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Abstract. We present Onion ORAM, a constant bandwidth Oblivious RAM (ORAM) that leverages
poly-logarithmic server computation to circumvent the logarithmic ORAM lower bound. Our construction
does not rely on Fully Homomorphic Encryption, but employs an efficient additive homomorphic
encryption scheme such as the Damg̊ard-Jurik cryptosystem. Homomorphic operations on the encrypted
blocks introduce onion layers of encryption – hence the name Onion ORAM. We propose novel techniques
to prove security against a malicious server, without resorting to expensive and non-standard techniques
such as SNARKs. To the best of our knowledge, Onion ORAM is the first concrete instantiation of a
constant-bandwidth ORAM (even for the semi-honest setting).

1 Introduction

Oblivious RAM (ORAM), initially proposed by Goldreich and Ostrovsky [16,17], is a cryptographic primitive
that allows a client to store private data on an untrusted server and maintain obliviousness while accessing
that data — i.e., guarantee that the server or any other observer learns nothing about the data and the
client’s access pattern (the sequence of addresses or operations) to that data. Since its initial proposal, ORAM
has been studied in various application settings including cloud outsourced storage [7,25,31,34,35], secure
processors [8, 9, 24,30–32,43] and secure multi-party computation [11,12,19,22,40].

1.1 Server Computation in ORAM

The ORAM model considered historically, starting with the work of Goldreich and Ostrovsky [16, 17, 28],
assumed that the server acts as a simple storage device that allows the client to read and write data to it,
but doesn’t perform any computation otherwise. However, in many scenarios investigated by subsequent
works [7, 34, 42] (e.g., the setting of remote oblivious file servers), the untrusted server has significant
computational power, possibly even much greater than that of the client. Therefore, it is natural to extend
the ORAM model to allow for server computation, and to distinguish between the amount of computation
performed by the server and the amount of communication with the client.

Indeed, many recent ORAM schemes have implicitly or explicitly leveraged some amount of server
computation to either reduce bandwidth cost [1, 6, 11, 12, 25, 31, 35, 44], or reduce the number of online
roundtrips [41]. Section 1.4 gives a more detailed narrative of the results achieved by these works. We remark
that some prior works [1,25] call themselves oblivious storage (or oblivious outsourced storage) to distinguish
from the standard ORAM model where there is no server computation. We will simply apply the term ORAM
to both models, and refer to ORAM with/without server computation to distinguish between the two.

At first, many works implicitly used server computation in ORAM constructions [11,12,25,31,35,41,44],
without making a clear definitional distinction from standard ORAM. Apon et al. were the first to observe
that such a distinction is warrented [1], not only for the extra rigor, but also because the definition renders
the important Goldreich-Ostrovsky ORAM lower bound [17] inapplicable to the server computation setting –
as we discuss below.



1.2 Attempts to “Break” the Goldreich-Ostrovsky Lower Bound

Traditionally, ORAM constructions are evaluated by their bandwidth client storage and server storage.
Bandwidth is the amount of data that need to be sent between client/server to serve a client request, including
the communication in the background to maintain the ORAM (i.e., ORAM evictions). Client storage is the
amount of trusted local memory required at the client side to manage the ORAM protocol and server storage
is the amount of storage needed at the server to store all data blocks.

In their seminal work [17], Goldreich and Ostrovsky showed that ORAM must incur a O(logN) lower
bound in bandwidth blowup, for an ORAM of N blocks, under O(1) blocks of client storage. If we allow the
server to perform computation, however, the Goldreich-Ostrovsky lower bound no longer applies with respect
to client-server bandwidth [1]. The reason is that the Goldreich-Ostrovsky bound is in terms of the number of
operations that must be performed. With server computation, though the number of operations is still subject
to the bound, many operations can be performed on the server-side without client intervention, making it
possible to break the bound in terms of bandwidth between client and server. Since historically bandwidth
has been the most important metric for ORAM, breaking the bound in terms of bandwidth constitutes a
significant advance.

With the above observation, the goal of this work is to construct a constant bandwidth overhead ORAM
(overcoming the Goldreich-Ostrovsky lower-bound) that incurs only poly-logarithmic server computation. It
turns out that achieving this is not easy. Indeed, two prior works [1,25] have made endeavors towards this
direction using homomorphic encryption. The construction in [25] uses additively homomorphic encryption
(AHE) to improve ORAM online bandwidth, but still incurs poly-logarithmic overall bandwidth. On the
other hand, the work of [1] showed that if a fully homomorphic encryption (FHE) scheme with constant
ciphertext expansion existed, then one can hope to construct an ORAM scheme with constant bandwidth
blowup. While this is a very promising direction, it suffers from the following drawbacks:

– Firstly, there is no explicitly documented construction of an FHE scheme with constant ciphertext
expansion. Most FHE schemes encrypt the data bit-by-bit and therefore incur large multiplicative
overhead which is polynomial in the security parameter. This overhead would immediately be reflected in
the bandwidth blowup of the ORAM scheme. While it is conceivable that FHE with constant ciphertext
expansion can be constructed by relying on ciphertext packing and bootstrapping techniques, it would
require a delicate and non-trivial analysis, parametrization, and reliance on specific assumptions (rather
than generic FHE techniques).

– Second, FHE schemes tend to incur a large performance penalty in practice. Therefore, we desire a
construction that is implementable and efficient in practice, ideally without the use of FHE.

– Third, with the server performing homomorphic operations on data, achieving malicious security is difficult.
Consequently, most existing works that leverage PIR or FHE techniques only guarantee semi-honest
security [25,44]. Apon et al. leveraged powerful tools such as SNARKs to ensure malicious security [1];
however, SNARKs not only require non-standard assumptions [15], but also incur prohibitive cost in
practice.

1.3 Our Contributions

Based on Section 1.2, it is fair to conclude that to date, no concrete instantiation of an ORAM scheme with
constant bandwidth blowup has been documented, even in the semi-honest setting, let alone one that considers
practical efficiency and verifiability under standard assumptions.

In this paper, we achieve it all: we construct Onion ORAM, a server-computation ORAM with constant
bandwidth blowup and poly-logarithmic server computation, with security against a fully malicious server.
Our scheme also achieves constant client storage and constant server storage blowup. Moreover, we achieve
these properties not only under standard assumptions, but also without the use of FHE [1,25] or somewhat
homomorphic encryption [12] (SWHE); we only rely on additively homomorphic encryption. We view our
work as an important step towards realizing constant bandwidth overhead ORAM in practice.
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Table 1: Our contribution. B is the ORAM data block size in bits. The reported asymptotics are achieved when
B satisfies the optimal block size requirement. N is the number of blocks. Schemes in this table achieve 2−λ failure
probability (λ = 80 is a reasonable value). For Path-PIR and Onion ORAM, γ denotes the length of the modulus n
of the Damg̊ard-Jurik cryptosystem [5] (γ = 2048 is a reasonable value). Server computation measures the amount
of data that is touched and computed upon by the server. “M” stands for malicious security, and “SH” stands for
semi-honest.

Scheme
Optimal Bandwidth Client Server Server

Security
Block size Cost Storage Storage Computation

Path ORAM [37] Ω(log2N) O(B logN) O(Bλ) O(BN) N/A M
Circuit ORAM [39] Ω(log2N) O(Bλ) O(B) O(BN) N/A M

Path-PIR [25] O(γλ logN) O(Bλ) O(B) O(BN logN) O(Bλ logN) SH

Onion ORAM
Ω(γ log2 λ log2N) O(B) O(B) O(BN) O(Bλ logN) SH
Ω(γλ log λ log2N) O(B) O(B) O(BN) O(Bλ logN) M

Table 1 summarizes our contributions and compares our schemes with some of the state-of-the-art ORAM
constructions. We give a high-level overview of the construction and the techniques in Section 2. We defer
formal definitions of ORAM with server computation and malicious security to Appendix A.

1.4 Related Work

In the standard ORAM setting with no server computation, Goldreich and Ostrovsky show that any ORAM
scheme with constant client storage must incur at least Ω(logN) blowup in terms of bandwidth and number of
accesses [17]. Several recent constructions have been proposed in the standard ORAM setting that increasingly
approached this lower bound. Kushilevitz et al. showed a construction with O(log2N/ log logN) bandwidth
blowup [20]. Stefanov et al. constructed Path ORAM, achieving O(logN) bandwidth blowup for Ω(log2N)-
sized blocks, but requiring O(λ) blocks1 of client storage [37]. Recently, Wang et al. constructed Circuit
ORAM [39], which achieves O(λ) bandwidth blowup with Ω(log2N) block size and O(1) blocks of client
storage.

Many state-of-the-art ORAM schemes or ORAM implementations make use of server computation. For
example, the SSS construction [34,35], Burst ORAM [7] and Ring ORAM [31] assumed the server is able to
perform matrix multiplication or XOR operations. Path PIR [25] and subsequent work [6,44] increased the
allowed computation to additively homomorphic encryption such as Trostle-Parrish PIR [38] or Paillier’s
Cryptosystem [29]. Apon et al. [1], Path-PIR [25] and Gentry et al. [11, 12] further augmented ORAM with
Fully Homomorphic Encryption (FHE). Williams and Sion rely on server computation to achieve a single
online roundtrip [41].

Recent works on Garbled RAM [10,13,23] can also be seen as generalizing the notion of server-computation
ORAM. However, existing Garbled RAM constructions incur poly(λ) · poly logN client work and bandwidth
blowup, and therefore Garbled RAM does not give a constant-bandwidth ORAM scheme with server
computation. Reusable Garbled RAM [14] achieves constant client work and bandwidth blowup – however,
known reusable garbled RAM constructions rely on non-standard assumptions (indistinguishability obfuscation,
or more) and are prohibitive in practice.

1 Throughout this paper, we set the desired failure probability to 2−λ. Many previous ORAM works just require the
failure probability to be negl(N) in which case it suffices to set λ = ω(logN). In such a parameterization, server
computation is poly-logarithmic in the data size N .
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2 Technical Roadmap and Highlights

2.1 Naive Attempt and Challenges

We start with the main ideas proposed in [1, 25]: instead of having the client move data around on the server
“manually” by reading and writing to the server, the client can instruct the server to move data around under
a homomorphic encryption scheme without revealing anything about the data and its movement.

To expand on the above, let us start with a tree-based ORAM scheme [33,37] which is a standard ORAM
without server computation. We assume that readers are familiar with the basics of tree-based ORAMs –
for an overview see [33] or [37]. The idea is to encrypt all data on the server with FHE. During a read, the
client wants to retrieve one block from a certain path identified by its leaf node, without revealing which
block. Instead of having to download the entire ORAM tree path, the client can now instruct the server
to perform a homomorphic computation which finds the correct block and sends back the FHE-encrypted
result to the client. All eviction operations are homomorphically evaluated by the server, without the client’s
intervention. Finally, to avoid storing the position map on the client side, we can leverage the standard
recursion technique [33], and parametrize it to preserve the same asymptotical bandwidth [36,39].

Main problems. Unfortunately, as mentioned in Section 1.2, the above simple idea is deficient for two
important reasons. First, we do not know of a concrete FHE instantiation with constant ciphertext expansion,
and even if we had one it would most likely incur large computational overheads.

Second, this solution does not provide security against a malicious server. As an attack example, the server
may guess that a read operation is requesting the same block as the previous read. To test this hypothesis,
the server can simply send back the same homomorphically encrypted block as the previous read (perhaps
re-randomized). Then, either the client gets the wrong data (if no authentication is performed), or the server
learns if its hypothesis was correct based on whether the client rejects the data.

2.2 Overview of Our Construction

The starting point for our construction is to replace FHE with additively homomorphic encryption (AHE) to
improve efficiency. This, however, introduces challenges. Without FHE, the server is no longer able to perform
eviction operations entirely on its own. Instead, in our scheme, the client “guides” the server to perform
evictions using only AHE, by sending the server some “helper values”. At a high level, we can get constant
bandwidth overhead because the size of these helper values is independent of the block size: by making the
block size sufficiently large, sending helper values does not affect the asymptotic bandwidth overhead.

Building block: homomorphic select operation. Our Onion ORAM construction repeatedly makes use
of an important building block called a “homomorphic select” operation, which can be thought of as the
technique in private-information-retrieval (PIR) [21], and which is applied repeatedly.

We start with a sequence of additively homomorphic encryption schemes E` with plaintext space L` and
ciphertext space L`+1 where L`+1 is again in the plaintext space of E`+1. Each of the schemes E` are additively
homomorphic meaning E`(x)⊕ E`(y) = E`(x+ y). We define the following short-hand notation to denote an
`-layer onion encryption of a message x by E`(x) := E`(E`−1(. . . E1(x))).

The “homomorphic select operation” starts with the server storing m plaintext data blocks pt1, . . . , ptm.
Crucial to efficiency, each plaintext data block is broken up into C chunks pti = (pti[1], . . . , pti[C]), and each
chunk is onion-encrypted separately, i.e., cti = (cti[1], . . . , cti[C]) where cti[j] = E`(pti[j]). To select the block
pti∗ at the secret index i∗, the client sends a small “encrypted select vector” E`+1(b1), . . . , E`+1(bm) where
bi∗ = 1 and bi = 0 for all other i 6= i∗. Using this encrypted select vector, the server can homomorphically
compute ct∗ = (ct∗[1], . . . , ct∗[C]) where ct∗[j] =

⊕
i E`+1 (bi) · cti[j] = E`+1 (

∑
i bi · cti[j]) = E`+1(cti∗ [j]) =

E`+1(pti∗ [j]) for all j ∈ [1..C]. The result is selected data block pti∗ , with `+ 1 layers of onion encryption.
We make two key remarks that are crucial to the efficiency of our scheme (more details in the next

two paragraphs). First, the encrypted select vector is reused for all the C chunks. Therefore, if we set C
sufficiently large (implying large data blocks), the bandwidth taken by transmitting the encrypted select
vector is overshadowed by that of reading a single block.
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Second, we need to ensure that the number of layers on each block does not grow unbounded, and that
each layer adds a small additive ciphertext expansion (even a constant multiplicative expansion would be too
large). For the former, we propose novel ORAM eviction techniques to bound the number of layers (outlined
below). The latter requirement can be accomplished by the Damg̊ard and Jurik additively homomorphic
cryptosystem [5].

Homomorphic select and block-size independent client operations. Our Onion ORAM construction
is a new tree-based ORAM that expresses ORAM operations in terms of the aforementioned “homomorphic
select” operation. At a high level, each Onion ORAM operation has the client read/write per-block metadata
and create an encrypted select vector(s) based on that metadata. The client then sends the encrypted select
vector(s) to the server, who does the heavy work of performing actual computation over block contents.

To elaborate, each block has a metadata entry that stores its address. During a read operation, the client
first reads the metadata associated with all blocks along the read path. After this step, the client knows
which block to select and sends a homomorphically encrypted select vector to the server, who proceeds to
evaluate the homomorphic select operation over the actual block contents. ORAM eviction operations are
more sophisticated but require similar interactions. After downloading metadata, the client sends a small
number of encrypted select vectors to the server that move blocks through the ORAM tree. We describe the
detailed protocol in Section 4.3. Once again, we use the idea that a sufficiently large block size can absorb all
the cost of sending/receiving metadata and encrypted select vectors.

Bounding the layers of encryption. To ensure the efficiency of our scheme, it is important to ensure
that the layers of onion encryption are bounded. As described above, a block accumulates an extra layer of
encryption every time a “homomorphic select” operation is performed on that block during eviction. Roughly
speaking, the property we wish to guarantee is “steady progress” – a block should advance along the eviction
path every O(1) times it is operated on during eviction. It turns out that achieving this property is non-trivial.
In particular, in all existing tree-based ORAM schemes [31, 33, 37, 39], a block can be “stagnant”, i.e., be
involved in many eviction operations without advancing along the tree path. To address this, we propose a
new tree-based ORAM construction (without server computation) which we prove to guarantee the “steady
progress” requirement.2

Techniques for malicious security. Our last goal is to achieve malicious security, i.e., enforce honest
behaviors of the server, while avoiding SNARKs [1].

Our idea is to rely on probabilistic checking, and to leverage an error-correcting code to amplify the
probability of detection. Specifically, observe that in our underlying Onion ORAM scheme, the server only
operates on block data, but never metadata. The metadata is always updated by the client itself. Further,
each block is divided into chunks, and the server always applies the “same” operation to all chunks of a block.
Now imagine the following modification to the scheme:

The client randomly samples λ chunks per block (the same random choice for all blocks), referred to as
verification chunks and treats these λ chunks as part of the metadata. The client will use standard memory
checking to ensure the authenticity of all metadata, including verification chunks. Whenever the client asks the
server to perform homomorphic select operations on its behalf, the client will perform the same homomorphic
select operations on the verification chunks itself. In this way, whenever the server returns the client some
encrypted block, the client can easily corroborate its correctness by comparing the λ corresponding chunks
with the λ verification chunks.

However, the above simple probabilistic checking is insufficient to guarantee 1− negl(λ) probability of
detection when the server cheats. Specifically, the server can randomly guess that the i-th chunk is not one of
the λ verification chunks, and tamper with it. Clearly, the server’s guess is right with non-negligible probability.
We need an additional technique to make the above idea fully work: we leverage an error-correcting code to
amplify the probability of detection. The error-correcting code encodes the original C chunks of each block
into C ′ = 2C chunks, and ensures that as long as 3

4C
′ chunks are correct, the block can be correctly decoded.

2 We remark that hierarchical ORAM schemes [17,18,20] also meet the “steady progress” requirement but achieve
worse results in different respects than our construction, when combined with server computation.
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Therefore, the server knows apriori that it will have to tamper with at least a quarter of the C ′ chunks to
cause any damage at all, in which case it will get caught except with negligible probability.

3 Pre-Onion ORAM

We now present the underlying ORAM scheme without the encryption onions to illustrate the important
features. We refer to this as the Pre-Onion ORAM scheme and will construct the final Onion ORAM protocol
directly on top of it. We remark that Pre-Onion ORAM is not the most competitive ORAM scheme under the
standard ORAM definition (i.e., no server computation). One of our primary goals here to craft a tree-based
ORAM scheme that ensures the “steady progress” property (see Section 2 for an intuitive motivation), such
that we can later bound the number of onion encryption layers in the full Onion ORAM.

3.1 Pre-Onion ORAM Basics

We build on the tree-based ORAM framework of Shi et al. [33], which organizes server storage as a binary
tree of nodes. The binary tree has L+ 1 levels, where the root is at level 0 and the leaves are at level L. Each
node in the binary tree is called a bucket and can contain up to Z data blocks. The leaves are numbered
0, 1, . . . 2L − 1 in the natural manner. Pseudo-code for our algorithm is given in Algorithm 1 and described
below.

Main invariant. Like all tree-based ORAMs, each block is associated with a random path from the root to
a leaf. In a local position map, the client stores the position of each block, i.e., the path where the block
resides.

Recursion. To avoid incurring a large amount of client storage, the position map should be recursively
stored in other smaller ORAMs. When the data block size is Ω(log2N) for an N element ORAM—which will
be the case for all of our final parameterizations—the asymptotic costs of recursion are insignificant relative
to other terms [36]. Thus, for the remainder of the paper, we will assume that the (recursed) position map
does not introduce extra asymptotical cost in terms of server storage or bandwidth.

ORAM Read. Reading a block with address a in Algorithm 1 (ReadPath) is similar to most tree-based
ORAMs: look up the position map to obtain the path block a is currently mapped to, read all the blocks on
that path to find block a, remap it to a new random path and add it to the root bucket (our construction
does not need a stash).

ORAM Eviction. Tree-based ORAMs are mostly distinguished by their eviction algorithms. The goal of
eviction is to percolate blocks towards the leaves to avoid bucket overflows. The eviction algorithms of existing
tree-based ORAMs [31,33,37,39] do not ensure the steady progress property. In Section 3.2, we propose a
novel eviction algorithm (EvictAlongPath) that does achieve this property.

Metadata. We note that both reads and evictions in Algorithm 1 are implemented with the help of metadata.
In the ORAM tree, each block is stored alongside its address and leaf label (the path the block is mapped
to) – see Line 11. Reading/invalidating a block is done by comparing the address of every block on the path
with the address of interest a (Line 19) and changing its address field to ⊥ (Line 20), an address reserved for
dummy blocks. This requires decrypting/re-encrypting the address field of every block on the path to hide
the block being invalidated. Likewise, how blocks percolate down the tree during an eviction depend on each
block’s leaf label.

3.2 New Triplet Eviction Algorithm and Steady Progress

We combine techniques from [33], [11] and [31] to design a novel eviction algorithm (EvictAlongPath in
Algorithm 1) that guarantees “steady progress”, which will later enable us to tightly bound the layers of
onion encryption in Section 4.
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Algorithm 1 Pre-Onion ORAM (no server computation). The text in box highlights the our key
ideas for ensuring steady progress.

1: function Access(a, op, data′)
2: Global/persistent variables: cnt and G, initialized to 0

3: l′ ← UniformRandom(0, 2L − 1)
4: l ← PositionMap[a]
5: PositionMap[a] ← l′

6: data ← ReadPath(l, a)
7: if op = read then
8: return data to client
9: if op = write then

10: data ← data′

11: P(l, 0, cnt) ← (a, l′, data) . add this block to the root

12: cnt← cnt + 1 mod A

13: if cnt
?
= 0 then

14: lg ← bitreverse(G mod 2L) . reverse lexicographical order

15: EvictAlongPath(lg)
16: G ← G+ 1

17: function ReadPath(l, a)
18: Read all blocks on path P(l)
19: Select and return the block with address a
20: Invalidate the block with address a

. Involves re-encrypting metadata of blocks on P(l) to hide which block is invalidated

21: function EvictAlongPath(lg)
22: for k ← 0 to L− 1 do
23: Read all the blocks in P(lg, k) and its two children

24: Move all blocks in P(lg, k) to its two children

25: . P(lg, k) is guaranteed to be empty at this point (Observation 1)

Triplet eviction on a path. In Pre-Onion ORAM, eviction is performed along a path. A path from the
root to a leaf lg is referred to as the path lg. We use the following notation to denote buckets on a path:
P(lg, k) denotes the bucket at level k ∈ [0..L] on the path lg. Specifically, P(lg, 0) denotes the root, and
P(lg, L) denotes the leaf bucket.

To perform an eviction: For every bucket P(lg, k) (k from 0 to L, i.e., from root to leaf) on path lg, we
move blocks from P(lg, k) to its two children. We call this process a bucket-triplet eviction. In each of these
bucket-triplet evictions, we call P(lg, k) the source bucket, the child bucket also on P(lg) the destination
bucket, and the other child the sibling bucket.

A crucial change that we make to the eviction procedure of the original binary-tree ORAM [33] is that
we move all the blocks in the source bucket to its two children. This is important for ensuring the “steady
progress” property as we show later.

Eviction frequency and order. For every A (a parameter proposed in [31], which we will set later) ORAM
reads, we select the next path to evict based on the reverse lexicographical order of paths (proposed in [11]).
The idea is that the reverse lexicographical order eviction most evenly and deterministically spreads out the
eviction on all buckets in the tree. Specifically, a bucket at level k will get evicted exactly every A · 2k ORAM
reads.
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Setting parameters. To get “steady progress,” each bucket-triplet eviction needs to write all blocks in a
parent bucket to its two children, i.e., no block should get stuck. Therefore, it is important to show that the
child buckets will have enough room to receive the incoming blocks, i.e., no child bucket should ever overflow
except with negligible probability. We guarantee this property by setting the bucket size Z and the eviction
frequency A properly. According to the following theorem, if we simply set Z = A = Θ(λ), the probability
that a bucket overflows is 2−Θ(λ), exponentially small.

Theorem 1 (No bucket overflows). If Z ≥ A and N ≤ A · 2L−1, the probability that a bucket overflows

after an eviction operation is bounded by e−
(2Z−A)2

6A .

The proof of Theorem 1 relies on a careful analysis of the stochastic process stipulated by the Pre-Onion
ORAM’s random path reads and reverse lexicographic ordering of eviction, and eventually boils down to
proving Chernoff-like bounds. We defer the full proof to Appendix C.1. Now, Theorem 1 with Z = A = Θ(λ)
immediately implies the following key observation.

Observation 1 (Empty source bucket) After a bucket-triplet eviction operation, the source bucket is
empty.

Towards bounding layers. Observation 1 is the key to bounding layers in our construction. It leaves the
source bucket empty so the number of layers on it can be reset to 0. As alluded to earlier, it also ensures
steady progress: the blocks in a source bucket are emptied into the two children buckets, making progress
towards their leaves. One can also see from the reverse lexicographic eviction order that as a block progresses
towards the leaves, it will be involved in an eviction exponentially less often. The above properties combined
will allow us to bound the layers of onion encryption in the final scheme.

Constant server storage blowup. We conclude this section by noting that under our parameter setting
Z = A = Θ(λ) and N ≤ A · 2L−1, (Pre-)Onion ORAM’s server storage is O(2L+1 · Z) = O(N) blocks, a
constant blowup.

4 Onion ORAM with Semi-Honest Security

In this section, we describe how to leverage an additively homomorphic encryption scheme with additive
ciphertext expansion (e.g., the Damg̊ard-Jurik cryptosystem [5]) to transform our Pre-Onion ORAM into our
semi-honest secure Onion ORAM scheme, by leveraging the homomorphic select operation we introduced in
Section 2.

4.1 Intuition and Overview

Observe that in our Pre-Onion ORAM,

– A read can be expressed as a select operation. Each read operation is a select operation over the
read path. When the client downloads the metadata (the addresses of all blocks on the path), it can
create the selection vector.

– A bucket-triplet eviction can be expressed as select operations. In each bucket-triplet eviction,
a parent bucket is evicted to its two children. This requires writing to Z = O(λ) slots in the child buckets.
Each write can be expressed as a select operation over the parent bucket and the child bucket itself.
Similarly, the client only needs to read metadata associated with the bucket triplet to determine the
selection vector for each write.

These observations allow the client to perform all read and eviction operations using the block-size
independent homomorphic selection sub-protocol from Section 2. Since the client only sends/receives metadata
and homomorphic select vectors, we can achieve O(1) bandwidth blowup when the block size is sufficiently
large, i.e., asymptotically greater than or equal to the metadata and the homomorphic select vectors.
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4.2 Homomorphic Select Sub-protocol

We define the following sub-protocol between the client and the server. Suppose the client wishes to perform
a homomorphic select operation on m blocks denoted ct1, . . . , ctm, each with `1, . . . , `m layers of encryption
respectively.

Let b := (b1, . . . , bm) denote the selection vector where bi∗ = 1 for the selection index i∗ and bi = 0
for i 6= i∗. As mentioned in Section 2, we divide each block into C chunks of Bc bits each. Each chunk is
encrypted separately using the additively homomorphic encryption scheme. All C chunks share the same
homomorphic select vector b – therefore, each element in b incurs roughly the chunk size Bc (instead of the
block size).

The sub-protocol works as follows:

1. Let ` := max(`1, . . . , `m).
2. The client first creates and sends to the server the following homomorphic select vector
〈E`+1(b1), E`+1(b2), . . . E`+1(bm)〉.

3. The server “lifts” each ciphertext block (containing C chunks) to `-layer ciphertexts, simply by continually
re-encrypting a block (i.e., all its chunks) until it has ` layers ct′i = E`(E`−1(. . . E`i(cti)))

4. Then, the server evaluates the following homomorphic select operation on all chunks j ∈ [1..C] (of the
lifted blocks):

ctout[j] :=
⊕
i

(E`+1(bi)⊗ ct′i[j]) = E`+1(ct′i∗)

5. The outcome of this sub-protocol is selected the block cti∗ where all chunks are (`+ 1)-layer ciphertexts.

We stress that every time a homomorphic select operation is performed on blocks, the resulting block gains
an extra layer of encryption, on top of max(`1, . . . , `m) onion layers. This poses the challenge of bounding
onion encryption layers, which we address in Section 4.4.

4.3 Detailed Protocol

We now describe the detailed protocol. Recall that each block is tagged with the following metadata: i) the
block’s logical address; ii) leaf label. Dummy blocks are represented by the reserved address ⊥. The size of
the metadata is independent of the block size.

Initialization. The client runs a key generation routine for all layers of encryption, and gives all public keys
to the server.

Read path. ReadPath(l, a) can be done with the following steps:

1. Client looks up the position map to determine the path l := PositionMap[a] to read.
2. Client to server: l
3. Server to client: (encrypted) addresses of all blocks on path l.
4. Client computation: decrypts addresses, locates the block a of interest, and creates a corresponding

selection vector b ∈ {0, 1}Z(L+1).
5. Client and server run the homomorphic selection sub-protocol with client’s input being b and server’s

input being all encrypted blocks on the path l.
6. Server to client: outcome of the homomorphic select sub-protocol – block a.
7. Client writes back all (re-encrypted) addresses with block a now invalidated. This removes block a from

the path.
8. Client to server: re-encryption of block a (possibly modified if the client was performing a write) under 1

layer. The server appends this new ciphertext to the root bucket.

Evict along path. To perform EvictAlongPath(lg) on a path lg, do the following for each level k from 0 to
L− 1,
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1. Server to client: all the metadata (addresses and leaf labels) of the bucket triplet, i.e., P(lg, k) and its
two children.

2. Client: Based on the metadata obtained, determine the location of each block after the bucket-triplet
eviction.

3. For each slot to be written in P(lg, k)’s child buckets:

– Client creates a corresponding selection vector b ∈ {0, 1}2Z .
– Client and server run the homomorphic selection sub-protocol with the client’s input being b, and

the server’s input being the child bucket (being written to) and its parent bucket.
– Server overwrites the slot with the outcome of the homomorphic select sub-protocol.

4.4 Bounding Layers

Based on the steady progress property of Pre-Onion ORAM, we can prove (in Theorem 2) that all blocks at
a non-leaf level k in the tree will accumulate only O(k) layers of encryption.

Theorem 2 (Bounding layers.). In our Onion ORAM scheme, any block at level k ∈ [0..L] has at most
2k + 1 layers of onion encryption.

The proof of Thereom 2 is deferred to Appendix C.2. The key intuition for the proof is that due to the
reverse-lexicographic eviction order, each bucket will be written to (i.e., be a destination or sibling bucket in
an eviction triplet) exactly twice before being evicted itself (as a source bucket in an eviction). Our proof only
applies to non-leaf buckets: blocks can stay inside a leaf bucket for an unbounded amount of time. Therefore,
we need an additional post-processing step for leaf nodes.

Eviction post-processing: peel off layers in leaf. After EvictAlongPath(lg), the client downloads all
blocks from the leaf node, peels off the encryption layers, and writes them back to the leaves as layer-Θ(L)
re-encrypted ciphertexts (meeting the same layer bound as other levels). Since the client performs a path
eviction every A = Θ(λ) ORAM requests, and each leaf bucket has size Z = Θ(λ) as well, this incurs only
O(1) amortized bandwidth blowup. Since this operation doesn’t change the underlying plaintexts for each
block, it is easy to de-amortize this cost among the next A requests to get O(1) worst-case bandwidth blowup.

Further optimizations. Also in Appendix C.2, we introduce a further optimization called the “copy-to-
sibling” optimization, which yields a tighter bound: blocks at level k ∈ [0..L] of the tree will only have k + 1
layers.

4.5 Parameterization for Desired Asymptotics

We now analyze the requirements on block size B for our Onion ORAM to get constant bandwidth blowup.
To be concrete, we assume our underlying cryptosystem is the Damg̊ard-Jurik cryptosystem [5], which we
give additional details for in Appendix B.

Chunk size. The Damg̊ard-Jurik cryptosystem encrypts a message of length γs0 bits to a ciphertext of
length γ(s0 + 1) bits, where γ is a parameter dependent on the security parameter λ, and s0 is a user-
chosen parameter. In Onion ORAM, each ciphertext chunk accumulates Θ(logN) layers of encryption at
the maximum (Section 4.4). Suppose the plaintext chunk size is Bc := γs0, then at the maximum onion
layer, the ciphertext size would be γ(s0 +Θ(logN)). Therefore, to ensure constant ciphertext expansion at
all layers, it suffices to set s0 := Ω(logN) and chunk size Bc := Ω(γ logN). This means ciphertext chunks
and homomorphic select vectors are also Ω(γ logN) bits.

We want our block size to be asymptotically larger than the select vectors at each step of our protocol
(other metadata are much smaller).

Size of selection vector on reads. Reads require a select operation over Θ(ZL) = Θ(λ logN) blocks (note
that Z = A = Θ(λ)). Thus, the homomorphic select vector on a read is Θ(Bcλ logN) bits.
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Size of selection vectors on evictions. Eviction along a path requires Θ(logN) bucket-triplet operations,
each of which contains Θ(Z) select operations each selecting among Θ(Z) blocks. Also recall that one eviction
happens per A accesses. Therefore, the selection vector size (amortized over A = Θ(λ) reads) for eviction
is Θ(Bcλ logN) bits. We remark that it is easy to de-amortize evictions over the next A read operations
because moving blocks from buckets (possibly on the eviction path) to the root bucket does not impact our
eviction algorithm.

Setting the block size. Clearly, if we set the block size to be B := Θ(Bcλ logN), the cost of homomorphic
select vectors could be asymptotically absorbed, thereby achieving constant bandwidth blowup. Since the
chunk size Bc = Ω(γ logN), we have that the block size B = Ω(γλ log2N) bits.

Optimization: hierarchical select operations. For simplicity, we have discussed select operations as inner
products. We may also use the Lipmaa construction [21] to implement select hierarchically as a tree of d-to-1
select operations for a constant d (say d = 2). In that case, for a given 1 out of Z selection, btree ∈ {0, 1}logZ .
At the same time, the hierarchical select adds Θ(logZ) layers to the output ciphertext as opposed to a single
layer. Clearly, this makes the layer bound from Theorem 2 increase to Θ(logZ logN), and we compensate
by setting stree0 = Θ(logZ logN) which gives Btree

c = Θ(γ log λ logN) for our choice of Z. Repeating the
block size analysis with Btree

c , the select vector size on reads becomes Θ(γ log2 λ logN), on evictions becomes
Θ(γ log2 λ log2N) bits (amortized). So our final block size requirement is Btree = Ω(γ log2 λ log2N), which
was reported in Table 1.

5 Security Against Fully Malicious Server

So far, we have seen a scheme that achieves security against an honest-but-curious server who follows the
scheme’s specification correctly but wishes to learn information about the client’s data and access pattern.
We now show how to extend this to get a scheme that is secure against a fully malicious server who can
deviate arbitrarily from the scheme’s specification.

We start by describing several abstract properties of the Onion ORAM scheme from the previous section,
and we will call any scheme with these properties an “abstract server-computation ORAM” scheme. We will
show how to compile any abstract server-computation ORAM scheme that is secure in the honest-but-curious
setting into a scheme secure in the fully malicious setting.

5.1 Abstract Server-Computation ORAM

Any semi-honest secure server-computation ORAM scheme with satisfying these properties is referred to as
an abstract server-computation ORAM.

Data blocks and Metadata. The server storage consists of two types of data: data blocks and metadata.
The server performs computation on data blocks, but never on metadata. The client reads and writes the
metadata directly, so the metadata can be encrypted under any semantically secure encryption scheme.

Operations on Data Blocks. Following the notations in Section 2, each plaintext data block pt =
(pt[1], . . . , pt[C]) consists of C chunks of Bc bits each. An encrypted data block ct = (ct[1], . . . , ct[C]) consists
of separate encryptions of each chunk. Let cti denote the encrypted data block in physical location i on the
server, and pti denotes the underlying plaintext data. The client operates on the data blocks either by: (1)
directly reading/writing an encrypted data block, or (2) instructing the server to apply the same function f
to form a new data block cti, where cti[j] only depends on the j-th chunk of some other data blocks. I.e.,
cti[j] = f(ct1[j], . . . , ctm[j]) for all j ∈ [1..C].

It is easy to check that the Onion ORAM scheme from the previous section is an instance of the above
abstraction. The metadata consists of the encrypted addresses and leaf labels of each data block, as well as
additional space needed to implement recursion [33]. The data blocks are encrypted under a layered additively
homomorphic encryption scheme. Function f is a “homomorphic select operation”, described by an encrypted
select vector, and is applied to each chunk.
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5.2 Semi-Honest to Malicious Compiler

We now describe a generic compiler that takes any “abstract server-computation ORAM” that satisfies
honest-but-curious security and compiles it into a “verified server-computation ORAM” which is secure in
the fully malicious setting.

Verifiable Metadata. We can use standard “memory checking” [2] schemes based on Merkle-Trees [26]
to ensure that the client always reads the correct metadata, or aborts if the malicious server ever sends an
incorrect value. A naive use of Merkle-Tree would add an O(logN) multiplicative overhead to the process of
accessing the metadata, which is good enough for us. This O(logN) overhead can also be avoided by aligning
the Merkle-tree structure with the ORAM-tree [30], or using generic authenticated data structures [27]. In
any case, verifying metadata is basically free in Onion ORAM.

Verifiable Data Blocks: Initial Attempt. Unfortunately, we cannot rely on memory checking to protect
the encrypted data blocks when the client doesn’t read/write to them directly but rather instructs the server
to compute on them. One simple attempt at adding verification would be to include a MAC for each plaintext
data block as additional metadata to ensure “authenticity”. Let’s also assume the client has some mechanism
to check freshness. Unfortunately, this is insufficient in the fully malicious setting. The problem is that a
malicious server that learns whether the client aborts or not may learn some information about the client’s
data or access pattern.

Consider Onion ORAM for example where the malicious server wants to learn if, during a homomorphic
selection operation, the location being selected is i. Then the server can perform the operation correctly
except that it would replace the ciphertext at position i with some incorrect value. In this case, if the location
being selected was indeed i then the client will abort since the data it receives will be incorrect, but otherwise
the client will accept. This violates ORAM’s privacy requirement.

A more general way to see the problem is to notice that the client’s abort decision in the above proposal
depends on the decrypted value, which in turn depends on the secret key of the homomorphic encryption
scheme. Therefore, we can no longer rely on the semantic security of the encryption scheme if the abort
decision is revealed to the server. To fix this problem, we need to ensure that the client’s abort decision only
depends on data block ciphertext and not on the plaintext data.

Verifiable Data Blocks: Actual Solution. For our actual solution, the client selects a random subset
S consisting of λ chunk positions, which we call the “verification set”. This set S is kept secret from the
server. The client stores the subset of ciphertext chunks in positions {j : j ∈ S} of every encrypted data block
as additional metadata on the server, which we call the “verification chunks”. That is, verification chunks
are exact copies of ciphertext data blocks, λ chunks from each block. Verification chunks are additionally
encrypted under the same scheme as the other metadata, and memory checked in the same way as the other
metadata.

Whenever the client instructs the server to update an (encrypted) data block, the client performs the
same operation himself on the verification chunks. Then, when the client reads an (encrypted) data block
from the server, he can check the chunks in the verification set S against verification chunks. This check
ensures that the server cannot modify too many chunks without getting caught. To ensure that this check is
sufficient, we apply an error-correcting code which guarantees that the server has to modify a large fraction
of chunks to affect the plaintext. In more detail:

– Every plaintext data block pt = (pt[1], . . . , pt[C]) is first encoded via an error-correcting code into a
codeword block pt ecc = ECC(pt) = (pt ecc[1], . . . , pt ecc[C ′]). The error-correcting code ECC has a rate
C/C ′ = α < 1 and can efficiently recover the plaintext block if at most a δ-fraction the codeword chunks
are erroneous. For concreteness, we can use a Reed-Solomon code, and set α = 1

2 , δ = (1− α)/2 = 1
4 . The

client then uses the “abstract server-computation ORAM” over the codeword blocks pt ecc (instead of
pt).

– During initialization, the client selects a secret random “verification set” S = {s1, . . . , sλ} ⊆ [C ′]. For
each ciphertext data block cti in physical location i on the server, the client stores verification chunks
verChi = (verChi[1], . . . , verChi[λ]) as additional metadata. We ensure the invariant that, during an honest
execution, verChi[j] = cti[sj ] for j ∈ [1..λ].
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– The client uses a memory checking scheme to ensure the authenticity and freshness of the metadata. If
the client detects a violation in metadata at any point, the client aborts (we call this abort0).

– Whenever the client directly writes to an encrypted data block cti on the server, it also updates the
corresponding verification chunks verChi[j] := cti[sj ]. Whenever the client instructs the server to update
an encrypted data block cti using the aforementioned function f , the client applies the same function f
on verChi[j] for j ∈ [1..λ], which possibly involves reading other verification chunks that are input to f .

– When the client reads an encrypted data block cti, it also reads verChi and checks that verChi[j] = cti[sj ]
for each j ∈ [1..λ] and aborts if this is not the case (we call this abort1). Otherwise the client decrypts cti
to get pt ecci and performs error-correction to recover pti. If the error-correction fails, the client aborts
(we call this abort2).

If the client ever aborts during any operation with abort0, abort1 or abort2, it stops and refuses to perform
any future operations.

Theorem 3. For any “abstract server-computation ORAM” scheme which is secure in the honest-but-curious
setting, the above compiler yields a “verified server-computation ORAM” scheme which is secure in the fully
malicious setting. We only assume the security of the memory-checking scheme, which can be achieved under
collision-resistant hashing.

Security Intuition. Notice that in the above scheme, the decision whether abort1 occurs does not depend
on any of the secret state of the underlying abstract server-computation ORAM scheme, and therefore we
can reveal this information to the server without sacrificing privacy. We will argue that, if abort1 does not
occur, then the client retrieves the correct data (so abort2 will not occur) with overwhelming probability.
Intuitively, the only way that a malicious server can cause the client to either retrieve the incorrect data or
trigger abort2 without triggering abort1 is to modify at least a δ (by default, δ = 1/4) fraction of the chunks
in an encrypted data block, but avoid modifying any of the λ chunks corresponding to the locations in the
secret set S. This happens with probability at most (1− δ)λ over the random choice of S, which is negligible.
The complete proof is given in Appendix C.3.

5.3 Verified Onion ORAM

We define Verified Onion ORAM to be the result of applying the above compiler to the Onion ORAM scheme
from Section 4. The above theorem directly implies the following corollary.

Corollary 1. Verified Onion ORAM achieves security in the fully malicious setting, assuming the security
of the DCR assumption and the security of a memory-checking scheme (collision-resistant hashing).

Setting the block size. We now re-apply the analysis from Section 4.5 to Verified Onion ORAM to get
constant bandwidth blowup. We will use the hierarchical select from Section 4.5, thus the worst-case ciphertext
chunk size is Btree

c = Θ(γ log λ logN) using the Damg̊ard-Jurik cryptosystem. The main difference from
semi-honest Onion ORAM is that on a read, the client must additionally download Θ(λ2 logN) verification
chunks, or Θ(Btree

c λ2 logN) = Θ(γλ2 log λ log2N) bits. ORAM evictions still transmit Θ(Btree
c λ logN) =

Θ(γλ log λ log2N) bits for select vectors (amortized). The error-correcting code makes each data block grow
by only a constant factor. Thus, the block size we need to achieve constant bandwidth over the entire protocol
is B = Ω(γλ2 log λ log2N).

Optimization: permuted buckets. Observe that the limiting factor for the block size in the above
construction is the data transmitted on reads. We can reduce data movement on reads by a factor of
λ with the following optimization used in Ring ORAM [31]: instead of reading all slots along the tree
path during each read, we can randomly permute blocks in each bucket and only read/remove a block
at a random looking slot (out of Z = Θ(λ) slots per bucket). Each random-looking location will either
contain the block of interest or a dummy block (similar ideas are used in hierarchical ORAMs [17]). To
avoid failure, we must ensure that no bucket runs out of dummies before the next eviction refills that
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bucket’s dummies. Given our reverse-lexicographic eviction order, a simple Chernoff bound shows that
adding Θ(A) = Θ(λ) dummies, which increases bucket size by a constant factor, is sufficient to ensure that
dummies don’t run out except with probability 2−Θ(λ). With this technique, the bandwidth cost on reads
becomes Θ(Btree

c λ logN) = Θ(γλ log λ log2N), bringing the block size to B = Ω(γλ log λ log2N) as reported
in Table 1.

6 Conclusion

This paper proposes Onion ORAM, the first concrete ORAM scheme with optimal asymptotics in bandwidth,
server storage and client storage in the single-server setting. Critically, our construction does not require the
use of Fully Homomorphic Encryption (FHE) and instead only requires an additive homomorphic scheme
such as the Damg̊ard-Jurik cryptosystem (based on Paillier’s classical scheme). We further extend Onion
ORAM to be secure in the fully malicious setting using standard assumptions. Due to the known efficiency of
the types of cryptosystems our schemes require, we think of our work as an important step towards practical
constant bandwidth blowup ORAM schemes.
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A Definitions of Server-Computation ORAM

We directly adopt the definitions and notations used by Apon et al. [1] who are the first to define server-
computation ORAM as a reactive two-party protocol between the client and the server, and define its security
in the Universal Composability model [4].

We use the notation

((c out, c state), (s out, s state))← protocol((c in, c state), (s in, s state))

to denote a (stateful) protocol between a client and server, where c in and c out are the client’s input and
output; s in and s out are the server’s input and output; and c state and s state are the client and server’s
states before and after the protocol.

We now define the notion of a server-computation ORAM, where a client outsources the storage of data
to a server, and performs subsequent read and write operations on the data. Our simulation-based security
notion simultaneously embodies the following intuitive security notions: 1) the confidentiality of outsourced
data; 2) the obliviousness of data accesses; and 3) the authenticity and freshness of data blocks fetched.

Definition 1 (Server-computation ORAM). A server-computation ORAM scheme consists of the fol-
lowing interactive protocols between a client and a server.

((⊥, z), (⊥, Z))← Setup(1λ, (D,⊥), (⊥,⊥)): An interactive protocol where the client’s input is a memory
array D[1..n] where each memory block has bit-length β; and the server’s input is ⊥. At the end of the
Setup protocol, the client has secret state z, and server’s state is Z (which typically encodes the memory
array D).

((data, z′), (⊥, Z ′))← Access((op, z), (⊥, Z)): To access data, the client starts in state z, with an input op
where op := (read, ind) or op := (write, ind , data); the server starts in state Z, and has no input. In a
correct execution of the protocol, the client’s output data is the current value of the memory D at location
ind (for writes, the output is the old value of D[ind ] before the write takes place). The client and server
also update their states to z′ and Z ′ respectively. The client outputs data := ⊥ if the protocol execution
aborted.

We say that a server-computation ORAM scheme is correct, if for any initial memory D ∈ {0, 1}βn, for
any operation sequence op1, op2, . . ., opm where m = poly(λ), an op := (read, ind) operation would always
return the last value written to the logical location ind (except with negligible probability).

A.1 Security Definition

We adopt a standard simulation-based definition of secure computation [3], requiring that a real-world
execution “simulate” an ideal-world (reactive) functionality F . At an intuitive level, our definition captures
the privacy and verifiability requirements for an honest client, in the presence of a malicious server.

Ideal world. We define an ideal functionality F that maintains an up-to-date version of the data D on
behalf of the client, and answers the client’s access queries.

– Setup. An environment Z gives an initial database D to the client. The client sends D to an ideal
functionality F . F notifies the ideal-world adversary S of the fact that the setup operation occurred as
well as the size of the database N = |D|, but not of the data contents D. The ideal-world adversary S
says ok or abort to F . F then says ok or ⊥ to the client accordingly.

– Access. In each time step, the environment Z specifies an operation op := (read, ind) or op :=
(write, ind , data) as the client’s input. The client sends op to F . F notifies the ideal-world adversary S
(without revealing to S the operation op). If S says ok to F , F sends D[ind ] to the client, and updates
D[ind ] := data accordingly if this is a write operation. The client then forwards D[ind ] to the environment
Z. If S says abort to F , F sends ⊥ to the client.
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Real world. In the real world, an environment Z gives an honest client a database D. The honest client
runs the Setup protocol with the server A. Then at each time step, Z specifies an input op := (read, ind) or
op := (write, ind , data) to the client. The client then runs the Access protocol with the server. The environment
Z gets the view of the adversary A after every operation. The client outputs to the environment the data
fetched or ⊥ (indicating abort).

Definition 2 (Simulation-based security: privacy + verifiability). We say that a protocol ΠF securely
computes the ideal functionality F if for any probabilistic polynomial-time real-world adversary (i.e., server)
A, there exists an ideal-world adversary S, such that for all non-uniform, polynomial-time environment Z,
there exists a negligible function negl such that

|Pr [RealΠF ,A,Z(λ) = 1]− Pr [IdealF,S,Z(λ) = 1]| ≤ negl(λ)

This definition is simulation-based [3] where the client is honest, and the server is corrupted. (The client is
never malicious in our setting.) The definition also simultaneously captures privacy and verifiability. Intuitively,
privacy ensures that the server cannot observe the data contents or the access pattern. Verifiability ensures
that the client is guaranteed to read the correct data from the server — if the server happens to cheat, the
client can detect it and abort the protocol.

B Background: The Damg̊ard-Jurik Cryptosystem

The Damg̊ard-Jurik cryptosystem, a generalization of Paillier’s cryptosystem [29], is based on the hardness
of the decisional composite residuosity assumption. In this system, the public key pk = n = pq is an RSA
modulus (p and q are two large, random primes) and the secret key sk = lcm(p− 1, q− 1). In the terminology
from our onion encryptions, ski, pki = Gi() for i ≥ 0.

We denote the integers mod n as Zn. The plaintext space for the i-th layer of the Damg̊ard-Jurik
cryptosystem encryption, Li, is Zns0+i for some user specified choice of s0. The ciphertext space for this layer
is Zns0+i+1 . Thus, we clearly have the property that ciphertexts are valid plaintexts in the next layer. An
interesting property that immediately follows is that if s0 = Θ(i), then |Li|/|L0| is a constant. In other words,
by setting s0 appropriately the ciphertext blowup after i layers of encryption is a constant.

We further have that ⊕ (the primitive for homomorphic addition) is integer multiplication and ⊗ (for
scalar multiplication) is modular exponentiation. If these operations are performed on ciphertexts in Li,
operations are mod Zns0+i .

C Proofs

C.1 Pre-Onion ORAM: Bounding Overflows

We now give formal proofs to show that buckets do not overflow in Pre-Onion ORAM except with negligible
probability.

Proof. (of Theorem 1). First of all, notice that when Z ≥ A, the root bucket will never overflow. So we will
only consider non-root buckets. Let b be a non-root bucket, and Y (b) be the number of blocks in it after an
eviction operation. We will first assume all buckets have infinite capacity and show that E[Y (b)] ≤ A/2, i.e.,
the expected number of blocks in a non-root bucket after an eviction operation is no more than A/2 at any
time. Then, we bound the overflow probabiliy given a finite capacity.

If b is a leaf bucket, each of the N blocks in the system has a probability of 2−L to be mapped to b
independently. Thus E[Y (b)] ≤ N · 2−L ≤ A/2.

If b is a non-leaf (and non-root) bucket, we define two variables m1 and m2: the last EvictAlongPath
operation where b is on the eviction path is the m1-th EvictAlongPath operation, and the EvictAlongPath
operation where b is a sibling bucket is the m2-th EvictAlongPath operation. If m1 > m2, then Y (b) = 0,
because b becomes empty when it is the source bucket in the m1-th EvictAlongPath operation. (Recall that

17



buckets have infinite capacity so this outcome is guaranteed.) If m1 < m2, there will be some blocks in b
and we now analyze what blocks will end up in b. We time-stamp the blocks as follows. When a block is
accessed and remapped, it gets time stamp m∗, which is the number of EvictAlongPath operations that have
happened. Blocks with m∗ ≤ m1 will not be in b as they will go to either the left child or the right child of b.
Blocks with m∗ > m2 will not be in b as the last eviction operation that touches b (m2-th) has already passed.
Therefore, only blocks with time stamp m1 < m∗ ≤ m2 can be in b. There are at most d = A|m1 −m2| such
blocks. Such a block goes to b if and only if it is mapped to a path containing b. Thus, each block goes to b
independently with a probability of 2−i, where i is the level of b. The deterministic order of EvictAlongPath
makes it easy to see3 that |m1 −m2| = 2i−1. Therefore, E[Y (b)] ≤ d · 2−i = A/2 for any non-leaf bucket as
well.

Now that we have independence and the bound on expectation, a simple Chernoff bound completes the
proof.

C.2 Onion ORAM: Bounding Layers of Encryption

To bound the layers of onion encryption, we can consider the following abstraction. Suppose all blocks in the
tree have a layer associated with it. Further, the layer of a bucket is the maximum layer of any block in it.

– Blocks in the root bucket are layer-1 ciphertexts.
– For a bucket known to be empty, we define bucket.layer := 0.
– Each bucket-triplet operation moves data from parent to child buckets. After the operation, child.layer :=

max{parent.layer, child.layer}+ 1.

Recall that we use the following terminology. Suppose that we are evicting along a path. The bucket being
evicted from is called the source, its child bucket on the path is called the destination, and its other child
forking off the path is called the sibling.

To prove tight bounds on the number of encryption layers, we will focus our attention on a single bucket,
and consider all bucket-triplet operations that this bucket is involved in. This bucket will be involved in one
of three roles, as the source bucket, as the sibling bucket, or as the destination bucket. We now state an
important observation.

Observation 2 In reverse-lexicographic order eviction, each bucket rotates between the following roles: sibling,
destination, and source.

Proof. Straightforward from the definition of reverse lexicographical order.

The above observation is important in the following sense: it shows that each bucket will not be written
into more than twice, before it is eviction. This observation, in combination with Observation 1 of Section 3
will allow us to bound the number of encryption layers.

Proof. (of Thereom 2). We prove by induction.

Base case. The theorem holds obiviously for the root bucket.

Inductive step. Suppose that this holds for all levels ` < k. We now show that this holds for level k.
Let bucket denote a bucket at level k. We focus on a single bucket denoted bucket, and examine bucket.layer

after each bucket-triplet operation that involves bucket. It suffices to show that after each bucket-triplet
operation involving bucket, it must be that bucket.layer ≤ 2k + 1. If a bucket-triplet operation involves
bucket as a source, we call it a source operation (from the perspective of bucket). Similarly, if a bucket-triplet
operation involves bucket as a destination or sibling, we call it a destination operation or a sibling operation
respectively.

3 One way to see this is that a bucket b at level i will be on the evicted path every 2i EvictAlongPath operations, and
its sibling will be on the evicted path halfway in that period.
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Based on Observation 1, after each source operation, bucket becomes empty. Therefore, it must hold that

bucket.layer = 0 (after each source operation)

Since a sibling operation must be preceeded by a source operation (if there is any preceeding operation),
bucket must be empty at the beginning of each sibling operation. By induction hypothesis, after each sibling
operation, it must be that

bucket.layer ≤ 2(k − 1) + 1 + 1 = 2k (after each sibling operation)

Since a destination operation must be preceeded by a sibling operation (if there is any preceeding
operation), from the above we know that at the beginning of a destination operation bucket.layer must be
bounded by 2k. Now, by induction hypothesis, it holds that

bucket.layer ≤ 2k + 1 = 2k + 1 (after each destination operation)

Finally, our post-processing on leaves where the client peels of the onion layers extends this theorem to all
levels including leaves.

Copy-to-sibling optimization and a tighter layer bound An immediate implication of Observation
1 plus Observation 2 is that whenever a source evicts into a sibling, the sibling bucket is empty to start
with because it was a source bucket in the last operation it was involved in. This motivates the following
optimization: the server can simply copy blocks from the source bucket into the sibling. The client would
read the metadata corresponding to blocks in the source bucket, invalidate blocks that do not belong to the
sibling, before writing the (re-encrypted) metadata to the sibling.

This copy-to-sibling optimization avoids accumulating an extra onion layer upon writes into a sibling
bucket. With this optimization and using a similar inductive proof, it is not hard to show a blocks at level k
in the tree have at most k + 1 layers.

C.3 Malicious Security Proofs

The Simulator. To simulate the setup protocol with some data of size N , the simulator chooses a dummy
database D′ of size N consisting of all 0s. It then follows the honest setup procedure on behalf of the client
with database D′. To simulate each access operation, the simulator follows the honest protocol for reading a
dummy index, say, ind′ = 0, on behalf of the client.

During each operation, if the client protocol that’s being executed by the simulator aborts then the
simulator sends abort to F and stops responding to future commands on behalf of the client, else it gives ok
to F .

Sequence of Hybrids. We now follow a sequence of hybrid games to show that the real world and the
simulation are indistinguishable:

|Pr [RealΠF ,A,Z(λ) = 1]− Pr [IdealF,S,Z(λ) = 1]| ≤ negl(λ)

Game 0. Let this be the real game RealΠF ,A,Z with an adversarial server A and an environment Z.
Game 1. In this game, the client also keeps a local copy of the correct metadata and data-blocks (in

plaintext) that should be stored on the server. Whenever the client reads any (encrypted) metadata from
the server during any operation, if the memory checking does not abort, then instead of decrypting the
read metadata, the client simply uses the locally stored plaintext copy.
The only difference between Game 0 and Game 1 occurs if in Game 0 the memory checking does not abort,
but the client retrieves the incorrect encrypted metadata, which happens with negligible probability by
the security of memory checking. Therefore Game 0 and Game 1 are indistinguishable.
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Game 2. In this game the client doesn’t store the correct values of verChi with the encrypted metadata on
the server, but instead replaces these with dummy values. The client still stores the correct values of
verChi in the plaintext metadata stored locally, which it uses to do all of the actual computations.
Game 1 and Game 2 are indistinguishable by the CPA security of the symmetric-key encryption scheme
used to encrypt metadata. We only need CPA security since, in Games 1 and 2, the client never decrypts
any of the metadata ciphertexts.

Game 3. In this game, whenever the client reads an encrypted data block cti from the server, if abort1 does
not occur, instead of decrypting and decoding the encrypted data-block, the client simply uses local copy
of the plaintext data-block.
The only difference between Game 2 and Game 3 occurs if at some point in time the client reads an
encrypted data block cti from the server such that at least a δ fraction of the ciphertext chunks {cti[j]}
in the block have been modified (so that decoding either fails with abort2 or returns an incorrect value)
but none of the chunks in locations i ∈ S have been modified (so that abort1 does not occur).
We claim that Game 2 and Game 3 are statistically indistinguishable, with statistical distance at most
q(1− δ)λ, where q is the total number of operations performed by the client. To see this, note that in both
games the set S is initially completely random and unknown to the adversarial server. In each operation
i that the client reads an encrypted data-block, the server can choose some set S′i ⊆ [C ′] of positions
in which the ciphertext chunks are modified, and if S′i ∩ S = ∅ the server learns this information about
the set S and the game continues, else the client aborts and the game stops. The server never gets any
other information about S throughout the game. The games 2 and 3 only diverge if at some point the
adversarial server guesses a set S′i of size |S′i| ≥ δC ′ such that S ∩ S′i = ∅. We call this the “bad event”.
Notice that the sets S′i can be thought of as being chosen non-adaptively at the beginning of the game
prior to the adversary learning any knowledge about S (this is because we know in advance that the
server will learn S′i ∩ S = ∅ for all i prior to the game ending). Therefore, the probability that the bad
event happens in the j’th operation is

Pr
S

[S′j ∩ S = ∅] ≤
(

(1− δ)C ′

λ

)/(C ′
λ

)
≤ (1− δ)λ

where S ⊆ [C ′] is a random subset of size |S| = λ. By the union bound, the probability that the bad
event happens during some operation j ∈ {1, . . . , q} is at most q(1− δ)λ.

Game’ 3. In this game, the client runs the setup procedure using the dummy database D′ (as in the
simulation) instead of the one given by the environment. Furthermore, for each access operation, the
client just runs a dummy operation consisting of a read with the index ind′ = 0 instead of the operation
chosen by the environment. ( We also introduce an ideal functionality F in this world which is given the
correct database D at setup and the correct access operations as chosen by the environment. Whenever
the client doesn’t abort, it forwards the outputs of F to the environment.)
Games 3 and Game’ 3 are indistinguishable by the semi-honest Onion ORAM scheme. In particular, in
both games whenever the client doesn’t abort, the client reads the correct metadata and data blocks as
when interacting with an honest server, and therefore follows the same protocols as when interacting with
an honest server. Furthermore, the decision whether or not the client aborts in these games (with abort0
or abort1; there is no more abort2) only depends on the secret set S and the internal state of the memory
checking scheme, but is independent of any of the secret state or decryption keys of the underlying
semi-honest Onion ORAM scheme. Therefore, the view of the adversarial server in these games can be
simulated given the view of the honest server.

Game’ 2,1,0. We define Game’ i for i = 0, 1, 2 the same way as Game i except that the client uses the
dummy database D′ and the dummy operations (reads with index idx′ = 0) instead of those specified by
the environment.
The arguments that Game’ i+ 1 and Game’ i are indistinguishable as the same as those for Game i+ 1
and Game i. Finally, we notice that Game 0 is the ideal game IdealF,S,Z with the simulator S.

Putting everything together, we see that the real and ideal games RealΠF ,A,Z and IdealF,S,Z are
indistinguishable as we wanted to show.
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