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Abstract

We present techniques to construct constant bandwidth, client storage and server storage blowup
Oblivious RAM schemes in the (single-server) client-server setting. Crucially, our constructions do not
rely on Fully Homomorphic Encryption (FHE) or Somewhat Homomorphic Encryption (SWHE) but
instead rely only on an public-key additive homomorphic encryption scheme such as the Paillier or
Damg̊ard-Jurik Cryptosystem cryptosystem.

The key mechanism that we use to get constant bandwidth overhead is layered encryption: to perform
an ORAM eviction operation, the server performs an oblivious permutation operation on the eviction
candidate blocks without sending any data blocks back to the client. After each permutation, each block
that was involved in the permutation gets an additional layer of encryption. Importantly, the bandwidth
needed for this operation is independent of the data block size.

If layered encryption is combined with previous ORAM schemes näıvely, the number of layers grows
unbounded (with the number of accesses made to the ORAM). This blows up server storage and band-
width (due to ciphertext blowup) as well as client computation (as the client must “peel” off all layers to
get the underlying plaintext). To address this challenge, we propose Onion ORAM, a new ORAM scheme
that is designed and optimized to bound the number of encryption layers on each block to Õ(logN),
where N is the number of blocks in the ORAM—i.e., independent of the number of ORAM accesses.

Putting it together, with sufficiently large block size B = Ω(k log2 N log2 logN) bits for a secu-
rity parameter k, Onion ORAM achieves O(B) bandwidth, O(B) client storage and O(BN) server
storage–only a constant factor blowup in all the three metrics. Using the Damg̊ard-Jurik cryptosys-
tem as our underlying primitive, Onion ORAM achieves the aforementioned asymptotics for block sizes

B = Ω(log5 N log2 logN) bits and security against known attacks with complexity O
(
Nω(1)

)
, super-

polynomial in the security parameter.

1 Introduction

Oblivious RAM (ORAM), initially proposed by Goldreich and Ostrovsky [11, 12], is a cryptographic prim-
itive that allows a client to store private data on an untrusted storage system (the server) and maintain
obliviousness while accessing that data — i.e., guarantee that the server or any other observer learns noth-
ing about the data and the client’s access pattern (the sequence of addresses or operations) to that data.
Since its initial proposal, ORAM has been studied in various application settings including cloud outsourced
storage [26, 25, 6, 22, 18], secure processors [8, 17, 22, 7, 23, 21, 33] and secure multi-party computa-
tion [9, 10, 14, 16, 31]. We primarily consider the outsourced storage setting with a single server that is
honest but curious (we do not consider malicious servers in this work).
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1.1 Server Computation in ORAM

Historically, the ORAM model did no include server’s ability to do computation, because the early works by
Goldreich and Ostrovsky [11, 19, 13] considered secure hardware where the untrusted external memory is a
storage device with no computation power. However, subsequent works [32, 25, 6] also investigated remote
oblivious file servers, where the untrusted server usually has significant computational power (possibly even
much more power than the client). Therefore, it is only natural to extend the ORAM model to include server
computation as well.

Indeed, many recent ORAM schemes have implicitly or explicitly leveraged some amount of server com-
putation to reduce bandwidth cost. For example, state of the art practical ORAM schemes such as the
SSS construction [26], Oblivistore [25], Burst ORAM [6] and Ring ORAM [22] assumed the server is able
to perform matrix multiplication or XOR operations. Path PIR [18] and subsequent work [34] increased
allowed computation to additively homomorphic encryption such as Trostle-Parrish PIR [29] or Paillier’s
Cryptosystem [20]. Apon et al. [2], Path-PIR [18] and Gentry et al. [9, 10] further augmented ORAM with
Fully Homomorphic Encryption (FHE). We remark that some prior works [18, 2] call themselves oblivious
storage (or oblivious outsourced storage) to distinguish from the standard ORAM model where there is no
server computation. We will simply refer to the two models as standard ORAM and ORAM with server
computation only when it’s not clear from context.

1.2 The Goldreich-Ostrovsky Lower Bound (and attempts to “break” it)

Traditionally, ORAM constructions are evaluated by their bandwidth, client storage and server storage Band-
width is the amount of data that need to be sent between client/server to serve a client request, including
the communication in the background to maintain the ORAM (i.e., ORAM evictions). Client storage is the
amount of trusted local memory required at the client side to manage the ORAM protocol at any point in
the protocol and server storage is the amount of storage needed at the server to store all data blocks.

In their seminal work [12], Goldreich and Ostrovsky showed that ORAM must incur a O(logN) lower
bound in bandwidth blowup, for an ORAM of N blocks, under O(1) blocks of client storage. If we allow
the server to perform computation, however, the Goldreich-Ostrovsky lower bound no longer applies with
respect to client-server bandwidth.1

Yet, it is still not easy to break the bound. For example, all existing schemes using non-FHE server
computation only improve bandwidth by a constant factor relative to state of the art schemes without server
computation [26, 6, 22, 18]. Using FHE as a primitive, Apon et al. [2] and Mayberry et al. [18] give an
existence sketch for ORAM schemes that achieve optimal O(1) bandwidth overhead, thereby breaking the
lower bound assuming FHE. The problem with these latter schemes is their reliance on the heavyweight
FHE primitive. Until FHE is becomes practical, its not clear that these schemes can be practical.

An open problem is whether we can break the Goldreich-Ostrovsky bound with server computation but
without using FHE. And if so, what is the new lower bound on bandwidth and client storage? This is exactly
the problem we consider in this paper.

1.3 Our Contribution and High-level Techniques

Specifically, we construct Onion ORAM, an ORAM with constant blowup in bandwidth, client storage
and server storage, without the use of FHE [2, 18] or Somewhat Homomorphic Encryption [10] (SWHE). In
particular, our scheme only relies on an additively homomorphic encryption scheme (e.g., the Damg̊ard-Jurik
cryptosystem [5] which is based on Paillier’s cryptosystem [20]).

Relying on only partially homomorphic schemes is appealing for several reasons. First, it means we can
achieve optimal bandwidth for ORAM using very different assumptions than prior work — for example, that

1We note that the Goldreich-Ostrovsky bound is in terms of the number of operations that must be performed. With server
computation, the number of operations is still subject to the bound, but can be performed on the server-side which makes it
possible to break the bound in terms of bandwidth between client and server. Since historically client-server bandwidth has
been the most important metric for ORAM, we believe breaking the bound in terms of client-server bandwidth constitutes a
significant advance.
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factoring is intractable or the decisional composite residuosity assumption if we use the Damg̊ard-Jurik or
Paillier’s cryptosystem as our underlying primitive. Second, partially homomorphic encryption schemes are
known to be relatively efficient in practice (e.g., homomorphic operations require a single multiplication or
exponentiation) and simple to implement.

We now give an overview of the techniques in our new ORAM construction. Note that for the entire
paper, we assume the outsourced storage setting for ORAM (i.e., not secure computation) with a single
server that is honest but curious.

1.3.1 ORAM Evictions via Block-Size Independent Oblivious Shuffles

Our key idea is to turn ORAM evictions (which constitute a majority of bandwidth) into (mostly) non-
interactive processes where the client “guides” the server to perform ORAM eviction operations by com-
municating a block-size independent encrypted permutation matrix to the server, which the server can then
use to perform the eviction obliviously, using only additively homomorphic (additive-HE) operations (i.e.,
like a permutation operation in [1]). This step introduces negligible bandwidth overhead if the block size is
larger than the permutation matrix and is relatively efficient in terms of computation. That is, the number
of data blocks the server computes on per eviction is poly-logarithmic in N , for an N record ORAM, and
the underlying computation is modular exponentiation and multiplication operations over ciphertexts.

1.3.2 ORAM Design for Bounding and Refreshing the Number of Encryption Layers

Unfortunately, oblivious permutations that use just additive-HE operations have a serious limitation in
ORAM settings: after each permutation, every data element involved in the permutation is wrapped in an
additional layer of encryption [1]. Fundamentally, each permutation is made up of homomorphic select (or
multiplexer) operations which require multiplication and addition. With an additive-HE scheme, we get
addition for free and can emulate multiplication by treating one argument as a scalar. At a high level, we
have the following interesting relations where ⊗ and ⊕ denote the underlying operations to implement scalar
multiplication and addition:

E(0)⊗ E(m) = E(0) E(1)⊗ E(m) = E(E(m))

Obliviously selecting one of m1 and m2 (m2 in the following example) can be done by

E(0)⊗ E(m1)⊕ E(1)⊗ E(m2) = E(0)⊕ E(E(m2)) = E(E(m2))

It is eazy to generalize the method to one-out-of-many selection. The problem is that after such an oblivious
selection operation, the selected message (m2 in the example) gets one one layer of encryption, and the client
needs to decrypt twice (i.e., “peel off both layers”).

Depending on the underlying cryptosystem, each layer adds ciphertext blowup and extra client compu-
tation (to peel off the layers). This is acceptable in voting and PIR settings [5, 18] because in those cases,
the number of permutations over a common set of blocks is small. In ORAM, data is continuously shuffled
and unless care is taken, the number of layers that accumulate on each block grows with O(T ) — where T
is the number of ORAM accesses.

To draw an analogy, one can think of encryption layers in our setting as ciphertext noise in FHE schemes.2

For this reason, applying FHE to ORAM has already been proposed [18, 2] and seems3 straightforward:
schemes can assume that the FHE bootstrapping operation is continually used to keep noise at reasonable
levels independent of T . With additive-HE schemes such as Paillier [20] or Damg̊ard et al. [5], there is no
equivelent bootstrapping operation and layers must be managed in some other way.

2This comparison is meant to be taken at a high level only. For instance, while noise and layers accumulate on blocks at the
same points in the ORAM protocol, noise in FHE will eventually cause ciphertexts to become undecryptable. In principle, the
client can always decrypt a noise-less ciphertext with layers given enough time.

3We stress “seems.” Bootstrapping is known to be an expensive operation and it is unclear if schemes relying on continuous
bootstrapping can be practical.
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Table 1: Our contribution. B is the ORAM data block size in bits. N is the number of blocks and is polynomial
in the security parameter. Recommended block size is the mimimum block size such that the asymptotical results
in the table hold. Server and client computation is given by the amount of data that must be computed upon and
makes no assumptions on the underlying cryptosystem.

Recommended Overall Computation Storage
Scheme Block size Bandwidth Client Server Client Server

Path ORAM [28, 27] Ω(log2 N) O(B log N) O(B log N) N/A O(B log N)ω(1) O(BN)
Circuit ORAM [30] Ω(log2 N) O(B log N)ω(1) O(B log N)ω(1) N/A O(B) O(BN)
Path-PIR linear [18] Ω(log5 N) O(B log N)ω(1) O(B log N) O(B log2 N)ω(1) O(B) O(BN log N)

Onion ORAM Ω(log5 N log2 log N) O(B) O(B log N) O(B log2 N)ω(1) O(B) O(BN)

To address the encryption layer problem, we propose a new ORAM scheme called Onion ORAM whose
evicition mechanism is designed and optimized to guarantee worst-case bounds on the number of layers that
have accumulated on any block at any time. The main idea is to enable free “layer refresh” from guaranteed
empty slots. We make the key observation that if an ORAM algorithm guarantees that a particular slot in
server memory is empty at a particular time, then without revealing any information about the underlying
client data, that slot can be reset to zero layers at no computation cost. Resetting encryption layers in this
way is key to breaking the dependence between the number of layers on a slot and T . Unfortunately, prior
ORAM schemes do not give sharp enough guarantees on slot emptiness [30, 28, 22]. Thus, we design an
eviction procedure (using ideas from previous schemes) to additionally provide the empty bucket guarantee
with overwhelming probability.

Using layer refresh through empty slots along with several other techniques, we prove that the number of
layers that can accumulate on any block in Onion ORAM is bounded to O(logN) — independent of the total
number of ORAM accesses T. (For the rest of the paper we assume logarithms are base 2.) We note that
this bound makes no assumptions on the randomness in the ORAM protocol or the client access pattern.

Since bounding layers is related to controlling ciphertext noise (in the sense that both grow with circuit
depth), our techniques will also be useful in a setting that uses FHE or SWHE as the underlying primitive.
In particular, our scheme’s circuit depth (in terms of two-input AND gates) for any block is also O(logN).
Thus, a leveled FHE scheme (e.g., [4]) parameterized for this depth should be able to accomplish the entire
protocol without the use of bootstrapping.

1.4 Technical Highlight: Optimal Asymptotics for Large Block Sizes

Combining the techniques from § 1.3 together, we show a parameterization for Onion ORAM in § 4.4 that
yields O(B) overall bandwidth, O(B) client storage and O(NB) server storage for relatively large block sizes
B = Ω(log5N log2 logN) bits. Note that all three metrics are optimal, so this answers the question of the
new lower bounds.

We summarize our results compared to prior-art schemes in Table 1. We add client and server com-
putation in the table as two new metrics for ORAM and assume the Damg̊ard-Jurik cryptosystem as the
underlying primitive for both Onion ORAM and Path-PIR. All schemes use the standard recursion trick of
[24], with small block sizes for the recursive ORAMs [27]. Following [28], for sufficiently large data block size
B = Ω(log2N), recursion does not change overall asymptotics. We remark that the Path PIR proposal [18]
used a sub-optimal strategy for recursion, namely setting the same block size for each ORAM in the recur-
sion. The entry in the table assumes the optimal recursion strategy for their scheme and adjusts their results
accordingly. This is why the results in Table 1 for Path-PIR are better than what the original paper [18]
reported. All the three schemes have at least O(logN) bandwidth blowup (even though Path PIR utilized
server computation).

2 Formal Definitions

As described previously, the goal of ORAM is complete access pattern obfuscation: Formally, a standard
ORAM without server computation can be defined as:
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Definition 1. (ORAM Definition) Let

←−y = ((opM , addrM , dataM ), . . . , (op1, addr1, data1))

denote a RAM request sequence of length M , where opi denotes whether the i-th operation is a read or
write, addri denotes the address for that access and datai denotes the data (if a write). Let ORAM(←−y ) be
the resulting randomized RAM request sequence. The ORAM protocol guarantees that for any ←−y and ←−y ′,
ORAM(←−y ) and ORAM(←−y ′) are computationally indistinguishable if |←−y | = |←−y ′|, and also that for any ←−y the
data returned to the client by the server is consistent with ←−y (i.e., the ORAM behaves like a valid RAM)
with overwhelming probability.

Extending this definition to handle our requirements on server computation is straightforward. We extend
ORAM(←−y ) from a randomized RAM request sequence, to messages of arbitrary form sent between the client
and server to complete the protocol. This definition, also used in [18], is powerful in the sense that it makes
no assumption on what types of additional information are passed between client and server yet clearly
captures the essence of the original definition.

3 Basic Onion ORAM

We now present a basic version of Onion ORAM to illustrate the important features. We remark that the
algorithm we describe in this section (Algorithm 1) is not the most competitive ORAM scheme under the
standard ORAM definition (i.e., no server computation). Ring ORAM [22] and Circuit ORAM [30] beat it
in different aspects. We present this algorithm because it will share the same framework as our final proposal
(Section 4). Our final proposal will beat both Ring and Circuit ORAM in the server computation setting
without using FHE.

We build on the binary tree ORAM framework of Shi et al. [24], which organizes server storage as a binary
tree of nodes. The binary tree has L + 1 levels, where the root is at level 0 and the leaves are at level L.
Each node in the binary tree is called a bucket and can contain up to Z data blocks. Each block is mapped
to a random path in the binary tree via a position map. The position map may need to be recursively stored
in other smaller ORAMs. When the data block size is Ω(log2N) for an N element ORAM—which will be
the case for all of our final parameterizations—the asymptotic costs of recursion are insignificant relative to
other terms [27]. Thus, we will assume that the (recursed) position map adds negligible server storage and
bandwidth for the rest of the paper.

Reading a block with address a in Algorithm 1 is similar to most tree-based ORAMs: look up the position
map to obtain the path block a is currently mapped to, read all the blocks on that path to find block a,
remap it to a new random path and add it to the root bucket (the root bucket and the stash from [28] are
the same thing in our construction).

Our eviction strategy combines techniques from [24], [9] and [22]. For every A (a parameter proposed in
[22], which we will set later) ORAM accesses, we select a path to evict based on the reverse lexicographical
order of paths (proposed in [9]), denoted lg in Algorithm 1. For the rest of the paper, paths (e.g., lg) are
represented as L-bit vectors where the i-th bit (from right to left) is set to 1 if the i-th bucket on the path
goes to its right child.

To perform an eviction: For every bucket P(lg, i) (i from 0 to L, i.e., from root to leaf) on path lg, we
move blocks from P(lg, i) to its two children (similar to [24]). (It is not fundamental for the tree to be of
degree 2, but we will assume this parameterization for the rest of the paper.) In each of these bucket-triplet
evictions, we call P(lg, i) the source bucket, the child bucket also on P(lg) destination bucket, and the other
child sibling bucket.

A crucial change that we make to the eviction procedure of [24] is that we move all the blocks in the
source bucket to its two children. This guarantees the following crucial invariant in our constructions in the
next section.

Observation 1 (Empty Bucket Invariant). After a bucket-triplet eviction operation, the source bucket is
empty.
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Algorithm 1 Basic Onion ORAM (no server computation).

1: function Access(a, op, data′)
2: Global/persistent variables: cnt and G, initialized to 0

3: l′ ← UniformRandom(0, 2L − 1)
4: l ← PositionMap[a]
5: PositionMap[a] ← l′

6: data ← ReadPath(l, a)
7: if op = read then
8: return data to client
9: if op = write then

10: data ← data′

11: P(l, 0, cnt) ← (a, l′, data) . add this block to the root
12: cnt ← cnt + 1 mod A

13: if cnt
?
= 0 then

14: lg ← G mod 2L . reverse lexicographical order
15: EvictAlongPath(lg)
16: G ← G+ 1

17: function ReadPath(l, a)
18: Read all blocks on path P(l)
19: Select and return the block with address a
20: Invalidate the block with address a
21: . Involves re-encrypting metadata of all the blocks on P(l) to hide which block is invalidated

22: function EvictAlongPath(lg)
23: for i← 0 to L− 1 do
24: Read all the blocks in P(lg, i) and its two children
25: Move all blocks in P(lg, i) to its two children
26: Write back the two children of P(lg, i)
27: . P(lg, i) is gauranteed to be empty at this point (Observation 1)

This observation immediately holds if the two children have enough room to accept all the incoming blocks
from the source bucket. In other words, it holds if no bucket ever overflows. We guarantee this property by
setting the bucket size Z and the eviction frequency A properly. According to the following theorem, if we
simply set Z = A = Θ(logN)ω(1), the probability that a bucket overflows is N−ω(1), negligible in security
parameter (note that N is polynomial in security parameter).

Theorem 1. If Z ≥ A and N ≤ A · 2L−1, the probability that a bucket overflows after an eviction operation

is bounded by e−
(2Z−A)2

6A .

Proof. First of all, notice that when Z ≥ A, the root bucket will never overflow. So we will only consider
non-root buckets. Let b be a non-root bucket, and Y (b) be the number of blocks in it after an eviction
operation. We will first assume all buckets have infinite capacity and show that E[Y (b)] ≤ A/2, i.e., the
expected number of blocks in a non-root bucket after an eviction operation is no more than A/2 at any time.
Then, we bound the overflow probabiliy given a finite capacity.

If b is a leaf bucket, each of the N blocks in the system has a probability of 2−L to be mapped to b
independently. Thus E[Y (b)] ≤ N · 2−L ≤ A/2.

If b is a non-leaf (and non-root) bucket, we define two variables m1 and m2: the last EvictAlongPath
operation where b is on the eviction path is the m1-th EvictAlongPath operation, and the EvictAlongPath
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operation where b is a sibling bucket is the m2-th EvictAlongPath operation. If m1 > m2, then Y (b) = 0,
because b becomes empty when it is the source bucket in the m1-th EvictAlongPath operation. (Recall that
buckets have infinite capacity so this outcome is guaranteed.) If m1 < m2, there will be some blocks in
b and we now analyze what blocks will end up in b. We time-stamp the blocks as follows. When a block
is accessed and remapped, it gets time stamp m∗, which is the number of EvictAlongPath operations that
have happened. Blocks with m∗ ≤ m1 will not be in b as they will go to either the left child or the right
child of b. Blocks with m∗ > m2 will not be in b as the last eviction operation that touches b (m2-th) has
already passed. Therefore, only blocks with time stamp m1 < m∗ ≤ m2 can be in b. There are at most
d = A|m1−m2| such blocks. Such a block goes to b if and only if it is mapped to a path containing b. Thus,
each block goes to b independently with a probability of 2−i, where i is the level of b. The deterministic
order of EvictAlongPath makes it easy to see4 that |m1−m2| = 2i−1. Therefore, E[Y (b)] ≤ d · 2−i = A/2 for
any non-leaf bucket as well.

Now that we have independence and the bound on expectation, a simple Chernoff bound completes the
proof.

From the empty bucket invariant (Observation 1), we immediately get another two observations, which
will be useful in our final construction.

Observation 2. After EvictAlongPath(lg), all the non-leaf buckets on P(lg) are empty.

Observation 3. At the beginning of EvictAlongPath, all the non-leaf sibling buckets of P(lg) are empty.

Observation 2 holds simply because every non-leaf bucket on P(lg) has just been involved in a bucket-
triplet eviction as the source bucket, which would become empty due to Observation 1. Note that due to
the reverse lexicographical eviction order, any sibling bucket on this eviction must be on the eviction path
the last time it was involved in an eviction. Then, Observation 3 directly follows from Observation 2.

Metadata. Many operations in Algorithm 1 are implemented with the help of metadata—its address
and leaf label (the path the block is mapped to)—stored alongside each data block (see Line 11, Algorithm
1). Selecting the block of interest (Line 19) is done by comparing the address of every block on the path
with the address of interest a. Invalidating the block of interest (Line 20) means changing its address field
to ⊥, an address reserved for dummy blocks. This requires re-encrypting the address field of every block on
the path to hide the block being invalidated. In eviction, whether a block goes to the destination bucket or
the sibling bucket depends on its leaf label.

Asymptotics without server computation. We conclude this section with a summary of the asymp-
totic performance of this ORAM construction. Note that the parameters satisfy Z = A = O(logN)ω(1) and
N ≤ A · 2L−1. Reading a block involves downloading all the Z(L + 1) = O(log2N)ω(1) blocks on a path.
Eviction also touches O(ZL) = O(log2N)ω(1) blocks. So the amortized and worst case bandwidth are both
O(log2N)ω(1) blocks. Client storage is O(Z) = O(logN)ω(1) blocks; server storage is O(2L+1 · Z) = O(N)
blocks.

4 Homomorphic Onion ORAM

We now describe the cryptographic primitives we need and the final Onion ORAM scheme.

4.1 Primitive Operations

4.1.1 General Notation

We denote a plaintext space or ciphertext space as Li. |Li| is the number of bits needed to represent an
element in Li. La

i is the space of length a vectors in Li. Vectors are bolded; if V is a vector, V[i] is the i-th
element.

4One way to see this is that a bucket b at level i will be on the evicted path every 2i EvictAlongPath operations, and its
sibling will be on the evicted path halfway in that period.
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4.1.2 Requirements on Underlying Cryptosystem

We require a series of additive homomorphic cryptosystems, given as the triplets AHEi = (Gi, Epki ,Dski) for
i ≥ 0 where ski, pki = Gi(), and the ciphertext space of AHEi is in the plaintext space of AHEi+1. We denote
the plaintext space of AHEi as Li. The homomorphism of AHEi (i ≥ 0) has properties:

1. Ei : Li → Li+1

2. Di : Li+1 → Li

3. Homomorphic Addition ⊕: Li+1 × Li+1 → Li+1, Ei(x)⊕ Ei(y) = Ei(x+ y)

4. Scalar Multiplication ⊗: Li+1 × Li → Li+1, Ei(x)⊗ y = E(x · y)

where ⊕ and ⊗ are efficiently computable functions and x and y are valid plaintexts. Additionally, we require
that each AHEi has a valid zero element and a valid identity element. Formally:

5. Ei(e) is efficiently computable such that Ei(e) ⊗ x = Ei(e) and Ei(e) ⊕ Ei(y) = Ei(y) for any x, y ∈ Li

(the zero element e)

6. Ei(f) is efficiently computable such that Ei(f)⊗ x = Ei(x) for any x ∈ Li (the identity element f)

Unless otherwise stated, we treat e = 0 and f = 1 and use the notation Ei(0) and Ei(1) to denote encryptions
of the zero and the identity element.

4.1.3 Additive-HE Select

We denote a homomorphic select operation (i.e., a multiplexer/mux) as Select(π,V): La
i+1 × Lb

i → Li+1 for
i ≥ 0 where π is a vector of encrypted coefficients in Li+1 and V is a vector of elements in Li. Conceptually,
Select uses π to choose one element in V to propagate to the output. The simplest implementation for such
an operation is an inner product, in which case we set a = b and π[j] = Ei(1) for exactly one j = k for user
chosen k and π[j] = Ei(0) otherwise (i.e., π is a one-hot encoding). Then we have the following relation:

E(V[k])← Select(π,V) =

a−1⊕
j=0

π[j]⊗V[j]

Note that the result has an additional layer of encryption relative to elements in the input vector V. We
refer to this implementation as a ‘flat mux’; it is also commonly called trivial linear PIR in the literature [18].

We will describe Onion ORAM using flat mux Select operations for their conceptual simplicity, but note
that there are other implementations that impose different trade-offs. For example, one can implement the
same function as a tree of d-to-1 Select operations (e.g., the hierarchical PIR scheme due to Lipmaa [15]). We
call this implementation the ‘tree mux.’ Consider the case where d = 2, giving us a = log b. This alternative
has the following trade-off: it decreases the number of encrypted coefficients involved in the operation to be
logarithmic in the number of elements to be selected but increases the depth of the overall Select by a log
factor which, in turn, increases the number of encryption layers on the final result by log b.

4.2 Homomorphic Onion ORAM (Protocol)

We now describe how to take advantage of server computation and our above primitives to improve the basic
Onion ORAM construction from § 3. The high level idea is as follows. Recall from § 3 that most operations in
Onion ORAM rely on metadata. To perform a ReadPath or EvictAlongPath, the client will still download and
manage metadata and use it to construct choice vectors or permutation matrices required by our additive-HE
Select operation. The server uses a single (or small number of) additive-HE Select operations on data blocks
to return the block of interest and uses a poly-logarithmic number of Select operations to carry out evictions.
In this way, the client and the server only exchange one block plus choice vector per ORAM request and
no blocks (up to a constant number of blocks) plus poly-logarithmic number of choice vectors per eviction.
We refer to the choice vectors involved in the eviction as the permutation matrix. When the block size is
sufficiently large and dominates the metadata and permutation matrix, we get constant bandwidth blowup.
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4.2.1 Simplifying Assumptions and Additional Parameters

We introduce some more notations for later use. For a path P(l) in the ORAM tree, P(l).address is a
vector of length Z(L+ 1) consisting of the address fields of all the blocks on P(l), from the root to the leaf.
P(l).leaf and P(l).data are vectors of length Z(L + 1) consisting of leaf labels and data of all the blocks
on P(l), respectively. Similarly, for a bucket P(l, k), we define P(l, k).address, P(l, k).leaf and P(l, k).data
to be vectors of length Z, consisting of address, leaf label and data fields of all the blocks in that bucket,
respectively. All the data fields will be homomorphically evaluated by the server, and thus be encrypted
(with layers) using the public-key additive-HE scheme. All the metadata are still managed by the client,
and can use any semantically secure symmetric encryption, e.g., AES counter mode.

To simplify the basic version of our protocol, we add two simple rules which will be optimized in later
sections. First, for now we assume each Select operation is implemented as the flat circuit from § 4.1.3. That
is, a Select operation that chooses between b data blocks requires a choice vector π consisting of b coefficients.

Parameter imax. Second, for each Select(π,V) operation, we assume both the server and the client
know the number of layers on each input block involved. This assumption is explained in detail in § 4.3. For
each Select operation, we designate the maximum number of layers among the input blocks as imax. Then,
immediately before a Select operation, the server will ‘promote’ every input block to imax layers by running
the encryption routine E on that block until it is in Limax . This way, the server forms the input V ∈ La

imax

for |V| = a. We assume the client also knows imax (e.g., from metadata), and sends π ∈ Limax+1.
Parameter Imax. We also add a single public parameter called Imax. Conceptually, Imax is the maximum

number of encryption layers the client is willing to let accumulate on any block. In § 4.3, we prove that
Imax = Θ(logN) is a reasonable setting for this parameter.

4.2.2 Initialization

To initialize, the client runs G and sends pk to the server.

4.2.3 Read Path

ReadPath(l, a) can be done by a simple Select operation. We note that this is similar to how reads are
performed in [18], except that in our case the block of interest may be encrypted under many layers. Below
are the steps in detail. The client first looks up the position map to determine the path l to read. Then:

1. Client to server: l

2. Server to client: all the addresses on that path, namely P(l).address

3. Client computation: the client decrypts P(l).address and finds j such that P(l).address[j] = a (i.e., the
index of the block of interest). It constructs the vector π of length Z(L+ 1) where π[j] = Eimax

(1) and
other components are Eimax

(0) where imax is defined in § 4.2.1.

4. Client to server: π

5. Server computation: the server ‘promotes’ every element in P(l).data to Limax
, forming V as described

in § 4.2.1, and then evaluates d = Select(π,V).

6. Server to client: d

7. Client computation: the client gets the plaintext data m by running the decryption routine imax + 1
times, namely m = Dimax+1(d). If the client operation is a write, the client updates the data forming
a new block m′.

8. Client to server (the invalidation step): the client sets P(l).address[j] = ⊥, re-encrypts P(l).address and
sends it to the server. The server updates P(l).address.

9. Client computation: the client encrypts the message to get d′ = E0(m′).
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10. Client to server: d′

11. The server copies d′ to a public offset in the root bucket P(l, 0, cnt) as described in Algorithm 1.

As we show in § 4.3, the server can determine which buckets along P(l) are empty at the start of any
ReadPath() operation. Thus, it is sufficient to only transfer metadata/encrypted coefficients and perform
Select operations for non-empty buckets in the above algorithm, which saves a constant factor bandwidth.

4.2.4 Evict Along Path

At any time, both the client and the server know which path to evict along by the deterministic eviction
order. Let the path be lg. For EvictAlongPath(lg), each bucket-triplet eviction operation can be done by
O(Z) Select operations.

We point out the important property that all non-leaf sibling buckets of P(lg) are guaranteed to be empty
at this point due to Observation 3. Leveraging this property, we will show a smart way to move blocks from
a source bucket to a sibling bucket without even invoking a Select operation.

For each level k from 0 to L− 1, the client and server perform the following steps.

1. Server to client: all the addresses and leaf labels for the source bucket and destination bucket, namely
P(lg, k).address, P(lg, k).leaf, P(lg, k + 1).address and P(lg, k + 1).leaf. As pointed out, the sibling
bucket is guaranteed to be empty at this point. Thus, its metadata need not be transferred.

2. Client computation: the client computes the bucket-triplet eviction as before, i.e., moves all the blocks
in the source bucket to either the destination bucket or the sibling bucket. The client generates new
metadata (addresses and leaf labels) for all the three buckets.

3. (Source to sibling eviction) Since the sibling bucket is currently empty, the server can simply copy the
source bucket into the sibling bucket, and the client can invalidate the blocks that should not move
into the sibilng bucket. In more detail,

(a) The server copies P(l, k).data and P(l, k).leaf from the source bucket into the sibling bucket.

(b) The client generates the new address field for the sibling bucket, by invalidating (setting address
to ⊥) the blocks that do not move into the sibling bucket. The client re-encrypts the new address
field and sends it back to the server where the server writes it to the sibling bucket.

After this operation, the number of layers in the sibling bucket is the same as the original number of
layers in the source bucket (as opposed to adding one more layer).

4. (Source to destination eviction) For this step, the client needs to guide the server to perform O(Z)
Select operations. Note that this step does not fully permute blocks from source to destination: we
only need to move all the blocks in the source bucket to the destination bucket, while leaving blocks
already in the destination bucket unchanged. For each bucket slot z from 0 to Z − 1, the client and
server perform the following steps.

(a) Client computation: Suppose V is the concatenation of the source bucket and the z-th slot of
the destination bucket. The client generates the choice vector π, where π[j] = Eimax

(1) if and
only if the j-th block in V moves to the z-th slot in the detination bucket (and π[j] = Eimax(0)
otherwise).

(b) Client to server: π

(c) Server computation: the server ‘promotes’ P(lg, k).data and P(lg, k+ 1, z).data to Limax
, forming

V, and then updates the z-th slot in the destination bucket to Select(π,V).

(d) Client to server: The client sends the updated metadata for the source bucket and the destination
bucket, (i.e., P(lg, k).address, P(lg, k).leaf, P(lg, k+1).address and P(lg, k+1).leaf) and the server
updates them.
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Eviction Post-Processing. The careful reader will notice that once blocks arrive at leaf buckets during
evictions, they will accumulate layers in the leaves until they are requested by the client. To decouple the
number of layers on blocks from the client access pattern, we perform the following post-processing step on
the destination leaf bucket P(lg, L) at the end of each EvictAlongPath() operation. For each bucket slot z
from 0 to Z − 1, the client and server perform the following steps.

1. Server to client: d = P(lg, L, z).data

2. Client computation: runs the decryption or encryption routine on d until the ciphertext is in LImax−1,
giving us d′. Then the client runs the encryption routine one additional time, forming d′′ = EImax−1(d′).

3. Client to server: d′′

4. The server then updates memory as P(lg, L, z).data = d′′.

This step ensures that blocks in the leaf buckets don’t accumulate more than Imax layers. By setting Imax to
equal the worst-case bound on layers (§ 4.3), this step further ensures that no block at any point accumulates
more than Imax layers. We make two remarks related to metrics. First, this step may be performed in a
single or multiple roundtrips, depending on the client storage requirements. Seond, if Z ∼ A as we assume
from § 3, the bandwidth overhead of this step is constant.

4.3 Bounding the Layers

We now prove that the number of layers that can accumulate on blocks by the time they arrive at leaf
buckets is bounded to O(logN). Combining this analysis with the eviction post-processing step (§ 4.2.4)
gives us a bound for all blocks at all points in the protocol.

Theorem 2. For a bucket at level k ≤ L, the number of layers on that bucket is bounded by k + 1.

To prove the above theorem, we first point out that how a bucket transitions between the three roles
(source, destination and sibling) in bucket-triplet evictions. The root bucket is always the source bucket,
and the leaves are never source buckets; these are two special cases. For the general case (non-root, non-leaf
buckets), we have the following lemma.

Lemma 1. A bucket at level k where 0 < k < L (i.e., non-root and non-leaf) transitions between destination
bucket, source bucket and sibling bucket, in that order.

Proof. This is easy to see from our EvictionAlonePath() operation and the reverse lexicographic order of
eviction paths. When a bucket b is on the eviction path, it is first involved in a bucket-triplet eviction as the
destination bucket (when its parent is the source bucket), and then immediately as the source bucket itself
in the very next bucket-triplet eviction. Then, due to the reverse lexicographic order, the sibling of bucket
b will be on the eviction path, before the eviction path loops back through b again. When b’s sibling is on
the eviction path, b will be involved in a bucket-triplet eviction as the sibling bucket. Due to the reverse
lexicographic order again, after that b will be on the eviction path before its sibling, and a new period starts
for b.

We introduce the notation (role, level, layers). For example, (source, k, j) means a bucket at level k
currently has at most j layers, and will be the source bucket when it is next involved in a bucket-triplet
eviction. With the role transition pattern in Lemma 1, we can prove the following theorem with induction.

Theorem 3. A bucket at level k where k < L (i.e., non-leaf) is always in one of the following three states:
(source, k, k + 1), (destination, k, k), (sibling, k, 0).

Proof. Initially, the theorem trivially holds because all buckets have zero layers. Now suppose every bucket
is in one of the three allowed states at some point. We prove that after a bucket-triplet eviction, the three
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buckets involved will still be in an allowed state (all the other buckets in the tree are not affected and remain
in their good states).

Let us now focus on a bucket-triplet eviction where the source bucket is at level k. Then, the current
states of the three involved buckets are, by definition and by the induction hypothesis (source, k, k + 1),
(destination, k + 1, k + 1) and (sibling, k + 1, 0). We will analyze the three involved buckets one by one.

The current source bucket will become empty, and be reset to zero layers. If it is the root (k = 0), it will
always be a source bucket. Otherwise it will transition into a sibling bucket by Lemma 1. So its new state
is either (source, 0, 0) or (sibling, k, 0), both of which are allowed states.

The current destination bucket will acquire one more layer on top of the maximum number of layers
between the current source and current destination bucket (itself), both of which are bounded by k+1. Then,
if k + 1 < L the current destination bucket will transition into a source bucket by Lemma 1, importantly at
level k + 1. So its new state is (source, k + 1, k + 2), which is an allowed state. (If k + 1 = L, it is a leaf
bucket and this theorem does not care about it.)

The current sibling bucket will be copied from the source bucket, and thus will have at most k+ 1 layers.
If k+ 1 < L, it will transition into a destination bucket by Lemma 1. So its new state is (destination, k+ 1,
k + 1), which is an allowed state. (If k + 1 = L, it is a leaf bucket and this theorem does not care about
it.)

Proof of Theorem 2. For non-leaf buckets, the proof directly follows from Theorem 3. With the post-
processing step on the leaf buckets from § 4.2.4, we can bound the layers on leaf buckets similarly by
induction. First, we set Imax = L. Leaf buckets transition between destination buckets and sibling buckets,
and the two allowed states are (destination, L, L + 1) and (sibling, L, L). (destination, L, L + 1) gets one
more layer, but is refreshed back to L layers, so it transitions into (sibling, L, L). (sibling, L, L) gets one
more layer and transitions into (destination, L, L+ 1).

Observation 4. At any point, the server can determine the current number of layers on any bucket.

Setting imax (§ 4.2.1). By the above analysis, it is sufficient to set imax = L + 1 for a ReadPath()
operation and imax = k + 1 in EvictAlongPath() for a bucket-triplet eviction whose source bucket is level k.
By Observation 4, the server knows how to ‘promote’ blocks before a Select operation.

4.4 Parameterization for Desired Asymptotics

We now analyze the requirements on block size B for our Onion ORAM to get constant bandwidth blowup.
To be concrete, we assume our underlying cryptosystem is the Damg̊ard-Jurik cryptosystem [5] which we
now summarize in the context of our requirements from § 4.1.2.

4.4.1 Background: Damg̊ard-Jurik Cryptosystem

The Damg̊ard-Jurik cryptosystem, a generalization of Paillier’s cryptosystem [20], is based on the hardness
of the decisional composite residuosity assumption. In this system, the public key pk = n = pq is an RSA
modulus (p and q are two large, random primes) and the secret key sk = lcm(p−1, q−1). In the terminology
from § 4.1.2, sk, pk = Gi() for i ≥ 0.

We denote the integers mod n as Zn. The message space for the i-th layer of the Damg̊ard-Jurik
cryptosystem encryption, Li, is Zns0+i for some user specified choice of s0. The ciphertext space for this
layer is Zns0+i+1 . Thus, we clearly have the property that ciphertexts are valid plaintexts in the next layer.
An interesting property that immediately follows is that if s0 = Θ(i), then |Li|/|L0| is a constant. In other
words, by setting s0 appropriately the ciphertext blowup after i layers of encryption is a constant.

We further have that ⊕ (the primitive for homomorphic addition) is integer multiplication and ⊗ (for
scalar multiplication) is modular exponentiation. If these operations are performed on ciphertexts in Li,
operations are mod Zns0+i .
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4.4.2 Onion ORAM Parameters

Suppose we divide each plaintext block into C chunks, each chunk having Bc bits (i.e., C ·Bc = B). In the
Damg̊ard-Jurik cryptosystem (§ 4.4.1), each plaintext chunk can be represented by a number in Zns0 for a
user choice of s0, which gives each message s0|n| bits. Due to Theorem 2, a block will accumulate at most
L + 1 = O(logN) layers (if we use flat muxes). So we can set s0 = Θ(logN), and guarantee a constant
ciphertext blowup. This means Bc = Θ(|n| logN).

Second, we will set parameters so that the amortized bandwidth cost to send the encrypted permutation
matrix for EvictAlongPath does not exceed O(B) bits.5 We will assume Z = A = O(logN)ω(1) as described
in § 3. Amortized over A and using the flat mux Select implementation, the client needs to send ω(log2N)
encrypted coefficients for the permutation matrix. Each coefficient is a ciphertext of Θ(|n| logN) bits.
Therefore, we want ω(log2N)Θ(|n| logN) ∼ O(B), or equivalantly B = ω(|n| log3N).

If we apply the tree mux optimization from § 4.1.3, the bound on the number of layers increases to
O(logN log logN), requiring s0 = Θ(logN log logN). At the same time, the amortized permutation matrix
size reduces to Θ(logN log logN) coefficients, each being a ciphertext of Θ(|n| logN log logN) bits. Thus,
the block size requirement becomes Θ(logN log logN)Θ(|n| logN log logN) ∼ O(B), or equivalently B =
Ω(|n| log2N log2 logN).

Given n, the decisional composite residuosity assumption can be solved in time exp(|n|1/3 log2/3 |n|) by
using the general number field sieve to factor n. This is also the best known attack for the Damg̊ard-Jurik
cryptosystem. It therefore suffices to set |n| = Θ(log3N), making the above attack superpolynomial (i.e.,
O
(
Nω(1)

)
following prior ORAM works [28, 30]). This setting gives the asymptotics in Table 1 at the

beginning of the paper, i.e., a block size of B = Ω(log5N log2 logN) bits using tree muxes. We note that for
practical parameterizations, previous ORAM works assume a security parameter of 80. To achieve security
against attacks of complexity 280, |n| = 1024 bits is a reasonable setting [3].

5 Conclusion and Future Work

This paper proposes Onion ORAM, the first ORAM scheme with optimal asymptotics in bandwidth, server
storage and client storage in the single-server setting. Critically, our construction does not require the use of
Fully Homomorphic Encryption (FHE) or Somewhat Homomorphic Encryption (SWHE) and instead only
requires a partially (additive) homomorphic scheme such as the Damg̊ard-Jurik cryptosystem (based on
Paillier’s classical scheme). Due to the known efficiency of these types of cryptosystems, we think of our
work as a first step towards practical constant bandwidth blowup ORAM schemes.

We leave several questions open as future work. First, without compromising asymptotics for bandwidth
or client/server storage, what is the lower bound on block size? At present, our scheme requires a relatively
large block size, e.g., Ω(log5N log2 logN) bits. For comparison, state of the art ORAM schemes that
don’t use homomorphic operations can achieve their best asymptotics with a block size of Ω(log2N) bits.
Second, independent of block size, what are lower bounds on client and server computation? Our scheme
requires O(B logN) client computation and O(B log2N)ω(1) server computation. While this amount of
client computation is on-par with prior schemes, the Goldreich-Ostrovsky bound gives a O(B logN) bound
on server computation, which suggests there is room for improvement.
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