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Abstract. MDS codes and matrices are closely related to com-
binatorial objects like orthogonal arrays and multipermutations.
Conventional MDS codes and matrices were defined on finite fields,
but several generalizations of this concept has been done up to now.
In this note, we give a criterion for verifying whether a map is MDS
or not.

1. Introduction

MDS (Maximum Distance Separable) codes and MDS matrices [7, 6]
are closely related to combinatorial objects like orthogonal arrays [11]
and multipermutations [12]. MDS matrices have also applications in
cryptography [3, 10, 4]. Conventional MDS codes and matrices were
defined on finite fields, but several generalizations of this concept has
been done up to now [1, 9, 2]. In [5] some types of MDS mappings were
investigated. In this note, we give a criterion for verifying whether a
map is MDS or not.

2. MDS mappings

Definition 2.1. Let A be a nonempty finite set and n be a natural
number. For two vectors a,b ∈ An with

a = (a1, a2, . . . , an),

b = (b1, b2, . . . , bn),

we define the distance between them as

dist(a,b) = |{i|ai ̸= bi, 1 ≤ i ≤ n}|.
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Definition 2.2. Let A be a nonempty finite set and k and n be two
natural numbers. The (differential) branch number of a map

f : Ak → An,

is defined as

Br(f) = min{dist ( (a, f(a)), (b, f(b)) ) |a,b ∈ Ak,a ̸= b}.

Definition 2.3. Let A be a nonempty finite set and k and n be two
natural numbers. We call a map

f : Ak → An,

(k, n,A)-MDS iff Br(f) = n+ 1.

Note 2.4. It is not hard to see that we can construct an (n+k, |A|k, n+
1)-code over A which is an MDS code.

Definition 2.5. Let A and B be two nonempty finite sets, r be a natural
number and f : Ar → B be a map. Suppose that (x1, x2, . . . , xr) ∈ Ar

is the input of f and let I ⊆ {1, 2, . . . , r} be a nonempty subset. We
call the arguments of input indexed in I ”input variables” and the rest
of arguments ”parameters”. We denote the map f with this separation
on input by fI and we say that fI is a ”parametric map”.

Definition 2.6. Let A be a nonempty finite set and k and n be two
natural numbers. A map f : Ak → An can be represented as a vector
(f1, f2, . . . , fn) of functions. Here, fi : A

k → A, 1 ≤ i ≤ n, is called the
i-th component (projection) function of f .

Definition 2.7. Let A and B be two nonempty finite sets, r be a natural
number and f : Ar → B be a map. Suppose that I ⊆ {1, 2, . . . , r}
is a nonempty subset. According to Definition 2.5, we say that fI is
parametric invertible iff it is invertible for any permissible values of the
parameters.

Definition 2.8. Let A be a nonempty finite set and k and n be two
natural numbers. Let f : Ak → An be a map. For every 1 ≤ t ≤
min{k, n} and for any set I = {i1, i2, . . . , it|1 ≤ i1 < i2 < · · · < it ≤ k}
and J = {j1, j2, . . . , jt|1 ≤ j1 < j2 < · · · < jt ≤ n} we define the
parametric map

fJI : Ak → At,

x 7→ ((fj1)I(x), (fj2)I(x), . . . , (fjt)I(x)).

We call these parametric functions ”square sub-functions” of f .
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Theorem 2.9. Let A be a nonempty finite set and k and n be two
natural numbers. A map f : Ak → An is (k, n,A)-MDS iff all of its
square sub-functions are parametric invertible.

Proof. At first we suppose that every square sub-function of f is para-
metric invertible. Suppose that f is not a (k, n,A)-MDS map. So,
we have Br(f) ≤ n. Therefore, there exist vectors X = (a, f(a)) and
Y = (b, f(b)) with

a = {a1, a2, . . . , an},
b = {b1, b2, . . . , bn},

and dist(X,Y ) ≤ n. Since

dist(X,Y ) = dist(a,b) + dist(f(a), f(b)),

if dist(a,b) = t, then dist(f(a), f(b)) ≤ n− t. Let I = {i|ai ̸= bi} and
J ′ = {j|fj(a) = fj(b)}. There exists J ⊆ J ′ with |J | = t. So the square
sub-function fJI is not parametric invertible, due to the existances of a
and b. This is a contradiction.
Conversely, suppose that f is a (k, n,A)-MDS map; for any 1 ≤ t ≤
min{k, n} and nonempty subsets I ⊆ {1, 2, . . . , k} and J ⊆ {1, 2, . . . , n}
with |I| = |J | = t, suppose that the square sub-function fJI is not
parametric invertible. Then, there exist a,b ∈ A with fJI (a) = fJI (b)
and ai = bi, i /∈ I. This means that

dist(a,b) ≤ t,

and dist(f(a), f(b)) ≤ n− t, which is contradiction. □
Example 2.10. Let (G, ⋆) be a finite Abelian group. Suppose that ϕ :
G→ G is a map. Define the map

f : G2 → G2,

f(g1, g2) = (g1 ⋆ g2, g1 ⋆ ϕ(g2)).

If the mappings ϕ and
ψ : G→ G,

ψ(g) = g ⋆ ϕ(g),

are both group isomorphisms, then f is a (2, 2, G)-MDS map.

Proof. By Theorem 2.9, it suffices to show that the square sub-functions
of f are parametric invertible. There are five square subfunctions. Sup-
pose that c ∈ G is fixed. The parametric functions

h1 : G→ G,
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h1(g, c) = g ⋆ c,

and

h2 : G→ G,

h2(g, c) = c ⋆ g,

and

h3 : G→ G,

h3(g, c) = g ⋆ ϕ(c),

are invertible because G is a group. The parametric function

h4 : G→ G,

h4(g, c) = c ⋆ ϕ(g),

is invertible because ϕ is a group isomorphism. Now suppose that the
function

h5 = f : G2 → G2,

f(g1, g2) = (g1 ⋆ g2, g1 ⋆ ϕ(g2)),

is not invertible. Suppose that we have

(g1 ⋆ g2, g1 ⋆ ϕ(g2)) = (g′1 ⋆ g
′
2, g

′
1 ⋆ ϕ(g

′
2)),

with

(g1, g2) ̸= (g′1, g
′
2).

Then we have

g1 ⋆ g2 = g′1 ⋆ g
′
2,

g1 ⋆ ϕ(g2) = g′1 ⋆ ϕ(g
′
2);

which leads to

g1 ⋆ (g
′
1)

−1 = g′2 ⋆ g
−1
2 ,

g1 ⋆ (g
′
1)

−1 = ϕ(g′2 ⋆ g
−1
2 ),

by isomorphicity of ϕ. So, we get

ϕ(g′2 ⋆ g
−1
2 ) ⋆ (g1 ⋆ (g

′
1)

−1)−1 = eG,

or

ψ(g′2 ⋆ g
−1
2 ) = eG,

which means that g2 = g′2 by isomorphicity of ψ. Thus, g1 = g′1 which
is a contradiction. □
Note 2.11. In some fields of mathematics, the morphism ϕ in Example
2.10 is called ”orthomorphic” [13].



Characterization of MDS mappings 5

References

[1] Daniel Augot, Matthieu Finiasz, ”Exhaustive Search for Small Dimension
Recursive MDS Diffusion Layers for Block Ciphers and Hash Functions”, ISIT
2013: 1551-1555.

[2] M. Blaum, R. M. Roth: On Lowest Density MDS Codes. IEEE TRANSAC-
TIONS ON INFORMATION THEORY, vol. 45(1), pp. 46-59 (January 1999)

[3] J. Daemen, V. Rijmen, AES proposal: Rijndael. Selected as the Advanced
Encryption Standard. Available from http://nist.gov/aes

[4] P. Ekdahl, T. Johansson, SNOW a new stream cipher, Proceedings of first
NESSIE Workshop, Heverlee, Belgium, 2000

[5] A. Klimov, Applications of T-functions in Cryptography, Thesis for the degree
of Ph.D., Weizmann Institute of Science, 2005.

[6] San Ling, Chaoping Xing, Coding Theory: A First Course, Cambridge Univer-
sity Press, 2004.

[7] F. J. MacWilliams and N.J.A. Sloane, The Theory of Error-Correcting Codes,
North-Holland, Amsterdam, 1998.

[8] A. Mahmoodi Rishakani, S. M. Dehnavi, M. R. Mirzaee Shamsabad, Hamidreza
Maimani, Einollah Pasha, ”New Concepts in Design of Lightweight MDS
Diffusion Layers”, ISCISC’14, University of Tehran, Tehran, Iran, 2014.

[9] Mahdi Sajadieh, Mohammad Dakhilalian, Hamid Mala, Pouyan Sepehrdad:
Recursive Diffusion Layers for Block Ciphers and Hash Functions. FSE 2012:
385-401

[10] B. Schneier, J. Kelsey, D. Whiting, D. Wagner, C. Hall, N. Ferguson, Twofish:
A 128-bit Block Cipher; 15 June, 1998

[11] Douglas R. Stinson, ”Combinatorial Designs: Constructions and Analysis”,
Springer-Verlag, 2003.

[12] S. Vaudenay, ”On the Need for Multipermutations: Cryptanalysis of MD4 and
SAFER”, In B. Preenel, editor, Fast Software Encryption. Proceedings, LNCS
1008, (1995), 286-297.

[13] J. Zhou, A Note on the Constructions of Orthomorphic Permutations, Interna-
tional Journal of Network Security, Vol.10, No.1, PP.57-61, Jan. 2010.


	1. Introduction
	2. MDS mappings
	References

