words,

2 The use of a PRF is needed to allow the use of more than one token for the same
ciphertext; otherwise, a simple encryption of C'(m) concatenated to R would be
sufficient.

the token encrypts C'(m) and a MAC of the fact that the right token was used
to compute the result. Notice that this simple tweak would not give security
against malicious servers in the above case based on a FHE and this shows that
in some applications CHESs is conceptually stronger than FHESs.

As mentioned before, CHES also represents a FUNCTE supporting the re-
encryption functionality and in that respect it improves existing solutions as
discussed previously.

2 Definitions
Notation

Functional Encryption for Circuits In this paper we use a special FUNCTE, which
we call FE4C, that allows to compute any polynomial size circuit (see [I7/I3]).
Due to space constraints we defer to Appendix [A] the definition of FE4C and of
its tag-based version and its security notion of IND-CPA Security that we use
in our construction.

3 Controllable Homomorphic Encryption

In this section we define the notion of a Controllable Homomorphic Encryption
Scheme (CHES).

Roughly speaking, in a CHES it is possible to homomorphically create a
string that will be decrypted as C(M) on input a ciphertext for M only if one
holds a special token for the circuit C. Similarly to the compactness requirement
of FHE, we require that the length of the string homomorphically computed be
independent of the circuit.

Definition 1. A Controllable Homomorphic Encryption Scheme (CHES, in
short) is a tuple CHE = (CHE.Setup, CHE.KeyGen, CHE.Enc,
CHE.HEval, CHE.Dec) of efficient algorithms with the following syntax and that
enjoys the following property of correctness.
1. CHE.Setup(1*,1™) on input the security parameter A and length parameter
n, outputs public and master secret keys (Pk, Msk).
2. CHE.KeyGen(Msk, C) on input master secret key Msk for length parameter
n and the description of an n-bit input and n-bit output circuit C, outputs
token Toko for circuit C.
3. CHE.Enc(Pk, M) on input public key Pk with length parameter n and plain-
text M € {0,1}"™, outputs a ciphertext Ct.
4. CHE.HEval(Pk, Ct, Tok) on input public key Pk for length parameter n, a
ciphertext Ct for plaintext M € {0,1}™ and a token Tok for circuit C, outputs
a string Ct' of size independent of C.
5. CHE.Dec(Msk, Ct") on input the master secret key Msk and a string Ct”
outputs a string M € {0,1}" U {L}.

For the correctness we require that (CHE.Setup, CHE.Enc, CHE.Dec) be an en-
cryption scheme, and that there exists a negligible function p such that for all
n = poly(A), for all n-bit input and n-bit output circuits C, and all plaintexts
M € {0,1}™ it holds that: Pr[CHE.Dec(Msk, HEval(Pk, Ct, Tok¢)) # C(M)] <
u()), where (Pk,Msk) < Setup(1*,1"), Tokc <+ KeyGen(Msk,C) and Ct <+
Enc(Pk, M).

Composing tokens In the definition of a CHES, the output of CHE.HEval is not
required to be a valid ciphertext (that is, an output of CHE.Enc) and correctness
only requires it to be a valid input for CHE.Dec. This means that the security
definition does not necessarily need to tolerate an adversary that receives a token
for a circuit C, an encryption of m and then computes an encryption of C*(m),
for any ¢ > 0. More in general, the security definition does not have to assume
that an adversary is able to compose tokens.

We would like to point out that it is possible to formally define a CHES so
that tokens could be composed. The requirement then for a successful adversary
would be to output a ciphertext of C'(my) for a circuit C that is not the com-
position of the ones for which she received tokens. However efficiently proving
such a fact could be difficult as it is a CO-NP statement.

Along these lines, we point out that the concept of targeted malleability as
implemented in [6] allows composition of homomorphic transformations for a
constant and fixed number of times (this allows to go-around cO-NP) using
non-falsifiable knowledge extraction assumptions (these are needed to construct
succinct extractable arguments that are needed for compactness). We finally
point out that our construction can be modified to allow a constant and fixed
number of compositions of homomorphic transformations, even though in the
paper we do not elaborate further.

Given the above subtleties, from now on we consider a ciphertext as the
output of the encryption function. While the output of the evaluation function
is just a string.

3.1 Security of a CHES

As usual in encryption schemes, there are two flavors to measure the security of
a CHES. The most interesting flavor is the non-malleable one, since it captures
the idea of controlling the capability of mauling a ciphertext. We will therefore
continue with the definition of an NM-CPA CHES, and the interested reader can
find in Appendix [B| the notion of IND-CPA CHES, along with some expected

implications concerning this notion.

NM-CPA security of a CHES scheme We now consider a security definition for
CHES that is the conceptually equivalent to the notion of NM-CPA security
of plain encryption schemes. We formalize this notion of security for a CHES
CHE = (CHE.Setup, CHE.KeyGen, CHE.Enc, CHE.HEval, CHE.Dec) by means of
games CHES—NMCPA—GAMEZ(,:)'-iAE7 for b = 0,1, between an adversary A and a
challenger CHE.C. The adversary A receives a randomly generated public key of

CHE and can issue two types of queries to CHE.C: encryption queries and token
queries. Below we formalize how queries are answered by CHE.C and the output
of the games.

CHES-NMCPA-GAME; (A, n)

Setup. CHE.C computes (Pk,Msk) «+ CHE.Setup(1*,1") and runs A on
input Pk.
Token Query. CHE.C replies to a token query for a circuit C by returning
Tok® « CHE.KeyGen(Msk,).
i-th Encryption Query. CHE.C replies to an encryption query (Mg, M?)
with M{ # M{ and |M{| = |M{|, by returning Ct - CHE.Enc(Pk, M}).
Output of the Game. Let (4, Ct*,C) be A’s output.
If all the following conditions hold:
1. A did not issue a token query for circuit C” that coincides with C' on
M.
2. C(MJ) # C(M)).
3. CHE.Dec(Msk, Ct*) = C(Mj).
4. Ct* is not a ciphertext obtained as a reply to an encryption query.
then the output is C'(M}). Otherwise the output of the game is L.

The above definition captures the fact that the adversary manages to produce
(see conditions 3 and 4) a new ciphertext of C(M]) (for otherwise, the adver-
sary could issue encryptions queries for (Mp, M7) and for (C(My), C(M;)) and
returns the ciphertext obtained as a reply to this second query; in case of a single
ciphertext query, the adversary could set C' equal to the identity function and
return the ciphertext obtained as a reply to the encryption query (My, My)). For
this to be a meaningful achievement, it must be that the circuit C' gives different
output for the two challenge plaintexts (see condition 2) (for otherwise, the ci-
phertext could have been obtained by simply giving in output C(Mj) = C(M7)).
Moreover, it is also required (see condition 1) that the adversary has not asked
for a token for a function C” for which C(M]) = C'(M]) (for otherwise, the
ciphertext could have been obtained by simply applying the token)ﬂ

Definition 2. A CHES CHE is a NM-CPA secure CHES if for every PPT
adversary A for all polynomially bounded n = n()\) we have that the follow-
ing two ensembles are indistinguishable {CHES—NMCPA—GAMES&F()\,n)} and

{CHES-NMCPA-GAMEST'} (A, n)}. A CHES CHE is single-message NM-CPA

3 Another ostensible issue in the definition could be the following. In the the security
game, the adversary can make 0 token queries, 1 encryption query and get Ct =
CHE.Enc(Pk, M;), and generates by himself Ct' = CHE.Enc(Pk, (Mo, r, 0, Sk)) for a
freshly drawn Sk, and output (0,Ct’,ID). The conditions (1)-(4) of the game hold
with probability 1/2. (1) A did not ask any token query. (2) ID(Mo) # ID(M1). (3)
The decryption works. (4) Ct’ has not been obtained by an encryption query (but
as a fresh encryption query). The flaw in this reasoning is that the adversary can
trivially win with at most probability 1/2.

secure if it is NM-CPA secure with respect to all PPT adversaries A that ask
exactly one encryption query.

In App. [C] we show that any single-message NM-CPA-secure CHES is also
NM-CPA-secure.

4 CHES from Functional Encryption

In this section, we describe an NM-CPA CHES CHE = (CHE.Setup, CHE.KeyGen,
CHE.Enc, CHE.HEval, CHE.Dec). We stress that our security proof works only for
an adversary that is required to first ask for an encryption query and then can
ask for tokens.

In the description of CHE, we let FE = (FE.Setup, FE.Enc, FE.KeyGen, FE.Eval)
be an IND-CPA secure non-rerandomizabld| tag-based FE4C. For a CHES with
n-bit plaintexts and security parameter A\, we use an FE for plaintexts of length
n, auxiliary message of length A + 2. In addition we let F = {F(-,-)} be a
pseudorandom family of functions F(-,-) (the first argument is the seed), and
PKE = (Setup, Enc, Dec) be a public-key encryption scheme.

For sake of simplicity, we assume that secret keys of PKE with security pa-
rameter \ are exactly A-bit long and that ciphertexts of n-bit messages computed
with respect to public key with security parameter A have length ¢ = ¢(\, n).
Also, not to overburden notation, we assume that the tag space T) of FE co-
incides with the seed space of F' and that they both coincide with {0,1}*. In
addition, for an n-bit input and n-bit output circuit C, ¢-bit string s, and public
key FE.Pk of FE, we denote by Cj re pk the (n+ 2\ + 2)-bit input circuit defined
as follows:

— if t = 0 then C, ., (M, r,t,sk) = FE.Enc(FE.Pk, (C(M),0*, L,0%); F(r,0)),
— if t =1 then C, ., (M,r,t,sk) = Dec(sk, s),
— ift = L then C_ ., (M,r,t,sk) = L,

where M € {0,1}", r,sk € {0,1}* and ¢ € {0,1, L}.

In what follows, we will drop FE.Pk from C, .. . whenever it is clear from
the context and simply write Cs.

Circuit Cy takes three types of plaintexts: regular plaintexts, corresponding
to t = 0, which are the outputs of the encryption algorithm; mauled plaintexts,
corresponding to ¢t =1, which are outputs of the application of a token; trapdoor
plaintexts, corresponding to t = 1, which are used only in the proof. For cipher-
texts carrying regular plaintexts, the circuit Cs outputs a ciphertext for C(m)
and this captures the correct application (through the CHE.HEval algorithm)
of a token for circuit C' to an encrypted message. Notice that in this case the
resulting ciphertext carries a mauled plaintext. For ciphertexts carrying mauled
plaintexts, the circuit C outputs L and this captures the (incorrect) application
of a token to an already mauled message. For ciphertexts carrying a trapdoor

4 In the proof, we give details of the impact of the transformation of Section [2|in case
FE is re-randomizable.

plaintexts, Cs outputs a decryption of s with respect to the secret key that is
part of the trapdoor plaintext. In the reduction of an adversary for CHE to an
adversary for FE, trapdoor plaintexts are very useful because they force Cy to
return a value that is independent of the actual input M, and thus can be used
to contradict the security of FE (cfr., discussion in the Introduction). To do so
the value s used in the generation of the tokens must be carefully chosen so to
be indistinguishable from the ones output by algorithm CHE.KeyGen.

Algorithm CHE.Setup(1*,17).

1. Run algorithm FE.Setup on input (1*,17+2*+2) and obtain (FE.Pk, FE.Msk);
2. run algorithm Setup on input 1* and obtain (pk’,sk’);

3. set Pk = FE.Pk and Msk = (FE.Pk, FE.Msk, pk');

4. return (Pk, Msk).

Algorithm CHE.KeyGen(Msk, C').
1. set s = Enc(pk’, FE.Enc(FE.Pk, (0™,0%, L,0%))); notice that 0™ is the plain-
text, (0%, L) constitute the auxiliary message and 0* the tag.
2. set Tok = FE.KeyGen(FE.Msk, Cy);
3. return Tok.

Algorithm CHE.Enc(Pk, M).
1. Randomly select tag r € {0,1}*;
2. run algorithm Setup on input 1* and obtain (pk, sk);
3. set Ct = FE.Enc(FE.Pk, (M, r,0,sk)); notice that M is the plaintext, (0,sk)
is the auxiliary message and 7 is the tag.
4. return Ct.

Algorithm CHE.HEval(Pk, Ct, Tok) outputs FE.Eval(FE.Pk, Ct, Tok);

Algorithm CHE.Dec(Msk, Ct)
1. Set Tok = FE.KeyGen(FE.Msk, D) where the circuit ID is defined in the
following way: ID(z1, z2, x3,24) = 21.
2. return FE.Eval(FE.Pk, Ct, Tok).
In our construction we are using the r component of a plaintext both as a tag
and as the seed of the PRF that gives the randomness of the ciphertext resulting
from the application of a token (see the definition of Cy). In case T does not
coincide with the seed space of the PRF then we add another value to be used
as a seed of a PRF.
The correctness of the scheme follows by the correctness of FE and by the
definition of Cy. In the next section we prove the following theorem.

Theorem 1. Under the assumption of the existence of an IND-CPA secure
functional encryption scheme for all circuits (FE4AC), there exists a NM-CPA
secure CHES secure against adversaries that ask all encryption queries before
the token queries.

Constructions of FE4C that are secure (according to Definition []) when
the adversary sees any polynomial number of tokens have recently been given
in [I3I7123/14].

4.1 Proof on NM-CPA Security

Here we prove the security of our scheme for adversaries that issues all token
queries after the encryption query and issues exactly one encryption query (by
Theorem [5| we get security against multi-message adversaries).

Assume that there exists such an adversary A that breaks the security of
CHE for parameters A and n; that is, there exists a distinguisher D such that,
denoted by pp(A,n) the probability that D outputs 1 when its input is sampled
according to CHES-NMCPA—GAMEE"AE()\,n), po(A,n) > p1(An) + u(A) for
some non-negligible function p(-).

Based on A, we build adversary B for FE for security parameter A and length
parameter n + 2\ + 2. B interacts with challenger FE€.C for FE to which B can
issue encryption and token queries and runs internal copies of A and D.

Adversary B tricks adversary A into believing it is interacting with CHE.C
by presenting a view that differs indistinguishably by the one offered by CHE.C
since the challenge ciphertext is trapdoor. Then, from A’s output B manages to
decrypt by obtaining from FE.C of a token for a function that is equivalent to
decryption when applied to A’s output but, nonetheless, gives the same value
when applied to a ciphertext for one of the two challenge plaintexts output by
B. This therefore allows B to win in the security game of functional encryption.

Next we formally describe how B, FE.C, D, and A interact.

Setup. FE.C randomly selects b < {0, 1}, computes (FE.Pk, FE.Sk) < FE.Setup(1*, 17" +2*+2)
and runs B on input FE.Pk.

B computes (pk’,sk’) < Setup(1*), sets CHE.Pk = FE.Pk and runs A on
input CHE.Pk.

Encryption query. When A issues an encryption query for the pair of mes-
sages (Mg, M;), B proceeds as follows. B selects random rg,r; < {0,1}*,
sets mg = (Mo, 70,1,sk’) and m; = (My,r1,1,sk’), and issues encryption
query (mg, m1) to challenger FE.C.

We remind the reader that, for b = 0,1, M, is the plaintext, r, is the tag
and (1,sk’) is the auxiliary message.

Challenger FE.C returns Ct = FE.Enc(FE.Pk, m;) and B returns ciphertext
Ct to A.

Token query. When A issues a token query for circuit C', B proceeds as follows.
B sets m§ = (C(My),0*, L,0") and m§ = (C(M;),0*, L,0%), issues en-
cryption query (m§, m¢) to challenger FE.C and receives Ct© as a reply.
We remind the reader that, for b = 0,1, C(M) is the plaintext, 0* is the
tag and (L,0%") is the auxiliary message.

B then sets s = Enc(pk’, th), issues a token query for Cs and receives token
Tok® as a reply. B returns Tok® to A.

Output. A outputs circuit G and Ct* (claimed to be an encryption of G(Mj)).
Define circuit ID(-, -+, +) as follows:

— if (M,r) = (Mp,ro) or (M,r) = (My,r1) then IE)(M7 r,t,sk) = L,
— if t = 1 then |~D(M7 r,t,sk) = L,
— ID(M, r,t,sk) = M otherwise.

B issues token query for ID and obtains token To~k'~D as a reply from FE.C.
B then computes Out = FE.Eval(FE.Pk, Ct*, Tok'P). If D(Out) = 1 then B
outputs 0 as its guess for b; B outputs 1 otherwise.

This ends the description of B.

Handling re-randomizable FE4C Before proceeding further, we briefly discuss
the impact on algorithm B of the transformation outlined in Section[2]in case the
underlying FE4C FE is re-randomizable. We remind the reader that, in order to
enforce non-rerandomizability, the encryption algorithm is modified by using a
signature verification key as tag and then adding a signature to the ciphertext.
Tokens check that the signature that is part of the ciphertext is correct according
to the verification key in the plaintext. Thus we modify the encryption algorithm
so that one extra slot is used in the plaintext: (M, r,t, sk, vk) where now (M,r)
constitute the plaintext, (¢, sk) the auxiliary message, and vk the tag. During the
setup, algorithm B picks a pair (vk’,sgk’) and the verification key vk’ is used as
tag in the ciphertexts returned as replies to encryption queries and the associated
signing key sgk’ is used to sign the ciphertexts. The function ID is then modified
to return L if (M, r,vk) = (Mo, ro,vk') or if (M,r,vk) = (My,r1,vk"). We omit
further details.

We continue the proof by showing that B is a legitimate adversary for FE.
That is, we need to prove that for all the encryption queries (mg, mq) issued
by B we have that mg and m; have the same length; and that, if B has issued
token query for circuit C' then for all encryption queries (mq,m1) we have that
C(mg) = C(myq). The first condition is easily seen to be satisfied. Let us verify
that the second condition holds. For each token query for circuit C' issued by A, B
issues token query for circuit Cs. B, on the other hand, issues encryption queries
for (Mgy,r0,1,sk’) and (My,r1,1,sk’) while answering A’s challenge query. In
this case we have Cs(My,rq,1,sk") = Cs(My,r1,1,5k’) = Decrypt(s,sk’). B also
issues encryption queries while preparing the answer to A’s token queries. In this
case we have that Cs(C(My),0*, 1,0") = Cs(C(M;),0*, 1,0*) = L. A similar
reasoning holds for the token query for ID issued by B in the output phase.

In the rest of the proof we will show that A’s view in the interaction with B
is indistinguishable from the view of A in CHES-NMCPA-GaMENE(A,n) (b
is the random bit selected by CHE.C in the Setup phase). We will then prove
that, except with negligible probability, the value x computed by B is the same
as the output of CHES-NMCPA-GAMEE&E()\,n) and thus the output of the
distinguisher D can be used to correctly guess b. Specifically, we show that, for
B =0,1, the view of A in CHES-NMCPA-GAMEG'; is indistinguishable from
the view of A in the interaction with B that is in turn interacting with FE.C
that sets b = 8. We do so by considering a sequence of hybrid experiments and
then showing that adjacent hybrid experiments are indistinguishable.

Hybrid H 5

1. Setup. Set (pk,sk) < Setup(1*), (pk’, sk’) « Setup(1*) and (FE.Pk, FE.Sk) <
FE.Setup(1*,17*+22+2) Randomly pick 7,7’ < {0,1}*. Run A on input
CHE.Pk = FE.Pk.

2. Encryption query. When A issues an encryption query for messages (My, M),
return Ct = FE.Enc(FE.Pk, (Mg, r,0,sk)).

3. Token query. When A issues a token query for circuit C, proceed as follows.
Pick random z € {0,1}* and set s’ = FE.Enc(FE.Pk, (07,0*, 1,0%);2). Set
s = Enc(pk’, s’). Set Tok = FE.KeyGen(FE.Sk, C,) and return Tok.

For 8 = 0,1, the view of A in Hg is the same as the view of A is CHES—NMCPA—GAME%?‘E(A, n).

Hybrid H f Hybrid Hf differs from Hoﬂ only in the way value s’ is computed in
the reply to token query for circuit C. Specifically, s’ is computed by using pseu-
dorandom value F(r’, C') instead of truly random value z. The formal description
of Hf follows.

1. Setup. Set (pk,sk) < Setup(1*), (pk’, sk’) « Setup(1*) and (FE.Pk, FE.Sk) <
FE.Setup(1*,17*+2*+2), Randomly pick 7,7’ < {0,1}*. Run A on input
CHE.Pk = FE.Pk.

2. Encryption query. When A issues an encryption query for messages (My, M),
return Ct = FE.Enc(FE.Pk, (Mg, r,0,sk)).

3. Token query. When A issues a token query for circuit C, proceed as follows.
Set s’ = FE.Enc(FE.Pk, (0",0%, 1,0*); F(+',C)). Set s = Enc(pk’,s’) and
return Tok = FE.KeyGen(FE.Sk, Cs).

Next we show that, by the pseudorandomness of F', the views of A in Hg
and H f are indistinguishable, for 8 = 0,1. We do so by constructing an efficient
simulator algorithm S that interacts with adversary A and has access to an oracle
O that can be either random or pseudorandom. Depending on the nature of O,

S produces A’s view in Hg or in HiB This suffices for proving that Hg R Hlﬂ
Next we describe S.

1. Setup. S sets (pk, sk) < Setup(1*), (pk’,sk’) < Setup(1*) and (FE.Pk, FE.Sk) «+
FE.Setup(1*,1"t2*2). Then S randomly picks r,7" + {0,1}*. Finally, S
runs A on input CHE.Pk = FE.Pk.

2. Encryption query. When A issues an encryption query for messages (Mg, M),
S returns Ct = FE.Enc(FE.Pk, (Mg, 7,0, sk)).

3. Token query. When A issues a token query for circuit C, S proceeds as fol-
lows. S queries O on C, obtains z and sets s’ = FE.Enc(FE.Pk, (0,0*, 1,0*); 2).
Finally, S sets s = Enc(pk’, s’) and returns Tok = FE.KeyGen(FE.Sk, C,).

Suppose the oracle O is in random mode; that is, all queries are answered with

random values. Then it is easy to see that A’s view is exactly the same as in
Hg . On the other hand, suppose the oracle O is in pseudorandom mode; that
is, O picks a random 7’ and, upon receiving C, it replies with F(r’, C'). Then it

is easy to see that A’s view is exactly the same as in Hy .

Hybrid HQﬁ Hybrid Hg differs from H iB again in the randomness used to compute
the value s’. Specifically, s’ is computed by using as randomness the pseudoran-
dom value F(r,C) instead of F(r/,C). The formal description of HS follows.

1. Setup. Set (pk,sk) < Setup(1*), (pk’, sk’) « Setup(1*) and (FE.Pk, FE.Sk) <
FE.Setup(1*,17*+22+2) Randomly pick 7,7’ < {0,1}*. Run A on input
CHE.Pk = FE.Pk.

2. Encryption query. When A issues an encryption query for messages (My, M),
return Ct = FE.Enc(FE.Pk, (Mg, r,0,sk)).

3. Token query. When A issues a token query for circuit C, proceed as follows.
Set s’ = FE.Enc(FE.Pk, (C(Mg), 0%, L,0%); F(r,C)). Set s = Enc(pk’, s’) and
return Tok = FE.KeyGen(FE.Sk, C;).

Next we show that, by the IND-CPA security of encryption scheme Enc, the
views of A in Hf and Hzﬁ are indistinguishable, for § = 0,1. We do so by
constructing an IND-CPA adversary S for Enc that uses A as a subroutine and
interacts with a challenger C for Enc. S has the property that if C answers S’s
encryption queries for (s{,s}) by encrypting s; then A’s view is exactly the
same as in H 16 ; on the other hand, if C answers encryption queries by encrypting
sy then A’s view is exactly the same as in Hg . Thus, if the two views can be
distinguished, S can break the IND-CPA security of Enc. Next we describe S.

1. Setup. S receives pk’ from C and sets (pk, sk) < Setup(1%). Moreover, S sets
(FE.Pk, FE.Sk) < FE.Setup(1*,1"*2**+2) and randomly picks 7,7/ + {0,1}*.
Finally, S runs A on input CHE.Pk = FE.Pk.

2. Encryption query. When A issues an encryption query for messages (Mg, M),
S returns Ct = FE.Enc(FE.Pk, (Mg, 7,0, sk)).

3. Token query. When A issues a token query for circuit C, S proceeds as fol-
lows. S sets s), = FE.Enc(FE.Pk, (0",0*, 1L,0%); F(r',C)), s} = FE.Enc(FE.Pk, (C(M3),0*, 1,0*); F(r,C))
and issues an encryption query to C obtaining s. Finally, S returns Tok =
FE.KeyGen(FE.Sk, C;).

Hybrid H?’? Hybrid H:f differs from Hg in the way A’s encryption queries are
answered. Specifically, Ct is a ciphertext of (Mg, ', 1,sk’) instead of (Mg, 7,0, sk).
The formal description of H{f follows.

1. Setup. Set (pk,sk) < Setup(1*), (pk’, sk’) <— Setup(1*) and (FE.Pk, FE.Sk) <
FE.Setup(1*,1"*22+2). Randomly pick r,7" + {0,1}*. Run A on input
CHE.Pk = FE.Pk.

2. Encryption query. When A issues an encryption query for messages (Mg, M),
return Ct = FE.Enc(FE.Pk, (Mg, r’,1,sk")).

3. Token query. When A issues a token query for circuit C, proceed as follows.
Set s’ = FE.Enc(FE.Pk, (C(Mg), 0%, L,0%); F(r,C)). Set s = Enc(pk’, s’) and
return Tok = FE.KeyGen(FE.Sk, C;).

Next we show that, by the IND-CPA security of functional encryption scheme
FE, the views of A in HQB and H? are indistinguishable, for § = 0,1. We do so
by constructing an IND-CPA adversary S for FE that uses A as a subroutine
and interacts with a challenger FE.C for FE. S has the property that if FE.C
answers S’s encryption query for (m{, m}) by encrypting m(then A’s view is
exactly the same as in H 25 ; on the other hand, if #£.C answers encryption queries
by encrypting m/ then A’s view is exactly the same as in H? . Thus, if the two

views can be distinguished, S can break the IND-CPA security of FE. Next we
describe S.

1. Setup. S receives FE.Pk from F&.C and sets (pk, sk) < Setup(1?), (pk’, sk’) <
Setup(1*). Moreover, S randomly picks 7,7’ < {0,1}* and runs A on input
CHE.Pk = FE.Pk.

2. Encryption query. When A issues an encryption query for messages (Mg, M),
S sets

mo = (Mg, r,0,sk) and m; = (Mg, 1", 1,sk’)

issues encryption query (mg, my) to FE.C, obtains Ct and returns it to A.
3. Token query. When A issues a token query for circuit C, S proceeds as fol-
lows. S sets s’ = FE.Enc(FE.Pk, (C(Mjg),0*, 1,0*); F(r,C)), s = Enc(pk’, s")
and issues an encryption query to FE.C for a token for circuit Cs. Finally,
S returns the token Tok received from FE.C to A.
Firstly, we verify that S is a legal adversary for IND-CPA of FE. Indeed, S issues
one encryption query for my and m; and for all circuits Cs for which S asks for
a token it holds that

Cs(mg) = Cs(mq1) = FE.Enc(FE.Pk, (C(M3),0", L,0™); F(r,c)).

Clearly, if F£.C returns an encryption of mg then A’s view is exactly as in
Hg; if F€.C returns an encryption of m; then A’s view is exactly as in H?

Hybrid HY Hybrid HY differs from H. f for the randomness used to compute s'.
Specifically, in HéB , F(r,C) is used as randomness for computing s’ whereas in
H f true randomness is used. The formal description of H. f follows.

1. Setup. Set (pk,sk) < Setup(1*), (pk’, sk’) <— Setup(1*) and (FE.Pk, FE.Sk) <
FE.Setup(1*,17T22+2). Randomly pick r,7" « {0,1}*. Run A on input
CHE.Pk = FE.Pk.

2. Encryption query. When A issues an encryption query for messages (Mg, M),
return Ct = FE.Enc(FE.Pk, (Mg,7’,1,sk")).

3. Token query. When A issues a token query for circuit C, proceed as follows.
Randomly pick z < {0, 1}* and set s’ = FE.Enc(FE.Pk, (C(Mp),0*, 1,0%); 2).
Set s = Enc(pk’, s’) and return Tok = FE.KeyGen(FE.Sk, Cy).

Notice that, for 5 = 0,1, the view of A in Hf coincides with the view of A
while interacting with B. Moreover, by the pseudorandomness of F'; H. g and H f
are indistinguishable.

B’s success probability Finally, we show that the probability that B correctly
guesses b is at least 1/2 + p(\) for a non-negligible function .

All it is left to show is that the string Out computed by B and then fed as input
to D is indistinguishable from the output of CHES-NMCPA-GAME; "y . This is

necessary since B does not have access to Msk and uses a token for function ID
instead. However, observe that ID differs from the decryption function when the
plaintext associated with Ct* is of the form (My, 7, t, sk) or (M;_p, 714, ¢, sk) for
some t and sk. In the first case, this means that .4 has managed to re-randomize

a ciphertext for FE since it has produced a different ciphertext with the same
plaintext M; and the same tag r, as the plaintext received from the encryption
query. This, by hypothesis, occurs only with negligible probability. For the second
case, observe that r;_; is a random \A-bit string that is independent from A’s view
and thus the probability that A produces a ciphertext carrying r1_; is negligible.
We can thus conclude that the input provided by A to D is indistinguishable
from its input in CHES-NMCPA-GAME. Therefore, by the hypothesis on D we
can conclude that B breaks the IND-CPA security of FE.

5 Acknowledgements

Vincenzo Iovino is supported by a FNR CORE grant (no. FNR11299247) of
the Luxembourg National Research Fund. Part of this work was done while
Vincenzo Iovino was at the University of Warsaw and was supported by the
WELCOME/2010-4/2 grant funded within the framework of the EU Innovative
Economy Operational Programme.

References

1. S. Agrawal, S. Gorbunov, V. Vaikuntanathan, and H. Wee. Functional encryption:
New perspectives and lower bounds. In CRYPTO (2), pages 500-518, 2013.

2. S. Agrawal, S. Gorbunov, V. Vaikuntanathan, and H. Wee. Functional encryption:
New perspectives and lower bounds. In R. Canetti and J. A. Garay, editors,
Advances in Cryptology - CRYPTO 2013 - 33rd Annual Cryptology Conference,
Santa Barbara, CA, USA, August 18-22, 2013. Proceedings, Part II, volume 8043
of Lecture Notes in Computer Science, pages 500-518. Springer, 2013.

3. J. Alwen, M. Barbosa, P. Farshim, R. Gennaro, S. D. Gordon, S. Tessaro, and
D. A. Wilson. On the relationship between functional encryption, obfuscation,
and fully homomorphic encryption. In M. Stam, editor, Cryptography and Coding
- 14th IMA International Conference, IMACC 2013, Ozford, UK, December 17-
19, 2013. Proceedings, volume 8308 of Lecture Notes in Computer Science, pages
65-84. Springer, 2013.

4. M. Barbosa and P. Farshim. Delegatable homomorphic encryption with appli-
cations to secure outsourcing of computation. In Topics in Cryptology — CT-
RSA 2012, Lecture Notes in Computer Science, pages 296-312. Springer, Berlin,
Germany, 2012.

5. D. Boneh, A. Sahai, and B. Waters. Functional encryption: Definitions and chal-
lenges. In Y. Ishai, editor, TCC 2011: 8th Theory of Cryptography Conference,
volume 6597 of Lecture Notes in Computer Science, pages 253—273, Providence,
RI, USA, Mar. 28-30, 2011. Springer, Berlin, Germany.

6. D. Boneh, G. Segev, and B. Waters. Targeted malleability: homomorphic encryp-
tion for restricted computations. In ITCS, pages 350-366, 2012.

7. E. Boyle, K. Chung, and R. Pass. On extractability obfuscation. In Theory of
Cryptography - 11th Theory of Cryptography Conference, TCC 2014, San Diego,
CA, USA, February 24-26, 201}. Proceedings, pages 52-73, 2014.

8. Z. Brakerski, C. Gentry, and V. Vaikuntanathan. (Leveled) fully homomorphic
encryption without bootstrapping. In ITCS, pages 309-325, 2012.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

7. Brakerski and V. Vaikuntanathan. Efficient fully homomorphic encryption from
(Standard) LWE. In FOCS, pages 97-106, 2011.

A. De Caro and V. Iovino. On the power of rewinding simulators in functional
encryption. Designs, Codes and Cryptography, pages 1-27, 2016.

A. De Caro, V. Iovino, A. Jain, A. O'Neill, O. Paneth, and G. Persiano. On the
achievability of simulation-based security for functional encryption. In R. Canetti
and J. A. Garay, editors, CRYPTO (2), volume 8043 of Lecture Notes in Computer
Science, pages 519-535. Springer, 2013.

D. Dolev, C. Dwork, and M. Naor. Non-malleable cryptography. In 23rd An-
nual ACM Symposium on Theory of Computing, pages 542-552, New Orleans,
Louisiana, USA, May 6-8, 1991. ACM Press.

S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, and B. Waters. Candidate
indistinguishability obfuscation and functional encryption for all circuits. In 54th
Annual IEEE Symposium on Foundations of Computer Science, FOCS 2013, 26-29
October, 2013, Berkeley, CA, USA, pages 40-49. IEEE Computer Society, 2013.
S. Garg, C. Gentry, S. Halevi, and M. Zhandry. Functional encryption without
obfuscation. In E. Kushilevitz and T. Malkin, editors, Theory of Cryptography: 13th
International Conference, TCC 2016-A, Tel Aviv, Israel, January 10-13, 2016,
Proceedings, Part 11, pages 480-511. Springer, 2016.

C. Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford Univer-
sity, 2009. |crypto.stanford.edu/craig.

C. Gentry. Fully homomorphic encryption using ideal lattices. In M. Mitzenmacher,
editor, 41st Annual ACM Symposium on Theory of Computing, pages 169178,
Bethesda, Maryland, USA, May 31 — June 2, 2009. ACM Press.

S. Gorbunov, V. Vaikuntanathan, and H. Wee. Functional encryption with
bounded collusions via multi-party computation. In R. Safavi-Naini and R. Canetti,
editors, Advances in Cryptology — CRYPTO 2012, volume 7417 of Lecture Notes
in Computer Science, pages 162—179, Santa Barbara, CA, USA, Aug. 19-23, 2012.
Springer, Berlin, Germany.

S. Gorbunov, V. Vaikuntanathan, and H. Wee. Functional encryption with
bounded collusions via multi-party computation. In R. Safavi-Naini and R. Canetti,
editors, CRYPTO, volume 7417 of Lecture Notes in Computer Science, pages 162—
179. Springer, 2012.

V. Goyal, A. Jain, V. Koppula, and A. Sahai. Functional encryption for ran-
domized functionalities. Cryptology ePrint Archive, Report 2013/729, 2013.
http://eprint.iacr.org/.

V. Tovino and K. Zebrowski. Simulation-based secure functional encryption in the
random oracle model. In Progress in Cryptology - LATINCRYPT 2015 - jth In-
ternational Conference on Cryptology and Information Security in Latin America,
Guadalajara, Mezico, August 23-26, 2015, Proceedings, pages 21-39, 2015.

M. Naor. On cryptographic assumptions and challenges (invited talk). In D. Boneh,
editor, Advances in Cryptology — CRYPTO 2003, volume 2729 of Lecture Notes in
Computer Science, pages 96-109, Santa Barbara, CA, USA, Aug. 17-21, 2003.
Springer, Berlin, Germany.

R. Pass, A. Shelat, and V. Vaikuntanathan. Construction of a non-malleable en-
cryption scheme from any semantically secure one. In Advances in Cryptology -
CRYPTO 2006, 26th Annual International Cryptology Conference, Santa Barbara,
California, USA, August 20-24, 2006, Proceedings, volume 4117 of Lecture Notes
in Computer Science, pages 271-289. Springer, 2006.

crypto.stanford.edu/craig
http://eprint.iacr.org/

23. B. Waters. A punctured programming approach to adaptively secure functional
encryption. In Advances in Cryptology - CRYPTO 2015 - 35th Annual Cryptology
Conference, Santa Barbara, CA, USA, August 16-20, 2015, Proceedings, Part II,
pages 678697, 2015.

A Syntax and Security of Functional Encryption for
Circuits

Definition 3 (FE4C: Functional Encryption Scheme for Circuits). A
Functional Encryption scheme for Circuits is a tuple FE = (FE.Setup, FE.KeyGen, FE.Enc, FE.Eval)
of 4 efficient algorithms with the following syntaz:
1. FE.Setup(1*,1™) outputs public and master secret keys (Pk, Msk) for secu-
rity parameter A and length parameter n.
2. FE.KeyGen(Msk, C), on input a master secret key Msk for length parameter
n and an n-bit input and n-bit output circuit C, oulputs token Tokc.
3. FE.Enc(Pk, M), on input public key Pk for length parameter n and plaintext
M € {0,1}™, outputs ciphertext Ct.
4. FE.Eval(Pk, Ct, Tok) outputs B € {0,1}" U{L}.
For the correctness condition we require that for all n-bit input and n-bit out-
put circuits C, all M € {0,1}", and for (Pk,Msk) < Setup(1*,1"), Tok «
KeyGen(Msk, C) and Ct + Enc(Pk, M), the probability that Eval(Pk, Ct, Tok)
#+ C(M) is negligible in \.
We formalize security for a FE4C FE by means of the following game FE-INDCPA-GAME
between a challenger F€.C and an adversary A that can issue two types of queries

to FE.C, encryption queries and token queries. The definition is essentially the
one in [5].

FE-INDCPA-GAMETF (), n)

Setup. FE.C generates (Pk, Msk) —
FE.Setup(1*, 1), selects random b € {0, 1} and
runs A on input Pk.

Token Query. FE.C on input an n-bit input n-bit
output circuit C', computes and returns Tok <
FE.KeyGen(Msk, C).

Encryption Query. FE.C, on input a pair
(mg, my) of plaintexts, answers by computing
and returning FE.Enc(Pk,my).

Output of the Game. Let b’ the output of A.
Then the game outputs 1 if and only if

1. b="b;

2. for all encryption queries (mq, m1), it holds
that mgy and m; are of the same length;

3. for all token queries C' and for all en-
cryption queries (mg,mp), it holds that
C(mo) = C(ml)

Definition 4. We say that a FEAC FE is IND-CPA secure if for all PPT
adversaries A there exists a negligible function p such that

Prob[FE-INDCPA-GAMETF(\) = 1] < 1/2 4 u()\).

Tag-Based Non-Rerandomizable Functional Encryption In our main construc-
tion we use a special type of FE4C in which ciphertexts cannot be re-randomized.
More precisely, we consider tag-based FE4C in which the encryption algorithm
for n-bit plaintext m and security parameter \ takes two extra arguments: a tag
7 from the set T of A-bit tags and an auxiliary message of length ny. It is easy to
see how any FE4C can be modified to accommodate tags and auxiliary messages
at the expenses of increasing the length parameter n. In a non-rerandomizable
tag-based FEAC, given a ciphertext for an adversarially chosen plaintext m and
auxiliary message aux and a random tag 7, no adversary can produce another
ciphertext for the same plaintext m and the same tag. Specifically, we consider
the following security game between a challenger FE€.C and and adversary A
that can issue one single encryption query.

RERANDOM Y E(\, m,71)

Setup. FE.C generates (Pk, Msk) +—
TFE.Setup(1*,1",1™) and runs A on in-
put Pk.

Token Query. FE.C on input an (n+nq + A)-bit
input (n + n1 + A)-bit output circuit C, com-
putes and returns Tok <— TFE.KeyGen(Msk, C').

Encryption Query. F£.C, on input plaintext m
and auxiliary message aux, picks a random tag
7 from the set T}, of tags of length A\ and returns
a ciphertext Ct = TFE.Enc(Pk,m,aux,7) with
tag 7.

Output of the Game. Let Ct* the output of A.
Then the game outputs 1 if and only if

1. Ct* # Ct;
2. TFE.Dec(Msk, Ct*) = (m/,aux’,7") with

m' =m and T = 7/;

We say that a tag-based FE4C TFE is non-rerandomizable if for all PPT adver-
saries A and for n and n; polynomially bounded in A there exists a negligible
function p such that

Prob[RERANDOM | E(\, m,m1) = 1] < p(N).

It is easy to see that any tag-based FE4C can be transformed into a non-
rerandomizable one by using a secure signature scheme. More precisely, we define
the encryption algorithm TFE.Enc that encrypts plaintext m and aux, to pick
a random pair of (vk,sgk) of verification and signing key for a secure signature

scheme (SigKeyGen, Sign, Verify) and m, aux are encrypted using vk as tag ob-
taining Ct. Finally, a signature oc; of Ct is computed using the signing key sgk
and the resulting ciphertext consists of the pair (Ct,oct). Tokens for function
C on ciphertext (Ct,oct) first verify oc; and, if successful, proceed to compute
C(m,aux). We observe that A either changes the verification key (and thus
changes the tag) or keeps the same verification key but then it has to sign a new
ciphertext or compute a new signature (which would violate the security of the
signature scheme).

B IND-CPA CHES

IND-CPA security of a CHES We formalize the notion of security equivalent to
IND-CPA for a CHES CHE = (CHE.Setup, CHE.KeyGen, CHE.Enc, CHE.HEval,
CHE.Dec) by means of game CHES-INDCPA-GAME between an adversary A
and a challenger CHE.C. The adversary A receives a randomly generated public
key of CHE and can issue two types of queries to CHE.C: encryption queries and
token queries. Below we formalize how queries are answered by CHE.C and what
it means for A to win the game.

CHES-INDCPA-GAMESGE(\, n)

Setup. CHE.C computes (Pk, Msk) —
CHE.Setup(1*,1™), selects a random b € {0,1}
and runs A on input Pk.

Token Query. CHE.C replies to a token query
for a circuit C by returning Tok® «
CHE.KeyGen(Msk, C).

i-th Encryption Query. CHE.C replies to en-
cryption query (Mg, M}) with |M(| = |M{|, by
returning Ct < CHE.Enc(Pk, Mj}).

Output of the Game. Let ¥ be A’s output.
Return 1 (meaning that .4 has won) iff b = ¥/.

Definition 5. A CHES CHE is IND-CPA secure if for every PPT adversary
A, there exists a negligible function pu(-) such that Pr [CHES—INDCPA—GAME%HE()\, n) = 1} <
1/2 4 p(N).
A CHES CHE is single-message IND-CPA secure if it is IND-CPA secure
for all PPT adversaries A asking exactly one encryption query.

B.1 Implications

IND-CPA CHES from LWE Noticing that any fully homomorphic encryption
scheme [16] is also an IND-CPA CHES, we have that the results of [9I8] prove
the following theorem.

Theorem 2. Assuming LWE, there exists an IND-CPA-secure CHES.

NM-CPA CHES = IND-CPA CHES Here we show the natural implication
that every NM-CPA CHES is also an IND-CPA CHES.

Theorem 3. Any NM-CPA-secure CHES is also IND-CPA -secure.

Proof. The proof is by contradiction. Assume there exists a PPT adversary
A IND-CPA that is able to guess the challenge bit with probability at least
1/2-+nneg(A), for some non-negligible function nneg(-) and consider the following
adversary A’. A’ interacts with a challenger for NM-CPA, runs an internal copy
of A and uses the challenger to answer A’s queries. When A outputs b, A’ outputs
with the triple (1,ct*, C*), where ct* is an encryption of C*(M}}) and C* is a
circuit that satisfies the condition of the definition. Specifically, C*(m) = m + i
where i is the smallest integer for which C* satisfies the condition of the definition
(that is C*(Mg3) # C*(M{) and none of the tokens asked by A coincides with
C* on messages Mg and M}). Since the number of token queries is polynomially
bounded, the circuit C* can be efficiently found.

IND-CPA: single message vs many messages Here we show that in order to
prove the IND-CPA and NM-CPA security of a construction for a CHES, it is
sufficient to concentrate on the case of an adversary that asks for one encryption
query only. Indeed, we prove that any single-message IND-CPA-secure CHES is
also IND-CPA and similarly for NM-CPA security.

Theorem 4. Any single-message IND-CPA -secure CHES is also IND-CPA.

Proof. Consider a single-message IND-CPA CHES CHE and suppose by contra-
diction that there exists an adversary A against its (many-message) IND-CPA
security that succeeds with probability 1/2 + nneg(\A) for some non-negligible
function nneg(-). We construct an adversary A’ against the single-message IND-
CPA security of CHE as follows. A’ behaves as a proxy between the challenger
of single-message IND-CPA and A except for encryption queries and answers.
Specifically, A’ selects a random bit b" and a random index j" in {1, ..., ¢}, where
q is an upper bound on the number of queries of A and will behave as a proxy
between A and the challenger for all token queries and for j'-th encryption query;
for the remaining encryption queries (M(, M) instead, A’ replies by computing
an encryption of Mj},. Finally, A’ outputs the same bit that A outputs.

Observe that the success probability of A is equal to 1/2(Sp + S1), where
we let S;, denote the success probability of A when the challenger chooses bit b.
Therefore we have that 1/2(Sy + S1) > 1/2 + nneg(A).

Now consider the probability that A outputs the same bit b chosen by the
challenger but in an experiment where for a randomly chosen challenge cipher-
text the value b is used instead of b, and let us denote such a probability by
Ty. Notice that, for b = 0,1, T, > S, — p(A) for some negligible function u, for
otherwise we can trivially break the single-message IND-CPA security of CHE.

Noticing that with probability 1/2 it holds that b = b/, we have that the
success probability of A’ is Sy + S; with probability 1/2, and Ty + T with
probability 1/2.

Summing up, the success probability of A’ can be computed as follows:
w > 1/2 + nneg’(\) for some non-negligible function nneg’.

C Single-Message vs Multi-Message NM-CPA CHES

Theorem 5. Any single-message NM-CPA -secure CHES is also NM-CPA-
secure.

Proof. Let CHE be a single-message NM-CPA-secure CHES. Assume by con-
tradiction that there exists a successful adversary A for NM-CPA security and
an efficient distinguisher D that distinguishes

CHES-NMCPA-GAME (A, n) and CHES-NMCPA-GAME'f (A, n).

We now reduce A to an adversary A’ for single-message NM-CPA security of
CHES. The reduction is similar to the one given in [22]. Let ¢ > 1 be an
upper bound on the the number of encryption queries made by .A. Consider
the game CHES-NMCPA- GAMECHE()\ n) indexed by vector J = (b1,...,by)
that specifies that the j-th encryption query is answered by encrypting Mg]

For j = 0,...,q, we define vector J; = (1,...,1,0,0,...,0) as the vector
whose first j components are 1 and the remaining components are 0. We can
now run hybrid arguments since CHES-NMCPA- GAMECHE()\ n) corresponds

to CHES-NMCPA-GAMES'S (A, n) and

CHES-NMCPA- GAMECHE(/\ n) corresponds to CHES-NMCPA-GAMES" (A, n).
Since D distinguishes

CHES-NMCPA-GAMES!S (A, n) and CHES-NMCPA-GAMES (A, n),
there exists j € {0,...,¢q — 1} such that D distinguishes between
CHES-NMCPA-GAMES"S (A, n) and CHES-NMCPA-GAMESTE (A, n).

We can therefore use D along with adversary A to contradict single-message
NM-CPA security of CHE as follows. A’ behaves as proxy between the chal-
lenger and A for the token queries Instead encryption queries are handled as
follows. A’ selects a random j’ € {0,...,q — 1} and forwards to the challenger
the j’-th encryption query (Mg ,Mll) received from A, and forwards to A the
corresponding answer received from the challenger. Instead, for all remaining
encryption queries (Mg, M?), A’ answers on its own by sending an encryption of
M? when i < j" and of M¢ when i > j'. _

Assume j = j'. Notice that when the challenger encrypts M, the above
game corresponds to

CHES-NMCPA-GaMESS (A, n)

while when the challenger encrypts Mf , the above game corresponds to

CHES-NMCPA-GAMESTE (A, n).

By conditioning on the event that j = 5 we conclude observing that therefore D
distinguishes CHES-NMCPA-GAMEG Y (X', n) from CHES-NMCPA-GAMET; (A, n).

