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Abstract

Bilinear groups are often used to create Attribute-Based Encryption (ABE) algo-
rithms. In particular, they have been used to create an ABE system with multi
authorities, but limited to the ciphertext-policy instance. Here, for the first time, we
propose two multi-authority key-policy ABE systems.
In our first proposal, the authorities may be set up in any moment and without
any coordination. A party can simply act as an ABE authority by creating its own
public parameters and issuing private keys to the users. A user can thus encrypt
data choosing both a set of attributes and a set of trusted authorities, maintaining
full control unless all his chosen authorities collude against him.
In our second system, the authorities are allowed to collaborate to achieve shorter
keys and parameters, enhancing the efficiency of encryption and decryption.
We prove our systems secure under algebraic assumptions on the bilinear groups:
the bilinear Diffie-Hellmann assumption and an original variation of the former.

Keywords: ABE, KP-ABE, Multi Authority, Bilinear Groups, Diffi-Hellman
Assumptions.

1 Introduction

The key feature that makes the Cloud so attracting nowadays is the
great accessibility it provides: users can access their data through the In-
ternet from anywhere. Unfortunately, at the moment the protection offered
for sensitive information is questionable and access control is one of the
greatest concerns. Illegal access may come from outsiders or even from in-
siders without proper clearance. One possible approach for this problem is
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to use Attribute-Based Encryption (ABE) that provides cryptographically
enhanced access control functionality in encrypted data.

ABE developed from Identity Based Encryption, a scheme proposed
by Shamir [Sha85] in 1985 with the first constructions obtained in 2001 by
Boneh and Franklin [BF01] and Cocks [Coc01]. The use of bilinear groups, in
particular the Tate and Weil pairings on elliptic curves [BF01], was the win-
ning strategy that finally allowed to build schemes following the seminal
Shamir’s idea. Bilinear groups came in nicely when a preliminary version
of ABE was invented by Sahai and Waters [SW05] in 2005. Immediately af-
terwards, Goyal, Pandey, Sahai, and Waters [GPSW06] formulated the two
complimentary forms of ABE which are nowadays standard: ciphertext-
policy ABE and key-policy ABE. In a ciphertext-policy ABE system, keys
are associated with sets of attributes and ciphertexts are associated with
access policies. In a KP-ABE system, the situation is reversed: keys are
associated with access policies and ciphertexts are associated with sets of
attributes. Several developments in efficiency and generalizations have been
obtained for key-policy ABE, e.g. [OSW07], [ALDP11], [AHL+12], [HW13].
All the latter key-policy schemes have a proof of security based on the orig-
inal Diffie-Helmann assumption on bilinear groups or some slight variation
(more on this in Section 2). A first implementation of ciphertext-policy ABE
has been achieved by Bethencourt et al. [BSW07] in 2007 but the proofs of
security of the ciphertext-policy ABE remained unsatisfactory since they
were based on an assumption independent of the algebraic structure of the
group (the generic group model). It is only with the work of Waters [Wat11]
that the first non-restricted ciphertext-policy ABE scheme was built with a
security dependent on variations of the DH assumption on bilinear groups.
Noteworthy are also the latest developments that aim to control dynamic
users via revocation, e.g. [LCL+13] which exploits even more sophisticated
assumptions on bilinear groups, including a variant of the subgroup deci-
sion problem. Related to the work we propose in this pare is the construction
for multiple authorities (ciphertext-policy ABE) that have been proposed in
[Cha07], [CC09] and [LW11].
However, before the present paper no multi-authority KP-ABE scheme has
appeared in the literature with a proof of security.

Our construction In this paper we present the first multi authority KP-
ABE schemes. In our first system, after the creation of an initial set of com-
mon parameters, the authorities may be set up in any moment and without
any coordination. A party can simply act as an ABE authority by creating
a public parameters and issuing private keys to different users (assigning
access policies while doing so). A user can encrypt data under any set of
attributes specifying also a set of trusted authorities, so the encryptor main-
tains high control. Also, the system does not require any central authority.

CGC



R. Longo, C. Marcolla, M. Sala 3

Our scheme has both very short single-authority keys, that compensates the
need of multiple keys (one for authority), and also very short ciphertexts.
Moreover, the pairing computations in the bilinear group are involved only
during the decryption phase, obtaining this way significant advantages in
terms of encryption times.

In our second system, the authorities are allowed to collaborate to
achieve shorter keys and parameters, enhancing the efficiency of encryption
and decryption. Unless they all collude, even if the authorities are collabo-
rating, the existence of just one non-cheating authority guarantees that no
illegitimate party (including authorities) has access to the encrypted data.

We prove our first scheme using the classical bilinear Diffie-Helmann
assumption, while for the second scheme we use a slightly stronger variation
of the same assumption.

Organization This paper is organized as follows. In Section 2 we present
Bilinear groups and the main security assumptions used for ABE schemes,
alongside our original assumptions and a comparison between these as-
sumptions. In Section 3 we present the main mathematical tools used in the
construction of multi authority KP-ABE scheme. In Section 4 we explain in
detail our multi authority KP-ABE scheme and its security is proven under
standard, non-interactive assumptions in the selective set model. In Section
5 we explain the collaborative variant and also prove its security. In Section
6 a lower-bound on the complexity in generic bilinear groups is shown.
Finally conclusions are drawn in Section 7.

2 Complexity Assumptions on Bilinear Groups

This section covers background information necessary to understand
KP-ABE schemes and their security. In particular, we give some mathemat-
ical notions about bilinear groups and our cryptographic assumption, that
is, the decisional bilinear Diffie-Hellman assumption, with particular em-
phasis on its variations used to prove ABE schemes and their relations.

Let G1,G2 be groups of the same prime order p.

Definition 2.1 (Pairing). A symmetric pairing is a bilinear map e such that
e : G1 ×G1 → G2 has the following properties:

• Bilinearity: ∀g, h ∈ G1,∀a, b ∈ Zp, e(ga, hb) = e(g, h)ab.

• Non-degeneracy: for g generator of G1, e(g, g) , 1.

Definition 2.2 (Bilinear Group). G1 is a Bilinear group if the conditions above
hold and both the group operations in G1 and G2 as well as the bilinear map e are
efficiently computable.
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In the reminder of this section G1 and G2 are understood.

2.1 Security assumption on prime order bilinear groups

The security assumptions to be presented relate to the difficulty of the
following problem: guess the type of an element T given a vector ~y. In
particular there are two cases: either T = e(g, g)α ∈ G2 where α depends on
~y (in this case (~y,T) is called valid tuple), or T is a random element R ∈ G2,
unrelated to ~y.
An algorithm B that tries to solve this problem should output 0 in the
first case and 1 in the second. This algorithm B is supposed to have access
to a source of entropy that allows to make random choices. Moreover, B
terminates in a time that is polynomial in log2(p) where p is the order of
the bilinear group. For these reasons B is called a probabilistic polynomial-
time algorithm. It may be useful for the reader to think of B as an attacker.
By giving the attacker a polynomial-time algorithm, we are bounding his
computational power in a realistic way (if she could use exponential-time
algorithms, no system would resist her attacks). On the other hand, we are
giving the attacker a source of entropy as input (or a random tape in Turing
machine terminology), which is essential to mount dangerous attacks.

Definition 2.3 (Advantage of B). We say that the advantage AdvB of B solving
the decisional problem in G1 is ε if∣∣∣Pr

[
B

(
~y,T = e(g, g)α

)
= 0

]
− Pr

[
B

(
~y,T = R

)
= 0

]∣∣∣ ≥ ε.
In other words, we hope that the enemy has a small advantage. Indeed,
usually people build systems in such a way that they can be broken only
by an attacker with a large advantage. We provide now a precise definition
for the size of the advantage. We recall that η(k) is a negligible function in
k, that is, for every c and for every γ there exists k0 such that |η(k)| <

∣∣∣ 1
ckγ

∣∣∣
for all k > k0. The security assumptions hold if no probabilistic polynomial-
time algorithm B has a non-negligible advantage in solving the decisional
problems. B has a negligible advantage if AdvB = η(log2(p)).

Decisional Bilinear Diffie-Hellman Assumption The Decisional Bilinear
Diffie-Hellman (BDH) assumption is the basilar assumption used for proofs
of indistinguishability in pairing-based cryptography. It has been first intro-
duced in [BF01] by Boneh and Franklin and then widely used in a variety
of proofs, including the one of the first ABE in [GPSW06]. It is defined as
follows.

Let a, b, s, z ∈ Zp be chosen at random and g be a generator of the bilinear
group G1. The decisional bilinear Diffie-Hellman (BDH) problem consists
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in constructing an algorithm B(A = ga,B = gb,S = gs,T) → {0, 1} to effi-
ciently distinguish between the tuples (A,B,S, e(g, g)abc) and (A,B,S, e(g, g)z)
outputting respectively 1 and 0. The advantage of B in this case is clearly
written as:

AdvB =
∣∣∣∣Pr

[
B(A,B,S, e(g, g)abs) = 1

]
− Pr

[
B(A,B,S, e(g, g)z) = 1

] ∣∣∣∣
where the probability is taken over the random choice of the generator g, of
a, b, s, z in Zp, and the random bits possibly consumed by B to compute the
response.

Definition 2.4 (BDH Assumption). The decisional BDH assumption holds if
no probabilistic polynomial-time algorithm B has a non-negligible advantage in
solving the decisional BDH problem.

Decisional Bilinear Diffie-Hellman Exponent Assumption The decisional
q-Bilinear Diffie-Hellman Exponent (q-BDHE) problem has been used in
various security proofs, starting from Boneh et. al. in [BBG05] to prove their
hierarchical identity-based encryption scheme with constant-size cipher-
text. Subsequently it has been used in various ABE proofs, e.g. [Wat11] and
[HW13]. It is defined as follows.

Let a, s ∈ Zp be chosen at random and g be a generator of G1. If an
adversary is given

~y =
(
gs, gai

, i ∈ {1, . . . , 2q} \ {q + 1}
)

it must be hard to distinguish e(g, g)aq+1s
∈ G2 from a random element R ∈ G2.

B clearly has advantage ε in solving the decisional q-BDHE in G1 if∣∣∣∣Pr
[
B

(
y,T = e(g, g)aq+1s

)
= 0

]
− Pr

[
B

(
y,T = R

)
= 0

]∣∣∣∣ ≥ ε
Definition 2.5 (q-BDHE Assumption). The decisional q-BDHE assumption
holds if no polynomial-time algorithm B has a non-negligible advantage in solving
the decisional q-BDHE problem.

Decisional Parallel Bilinear Diffie-Hellman Exponent Assumption The
decisional q-parallel Bilinear Diffie-Hellman Exponent (q-PBDHE) problem
has been first introduced by Waters in [Wat11] to prove the security of his
more general construction of a ciphertext-policy ABE scheme. It is defined
as follows.
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Let a, s, b j ∈ Zp, j = 1, . . . , q, be chosen at random and g be a generator
of G1. If an adversary is given

~y =

 gai
, g

ai
bj i ∈ {1, . . . , 2q} \ {q + 1},∀ j ∈ {1, . . . , q}

g, gs, gsb j , g
sai bk

bj ∀i, j, k ∈ {1, . . . , q}, k , j

it must be hard to distinguish e(g, g)aq+1s
∈ G2 from a random element R ∈ G2.

B as usual has advantage ε in solving the decisional q-PBDHE in G1 if∣∣∣∣Pr
[
B

(
~y,T = e(g, g)aq+1s

)
= 0

]
− Pr

[
B

(
~y,T = R

)
= 0

]∣∣∣∣ ≥ ε
Definition 2.6 (q-PBDHE Assumption). The decisional q-PBDHE assumption
holds if no polynomial-time algorithm B has a non-negligible advantage in solving
the decisional q-PBDHE problem.

Decisional Bilinear x-Power Diffie-Hellman Assumption This is our first
original assumption introduced. It is a variant of the basic BDH in which the
attacker has an advantage not due to more elements at its disposal (as in the
previous cases), but rather from more knowledge of the algebraic properties
of its input elements. We formally define it as follows.

Let a, c, s, z ∈ Zp be chosen at random and g be a generator of the
bilinear groupG1. Let b = cx. The x-power decisional bilinear Diffie-Hellman
(x-PBDH) problem consists in constructing an algorithm
B(A = ga,B = gb,S = gs,Z)→ {0, 1} to efficiently distinguish between the tu-
ples (A,B,S, e(g, g)abs) and (A,B,S, e(g, g)z). For example, when x = 2 we are
telling the attacker that b is a Quadratic Residue modulo p and so the at-
tacker knows something on the private exponents. The advantage of B is
defined, following the standard convention as:

AdvB =
∣∣∣∣Pr

[
B(A,B,S, e(g, g)abs) = 1

]
− Pr

[
B(A,B,S, e(g, g)z) = 1

] ∣∣∣∣
where the probability is taken over the random choice of the generator g, of
a, c, s, z in Zp, and the random bits possibly consumed by B to compute the
response.

Definition 2.7 (x-PBDH Assumption). The decisional x-PBDH assumption
holds if no probabilistic polynomial-time algorithm B has a non-negligible ad-
vantage in solving the decisional x-PBDH problem.

Decisional Bilinear x-Roots Diffie-Hellman Assumption This is our other
original assumption. It develops from the x-PBDH taking the direction taken
by q-BDHE and q-PBDHE of giving to the attacker more group elements
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in input. In this case, we add to the algebraic insight on b the actual x-root
(and also its powers). This stronger assumption is defined as follows.

Let a, c, s, z ∈ Zp be chosen at random and g be a generator of the
bilinear group G1, moreover set b = cx. The x-roots decisional bilinear
Diffie-Hellman (x-RBDH) problem consists in constructing an algorithm
B(~y,Z)→ {0, 1} that given the values

~y =
(
gs, gci

, gaci−1
, i ∈ {1, . . . , x}

)
efficiently distinguishes between the tuples (~y, e(g, g)abs) and (~y, e(g, g)z). The
advantage of B is then:

AdvB =
∣∣∣∣Pr[B(~y, e(g, g)abs) = 1] − Pr[B(~y, e(g, g)z) = 1]

∣∣∣∣
where the probability is taken over the random choice of the generator g, of
a, c, s, z in Zp, and the random bits possibly consumed by B.

Definition 2.8 (x-RBDH Assumption). The decisional x-RBDH assumption
holds if no probabilistic polynomial-time algorithm B has a non-negligible advan-
tage in solving the decisional x-RBDH problem.

2.2 Comparison between security assumptions

In this section, we prove the relations between the security assumptions
that we have defined in the previous section. In Section 6 we show an adap-
tion of these assumptions to the generic group model and we are able to
prove a related security bound.

Lemma 2.9. Decisional Parallel Bilinear Diffie-Hellman Exponent Assumption
implies BDH Exponent Assumption that implies, in turn, Decisional Bilinear
Diffie-Hellman Assumption:

q-PBDHE =⇒ q-BDHE =⇒ BDH .

Proof. In these three problems we assign three different sets as input to the
attacker: for the BDH problem SBDH = {ga, gb, gs, e(g, g)abs

}, for the q-BDHE
problem

Sq−BDHE := {ga, gaq
, gs, e(g, g)aq+1s

} ∪ {gai
: 2 ≤ i ≤ 2q, i , q, q + 1}.

For the q-PBDHE problem:

Sq−BDHE :=
{
ga, gaq

, gs, e(g, g)aq+1s
}
∪

{
g, gsb j , gaι , g

aι
bj , g

sai bk
bj

}
i, j,k∈{1,...,q}, k, j
2≤ι≤2q, ι,q,q+1

.
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If we set b = aq, we have e(g, g)aq+1s = e(g, g)aaqs = e(g, g)abs and so:

SBDH ⊆ Sq−BDHE ⊆ SqPBDHE.

So q-PBDHE Assumption implies q-BDHE Assumption that implies BDH
Assumption.

Lemma 2.10. BDH x-Power Assumption and BDH x-Roots Assumption imply
BDH Assumption. Moreover x-RBDH implies x-PBDH, and so we have:

x-RBDH =⇒ x-PBDH =⇒ BDH.

If GCD(x, p − 1) = 1, then x-PBDH is equivalent to BDH.

Proof. We recall that SBDH := {ga, gb, gs, e(g, g)abs
}, whereas in Decisional

Bilinear x-Power Diffie-Hellman problem we have the same set of BDH but
with b = cx. In Decisional Bilinear x-Roots Diffie-Hellman problem we have
Sx−RBDH := {gs, gci

, gaci−1
, e(g, g)abs

}, where b = cx and i ∈ {1, . . . , x}. Since BDH
assumption is verified for any b and so in particular for b = cx, we have that
SBDH ⊆ Sx−PBDH. Moreover Sx−PBDH ⊆ Sq−PBDHE. So x-RBDH Assumption
implies x-PBDH Assumption that implies BDH Assumption.

Now we prove that if GCD(x, p− 1) = 1, then x-PBDH is equivalent to BDH.
In fact, if we choose c as a primitive element of Zp, then we have that Zp is
generated by cx iff x and p − 1 are coprime:

x-PBDH �
GCD(x,p−1)=1

BDH.

Finally, we have the following lemma.

Lemma 2.11. q-BDHE implies both x-BDHE and x-PBDH.

Proof. If we set b = aq we obtain that Sx−PBDH ⊆ Sq−BDHE. Moreover if we
also set a = c we have that q-BDHE implies x-RBDH. In fact, we have that
both gci and gaci−1 become gai for i = 1, . . . , q, so Sx−RBDH ⊆ Sq−BDHE.

We summarize what we have just proved in the following Theorem.

Theorem 2.12. The security assumptions above satisfy the following relations:

BDH ⇐= q-BDHE ⇐= q PBDHE.

GCD(x, p − 1) = 1⇓ ⇑ w ⇓

x-PBDH ⇐= x-RBDH.
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2.3 Other security assumptions

In this subsection we present for completeness the assumptions used to
prove the full security of a scheme via the dual system encryption technique
as in [LOS+10]. This technique gained wide interest and success because
it permits to achieve full security, however it requires a construction in
bilinear groups of composite order, that are significantly less efficient. Note
that the following assumption are not used in our work, are only introduced
to give a more thorough overview on the algebraic assumptions on which
the security of the various ABE schemes lay.
At the end of this section, we are going to compare the assumption on
bilinear groups of composite order and the ones on bilinear groups of prime
order.

Subgroup Decision Assumption (A1) Let (N,G,GT, e) be the description
of the bilinear group of composite order N = p1p2p3. Let gp1 , gp2 , gp3 be gen-
erators of the subgroups Gp1 ,Gp2 ,Gp3 respectively. The Subgroup Decision
problem is that given the challenge tuple(

D = (N,G,GT, e, gp1 , gp3),Z
)

an algorithmAmust distinguish between Z = Z0 = X1 ∈ Gp1 and
Z = Z1 = X1R1 ∈ Gp1p2 . The advantage ofA is defined as

AdvA1
A

= |Pr[A(D,Z0) = 0] − Pr[A(D,Z1) = 0]|

where the probability is taken over the random choices of X1 ∈ Gp1 and
R1 ∈ Gp2 .

Definition 2.13 (Assumption A1). We say that the assumption A1 holds if
no polynomial-time algorithm A has a non-negligible advantage in solving the
Subgroup Decision problem.

General Subgroup Decision Assumption (A2) Let (N,G,GT, e) be the de-
scription of the bilinear group of composite order N = p1p2p3. Let gp1 , gp2 , gp3

be generators of the subgroups Gp1 ,Gp2 ,Gp3 respectively. The General Sub-
group Decision problem is: given the challenge tuple(

D = (N,G,GT, e, gp1 , gp3 ,X1R1,R2Y1),Z
)

an algorithm A must distinguish between Z = Z0 = X2Y2 ∈ Gp1p2 and
Z = Z1 = X2R3Y2 ∈ G. The advantage ofA is defined as

AdvA2
A

= |Pr[A(D,Z0) = 0] − Pr[A(D,Z1) = 0]|

CGC



10

where the probability is taken over the random choices of X1,X2 ∈ Gp1 ,
R1,R2,R3 ∈ Gp2 and Y1,Y2 ∈ Gp3 , and the random bits possibly consumed by
B.

Definition 2.14 (Assumption A2). We say that the assumption A2 holds if no
polynomial-time algorithmA has a non-negligible advantage in solving the General
Subgroup Decision problem.

Composite Diffie-Hellman Assumption (A3) Let (N,G,GT, e) be the de-
scription of the bilinear group of composite order N = p1p2p3. Let gp1 , gp2 , gp3

be generators of the subgroups Gp1 ,Gp2 ,Gp3 respectively. The Composite
Diffie-Hellman problem is: given the challenge tuple(

D = (N,G,GT, e, gp1 , gp2 , gp3 , g
a
p1

R1, gb
p1

R2),Z
)

(1)

an algorithmAmust distinguish between Z = Z0 = e(gp1 , gp1)
ab and

Z = Z1 = e(gp1 , gp1)
c. The advantage ofA is defined as

AdvA1
A

= Pr[A(D,Z0) = 0] − Pr[A(D,Z1) = 0] (2)

where the probability is taken over the random choices of a, b, c ∈ ZN and
R1,R2 ∈ Gp2 , and the random bits possibly consumed by B.

Definition 2.15 (Assumption A3). We say that the assumption A3 holds if
no polynomial-time algorithm A has a non-negligible advantage in solving the
Composite Diffie-Hellman problem.

Note that, the Assumptions A1 and A2 do not hold if the group order can
be factorized in polynomial time. So the underlying problems are easier than
the problem of Section 2.1. Whereas, A3 is comparable with the previous
assumptions since is based on Discrete Logarithm on Elliptic Curves.

Moreover, we observe that the group operations in prime order bilinear
groups are more efficient than those in composite order bilinear groups.

3 Access Structures and Linear Secret Sharing Schemes

We do not prove original results here, we only provide what we need
for our construction. See the cited references for more details on these argu-
ments.

Access structures define who may and who may not access to the data,
giving the sets of attributes that have clearance.

Definition 3.1 (Access Structure). An access structure A on a universe of at-
tributes U is the set of the subsets S ⊆ U that are authorized. That is, a set of
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attributes S satisfies the policy described by the access structure A if and only if
S ∈ A.

They are used to describe a policy of access, that is the rules that prescribe
who may access to the information. If these rules are constructed using
only AND, OR and threshold operators on the attributes, then the access
structure is monotonic.

Definition 3.2 (Monotonic Access Structure). An access structure A is said
monotonic if given S0 ⊆ S1 ⊆ U it holds

S0 ∈ A =⇒ S1 ∈ A

An interesting property is that monotonic access structures (i.e. access
structuresA such that if S is an authorized set and S ⊆ S′ then also S′ is an
authorized set) may be associated to linear secret sharing schemes (LSSS). In
this setting the parties of the LSSS are the attributes of the access structure.

A LSSS may be defined as follows (adapted from [Bei96]).

Definition 3.3 (Linear Secret-Sharing Schemes (LSSS)). A secret-sharing scheme
Π over a set of parties P is called linear (over Zp) if

(1) The shares for each party form a vector over Zp.

(2) There exists a matrix M with l rows and n columns called the share-generating
matrix for Π. For all i ∈ {1, . . . , l} the i-th row of M is labeled via a function ρ,
that associates Mi to the party ρ(i). Considering the vector ~v = (s, r2, . . . , rn) ∈
Zn

p , where s ∈ Zp is the secret to be shared, and ri ∈ Zp, with i ∈ {2, . . . ,n} are
randomly chosen, then M~v is the vector of l shares of the secret s according to
Π. The share (M~v)i = Mi~v belongs to party ρ(i).

It is shown in [Bei96] that every linear secret sharing-scheme according
to the above definition also enjoys the linear reconstruction property, defined
as follows: suppose that Π is an LSSS for the access structure A. Let S ∈ A
be any authorized set, and let I ⊆ {1, . . . , l} be defined as I = {i : ρ(i) ∈ S}.
Then, there exist constants wi ∈ Zp, with i ∈ I such that, if λi are valid shares
of any secret s according to Π, then∑

i∈I

wiλi = s (3)

Furthermore, it is shown in [Bei96] that these constants wi can be found
in time polynomial in the size of the share-generating matrix M.

Note that the vector (1, 0, . . . , 0) is the target vector for the linear secret
sharing scheme. Then, for any set of rows I in M, the target vector is in the
span of I if and only if I is an authorized set. This means that if I is not
authorized, then for any choice of c ∈ Zp there will exist a vector ~u such that
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u1 = c and
Mi · ~w = 0 ∀i ∈ I

In the first ABE schemes the access formulas are typically described in
terms of access trees. The appendix of [LW11] is suggested for a discussion
of how to perform a conversion from access trees to LSSS.

See [GPSW06], [Bei96] and [LC10] for more details about LSSS and access
structures.

4 Our First Construction

This section is divided in three parts. We start with definitions of Multi-
Authority Key-Policy ABE and of CPA selective security. In the second part
we present in detail our first scheme and, finally, we prove the security of
this scheme under the classical BDH assumption in the selective set model.

A security parameter will be used to determine the size of the bilinear
group used in the construction, this parameter represents the order of com-
plexity of the assumption that provides the security of the scheme. Namely,
first the complexity is chosen thus fixing the security parameter, then this
value is used to compute the order that the bilinear group must have in
order to guarantee the desired complexity, and finally a suitable group is
picked and used.

4.1 Multi Authority KP-ABE Structure and Security

In this scheme, after the common universe of attributes and bilinear
group are agreed, the authorities set up independently their master key
and public parameters. The master key is subsequently used to generate
the private keys requested by users. Users ask to an authority for keys that
embed a specific access structure, and the authority issues the key only if it
judges that the access structure suits the user that requested it. Equivalently
an authority evaluates a user that requests a key and assigning an access
structure, and gives to the user a key that embeds it. When someone wants
to encrypt, it chooses a set of attributes that describes the message (and
thus determines which access structures may read it) and a set of trusted
authority. The ciphertext is computed using the public parameters of the
chosen authorities, and may be decrypted only using a valid key for each of
these authorities. A key with embedded access structureAmay be used to
decrypt a ciphertext that specifies a set of attributes S if and only if S ∈ A,
that is the structure considers the set authorized. The formal definition of
the scheme follows.

Let G1 be a bilinear group (chosen accordingly to an implicit security
parameter λ), g ∈ G1 a generator of the group, A a set of authorities and A
an access structure on a universe of attributes U.
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Definition 4.1 (Multi-authority KP-ABE). A multi-authority Key-Policy ABE
system for a message spaceM, a universe of authorities X and an access structure
space G is comprised of the following four algorithms:

Setup(U, g,G1)→ (PKk,MKk). The setup algorithm for the authority k ∈ X takes
as input the universe of attributes U and the bilinear group G1 alongside its
generator g. It outputs the public parameters PKk and a master key MKk for that
authority.

KeyGenk(MKk, (Mk, ρk))→ SKk. The key generation algorithm for the authority
k ∈ X takes as input the master key MKk of the authority and an access structure
A in the form of an LSSS (Mk, ρk). It outputs a decryption key SKk for that
access structure.

Encrypt(m,S, {PKk}k∈A)→ CT. The encryption algorithm takes as input the public
parameters PKk of every authority of the set A ⊆ X chosen, a message m ∈ M
and a set of attributes S ⊆ U. It outputs the ciphertext CT associated with the
attribute set S and the set of authorities A.

Decrypt(CT, {SKk}k∈A)→ m′. The decryption algorithm takes as input a cipher-
text CT that was encrypted under a set S of attributes for the set of authorities
A and a decryption key SKk for every authority k ∈ A. Let Ak be the access
structure of the key SKk. It outputs the message m′ if and only if S ∈ Ak ∀k ∈ A.

The previous scheme is secure under the classical BDH assumption in
the selective set model. The security of the scheme is based on a security
games. This kind of games defines an adversary that tries to violate the
scheme and describes what it can and cannot do, formalizing also what
does break the scheme mean. In a security game the challenger runs the scheme
interacting with an adversary that tries to break it. The adversary knows
the algorithms and is allowed to perform any computation it wishes with
the informations it has access to (such as public parameters and the keys,
ciphertexts or other elements it may obtain from the challenger). There is
of course the limitation that such computations have to be performed in
polynomial time, since the focus is on computationally-bounded realistic
adversaries.

In the game to be presented the security is defined in terms of chosen-
ciphertext indistinguishability. This means that the adversary should have
no advantage in guessing which message has been encrypted of the two
she chose and gave to the challenger. Since the adversary is probabilistic it
may be lucky with a wild guess on a single shot, but the security states that
when the game is repeated the chances of the adversary decrease more and
more, and the distribution of the random variable that models its guesses
converges towards a uniform distribution. That is, however long she tries,
the adversary does not do better than a coin-flip.

The security game is formally defined as follows.
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Let E = (Setup,Encrypt,KeyGen,Decrypt) be a MA-KP-ABE scheme for
a message space M, a universe of authorities X and an access structure
space G and consider the following MA-KP-ABE experiment MA-KP-ABE-
Exp

A,E(λ,U) for an adversaryA, parameter λ and attribute universe U:

Init. The adversary declares the set of attributes S and the set of authorities
A ⊆ X that it wishes to be challenged upon. Moreover it selects the honest
authority k0 ∈ A.

Setup. The challenger runs the Setup algorithm, initializes the authorities
and gives to the adversary the public parameters.

Phase I. The adversary issues queries for private keys of any authority, but
k0 answers only to queries for keys for access structuresA such that S < A
On the contrary the other authorities respond to every query.

Challenge. The adversary submits two equal length messages m0 and m1.
The challenger flips a random coin b, and encrypts mb with S for the set
of authorities A. The ciphertext is passed to the adversary.

Phase II. Phase I is repeated.

Guess. The adversary outputs a guess b′ of b.

Definition 4.2 (MA-KP-ABE Selective Security). The MA-KP-ABE scheme E
is CPA selective secure (or secure against chosen-plaintext attacks) for attribute
universe U if for all probabilistic polynomial-time adversaries A, there exists a
negligible function negl such that:

Pr[MA-KP-ABE-Exp
A,E(λ,U) = 1] ≤

1
2

+ negl(λ).

4.2 The Scheme

The schemes plans a set X of independent authorities, each with their
own parameters, and it sets up an encryption algorithm that lets the encryp-
tor choose a set A ⊆ X of authorities, and combines the public parameters
of these in such a way that an authorized key for each authority in A is
required to successfully decrypt.
Our scheme consists of three randomized algorithms (Setup,KeyGen,Encrypt)
plus the decryption Decrypt. The techniques used are inspired from the
scheme of Goyal et al. in [GPSW06]. The scheme works in a bilinear group
G1 of prime order p, and uses LSSS matrices to share secrets according to
the various access structures. Attributes are seen as elements of Zp.

The description of the algorithms follows.

Setup(U, g,G1) → (PKk,MKk). Given the universe of attributes U and a
generator g of G1 each authority sets up independently its parameters. For
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k ∈ X the Authority k chooses uniformly at random αk ∈ Zp, and zk,i ∈ Zp

for each i ∈ U. Then the public parameters PKk and the master key MKk are:

PKk =
(
e(g, g)αk , {gzk,i}i∈U

)
MKk =

(
αk, {zk,i}i∈U}

)
KeyGenk(MKk, (Mk, ρk)) → SKk. The key generation algorithm for the au-
thority k takes as input the master secret key MKk and an LSSS access struc-
ture (Mk, ρk), where Mk is an l × n matrix on Zp and ρk is a function which
associates rows of Mk to attributes. It chooses uniformly at random a vec-
tor ~vk ∈ Zn

p such that vk,1 = αk. Then computes the shares λk,i = Mk,i~vk for
1 ≤ i ≤ l where Mk,i is the i-th row of Mk. Then the private key SKk is:

SKk =

{
Kk,i = g

λk,i
zk,ρ(i)

}
1≤i≤l

Encrypt(m,S, {PKk}k∈A)→ CT. The encryption algorithm takes as input the
public parameters, a set S of attributes and a message m to encrypt. It chooses
s ∈ Zp uniformly at random and then computes the ciphertext as:

CT =

S,C′ = m ·

∏
k∈A

e(g, g)αk


s

, {Ck,i = (gzk,i)s
}k∈A, i∈S


Decrypt(CT, {SKk}k∈A)→ m′. The input is a ciphertext for a set of attributes
S and a set of authorities A and an authorized key for every authority
cited by the ciphertext. Let (Mk, ρk) be the LSSS associated to the key k, and
suppose that S is authorized for each k ∈ A. The algorithm for each k ∈ A
finds wk,i ∈ Zp, i ∈ Ik such that∑

i∈Ik

λk,iwk,i = αk (4)

for appropriate subsets Ik ⊆ S and then proceeds to reconstruct the original
message computing:

m′ =
C′∏

k∈A
∏

i∈Ik
e(Kk,i,Ck,ρ(i))wk,i

=
m ·

(∏
k∈A e(g, g)αk

)s

∏
k∈A

∏
i∈Ik

e
(
g

λk,i
zk,ρ(i) , (gzk,ρ(i))s

)wk,i

=
m · e(g, g)s(

∑
k∈A αk)∏

k∈A e(g, g)s
∑

i∈Ik
wk,iλk,i

∗

=
m · e(g, g)s(

∑
k∈A αk)

e(g, g)s(
∑

k∈A αk)
= m
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Where ∗

= follows from property (4).

4.3 Security

The scheme is proved secure under the BDH assumption (Definition 2.4)
in a selective set security game in which every authority but one is supposed
curious (or corrupted or breached) and then it will issue even keys that have
enough clearance for the target set of attributes, while the honest one issues
only unauthorized keys. Thus if at least one authority remains trustworthy
the scheme is secure.
The security is provided by the following theorem.

Theorem 4.3. If an adversary can break the scheme, then a simulator can be
constructed to play the Decisional BDH game with a non-negligible advantage.

Proof. Suppose there exists a polynomial-time adversaryA, that can attack
the scheme in the Selective-Set model with advantage ε. Then a simulator
B can be built that can play the Decisional BDH game with advantage ε/2.
The simulation proceeds as follows.

Init The simulator takes in a BDH challenge g, ga, gb, gs,T. The adversary
gives the algorithm the challenge access structure S.

Setup The simulator chooses random rk ∈ Zp for k ∈ A\ {k0} and implicitly
sets αk = −rkb for k ∈ A \ {k0} and αk0 = ab + b

∑
k∈A\{k0}

rk by computing:

e(g, g)αk0 = e(ga, gb)
∏

k∈A\{k0}

(gb, grk)

e(g, g)αk = e(gb, g−rk) ∀k ∈ A \ {k0}

Then it chooses z′k,i ∈ Zp uniformly at random for each i ∈ U, k ∈ A and
implicitly sets

zk,i =

z′k,i if i ∈ S
bz′k,i if i < S

Then it can publish the public parameters computing the remaining values
as:

gzk,i =

gz′k,i if i ∈ S
(gb)z′k,i if i < S

Phase I In this phase the simulator answers private key queries. For the
queries made to the authority k0 the simulator has to compute the Kk0,i values
of a key for an access structure (M, ρ) with dimension l×n that is not satisfied
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by S. Therefore for the properties of an LSSS it can find a vector ~y ∈ Zn
p with

y1 = 1 fixed such that

Mi~y = 0 ∀i such that ρ(i) ∈ S (5)

Then it chooses uniformly at random a vector ~v ∈ Zn
p and implicitly sets the

shares of αk0 = b(a +
∑

k∈A\{k0}
rk) as

λk0,i = b
n∑

j=1

Mi, j(v j + (a +
∑

k∈A\{k0}

rk − v1)y j)

Note that λk0,i =
∑n

j=1 Mi, ju j where u j = b(v j + (a +
∑

k∈A\{k0}
rk − v1)y j) thus

u1 = b(v1 + (a +
∑

k∈A\{k0}
rk − v1)1) = ab + b

∑
k∈A\{k0}

rk = αk0 so shares are valid.
Note also that from (5) it follows that

λk0,i = b
n∑

j=1

Mi, jv j ∀i such that ρ(i) ∈ S

Thus if i is such that ρ(i) ∈ S the simulator can compute

Kk0,i = (gb)

∑n
j=1 Mi, jv j

z′k0 ,ρ(i) = g
λk0 ,i

zk0 ,ρ(i)

Otherwise, if i is such that ρ(i) < S the simulator computes

Kk0,i = g

∑n
j=1 Mi, j(vj+(r−v1)yj)

z′k0 ,ρ(i) (ga)

∑n
j=1 Mi, j y j

z′k,ρ(i) = g
λ1,i

zk0 ,ρ(i)

Remembering that in this case zk0,ρ(i) := bz′k0,ρ(i). Finally for the queries to the
other authorities k ∈ A \ {k0}, the simulator chooses uniformly at random
a vector ~tk ∈ Zn

p such that tk,1 = −rk and implicitly sets the shares λk,i =

b
∑n

j=1 Mi, jtk, j by computing

Kk,i =


(gb)

∑n
j=1 Mi, jtk, j

z′k,ρ(i) = g
b
∑n

j=1 Mi, jtk, j
z′k,ρ(i) = g

λk,i
zk,ρ(i) if i ∈ S

g

∑n
j=1 Mi, jtk, j

z′k,ρ(i) = g
b
∑n

j=1 Mi, jtk, j
bz′k,ρ(i) = g

λk,i
zk,ρ(i) if i < S

Challenge The adversary gives two messages m0,m1 to the simulator. It
flips a coin µ. It creates:

C′ = mµ · T
∗

= mµ · e(g, g)abs

= mµ ·

e(g, g)(ab+b(∑k∈A\{k0}
rk)

∏
k∈A\{k0}

e(g, g)brk


s

Ck,i = (gs)z′k,ρ(i) = gszk,ρ(i) k ∈ A, i ∈ S
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Where the equality ∗

= holds if and only if the BDH challenge was a valid
tuple (i.e. T is non-random).

Phase II During this phase the simulator acts exactly as in Phase I.

Guess The adversary will eventually output a guess µ′ of µ. The simulator
then outputs 0 to guess that T = e(g, g)abs if µ′ = µ; otherwise, it outputs 1 to
indicate that it believes T is a random group element in G2. In fact when T
is not random the simulator B gives a perfect simulation so it holds:

Pr
[
B

(
~y,T = e(g, g)abs

)
= 0

]
=

1
2

+ ε

On the contrary when T is a random element R ∈ G2 the message mµ is
completely hidden from the adversary point of view, so:

Pr
[
B

(
~y,T = R

)
= 0

]
=

1
2

Therefore,B can play the decisional BDH game with non-negligible advan-
tage ε

2 .

5 Collaborative Authorities Variant

This section is also divided in three parts. We start with definitions of
Collaborative Multi-Authority Key-Policy ABE and of CPA selective secu-
rity. In the second part we present in detail our scheme and, finally, we use a
variant of the BDH assumption (Definition 2.4) to prove the security of this
scheme under in the selective set model.

5.1 Collaborative Multi Authority KP-ABE Structure and Security

In this scheme, the authorities set up independently their master key,
but then collaborate to create a common public key. They collaborate also
to generate the private keys requested by users, in fact, after one authority
agrees to give a key for a specific access structure to a user, this key is
validated by every other authority and only then it is ready and passed to
the user. Users need a key for every authority, but once they obtained all
the pieces they may unite them and thus store and use them as a single key.
When someone wants to encrypt, it chooses a set of attributes that describes
the message (and thus determines which access structures may read it). The
ciphertext is computed using the public key generated by the authorities
in concert, and may be decrypted only using a conglomerate valid key
(equivalently a valid key for every authority). The formal definition of the
scheme follows.
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Let G1 be a bilinear group (chosen accordingly to an implicit security
parameter λ), g ∈ G1 a generator of the group, andA an access structure on
a universe of attributes U.

Definition 5.1 (Collaborative Multi-authority KP-ABE). A collaborative multi-
authority Key-Policy ABE system for a message spaceM, a universe of authorities
X with x = |X|, and an access structure space G is composed of the following four
algorithms:

Setup(U, g,G1)→ (PKk,MKk). The setup algorithm for the authority k ∈ X takes
as input the universe of attributes U and the bilinear group G1 alongside its
generator g. It outputs the public parameters PKk and a master key MKk for that
authority.

CollSetup(MKk,PKk,PK(h))→ PK(h+1). The collaborative part of setup asks the
authority k ∈ X to add their part to the final public key. It takes as input the
master key MKk for that authority and the i-th step of construction of the public
key PK(h). It outputs the next step of construction of the public key PK(h+1). When
h = x = |X| then PK(x) = PK i.e. the public key is completed since every authority
has contributed.

KeyGenk(MKk, (M, ρ))→ SK(1)
k . The key generation algorithm for the authority

k ∈ X takes as input the master key MKk of the authority and an access structure
A in the form of an LSSS (M, ρ). It outputs the initial step of the construction of
a decryption key SK(0)

k for that access structure.

CollKeygen(MKk,SK(h)
k̄

)→ SK(h+1)
k̄

. The collaborative part of setup asks the au-
thority k ∈ X to add their part to the final decryption key of authority k̄ ∈ X, k̄ , k.
It takes as input the master key MKk for that authority and the i-th step of con-
struction of the decryption key SK(h)

k . It outputs the next step of construction
of the decryption key SK(h+1)

k . When h = x then SK(x)
k = SKk i.e. the key is

completed since every authority has contributed.

Encrypt(m,S,PK)→ CT. The encryption algorithm takes as input the public pa-
rameters PK, a message m ∈ M and a set of attributes S ⊆ U. It outputs the
ciphertext CT associated with the attribute set S.

Decrypt(CT, {SKk}k∈X)→ m′. The decryption algorithm takes as input a cipher-
text CT that was encrypted under a set S of attributes and a decryption key
SKk for every authority k ∈ A. Let A be the access structure of the keys SKk. It
outputs the message m′ if and only if S ∈ A.

The security game is defined as follows.

Let E = (Setup,Encrypt,KeyGen,Decrypt) be a CMA-KP-ABE scheme for
a message space M, a universe of authorities X and an access structure
space G and consider the following CMA-KP-ABE experiment
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CMA-KP-ABE-Exp
A,E(λ,U) for an adversary A, parameter λ and attribute

universe U:

Init. The adversary declares the set of attributes S that it wishes to be
challenged upon. Moreover it selects the honest authority k0 ∈ X.

Setup. The challenger runs the Setup and Collaborative Setup algorithms
initializing the authorities, and gives to the adversary the the public key.

Phase I. The adversary issues queries for private keys of any authority,
but k0 answers only to queries for keys for access structures A such that
S < A. On the contrary the other authorities respond to every query.
However the authorities collaborate every time they are requested to, so
if the authority answers to the query the final key will be passed to the
adversary.

Challenge. The adversary submits two equal length messages m0 and m1.
The challenger flips a random coin b, and encrypts mb with S. The cipher-
text is passed to the adversary.

Phase II. Phase I is repeated.

Guess. The adversary outputs a guess b′ of b.

Definition 5.2 (MA-KP-ABE Selective Security). The MA-KP-ABE scheme E
is CPA selective secure (or secure against chosen-plaintext attacks) for attribute
universe U if for all probabilistic polynomial-time adversaries A, there exists a
negligible function negl such that:

Pr[MA-KP-ABE-Exp
A,E(λ,U) = 1] ≤

1
2

+ negl(λ).

5.2 The Scheme

This variant plans a set X of authorities, each with their own parameters,
that collaborate to create a common public key and it sets up an encryption
algorithm that uses this public key so that an authorized key for each au-
thority in X is required to successfully decrypt.
Our scheme consists of three randomized algorithms (Setup,KeyGen,Encrypt)
plus the collaborative steps CollSetup,CollKeygen and decryption Decrypt.
The scheme works in a bilinear groupG1 of prime order p, and uses LSSS ma-
trices to share secrets according to the various access structures. Attributes
are seen as elements of Zp.

The description of the algorithms follows.

Setup(U, g,G1) → (PKk,MKk). Given the universe of attributes U and a
generator g of G1 each authority sets up independently its parameters. For
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k ∈ X the Authority k chooses uniformly at random αk ∈ Zp, and zk,i ∈ Zp

for each i ∈ U. Then the public parameters PKk and the master key MKk are:

PKk =
(
Yk = e(g, g)αk , {Tk,i = gzk,i}i∈U

)
MKk =

(
αk, {zk,i}i∈U}

)
CollSetup(MKk,PKk,PK(h))→ PK(h+1). The collaborative construction of the
public key proceeds as follows:

• if h = 0 then the authority k is the first to participate, then it simply sets
PK(1) = PKk

• if h > 0 then PK(h) = (Y(h), {T(h)
i }i∈U)

Y(h+1) = Y(h)
· Yk, T(h+1)

i =
(
T(h)

i

)zk,i
∀i ∈ U

Then it is easy to see that when the construction is complete the public
key is:

PK(x) = PK =
(
Y = e(g, g)

∑
k∈X αk , {Ti = g

∏
k∈X zk,i}i∈U

)
KeyGenk(MKk, (M, ρ)) → SK(1)

k . The key generation algorithm for the au-
thority k takes as input the master secret key MKk and an LSSS access struc-
ture (M, ρ), where M is an l × n matrix on Zp and ρ is a function which
associates rows of M to attributes. It chooses uniformly at random a vector
~vk ∈ Zn

p such that vk,1 = αk. Then computes the sharesλk,i = Mk,i~vk for 1 ≤ i ≤ l
where Mk,i is the i-th row of Mk. Then the first step of the private key SK(1)

k
is:

SK(1)
k =

{
K(1)

k,i = g
λk,i

zk,ρ(i)

}
1≤i≤l

CollKeygen(MKk,SK(h)
k̄

)→ SK(h+1)
k̄

. The collaborative construction of the pub-

lic key for the authority k , k̄ takes the previous step SK(h)
k̄

=
{
K(h)

k̄,i

}
1≤i≤l

and
then computes

K(h+1)
k̄,i

=
(
K(h)

k̄,i

) 1
zk,i ∀1 ≤ i ≤ l

Then it is easy to see that when the construction is complete the decryp-
tion key is:

SK(x)
k̄

= SKk̄ =

{
Kk̄,i = g

λk̄,i∏
k∈X zk,ρ(i)

}
1≤i≤l

Encrypt(m,S,PK)→ CT. The encryption algorithm takes as input the pub-
lic parameters, a set S of attributes and a message m to encrypt. It chooses
s ∈ Zp uniformly at random and then computes the ciphertext as:

CT =
(
S,C′ = m · (Y)s , {Ci = (Ti)s

}i∈S
)
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Decrypt(CT, {SKk}k∈X)→ m′. The input is a ciphertext for a set of attributes
S and an authorized key for every authority. Let (M, ρ) be the LSSS associated
to the keys, and suppose that S is authorized. The algorithm finds wi ∈ Zp, i ∈
I such that∑

i∈I

λk,iwi = αk ∀k ∈ X (6)

for an appropriate subset I ⊆ S. To simplify the notation let zi :=
∏

k∈X zk,i,
the algorithm then proceeds to reconstruct the original message computing:

m′ =
C′∏

i∈I e(
∏

k∈X Kk,i,Cρ(i))wi

=
m ·

(
e(g, g)(

∑
k∈X αk)

)s

∏
i∈I e

(∏
k∈X g

λk,i
zρ(i) , (gzρ(i))s

)wi

=
m · e(g, g)s(

∑
k∈X αk)

e(g, g)s
∑

k∈X
∑

i∈I wiλk,i

∗

=
m · e(g, g)s(

∑
k∈X αk)

e(g, g)s(
∑

k∈X αk)
= m

Where ∗

= follows from the property (6).
Note that once the user has obtained the keys from every authority it can

multiply these all together and store only SK =
{
Ki =

∏
k∈X Kk,i

}
1≤i≤l since this

is all he needs to perform the decryption, so actually only a key is needed
with size l, hence the scheme is very efficient in terms of key-size.

5.3 Security

The scheme is proved secure under the x-PBDH assumption (where
x = |X| is the number of authorities) in the selective set security game
described in Section 5.1. Recall that every authority but one is supposed
curious (or corrupted or breached) and then it will issue even keys that
have enough clearance for the target set of attributes, while the honest
one issues only unauthorized keys. Thus if at least one authority remains
trustworthy the scheme is secure.
The security is provided by the following theorem.

Theorem 5.3. If an adversary can break the scheme with x authorities, then a
simulator can be constructed to play the Decisional x-PBDH game with a non-
negligible advantage.

Proof. Suppose there exists a polynomial-time adversaryA, that can attack
the scheme in the Selective-Set model with advantage ε. Then we claim that
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a simulator B can be built that can play the Decisional x-PBDH game with
advantage ε/2. The simulation proceeds as follows.

Init The simulator takes in a x-PBDH challenge g, ga, gb, gs,T. The adver-
sary gives the algorithm the challenge access structure S.

Setup The simulator chooses random rk ∈ Zp for k ∈ X \ {k0} and implicitly
sets αk = −rkb for k ∈ X \ {k0} and αk0 = ab + b

∑
k∈X\{k0}

rk by computing:

e(g, g)αk0 = e(ga, gb)
∏

k∈X\{k0}

(gb, grk)

e(g, g)αk = e(gb, g−rk) ∀k ∈ X \ {k0}

Then it chooses z′k,i ∈ Zp uniformly at random for each i ∈ U, k ∈ X and
implicitly sets

zk,i =

z′k,i if i ∈ S
cz′k,i if i < S

Then it can compute the public key as:

Y = e(ga, gb), Ti =

gz′i if i ∈ S
(gb)z′i if i < S

Using the previously introduced notation z′i :=
∏

k∈X z′k,i and noting that for
i < S

zi =
∏
k∈X

zk,i =
∏
k∈X

cz′k,i = cx
∏
k∈X

z′k,i = bz′i

Phase I In this phase the simulator answers private key queries. For the
queries made to the authority k0 the simulator has to compute the Kk0,i values
of a key for an access structure (M, ρ) with dimension l×n that is not satisfied
by S. Therefore for the properties of an LSSS it can find a vector ~y ∈ Zn

p with
y1 = 1 fixed such that

Mi~y = 0 ∀i such that ρ(i) ∈ S (7)

Then it chooses uniformly at random a vector ~v ∈ Zn
p and implicitly sets the

shares of αk0 = b(a +
∑

k∈X\{k0}
rk) as

λk0,i = b
n∑

j=1

Mi, j(v j + (a +
∑

k∈X\{k0}

rk − v1)y j)

Note that λk0,i =
∑n

j=1 Mi, ju j where u j = b(v j + (a +
∑

k∈X\{k0}
rk − v1)y j) thus

u1 = b(v1 + (a +
∑

k∈X\{k0}
rk − v1)1) = ab + b

∑
k∈X\{k0}

rk = αk0 so the shares are
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valid. Note also that from (7) it follows that

λk0,i = b
n∑

j=1

Mi, jv j ∀i such that ρ(i) ∈ S

Thus if i is such that ρ(i) ∈ S the simulator can compute

Kk0,i = (gb)

∑n
j=1 Mi, jvj

z′
ρ(i) = g

λk0 ,i
zρ(i)

Otherwise, if i is such that ρ(i) < S the simulator computes

Kk0,i = g

∑n
j=1 Mi, j(vj+(r−v1)yj)

z′
ρ(i) (ga)

∑n
j=1 Mi, j y j

z′
ρ(i) = g

λ1,i
zρ(i)

Where the last equality follows from zρ(i) = bz′ρ(i). Finally for the queries
to the other authorities k ∈ X \ {k0}, the simulator chooses uniformly at
random a vector ~tk ∈ Zn

p such that tk,1 = −rk and implicitly sets the shares
λk,i = b

∑n
j=1 Mi, jtk, j by computing

Kk,i =


(gb)

∑n
j=1 Mi, jtk, j

z′
ρ(i) = g

b
∑n

j=1 Mi, jtk, j
z′
ρ(i) = g

λk,i
zρ(i) if i ∈ S

g

∑n
j=1 Mi, jtk, j

z′
ρ(i) = g

b
∑n

j=1 Mi, jtk, j
bz′
ρ(i) = g

λk,i
zρ(i) if i < S

Challenge The adversary gives two messages m0,m1 to the simulator. He
flips a coin µ. He creates:

C′ = mµ · T
∗

= mµ · e(g, g)sab

= mµ ·

e(g, g)ab+b(∑k∈X\{k0}
rk)

∏
k∈X\{k0}

e(g, g)brk


s

Ck,i = (gs)z′
ρ(i) = gszρ(i) i ∈ S

Where the equality ∗

= holds if and only if the BDH challenge was a valid
tuple (i.e. T is non-random).

Phase II During this phase the simulator acts exactly as in Phase I.

Guess The adversary will eventually output a guess µ′ of µ. The simulator
then outputs 0 to guess that T = e(g, g)abs if µ′ = µ; otherwise, it outputs 1 to
indicate that it believes T is a random group element in G2. In fact when T
is not random the simulator B gives a perfect simulation so it holds:

Pr
[
B

(
~y,T = e(g, g)abs

)
= 0

]
=

1
2

+ ε
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On the contrary when T is a random element R ∈ G2 the message mµ is
completely hidden from the adversary point of view, so:

Pr
[
B

(
~y,T = R

)
= 0

]
=

1
2

Therefore,B can play the decisional BDH game with non-negligible advan-
tage ε

2 .

6 Generic Security of Diffie-Hellman Assumptions

In [BBG05] Boneh et. al. stated and proved a theorem that gives a lower
bound on the advantage of a generic algorithm in solving a class of deci-
sional Diffie-Hellman problem. Despite a lower bound in generic groups
does not imply a lower bound in any specific group, it still provides ev-
idence of soundness of the assumptions. In this section: first the general
Diffie-Hellman Exponent Problem is defined, then the lower bound will be
stated and finally we will show our claim, i.e., how the problems introduced
in Section 2 may be seen as particular cases of the general problem.

6.1 General Diffie-Hellman Exponent Problem

Let p be a prime and let s,n be positive integers. Let P,Q ∈ Fp[X1, . . . ,Xn]s

be two s-tuples of n-variate polynomials over Fp and let f ∈ Fp[X1, . . . ,Xn].
Let P = (p1, p2, . . . , ps) and Q = (q1, q2, . . . , qs), we require that p1 = q1 = 1.
Moreover define:

P(x1, . . . , xn) =
(
p1(x1, . . . , xn), . . . , ps(x1, . . . , xn)

)
∈ (Fp)s.

And similarly for the s-tuple Q. Let G1,G2 be groups of order p and let
e : G1 × G1 → G2 be a non-degenerate bilinear map. Let g ∈ G1 be a
generator of G1 and set g2 = e(g, g) ∈ G2 . Let

H(x1, . . . , xn) =
(
gP(x1,...,xn), gQ(x1,...,xn)

2

)
∈ Gs

1 ×G
s
2,

we say that an algorithmB that outputs b ∈ {0, 1} has advantage ε in solving
the Decision (P,Q, f )-Diffie-Hellman problem in G1 if∣∣∣∣Pr

[
B

(
H(x1, . . . , xn), g f (x1,...,xn)

2

)
= 0

]
− Pr [B(H(x1, . . . , xn),T) = 0]

∣∣∣∣ > ε
where the probability is over the random choice of generator g ∈ G1 , the
random choice of x1, . . . , xn in Fp, the random choice of T ∈ G2, and the
random bits consumed by B.

Definition 6.1 (Dependence on (P,Q)). Let P,Q ∈ Fp[X1, . . . ,Xn]s be two s-
tuples of n-variate polynomials overFp. We say that a polynomial f ∈ Fp[X1, . . . ,Xn]
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is dependent on the sets (P,Q) if there exist s2 + s constants {ai, j}
s
i, j=1, {bk}

s
k=1 such

that

f =

s∑
i, j=1

ai, jpip j +

s∑
k=1

bkqk

We say that f is independent of (P,Q) if f is not dependent on (P,Q).

For a polynomial f ∈ Fp[X1, . . . ,Xn]s , we let d f denote the total degree
of f . For a set P ⊆ Fp[X1, . . . ,Xn]s we let dP = max{d f : f ∈ P}.

6.2 Complexity Lower Bound in Generic Bilinear Groups

We state the following lower bound in the framework of the generic
group model. We consider two random encodings ξ0, ξ1 of the additive
group Zp, i.e. injective maps ξ0, ξ1 : Zp → {0, 1}m. For i = 0, 1 we write
Gi = {ξi(x) : x ∈ Zp}. We are given oracles to compute the induced group
action on G1,G2 , and an oracle to compute a non-degenerate bilinear map
e : G1 ×G1 → G2. We refer to G1 as a generic bilinear group. The following
theorem gives a lower bound on the advantage of a generic algorithm in
solving the decision (P,Q, f )-Diffie-Hellman problem. We emphasize, how-
ever, that a lower bound in generic groups does not imply a lower bound
in any specific group.

Theorem 6.2 (Theorem A.2 of [BBG05]). Let P,Q ∈ Fp[X1, . . . ,Xn]s be two
s-tuples of n-variate polynomials over Fp and let f ∈ Fp[X1, . . . ,Xn]. Let d =
max(2dP, dQ, d f ). Let ξ0, ξ1 and G1,G2 be defined as above. If f is independent of
(P,Q) then for anyA that makes a total of at most q queries to the oracles computing
the group operation in G1,G2 and the bilinear pairing e : G1 ×G1 → G2 we have:

∣∣∣∣∣Pr
[
A

(
p, ξ0(P(x1, . . . , xn)), ξ1(Q(x1, . . . , xn)), ξ1(t0), ξ1(t1)

)
= b

]
−

1
2

∣∣∣∣∣ ≤ (q + 2s + 2)2d
2p

Where x1, . . . , xn, y are chosen uniformly at random from Fp, b is chosen uniformly
at random from {0, 1} and tb = f (x1, . . . , xn), t1−b = y.

Corollary 6.3 (Corollary A.3 of [BBG05]). Let P,Q ∈ Fp[X1, . . . ,Xn]s be two
s-tuples of n-variate polynomials over Fp and let f ∈ Fp[X1, . . . ,Xn]. Let d =
max(2dP, dQ, d f ). If f is independent of (P,Q) then anyA that has advantage 1

2 in
solving the decision (P,Q, f )-Diffie-Hellman Problem in a generic bilinear group G
must take time at least Ω( p

d − s).

6.3 Using Corollary 6.3

We claim that the assumptions presented in Section 2 follow from Corol-
lary 6.3 giving the sets P,Q that reduces them to the general bilinear Diffie-
Hellman problem:
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• BDH in G1 : set P = {1, y,w, z},Q = {1}, f = ywz.

• q-BDHE inG1 : set P = {1, y,wi
}with i ∈ {1, . . . , 2q}\{q+1},Q = {1}, f = xqy.

• x-PBDH in G1 : set P = {1, y,wx, z},Q = {1}, f = y wx z.

• x-RBDH in G1 : set P = {1,wi, ywi−1, z} with i ∈ {1 . . . , x},Q = {1},
f = ywxz.

It is easy to see that each f is independent to the respective sets P and Q,
in fact multiplying any two polynomials in the sets P and then combining
them linearly does not give the polynomial f . To see this explicitly in the
case of x-RBDH, the complete list of terms that may be obtained combining
any two polynomials of P follows:

1,wi,w2i, yw2i−1,wiz, ywi−1, ywi−1z, z i ∈ {1, . . . , x}

Since every monomial in which both y and z appear has degree strictly
lesser than x+2 it is apparent that no linear combination of these terms may
give ywxz as result, thus f is independent of P,Q.

Thus applying the Corollary 6.3 a lower bound on the computational
complexity of these problems in the generic bilinear group is obtained.

For the q-PBDHE the argument is slightly less direct, see [Wat11].

7 Related Works and Final Comments

Our scheme gives a solution addressing the problem of faith in the au-
thority, specifically the concerns arisen by key escrow and clearance check.
Key escrow is a setting in which a party (in this case the authority) may ob-
tain access to private keys and thus it can decrypt any ciphertext. Normally
the users have faith in the authority and assume that it will not abuse of its
powers. The problem arises when the application does not plan a predom-
inant role and there are trust issues selecting any third party that should
manage the keys. In this situation the authority is seen as honest but curious,
in the sense that it will provide correct keys to users (then it is not malicious)
but will also try to access to data beyond its competence. It is clear that as
long as a single authority will be the unique responsible to issue the keys,
there is no way to prevent key escrow. Thus the need for multi-authority
schemes arises.

The second problem is more specific for KP-ABE. In fact, the authority
has to assign to each user an appropriate access structure that represents
what the user can and cannot decrypt. Therefore, the authority has to be
trusted not only to give correct keys and to not violate the privacy, but
also to perform correct checks of the users’ clearances and to assign correct
access structures accordingly. So alongside to not malicious and not curious the
authority has also to be not breached, in the sense that the keys of a user must
embed access structures that are coherent with its actual clearance, and no
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one has access to keys beyond their pertinence. In this case, to add multiple
authorities to the scheme gives to the encryptor the opportunity to request
more guarantees about the legitimacy of the decryptor’s clearance. In fact,
each authority checks the users independently, so the idea is to request that
the decryption proceeds successfully only when a key for each authority
of a given set A is used. This means that the identity of the user has been
checked by every selected authority, and the choice of these by the encryptor
models the trust that he has in them. Note that if these authorities set up
their parameters independently and during encryption these parameters are
bound together indissolubly, then no authority can single-handedly decrypt
any ciphertext and thus key escrow is removed. So our KP-ABE schemes
guarantee a protection against both breaches and curiosity.

The first scheme proposed has very short single-keys (just one element
per row of the access matrix) that compensates the need of multiple single-
keys (one for cited authority) in the decryption. Ciphertexts are also very
short (the number of elements is linear in the number of authorities times the
number of attributes under which it has been encrypted) thus the scheme is
efficient under this aspect. Moreover, there are no pairing computations in-
volved during encryption and this means significant advantages in terms of
encryption times. Decryption time is not constant in the number of pairings
(e.g. as in the scheme presented in [HW13] or the one in [Wat11]) but requires
·
∑

k∈A lk pairings where A is the set of authorities involved in encryption and
lk is the number of rows of the access matrix of the key given by authority
k. Although many ABE schemes do not have a constant number of pairings
in decryption, it is evident that decryption slows down linearly with the
number of authorities required by the encryptor, so for an efficient scheme
only few authorities have to be requested. On the contrary the assumption
under which the scheme is proven secure (BDH) is weaker than that of
the schemes with fast decryption (q-BDHE), so it is not unreasonable that
a variant of the scheme will be developed that achieves faster decryption
with stronger security assumptions.

The second construction manages to achieve even more efficiency in the
number of parameters needed, since the collaboration between the author-
ities permits to collapse the various public parameters in a single public
key, significantly reducing the length of ciphertexts. Moreover, once all the
single-keys have been obtained they may be collapsed into one too, and
it is easy to plan the key generation in such a way that all the pieces are
generated and validated together requiring a single passage among the au-
thorities, so the collapsed key is obtained directly. This scheme requires that
each authority uses the same LSSS matrix to generate the single-key, but
the assumption is not unreasonable since the matrix is directly related to
the user’s clearance. So for the price of collaboration steps that weigh down
setup and key generation (the phases that have to be done fewer times
when the scheme runs), encryption, decryption and key-storage are greatly
improved.
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Taking a more historical perspective, the problem of multi-authority
ABE is not novel and a few solution have been proposed for ciphertext-
policy ABE. The problem of building ABE systems with multiple authorities
was proposed by Sahai and Waters and first considered by Chase [Cha07]
and Chase and Chow [CC09]. In those works the main goal is to relieve
the central authority of the burden of generating key material for every
user and add resiliency to the system. Multiple authorities manage the at-
tributes, so that each has less work and the whole system does not get stuck
if one is down. The most recent and interesting result are in [LW11], where
Lewko and Waters propose a scheme where no central authority or coordi-
nation between the authorities, each controlling disjoint sets of attributes, is
needed. They used composite bilinear groups and via Dual System Encryp-
tion (introduced by Waters [Wat09] with techniques developed with Lewko
[LW10]) proved their scheme fully secure following the example of Lewko
et al. [LOS+10]. They allow the adversary to statically corrupt authorities
choosing also their master key. Note however that they did not specifically
address key escrow but distributed workload.

Our results of this article retain relevance since they address a differ-
ent setting. In fact, with this expansions the differences in the situations of
ciphertext-policy ABE and KP-ABE model become more distinct. For ex-
ample a situation that suits the scheme proposed here, but not the one of
Lewko and Waters is the following. Consider company branches dislocated
on various parts of the world, each checking its personnel and giving to each
an access policy (thus act as authorities). This scheme allows encryptions
that may be decrypted by the manger of the branch (simply use only one
authority as in classic ABE) but also more secure encryptions that require
the identity of the decryptor to be guaranteed by more centers, basing the
requirements on which branches are still secure and/or where a user may
actually authenticate itself.

Moreover, we observe that although the scheme of [LW11] is proven fully
secure (against selective security), the construction is made in composite
bilinear groups. It is in fact compulsory when using Dual System encryption,
but this has drawbacks in terms of group size (integer factorization has to
be avoided) and the computations of pairings and group operations are
less efficient. This fact leads to an alternative construction in prime order
groups in the same paper, that however is proven secure only in the generic
group and random oracle model. These considerations demonstrate that
our constructions in prime groups retain validity and interest, considering
also that the proofs are under quite weak assumptions and in the standard
model.
Remark 7.1 (Security Assumptions). In the proof of the second scheme (Proof
of Theorem 5.3) it is supposed that only the final public key is actually public,
that is, the parameters of the authorities and the collaboration steps remain
secret and the simulator has not to simulate them to the adversary. This
allows us to use only the x-PBDH assumption (Definition 2.7) that is a weak
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version of the BDH assumption as seen in Section 2. If however we want
to weaken the scheme and keep all the collaboration steps public, then the
simulator needs to emulate these passages and in order to do this she needs
more values. Specifically she needs the values gci for i ∈ {1, . . . , x} to correctly
simulate the collaboration steps during setup, while for the step that creates
the keys further values are needed: gaci for i ∈ {1, . . . , x − 1} so instead of the
x-PBDH, the stronger x-RBDH is needed.
Remark 7.2 (Security Definitions). Both original schemes have been proven
IND-CPA selective secure, that is after selecting the target parameters (in this
case attribute set and authorities) the attacker may not distinguish between
chosen ciphertext after encryption. The definition of security may however
be extended modifying the the security games.

To extend the definition of security to CCA (chosen ciphertext attacks)
it is enough to add decryption queries to Phase I and Phase II (with the
obvious restriction that the challenge ciphertext may not be the subject of a
decryption query).

Moreover, to define full security (opposed to selective security) it is suffi-
cient to remove the Init stage and move the choice of targets by the adversary
in the Challenge phase. For the first scheme the target is the set of attributes
S, the set of authorities A and the honest authority k0. Note that in this case
the restrictions in the queries of Phase I are eliminated to become restrictions
in the choice of the targets: in fact the honest authority k0 has to be chosen
among the authorities that have not issued authorized keys for the target
attribute set S about to be selected. The only restriction on A is that it must
contain k0. For the second scheme the target is the set of attributes S and the
honest authority k0.

Also in this case the restrictions in the queries of Phase I are eliminated
to become restrictions in the choice of the targets: in fact the honest authority
k0 has to be chosen among the authorities that have not issued authorized
keys for the target attribute set S about to be selected.

In both schemes Phase II is left unaltered, in the sense that the restrictions
to the queries are the same as the ones in the Phase II of selective security.
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