
Onion ORAM: A Constant Bandwidth Blowup Oblivious RAM

Srinivas Devadas†, Marten van Dijk‡, Christopher W. Fletcher†∗, Ling Ren†∗,
Elaine Shi./, Daniel Wichs◦

† Massachusetts Institute of Technology − {devadas, cwfletch, renling}@mit.edu
‡ University of Connecticut − vandijk@engr.uconn.edu

./ University of Maryland − elaine@cs.umd.edu
◦ Northeastern University − wichs@ccs.neu.edu

∗ Lead authors

Abstract

We present Onion ORAM, an Oblivious RAM (ORAM) with constant worst-case bandwidth
blowup that leverages poly-logarithmic server computation to circumvent the logarithmic ORAM
bandwidth lower bound. Our construction does not require fully homomorphic encryption, but
employs an additive homomorphic encryption scheme such as the Damg̊ard-Jurik cryptosystem,
or alternatively a BGV-style somewhat homomorphic encryption scheme without bootstrapping.
At the core of our construction is an ORAM scheme that has “shallow circuit depth” over
the entire history of ORAM accesses. We also propose novel techniques to achieve security
against a malicious server, without resorting to expensive and non-standard techniques such as
SNARKs. To the best of our knowledge, Onion ORAM is the first concrete instantiation of a
constant-bandwidth ORAM under standard assumptions (even for the semi-honest setting).

1 Introduction

Oblivious RAM (ORAM), initially proposed by Goldreich and Ostrovsky [20,21,38], is a cryptographic
primitive that allows a client to store private data on an untrusted server and maintain obliviousness
while accessing that data — i.e., guarantee that the server or any other observer learns nothing about
the data or the client’s access pattern (the sequence of addresses or operations) to that data. Since
its initial proposal, ORAM has been studied in theory [22,26,41,43,47,51], or in various application
settings including secure outsourced storage [9,31,34,44,45,52], secure processors [10–12,33,40,42,53]
and secure multi-party computation [13,14,25,29,49,50].

1.1 Server Computation in ORAM

The ORAM model considered historically, starting with the work of Goldreich and Ostrovsky [20,
21,38], assumed that the server acts as a simple storage device that allows the client to read and
write data to it, but does not perform any computation otherwise. However, in many scenarios
investigated by subsequent works [9, 34, 44, 52] (e.g., the setting of remote oblivious file servers),
the untrusted server has significant computational power, possibly even much greater than that of
the client. Therefore, it is natural to extend the ORAM model to allow for server computation,
and to distinguish between the amount of computation performed by the server and the amount of
communication with the client.

Indeed, many recent ORAM schemes have implicitly or explicitly leveraged some amount of
server computation to either reduce bandwidth cost [1, 8, 13, 14, 31, 34, 41, 45, 54], or reduce the
number of online roundtrips [51]. We remark that some prior works [1, 34] call themselves oblivious
storage (or oblivious outsourced storage) to distinguish from the standard ORAM model where
there is no server computation. We will simply apply the term ORAM to both models, and refer to
ORAM with/without server computation to distinguish between the two.

At first, many works implicitly used server computation in ORAM constructions [13, 14, 34,
41, 45, 51, 54], without making a clear definitional distinction from standard ORAM. Apon et al.
were the first to observe that such a distinction is warranted [1], not only for the extra rigor, but
also because the definition renders the important Goldreich-Ostrovsky ORAM lower bound [21]
inapplicable to the server computation setting — as we discuss below.

1.2 Attempts to “Break” the Goldreich-Ostrovsky Lower Bound

Traditionally, ORAM constructions are evaluated by their bandwidth blowup, client storage and
server storage. Bandwidth blowup (we say bandwidth when the meaning is clear) is the number
of data blocks that need to be sent between client/server to serve a client request, including the
communication in the background to maintain the ORAM (i.e., ORAM evictions). Client storage is
the amount of trusted local memory required at the client side to manage the ORAM protocol and
server storage is the amount of storage needed at the server to store all data blocks.

In their seminal work [21], Goldreich and Ostrovsky showed that an ORAM of N blocks must
incur a O(logN) lower bound in bandwidth blowup, under O(1) blocks of client storage. If we allow
the server to perform computation, however, the Goldreich-Ostrovsky lower bound no longer applies
with respect to client-server bandwidth [1]. The reason is that the Goldreich-Ostrovsky bound is
in terms of the number of operations that must be performed. With server computation, though
the number of operations is still subject to the bound, most operations can be performed on the
server-side without client intervention, making it possible to break the bound in terms of bandwidth
between client and server. Since historically bandwidth has been the most important metric and the
bottleneck for ORAM, breaking the bound in terms of bandwidth constitutes a significant advance.

1

However, it turns out that this is not easy. Indeed, two prior works [1, 34] have made endeavors
towards this direction using homomorphic encryption. Path-PIR [34] leverages additively homomor-
phic encryption (AHE) to improve ORAM online bandwidth, but its overall bandwidth blowup is
still poly-logarithmic. On the other hand, Apon et al. [1] showed that using a fully homomorphic
encryption (FHE) scheme with constant ciphertext expansion, one can construct an ORAM scheme
with constant bandwidth blowup. The main idea is that, instead of having the client move data
around on the server “manually” by reading and writing to the server, the client can instruct the
server to perform ORAM request and eviction operations under an FHE scheme without revealing
any data and its movement. While this is a very promising direction, it suffers from the following
drawbacks:

• First, ORAM keeps access patterns private by continuously shuffling memory as data is
accessed. This means the ORAM circuit depth that has to be evaluated under FHE depends
on the number of ORAM accesses made and can grow unbounded (which we say to mean any
polynomial amount in N). Therefore, Apon et al. [1] needs FHE bootstrapping, which not
only requires circular security but also incurs a large performance penalty in practice.1

• Second, with the server performing homomorphic operations on encrypted data, achieving
malicious security is difficult. Consequently, most existing works either only guarantee semi-
honest security [34, 54], or leveraged powerful tools such as SNARKs to ensure malicious
security [1]. However, SNARKs not only require non-standard assumptions [19], but also incur
prohibitive cost in practice.

1.3 Our Contributions

With the above observation, the goal of this work is to construct constant bandwidth blowup ORAM
schemes from standard assumptions that have practical efficiency and verifiability in the malicious
setting. Specifically, we give proofs by construction for the following theorems. Let B be the block
size in bits and N the number of blocks in the ORAM.

Theorem 1 (Semi-honest security construction). Under the Decisional Composite Residuosity
assumption (DCR) or Learning With Errors (LWE) assumption, there exists an ORAM scheme with
semi-honest security, O(B) bandwidth, O(BN) server storage and O(B) client storage. To achieve
negligible in N probability of ORAM failure and success from best known attacks, our schemes
require poly-logarithmic in N block size and server computation.

We use negligible in N security following prior ORAM work but give asymptotics needed for
exact exponential security in Appendix E. Looking at the big picture, our DCR-based scheme is the
first demonstration of a constant bandwidth blowup ORAM using only additively homomorphic
encryption (AHE), as opposed to FHE. Our LWE-based scheme is the first time ORAM has been
combined with SWHE/FHE in a way that does not require Gentry’s bootstrapping procedure.

Our next goal is to extend our semi-honest constructions to the malicious setting. In Section 5, we
will introduce the concept of “abstract server-computation ORAM” which both of our constructions
satisfy. Then, we can achieve malicious security due to the following theorem:

Theorem 2 (Malicious security construction). With the additional assumption of collision-resistant
hash functions, any “abstract server-computation ORAM” scheme with semi-honest security can be
compiled into a “verified server-computation ORAM” scheme which has malicious security.

1While bootstrapping performance has been made asymptotically efficient by recent works [18], the cost in practice
is still substantial, on the order of tens of seconds to minutes (amortized), whereas other homomorphic operations are
on the order of milliseconds to seconds [24].

2

Table 1: Our contribution. N is the number of blocks. The optimal block size is the data block size needed
to achieve the stated bandwidth, and is measured in bits. All schemes have O(B) client storage and O(BN)
server storage (both asymptotically optimal) and negligible failure probability in N . Computation measures
the number of two-input plaintext gates evaluated per ORAM access. “M” stands for malicious security, and
“SH” stands for semi-honest. We set the length of the modulus of the Damg̊ard-Jurik cryptosystem [7] and
the degree of the polynomial in the Ring-LWE cryptosystem [4] based on best known attacks [27, 28]. In
Appendix E, we give another version of this table without assuming any relation between parameters.

Scheme
Optimal Bandwidth Server Client

Security
Block size B Blowup Computation Computation

Circuit ORAM [49] Ω(log2N) ω(B logN) N/A N/A M

Path-PIR [34] ω(log5N) O(B logN) ω̃(B log5N) Õ(B log4N) SH

AHE Onion ORAM
Ω̃(log5N) O(B) ω̃(B log4N) Õ(B log4N) SH

ω̃(log6N) O(B) ω̃(B log4N) Õ(B log4N) M

SWHE Onion ORAM
ω̃(log2N) O(B) ω̃(B log2N) ω̃(B) SH
ω̃(log4N) O(B) ω̃(B log2N) ω̃(B + log2N) M

We stress that these are the only required assumptions. We do not need the circular security
common in FHE schemes and do not rely on SNARKs for malicious security. We defer formal
definitions of server-computation ORAM and malicious security to Appendix A.

Main ideas. The key technical contributions enabling the above results are:

• (Section 3) An ORAM that, when combined with server computation, has shallow circuit
depth, i.e., O(logN) over the entire history of all ORAM accesses. This is a necessity for the
AHE construction and has practical importance for the SWHE construction. In the context
of SWHE over ORAM, this means we can perform homomorphic operations with polylog(λ)
overhead, for security parameter λ, without ever invoking Gentry’s bootstrapping operation.
We view this technique as an important step towards practical constant bandwidth ORAM
schemes.

• (Section 5) A novel technique that combines a cut-and-choose-like idea with an error-correcting
code to amplify soundness.

Table 1 summarizes our contributions and compares our schemes with some of the state-of-the-art
ORAM constructions.

Practical efficiency. To show how our results translate to practice, Appendix F compares our
semi-honest AHE-based construction against Path PIR [34] and Circuit ORAM [49]—the best prior
schemes with and without server computation that match our scheme in client/server storage. The
top order bit is that as block size increases, our construction’s bandwidth approaches 2 ·B. When
all three schemes use an 8 MB block size (representing modern image files), Onion ORAM improves
over Circuit ORAM and Path-PIR’s bandwidth (in bits transferred) by 35× and 22×, respectively.
For larger block sizes, our improvement increases. We note that in many cases, block size is an
application constraint: for applications asking for a large block size (e.g., image sharing), all ORAM
schemes will use that block size.

1.4 Related Work

Recent non-server-computation ORAMs are approaching the Goldreich-Ostrovsky lower bound
under O(1) blocks of client storage. Goodrich et al. [22] and Kushilevitz et al. [26] demonstrated

3

O(log2N) and O(log2N/ log logN) bandwidth blowup schemes, respectively. Recently, Wang et al.
constructed Circuit ORAM [49], which achieves ω(logN) bandwidth blowup.

Many state-of-the-art ORAM schemes or implementations make use of server computation.
For example, the SSS construction [44, 45], Burst ORAM [9] and Ring ORAM [41] assumed the
server is able to perform matrix multiplication or XOR operations. Path-PIR [34] and subsequent
work [8, 54] increased the allowed computation to additively homomorphic encryption. Apon et
al. [1] and Gentry et al. [13,14] further augmented ORAM with Fully Homomorphic Encryption
(FHE). Williams and Sion rely on server computation to achieve a single online roundtrip [51]. We
remark that the techniques of Gentry et al. [13] and Wang et al. [48], for improving data structure
performance on top of ORAM, can be combined with our techniques.

Recent works on Garbled RAM [15, 32] can also be seen as generalizing the notion of server-
computation ORAM. However, existing Garbled RAM constructions incur poly(λ) ·polylog(N) client
work and bandwidth blowup, and therefore Garbled RAM does not give a constant-bandwidth
server-computation RAM. Reusable Garbled RAM [16] achieves constant client work and bandwidth
blowup however, known reusable garbled RAM constructions rely on non-standard assumptions
(indistinguishability obfuscation, or more) and are prohibitive in practice.

2 Overview of Techniques

In our schemes, the client “guides” the server to perform ORAM accesses and evictions homomor-
phically by sending the server some “helper values”. With these helper values, the server’s main job
will be to run a sub-routine called the “homomorphic select” operation (select operation for short),
which can be implemented using either AHE or SWHE – resulting in the two different constructions
in Section 4 and Appendix D. We can achieve constant bandwidth overhead because helper value
size is independent of data block size: by making the block size sufficiently large, sending helper
values does not affect the asymptotic bandwidth overhead. We now explain these ideas along with
pitfalls and solutions in more detail. For the rest of the section, we focus on the AHE-based scheme
but note that the story with SWHE is very similar.

Building block: homomorphic select operation. The select operation, which resembles
techniques from private information retrieval (PIR) [28], takes as input m plaintext data blocks
pt1, . . . , ptm and encrypted helper values which represent a user-chosen index i∗. The output is an
encryption of block pti∗ . Obviously, the helper values should not reveal i∗.

Our ORAM protocol will need select operations to be performed over the outputs of prior
select operations. For this, we require a sequence of AHE schemes E` with plaintext space L`
and ciphertext space L`+1 where L`+1 is again in the plaintext space of E`+1. Each scheme E` is
additively homomorphic meaning E`(x)⊕ E`(y) = E`(x+ y). We denote an `-layer onion encryption
of a message x by E`(x) := E`(E`−1(. . . E1(x))).

Suppose the inputs to a select operation are encrypted with ` layers of onion encryption, i.e.,
cti = E`(pti). To select block i∗, the client sends an encrypted select vector (select vector for short),
E`+1(b1), . . . , E`+1(bm) where bi∗ = 1 and bi = 0 for all other i 6= i∗. Using this select vector, the server
can homomorphically compute ct∗ =

⊕
i E`+1 (bi) · cti = E`+1 (

∑
i bi · cti) = E`+1(cti∗) = E`+1(pti∗).

The result is the selected data block pti∗ , with ` + 1 layers of onion encryption. Notice that the
result has one more layer than the input.

All ORAM operations can be implemented using homomorphic select operations. In
our schemes, for each ORAM operation, the client read/writes per-block metadata and creates a
select vector(s) based on that metadata. The client then sends the encrypted select vector(s) to the
server, who does the heavy work of performing actual computation over block contents.

4

Specifically, we will build on top of tree-based ORAMs [43, 47], a standard type of ORAM
without server computation. Metadata for each block includes its logical address and the path it is
mapped to. To request a data block, the client first reads the logic addresses of all blocks along the
read path. After this step, the client knows which block to select and can run the homomorphic
select protocol with the server. ORAM eviction operations require that the client sends encrypted
select vectors to indicate how blocks should percolate down the ORAM tree. As explained above,
each select operation adds an encryption layer to the selected block.

Achieving constant bandwidth. To get constant bandwidth, we must ensure that select vector
bandwidth is smaller than the data block size. For this, we need several techniques. First, we
will split each plaintext data block into C chunks pti = (pti[1], . . . , pti[C]), where each chunk is
encrypted separately, i.e., cti = (cti[1], . . . , cti[C]) where cti[j] is an encryption of pti[j]. Crucially,
each select vector can be reused for all the C chunks. By increasing C, we can increase the data
block size to decrease the relative bandwidth of select vectors.

Second, we require that each encryption layer adds a small additive ciphertext expansion (even
a constant multiplicative expansion would be too large). Fortunately, we do have well established
additively homomorphic encryption schemes that meet this requirement, such as the Damg̊ard-Jurik
cryptosystem [7]. Third, the “depth” of the homomorphic select operations has to be bounded and
shallow. This requirement is the most technically challenging to satisfy, and we will now discuss it
in more detail.

Bounding the select operation depth. We address this issue by constructing a new tree-based
ORAM, which we call a “bounded feedback ORAM ”. By “feedback”, we refer to the situation where
during an eviction some block a gets stuck in its current bucket b. When this happens, an eviction
into b needs select operations that take both incoming blocks and block a as input, resulting in
an extra layer on bucket b (on top of the layers bucket b already has). The result is that buckets
will accumulate layers (with AHE) or ciphertext noise (with SWHE) on each eviction, which grows
unbounded over time.

Our bounded feedback ORAM breaks the feedback loop by guaranteeing that bucket b will be
empty at public times, which allows upstream blocks to move into b without feedback from blocks
already in b. It turns out that breaking this feedback is not trivial: in all existing tree-based ORAM
schemes [41, 43, 47, 49], blocks can get stuck in buckets during evictions which means there is no
guarantee on when buckets are empty.2 We remark that cutting feedback is equivalent to our claim
of shallow circuit depth in Section 1.3: Without cutting feedback, the depth of the ORAM circuit
keeps growing with the number of ORAM accesses.

Techniques for malicious security. We are also interested in achieving malicious security, i.e.,
enforcing honest behaviors of the server, while avoiding SNARKs. Our idea is to rely on probabilistic
checking, and to leverage an error-correcting code to amplify the probability of detection. As
mentioned before, each block is divided into C chunks. We will have the client randomly sample
security parameter λ� C chunks per block (the same random choice for all blocks), referred to as
verification chunks, and use standard memory checking to ensure their authenticity and freshness.
On each step, the server will perform homomorphic select operations on all C chunks in a block,
and the client will perform the same homomorphic select operations on the λ verification chunks. In
this way, whenever the server returns the client some encrypted block, the client can check whether
the λ corresponding chunks match the verification chunks.

2We remark that some hierarchical ORAM schemes (e.g., [21]) also have bounded feedback, but achieve worse
results in different respects relative our construction (e.g., worse server storage, deeper select circuits), when combined
with server computation.

5

Unfortunately, the above scheme does not guarantee negligible failure of detection. For example,
the server can simply tamper with a random chunk and hope that it’s not one of the verification
chunks. Clearly, the server succeeds with non-negligible probability. The fix is to leverage an
error-correcting code to encode the original C chunks of each block into C ′ = 2C chunks, and ensure
that as long as 3

4C
′ chunks are correct, the block can be correctly decoded. Therefore, the server

knows textita priori that it will have to tamper with at least 1
4C
′ chunks to cause any damage at

all, in which case it will get caught except with negligible probability.

3 Bounded Feedback ORAM

We now present the bounded feedback ORAM, without server computation, to illustrate its important
features.

3.1 Bounded Feedback ORAM Basics

We build on the tree-based ORAM framework of Shi et al. [43], which organizes server storage as a
binary tree of nodes. The binary tree has L+ 1 levels, where the root is at level 0 and the leaves
are at level L. Each node in the binary tree is called a bucket and can contain up to Z data blocks.
The leaves are numbered 0, 1, . . . , 2L − 1 in the natural manner. Pseudo-code for our algorithm is
given in Figure 1 and described below.

Main invariant. Like all tree-based ORAMs, each block is associated with a random path from
the root to a leaf. In a local position map, the client stores the position of each block, i.e., the path
where the block resides.

Recursion. To avoid incurring a large amount of client storage, the position map should be
recursively stored in other smaller ORAMs. When the data block size is Ω(log2N) for an N element
ORAM—which will be the case for all of our final parameterizations—the asymptotic costs of
recursion (in terms of server storage or bandwidth) are insignificant relative to the main ORAM [46].
Thus, for the remainder of the paper, we no longer consider the cost of recursion.

Metadata. To enable all ORAM operations, each block of data in the ORAM tree is stored
alongside its address and leaf label (the path the block is mapped to).

ORAM Request. Requesting a block with address a (ReadPath in Figure 1) is similar to most
tree-based ORAMs: look up the position map to obtain the path block a is currently mapped to,
read all blocks on that path to find block a, invalidate block a, remap it to a new random path and
add it to the root bucket. This involves decrypting the address metadata of every block on the path
(Line 13) and setting one address to ⊥ (Line 15). All addresses must be then re-encrypted to hide
which block was invalidated.

ORAM Eviction. The goal of eviction is to percolate blocks towards the leaves to avoid bucket
overflows and it is this procedure where we differ from existing tree-based ORAMs [13,41,43,47,49].
We now describe our eviction procedure in detail.

3.2 New Triplet Eviction Procedure

We combine techniques from [43], [13] and [41] to design a novel eviction procedure (Evict in Figure 1)
that enables us to break select operation feedback.

6

1: function Access(a, op, data′)

2: l′ ← UniformRandom(0, 2L−1)
3: l ← PositionMap[a]
4: PositionMap[a] ← l′

5: data ← ReadPath(l, a)
6: if op = read then
7: return data to client
8: if op = write then
9: data ← data′

10: P(l, 0, cnt) ← (a, l′, data)

11: Evict()

12: function ReadPath(l, a)
13: Read all blocks on path P(l)
14: Select and return the block with address a
15: Invalidate the block with address a

16: function Evict()
17: Persistent variables cnt and G, initialized to 0
18: cnt ← cnt + 1 mod A

19: if cnt
?
= 0 then

20: le ← bitreverse(G)
21: EvictAlongPath(le)
22: G ← G+ 1 mod 2L

23: function EvictAlongPath(le)
24: for k ← 0 to L− 1 do
25: Read all blocks in P(le, k) and its two children
26: Move all blocks in P(le, k) to its two children
27: . P(le, k) is empty at this point (Observation 1)

Figure 1: Bounded Feedback ORAM (no server computation). Note that our construction differs
from the original tree ORAM [43] only in the Evict procedure. We split Evict into EvictAlongPath
to simplify the presentation later.

Triplet eviction on a path. In our ORAM, eviction is performed along a path. A path from the
root to a leaf le is referred to as path le, or P(le). P(le, k) denotes the bucket at level k ∈ [0..L] on
P(le). Specifically, P(le, 0) denotes the root, and P(le, L) denotes the leaf bucket on P(le).

To perform an eviction: For every bucket P(le, k) (k from 0 to L, i.e., from root to leaf), we
move blocks from P(le, k) to its two children. We call this process a bucket-triplet eviction. In each
of these bucket-triplet evictions, we call P(le, k) the source bucket, the child bucket also on P(le)
the destination bucket, and the other child the sibling bucket. A crucial change that we make to
the eviction procedure of the original binary-tree ORAM [43] is that we move all the blocks in the
source bucket to its two children.

Eviction frequency and order. For every A (a parameter proposed in [41], which we will set
later) ORAM requests, we select the next path to evict based on the reverse lexicographical order of
paths (proposed in [13]). The reverse lexicographical order eviction most evenly and deterministically
spreads out the eviction on all paths in the tree. Specifically, a bucket at level k will get evicted
exactly every A · 2k ORAM requests.

Setting parameters for bounded feedback. As mentioned, we require that during a bucket-
triplet eviction, all blocks in the source bucket move to the two child buckets. The last step to
achieve bounded feedback is to show that child buckets will have enough room to receive the incoming
blocks, i.e., no child bucket should ever overflow except with negligible probability. We guarantee
this property by setting the bucket size Z and the eviction frequency A properly. According to the
following lemma, if we simply set Z = A = Θ(λ), the probability that a bucket overflows is 2−Θ(λ),
exponentially small. (If any bucket overflows, we have experienced ORAM failure.)

Lemma 1 (No bucket overflows). If Z ≥ A and N ≤ A ·2L−1, the probability that a bucket overflows

after an eviction operation is bounded by e−
(2Z−A)2

6A .

7

The proof of Lemma 1 relies on a careful analysis of the stochastic process stipulated by the
reverse lexicographic ordering of eviction, and boils down to a Chernoff bound. We defer the full
proof to Appendix B.1. Now, Lemma 1 with Z = A = Θ(λ) immediately implies the following key
observation.

Observation 1 (Empty source bucket). After a bucket-triplet eviction, the source bucket is empty.

Furthermore, straightforwardly from the definition of reverse lexicographical order, we have,

Observation 2. In reverse-lexicographic order eviction, each bucket rotates between the following
roles in the following order: source, sibling, and destination.

Towards bounded feedback. The above two observations are the keys to achieving bounded
feedback. An empty source bucket b will be a sibling bucket the next time it is involved in a triplet
eviction. So select operations that move blocks into b do not get feedback from b itself. Thus, the
number of encryption layers (with AHE) or ciphertext noise (SWHE) becomes a function of previous
levels in the tree only, which we can tightly bound later in Lemma 2 in Section 4.3.

Constant server storage blowup. We note that under our parameter setting N ≤ A · 2L−1 and
Z = A, our bounded feedback ORAM’s server storage is O(2L+1 · Z) = O(N) blocks, a constant
blowup.

4 Onion ORAM with Additively Homomorphic Encryption

In this section, we describe how to leverage an additively homomorphic encryption scheme with
additive ciphertext expansion (e.g., the Damg̊ard-Jurik cryptosystem [7], see Appendix C) to
transform our bounded feedback ORAM into our semi-honest secure Onion ORAM scheme. First,
we detail the homomorphic select operation that we introduced in Section 2.

4.1 Additive Homomorphic Select Sub-protocol

Suppose the client wishes to select the i∗-th block from m blocks denoted ct1, . . . , ctm, each with
`1, . . . , `m layers of encryption respectively. The sub-protocol works as follows:

1. Let ` := max(`1, . . . , `m). The client creates and sends to the server the following encrypted
select vector 〈E`+1(b1), E`+1(b2), . . . E`+1(bm)〉, where bi∗ = 1 and bi = 0 for i 6= i∗.

2. The server “lifts” each block to `-layer ciphertexts, simply by continually re-encrypting a block
until it has ` layers ct′i[j] = E`(E`−1(. . . E`i(cti[j]))).

3. The server evaluates the homomorphic select operation on the lifted blocks: ctout[j] :=⊕
i (E`+1(bi)⊗ ct′i[j]) = E`+1(ct′i∗). The outcome is the selected block cti∗ with `+ 1 layers of

encryption.

As mentioned in Section 2, we divide each block into C chunks. Each chunk is encrypted
separately. All C chunks share the same select vector—therefore, encrypting each element in the
select vector only incurs the chunk size (instead of the block size).

We stress again that every time a homomorphic select operation is performed, the output block
gains an extra layer of encryption, on top of ` = max(`1, . . . , `m) onion layers. This poses the
challenge of bounding onion encryption layers, which we address in Section 4.3.

8

4.2 Detailed Protocol

We now describe the detailed protocol. Recall that each block is tagged with the following metadata:
the block’s logical address and the leaf it is mapped to, and that the size of the metadata is
independent of the block size.

Initialization. The client runs a key generation routine for all layers of encryption, and gives all
public keys to the server.

Read path. ReadPath(l, a) from Section 3.1 can be done with the following steps:

1. Client downloads and decrypts the addresses of all blocks on path l, locates the block of

interest a, and creates a corresponding select vector ~b ∈ {0, 1}Z(L+1).

2. Client and server run the homomorphic select sub-protocol with client’s input being encryptions

of each element in ~b and server’s input being all encrypted blocks on path l. The outcome of
the sub-protocol—block a—is sent to the client.

3. Client re-encrypts and writes back the addresses of all blocks on path l, with block a now
invalidated. This removes block a from the path without revealing its location. Then, the
client re-encrypts block a (possibly modified) under 1 layer, and appends it to the root bucket.

Eviction. To perform EvictAlongPath(le), do the following for each level k from 0 to L− 1:

1. Client downloads all the metadata (addresses and leaf labels) of the bucket triplet. Based on
the metadata, the client determines each block’s location after the bucket-triplet eviction.

2. For each slot to be written in the two child buckets:

• Client creates a corresponding select vector ~b ∈ {0, 1}2Z .

• Client and server run the homomorphic select sub-protocol with the client’s input

being encryptions of each element in ~b, and the server’s input being the child bucket
(being written to) and its parent bucket. Note that if the child bucket is empty due
to Observation 1 (which is public information to the server), it conceptually has zero
encryption layers.

• Server overwrites the slot with the outcome of the homomorphic select sub-protocol.

4.3 Bounding Layers

Given the above protocol, we bound layers with the following lemma:

Lemma 2. Any block at level k ∈ [0..L] has at most 2k + 1 encryption layers.

The proof of Lemma 2 is deferred to Appendix B.2. The key intuition for the proof is that due
to the reverse-lexicographic eviction order, each bucket will be written to exactly twice (i.e., be a
destination or sibling bucket) before being emptied (as a source bucket). Also in Appendix B.2, we
introduce a further optimization called the “copy-to-sibling” optimization, which yields a tighter
bound: blocks at level k ∈ [0..L] will have only k + 1 layers.

Eviction post-processing—peel off layers in leaf. The proof only applies to non-leaf buckets:
blocks can stay inside a leaf bucket for an unbounded amount of time. Therefore, we need the
following post-processing step for leaf nodes. After EvictAlongPath(le), the client downloads all
blocks from the leaf node, peels off the encryption layers, and writes them back to the leaves as

9

layer-Θ(L) re-encrypted ciphertexts (meeting the same layer bound as other levels). Since the client
performs an eviction every A ORAM requests, and each leaf bucket has size Z = A, this incurs only
O(1) amortized bandwidth blowup.

4.4 De-Amortization

We remark that it is easy to de-amortize the above algorithm so that the worst-case bandwidth equals
amortized bandwidth and overall bandwidth doesn’t increase. First, it is trivial to de-amortize
the leaf bucket post-processing (Section 4.3) over the A read path operations because A = Z
and post-processing doesn’t change the underlying plaintext contents of that bucket. Second, the
standard de-amortization trick of Williams et al. [52] can be applied directly to our EvictAlongPath
operation.

5 Security Against Fully Malicious Server

So far, we have seen an ORAM scheme that achieves security against an honest-but-curious server
who follows the protocol correctly. We now show how to extend this to get a scheme that is secure
against a fully malicious server who can deviate arbitrarily from the protocol.

5.1 Abstract Server-Computation ORAM

We start by describing several abstract properties of the Onion ORAM scheme from the previous
section. We will call any server-computation ORAM scheme satisfying these properties an abstract
server-computation ORAM.

Data blocks and metadata. The server storage consists of two types of data: data blocks and
metadata. The server performs computation on data blocks, but never on metadata. The client
reads and writes the metadata directly, so the metadata can be encrypted under any semantically
secure encryption scheme.

Operations on data blocks. Following the notations in Section 2, each plaintext data block is
divided into C chunks, and each chunk is separately encrypted cti = (cti[1], . . . , cti[C]). The client
operates on the data blocks either by: (1) directly reading/writing an encrypted data block, or (2)
instructing the server to apply a function f to form a new data block cti, where cti[j] only depends
on the j-th chunk of other data blocks, i.e., cti[j] = f(ct1[j], . . . , ctm[j]) for all j ∈ [1..C].

It is easy to check that the two Onion ORAM schemes are instances of the above abstraction.
The metadata consists of the encrypted addresses and leaf labels of each data block, as well as
additional space needed to implement ORAM recursion. The data blocks are encrypted under either
a layered AHE scheme or a SWHE scheme. Function f is a “homomorphic select operation”, and is
applied to each chunk.

5.2 Semi-Honest to Malicious Compiler

We now describe a generic compiler that takes any “abstract server-computation ORAM” that
satisfies honest-but-curious security and compiles it into a “verified server-computation ORAM”
which is secure in the fully malicious setting.

Verifying metadata. We can use standard “memory checking” [2] schemes based on Merkle
trees [35] to ensure that the client always gets the correct metadata, or aborts if the malicious server
ever sends an incorrect value. A generic use of Merkle tree would add an O(logN) multiplicative

10

overhead to the process of accessing metadata [31], which is good enough for us. This O(logN)
overhead can also be avoided by aligning the Merkle tree with the ORAM tree [40], or using generic
authenticated data structures [36]. In any case, verifying metadata is basically free in Onion ORAM.

Challenge of verifying data blocks. Unfortunately, we cannot rely on standard memory checking
to protect the encrypted data blocks when the client doesn’t read/write them directly but rather
instructs the server to compute on them. The problem is that a malicious server that learns whether
the client aborts or not may learn some information about the client’s data or access pattern.

Consider Onion ORAM for example. The malicious server wants to learn if, during the
homomorphic select operation of a ORAM request, the location being selected is i. The server
can perform the operation correctly except that it would replace the ciphertext at position i with
some incorrect value. In this case, if the location being selected was indeed i then the client will
abort since the data it receives will be incorrect, but otherwise the client will accept. This violates
ORAM’s privacy requirement.

A more general way to see the problem is to notice that the client’s abort decision above depends
on the decrypted value, which depends on the secret key of the homomorphic encryption scheme.
Therefore, we can no longer rely on the semantic security of the encryption scheme if the abort
decision is revealed to the server. To fix this problem, we need to ensure that the client’s abort
decision only depends on ciphertext and not on the plaintext data.

Verifying data blocks. For our solution, the client selects a random subset S consisting of λ chunk
positions. This set S is kept secret from the server. The subset of chunks in positions {j : j ∈ S}
of every encrypted data block are treated as additional metadata, which we call the “verification
chunks”. Verification chunks are encrypted and memory checked in the same way as the other
metadata. Whenever the client instructs the server to update an data block, the client performs the
same operation himself on the verification chunks. Then, when the client reads an data block from
the server, he can check the chunks in S against the verification chunks. This check ensures that
the server cannot modify too many chunks without getting caught. To ensure that this check is
sufficient, we apply an error-correcting code which guarantees that the server has to modify a large
fraction of chunks to affect the plaintext. In more detail:

• Every plaintext data block pt = (pt[1], . . . , pt[C]) is first encoded via an error-correcting code
into a codeword block pt ecc = ECC(pt) = (pt ecc[1], . . . , pt ecc[C ′]). The error-correcting
code ECC has a rate C/C ′ = α < 1 and can efficiently recover the plaintext block if at most a
δ-fraction of the codeword chunks are erroneous. For concreteness, we can use a Reed-Solomon
code, and set α = 1

2 , δ = (1−α)/2 = 1
4 . The client then uses the “abstract server-computation

ORAM” over the codeword blocks pt ecc (instead of pt).

• During initialization, the client selects a secret random set S = {s1, . . . , sλ} ⊆ [C ′]. Each
ciphertext data block cti has verification chunks verChi = (verChi[1], . . . , verChi[λ]). We ensure
the invariant that, during an honest execution, verChi[j] = cti[sj] for j ∈ [1..λ].

• The client uses a memory checking scheme to ensure the authenticity and freshness of the
metadata including the verification chunks. If the client detects a violation in metadata at
any point, the client aborts (we call this abort0).

• Whenever the client directly updates or instructs the server to apply the aforementioned
function f on an encrypted data block cti, it also updates or applies the same function f on
the corresponding verification chunks verChi[j] for j ∈ [1..λ], which possibly involves reading
other verification chunks that are input to f .

11

• When the client reads an encrypted data block cti, it also reads verChi and checks that
verChi[j] = cti[sj] for each j ∈ [1..λ] and aborts if this is not the case (we call this abort1).
Otherwise the client decrypts cti to get pt ecci and performs error-correction to recover pti. If
the error-correction fails, the client aborts (we call this abort2).

If the client ever aborts during any operation with abort0, abort1 or abort2, it refuses to perform any
future operations. This completes the compiler which gives us Theorem 2.

Security Intuition. Notice that in the above scheme, the decision whether abort1 occurs does not
depend on any secret state of the abstract server-computation ORAM scheme, and therefore can
be revealed to the server without sacrificing privacy. We will argue that, if abort1 does not occur,
then the client retrieves the correct data (so abort2 will not occur) with overwhelming probability.
Intuitively, the only way that a malicious server can cause the client to either retrieve the incorrect
data or trigger abort2 without triggering abort1 is to modify at least a δ (by default, δ = 1/4) fraction
of the chunks in an encrypted data block, but avoid modifying any of the λ chunks corresponding
to the secret set S. This happens with probability at most (1− δ)λ over the random choice of S,
which is negligible. The complete proof is given in Appendix B.3.

6 Organization of Appendices

Due to lack of space, we have to put some materials into appendices. Appendix A gives formal
definitions of server-computation ORAMs and malicious security. Appendix B gives proofs for all
the lemmas and theorems in the paper. Appendix C covers backgrounds on the cryptosystems used
in the paper. Appendix D describes our SWHE-based construction, which has better asymptotic
block size and computation than the AHE one. Appendix E proposes additional optimizations and
then analyzes all schemes, as summarized in Table 1. The high order bit is that to achieve optimal
asymptotic bandwidth blowup, server storage and client storage, all of our schemes require block
size and server/client computation to be polynomial in logN and the security parameter. Finally,
Appendix F compares our semi-honest AHE scheme’s bandwidth with prior works using concrete
real-world parameters, taking into account constant factors.

7 Conclusion and Open Problems

This paper proposes Onion ORAM, the first concrete ORAM scheme with optimal asymptotics in
worst-case bandwidth blowup, server storage and client storage in the single-server setting. We have
shown that FHE or SWHE are not necessary in constructing constant bandwidth ORAMs, which
instead can be constructed using only an additive homomorphic scheme such as the Damg̊ard-Jurik
cryptosystem. Yet combining SWHE with Onion ORAM improves the computational efficiency
of the scheme. We further extend Onion ORAM to be secure in the fully malicious setting using
standard assumptions. Due to the known efficiency of SWHE schemes like BGV, we think of our
work as an important step towards practical constant bandwidth blowup ORAM schemes.

We do note that while our block size is poly-logarithmic, the exponent is rather large (especially
for our malicious construction). Subsequent to our proposal of Onion ORAM, Moataz et al. [37]
combined our bounded feedback ORAM with an optimized merge procedure for evictions which
reduces server computation and block size for the semi-honest construction. We applaud this effort
and argue that semi-honest constant bandwidth ORAM is practical (or nearly practical). We leave
tightening up poly-logarithmic factors for our malicious security construction as future work.

12

Acknowledgements

We thank Vinod Vaikuntanathan for helpful discussion on this work.

References

[1] D. Apon, J. Katz, E. Shi, and A. Thiruvengadam. Verifiable oblivious storage. In PKC. 2014.

[2] M. Blum, W. S. Evans, P. Gemmell, S. Kannan, and M. Naor. Checking the correctness of memories. In
FOCS, 1991.

[3] Z. Brakerski, G. Gentry, and V. Vaikuntanathan. (Leveled) fully homomorphic encryption without
bootstrapping. In ITCS 2012, 2012.

[4] Z. Brakerski and V. Vaikuntanathan. Fully homomorphic encryption from Ring-LWE and security for
key dependent messages. In CRYPTO’11, 2011.

[5] R. Canetti. Security and composition of multiparty cryptographic protocols. Journal of Cryptology,
2000.

[6] R. Canetti. Universally composable security: A new paradigm for cryptographic protocols. In FOCS,
2001.

[7] I. Damgard and M. Jurik. A generalisation, a simplification and some applications of Paillier’s probabilistic
public-key system. In PKC, 2001.

[8] J. Dautrich and C. Ravishankar. Combining ORAM with PIR to minimize bandwidth costs. In
CODASPY, 2015.

[9] J. Dautrich, E. Stefanov, and E. Shi. Burst ORAM: Minimizing ORAM response times for bursty access
patterns. In USENIX security, 2014.

[10] C. Fletcher, L. Ren, A. Kwon, M. van Dijk, and S. Devadas. Freecursive ORAM: [nearly] free recursion
and integrity verification for position-based Oblivious RAM. In ASPLOS, 2015.

[11] C. Fletcher, L. Ren, A. Kwon, M. Van Dijk, E. Stefanov, D. Serpanos, and S. Devadas. A low-latency,
low-area hardware Oblivious RAM controller. In FCCM, 2015.

[12] C. Fletcher, M. van Dijk, and S. Devadas. Secure processor architecture for encrypted computation on
untrusted programs. In STC, 2012.

[13] C. Gentry, K. A. Goldman, S. Halevi, C. S. Jutla, M. Raykova, and D. Wichs. Optimizing ORAM and
using it efficiently for secure computation. In PETS, 2013.

[14] C. Gentry, S. Halevi, C. Jutla, and M. Raykova. Private database access with he-over-oram architecture.
Cryptology ePrint Archive, Report 2014/345.

[15] C. Gentry, S. Halevi, S. Lu, R. Ostrovsky, M. Raykova, and D. Wichs. Garbled RAM revisited. In
EUROCRYPT, 2014.

[16] C. Gentry, S. Halevi, M. Raykova, and D. Wichs. Outsourcing private RAM computation. In FOCS,
2014.

[17] C. Gentry, S. Halevi, and N. Smart. Fully homomorphic encryption with polylog overhead. In
EUROCRYPT, 2012.

[18] C. Gentry, S. Halevi, and N. P. Smart. Better bootstrapping in fully homomorphic encryption. In PKC,
2012.

[19] C. Gentry and D. Wichs. Separating succinct non-interactive arguments from all falsifiable assumptions.
In STOC, 2011.

[20] O. Goldreich. Towards a theory of software protection and simulation on Oblivious RAMs. In STOC,
1987.

13

[21] O. Goldreich and R. Ostrovsky. Software protection and simulation on Oblivious RAMs. In Journal of
the ACM, 1996.

[22] M. T. Goodrich, M. Mitzenmacher, O. Ohrimenko, and R. Tamassia. Privacy-preserving group data
access via stateless Oblivious RAM simulation. In SODA, 2012.

[23] S. Halevi and V. Shoup. Algorithms in HElib. Cryptology ePrint Archive, Report 2014/106, 2014.

[24] S. Halevi and V. Shoup. Bootstrapping for HElib. In EUROCRYPT, 2015.

[25] M. Keller and P. Scholl. Efficient, Oblivious data structures for MPC. Cryptology ePrint Archive, Report
2014/137, 2014.

[26] E. Kushilevitz, S. Lu, and R. Ostrovsky. On the (in) security of hash-based Oblivious RAM and a new
balancing scheme. In SODA, 2012.

[27] R. Lindner and C. Peikert. Better key sizes (and attacks) for lwe-based encryption. In Topics in
Cryptology - CT-RSA, 2011.

[28] H. Lipmaa. An Oblivious Transfer protocol with log-squared communication. In ISC, 2005.

[29] C. Liu, Y. Huang, E. Shi, J. Katz, and M. Hicks. Automating efficient RAM-model secure computation.
In Oakland, 2014.

[30] A. Lopez-Alt, E. Tromer, and V. Vaikuntanathan. On-the-fly multiparty computation on the cloud via
multikey fully homomorphic encryption. In STOC, 2012.

[31] J. R. Lorch, B. Parno, J. W. Mickens, M. Raykova, and J. Schiffman. Shroud: Ensuring private access
to large-scale data in the data center. In FAST, 2013.

[32] S. Lu and R. Ostrovsky. How to garble RAM programs. In EUROCRYPT, 2013.

[33] M. Maas, E. Love, E. Stefanov, M. Tiwari, E. Shi, K. Asanovic, J. Kubiatowicz, and D. Song. Phantom:
Practical oblivious computation in a secure processor. In CCS, 2013.

[34] T. Mayberry, E.-O. Blass, and A. H. Chan. Efficient private file retrieval by combining ORAM and PIR.
In NDSS, 2014.

[35] R. C. Merkle. Protocols for public key cryptography. In Oakland, 1980.

[36] A. Miller, M. Hicks, J. Katz, and E. Shi. Authenticated data structures, generically. In POPL, 2014.

[37] T. Moataz, T. Mayberry, and E.-O. Blass. Constant communication Oblivious RAM. Cryptology ePrint
Archive, Report 2015/570, 2015.

[38] R. Ostrovsky. Efficient computation on oblivious rams. In STOC, 1990.

[39] P. Paillier. Public-key cryptosystems based on composite degree residuosity classes. In EUROCRYPT,
1999.

[40] L. Ren, C. Fletcher, X. Yu, M. van Dijk, and S. Devadas. Integrity verification for Path Oblivious-RAM.
In HPEC, 2013.

[41] L. Ren, C. W. Fletcher, A. Kwon, E. Stefanov, E. Shi, M. V. Dijk, and S. Devadas. Constants count:
Practical improvements to Oblivious RAM. In USENIX security, 2015.

[42] L. Ren, X. Yu, C. Fletcher, M. van Dijk, and S. Devadas. Design space exploration and optimization of
Path Oblivious RAM in secure processors. In ISCA, 2013.

[43] E. Shi, T.-H. H. Chan, E. Stefanov, and M. Li. Oblivious RAM with O((log n)3) worst-case cost. In
ASIACRYPT, 2011.

[44] E. Stefanov and E. Shi. Oblivistore: High performance oblivious cloud storage. In S&P, 2013.

[45] E. Stefanov, E. Shi, and D. Song. Towards practical Oblivious RAM. In NDSS, 2012.

14

[46] E. Stefanov, M. van Dijk, E. Shi, T.-H. H. Chan, C. Fletcher, L. Ren, X. Yu, and S. Devadas. Path
ORAM: An extremely simple Oblivious RAM protocol. Cryptology ePrint Archive, Report 2013/280.

[47] E. Stefanov, M. van Dijk, E. Shi, C. Fletcher, L. Ren, X. Yu, and S. Devadas. Path ORAM: An extremely
simple Oblivious RAM protocol. In CCS, 2013.

[48] X. Wang, K. Nayak, C. Liu, E. Shi, E. Stefanov, and Y. Huang. Oblivious data structures. IACR, 2014.

[49] X. S. Wang, T.-H. H. Chan, and E. Shi. Circuit ORAM: On tightness of the Goldreich-Ostrovsky lower
bound. Cryptology ePrint Archive, Report 2014/672.

[50] X. S. Wang, Y. Huang, T.-H. H. Chan, A. Shelat, and E. Shi. Scoram: Oblivious ram for secure
computation. In CCS, 2014.

[51] P. Williams and R. Sion. Single round access privacy on outsourced storage. In CCS, 2012.

[52] P. Williams, R. Sion, and A. Tomescu. Privatefs: A parallel oblivious file system. In CCS, 2012.

[53] X. Yu, C. W. Fletcher, L. Ren, M. van Dijk, and S. Devadas. Generalized external interaction with
tamper-resistant hardware with bounded information leakage. In CCSW, 2013.

[54] J. Zhang, Q. Ma, W. Zhang, and D. Qiao. Kt-oram: A bandwidth-efficient oram built on k-ary tree of
pir nodes. Cryptology ePrint Archive, Report 2014/624, 2014.

A Definitions of Server-Computation ORAM

We directly adopt the definitions and notations used by Apon et al. [1] who are the first to define
server-computation ORAM as a reactive two-party protocol between the client and the server, and
define its security in the Universal Composability model [6]. We use the notation

((c out, c state), (s out, s state))← protocol((c in, c state), (s in, s state))

to denote a (stateful) protocol between a client and server, where c in and c out are the client’s
input and output; s in and s out are the server’s input and output; and c state and s state are the
client and server’s states before and after the protocol.

We now define the notion of a server-computation ORAM, where a client outsources the storage
of data to a server, and performs subsequent read and write operations on the data.

Definition 1 (Server-computation ORAM). A server-computation ORAM scheme consists of the
following interactive protocols between a client and a server.

((⊥, z), (⊥, Z))← Setup(1λ, (D,⊥), (⊥,⊥)): An interactive protocol where the client’s input is a
memory array D[1..n] where each memory block has bit-length β; and the server’s input is ⊥.
At the end of the Setup protocol, the client has secret state z, and server’s state is Z (which
typically encodes the memory array D).

((data, z′), (⊥, Z ′))← Access((op, z), (⊥, Z)): To access data, the client starts in state z, with an
input op where op := (read, ind) or op := (write, ind , data); the server starts in state Z, and
has no input. In a correct execution of the protocol, the client’s output data is the current
value of the memory D at location ind (for writes, the output is the old value of D[ind] before
the write takes place). The client and server also update their states to z′ and Z ′ respectively.
The client outputs data := ⊥ if the protocol execution aborted.

We say that a server-computation ORAM scheme is correct, if for any initial memoryD ∈ {0, 1}βn,
for any operation sequence op1, op2, . . ., opm where m = poly(λ), an op := (read, ind) operation
would always return the last value written to the logical location ind (except with negligible
probability).

15

A.1 Security Definition

We adopt a standard simulation-based definition of secure computation [5], requiring that a real-world
execution “simulate” an ideal-world (reactive) functionality F .

Ideal world. We define an ideal functionality F that maintains an up-to-date version of the data
D on behalf of the client, and answers the client’s access queries.

• Setup. An environment Z gives an initial database D to the client. The client sends D to
an ideal functionality F . F notifies the ideal-world adversary S of the fact that the setup
operation occurred as well as the size of the database N = |D|, but not of the data contents
D. The ideal-world adversary S says ok or abort to F . F then says ok or ⊥ to the client
accordingly.

• Access. In each time step, the environment Z specifies an operation op := (read, ind) or
op := (write, ind , data) as the client’s input. The client sends op to F . F notifies the ideal-
world adversary S (without revealing to S the operation op). If S says ok to F , F sends
D[ind] to the client, and updates D[ind] := data accordingly if this is a write operation. The
client then forwards D[ind] to the environment Z. If S says abort to F , F sends ⊥ to the
client.

Real world. In the real world, an environment Z gives an honest client a database D. The honest
client runs the Setup protocol with the server A. Then at each time step, Z specifies an input
op := (read, ind) or op := (write, ind , data) to the client. The client then runs the Access protocol
with the server. The environment Z gets the view of the adversary A after every operation. The
client outputs to the environment the data fetched or ⊥ (indicating abort).

Definition 2 (Simulation-based security: privacy + verifiability). We say that a protocol ΠF securely
computes the ideal functionality F if for any probabilistic polynomial-time real-world adversary (i.e.,
server) A, there exists an ideal-world adversary S, such that for all non-uniform, polynomial-time
environment Z, there exists a negligible function negl such that

|Pr [RealΠF ,A,Z(λ) = 1]− Pr [IdealF ,S,Z(λ) = 1]| ≤ negl(λ)

At an intuitive level, our definition captures the privacy and verifiability requirements for an
honest client (the client is never malicious in our setting), in the presence of a malicious server. The
definition simultaneously captures privacy and verifiability. Privacy ensures that the server cannot
observe the data contents or the access pattern. Verifiability ensures that the client is guaranteed to
read the correct data from the server — if the server cheats, the client can detect it and abort the
protocol.

B Proofs

B.1 Bounded Feedback ORAM: Bounding Overflows

We now give formal proofs to show that buckets do not overflow in bounded feedback ORAM except
with negligible probability.

Proof. (of Lemma 1). First of all, notice that when Z ≥ A, the root bucket will never overflow. So
we will only consider non-root buckets. Let b be a non-root bucket, and Y (b) be the number of
blocks in it after an eviction operation. We will first assume all buckets have infinite capacity and

16

show that E[Y (b)] ≤ A/2, i.e., the expected number of blocks in a non-root bucket after an eviction
operation is no more than A/2 at any time. Then, we bound the overflow probability given a finite
capacity.

If b is a leaf bucket, each of the N blocks in the system has a probability of 2−L to be mapped
to b independently. Thus E[Y (b)] ≤ N · 2−L ≤ A/2.

If b is a non-leaf (and non-root) bucket, we define two variables m1 and m2: the last
EvictAlongPath operation where b is on the eviction path is the m1-th EvictAlongPath operation,
and the EvictAlongPath operation where b is a sibling bucket is the m2-th EvictAlongPath operation.
If m1 > m2, then Y (b) = 0, because b becomes empty when it is the source bucket in the m1-th
EvictAlongPath operation. (Recall that buckets have infinite capacity so this outcome is guaranteed.)
If m1 < m2, there will be some blocks in b and we now analyze what blocks will end up in b. We
time-stamp the blocks as follows. When a block is accessed and remapped, it gets time stamp m∗,
which is the number of EvictAlongPath operations that have happened. Blocks with m∗ ≤ m1 will
not be in b as they will go to either the left child or the right child of b. Blocks with m∗ > m2 will
not be in b as the last eviction operation that touches b (m2-th) has already passed. Therefore, only
blocks with time stamp m1 < m∗ ≤ m2 can be in b. There are at most d = A|m1 −m2| such blocks.
Such a block goes to b if and only if it is mapped to a path containing b. Thus, each block goes
to b independently with a probability of 2−i, where i is the level of b. The deterministic order of
EvictAlongPath makes it easy to see3 that |m1 −m2| = 2i−1. Therefore, E[Y (b)] ≤ d · 2−i = A/2 for
any non-leaf bucket as well.

Now that we have independence and the bound on expectation, a simple Chernoff bound
completes the proof.

B.2 Onion ORAM: Bounding Layers of Encryption

To bound the layers of onion encryption, we consider the following abstraction. Suppose all buckets
in the tree have a layer associated with it.

• The root bucket contains layer-1 ciphertexts.

• For a bucket known to be empty, we define bucket.layer := 0.

• Each bucket-triplet operation moves data from parent to child buckets. After the operation,
child.layer := max{parent.layer, child.layer}+ 1.

Recall that we use the following terminology. The bucket being evicted from is called the source,
its child bucket on the eviction path is called the destination, and its other child forking off the
path is called the sibling.

Proof. (of Lemma 2). We prove by induction.
Base case. The lemma holds obviously for the root bucket.
Inductive step. Suppose that this holds for all levels ` < k. We now show that this holds for level k.
Let bucket denote a bucket at level k. We focus on this particular bucket, and examine bucket.layer
after each bucket-triplet operation that involves bucket. It suffices to show that after each bucket-
triplet operation involving bucket, it must be that bucket.layer ≤ 2k+1. If a bucket-triplet operation
involves bucket as a source, we call it a source operation (from the perspective of bucket). Similarly,
if a bucket-triplet operation involves bucket as a destination or sibling, we call it a destination
operation or a sibling operation respectively.

3One way to see this is that a bucket b at level i will be on the evicted path every 2i EvictAlongPath operations,
and its sibling will be on the evicted path halfway in that period.

17

Based on Observation 1,

bucket.layer = 0 (after each source operation)

Since a sibling operation must be preceded by a source operation (if there is any preceding operation),
bucket must be empty at the beginning of each sibling operation. By induction hypothesis, after
each sibling operation, it must be that

bucket.layer ≤ 2(k − 1) + 1 + 1 = 2k (after each sibling operation)

Since a destination operation must be preceded by a sibling operation (if there is any preceding
operation), from the above we know that at the beginning of a destination operation bucket.layer
must be bounded by 2k. Now, by induction hypothesis, it holds that

bucket.layer ≤ 2k + 1 (after each destination operation)

Finally, our post-processing on leaves where the client peels of the onion layers extends this
lemma to all levels including leaves.

Copy-to-sibling optimization and a tighter layer bound An immediate implication of Ob-
servation 1 plus Observation 2 is that whenever a source evicts into a sibling, the sibling bucket is
empty to start with because it was a source bucket in the last operation it was involved in. This
motivates the following optimization: the server can simply copy blocks from the source bucket
into the sibling. The client would read the metadata corresponding to blocks in the source bucket,
invalidate blocks that do not belong to the sibling, before writing the (re-encrypted) metadata to
the sibling.

This copy-to-sibling optimization avoids accumulating an extra onion layer upon writes into a
sibling bucket. With this optimization and using a similar inductive proof, it is not hard to show a
bucket at level k in the tree have at most k + 1 layers.

B.3 Malicious Security Proof

The Simulator. To simulate the setup protocol with some data of size N , the simulator chooses a
dummy database D′ of size N consisting of all 0s. It then follows the honest setup procedure on
behalf of the client with database D′. To simulate each access operation, the simulator follows the
honest protocol for reading a dummy index, say, ind′ = 0, on behalf of the client.

During each operation, if the client protocol that’s being executed by the simulator aborts then
the simulator sends abort to F and stops responding to future commands on behalf of the client,
else it gives ok to F .

Sequence of Hybrids. We now follow a sequence of hybrid games to show that the real world
and the simulation are indistinguishable:

|Pr [RealΠF ,A,Z(λ) = 1]− Pr [IdealF ,S,Z(λ) = 1]| ≤ negl(λ)

Game 0. Let this be the real game RealΠF ,A,Z with an adversarial server A and an environment
Z.

Game 1. In this game, the client also keeps a local copy of the correct metadata and data-blocks
(in plaintext) that should be stored on the server. Whenever the client reads any (encrypted)
metadata from the server during any operation, if the memory checking does not abort, then

18

instead of decrypting the read metadata, the client simply uses the locally stored plaintext
copy.

The only difference between Game 0 and Game 1 occurs if in Game 0 the memory checking
does not abort, but the client retrieves the incorrect encrypted metadata, which happens with
negligible probability by the security of memory checking. Therefore Game 0 and Game 1 are
indistinguishable.

Game 2. In this game the client doesn’t store the correct values of verChi with the encrypted
metadata on the server, but instead replaces these with dummy values. The client still stores
the correct values of verChi in the plaintext metadata stored locally, which it uses to do all of
the actual computations.

Game 1 and Game 2 are indistinguishable by the CPA security of the symmetric-key encryption
scheme used to encrypt metadata. We only need CPA security since, in Games 1 and 2, the
client never decrypts any of the metadata ciphertexts.

Game 3. In this game, whenever the client reads an encrypted data block cti from the server, if
abort1 does not occur, instead of decrypting and decoding the encrypted data-block, the client
simply uses local copy of the plaintext data-block.

The only difference between Game 2 and Game 3 occurs if at some point in time the client reads
an encrypted data block cti from the server such that at least a δ fraction of the ciphertext
chunks {cti[j]} in the block have been modified (so that decoding either fails with abort2 or
returns an incorrect value) but none of the chunks in locations i ∈ S have been modified (so
that abort1 does not occur).

We claim that Game 2 and Game 3 are statistically indistinguishable, with statistical distance
at most q(1 − δ)λ, where q is the total number of operations performed by the client. To
see this, note that in both games the set S is initially completely random and unknown to
the adversarial server. In each operation i that the client reads an encrypted data-block, the
server can choose some set S′i ⊆ [C ′] of positions in which the ciphertext chunks are modified,
and if S′i ∩ S = ∅ the server learns this information about the set S and the game continues,
else the client aborts and the game stops. The server never gets any other information about
S throughout the game. The games 2 and 3 only diverge if at some point the adversarial
server guesses a set S′i of size |S′i| ≥ δC ′ such that S ∩ S′i = ∅. We call this the “bad event”.
Notice that the sets S′i can be thought of as being chosen non-adaptively at the beginning of
the game prior to the adversary learning any knowledge about S (this is because we know in
advance that the server will learn S′i ∩ S = ∅ for all i prior to the game ending). Therefore,
the probability that the bad event happens in the j’th operation is

Pr
S

[S′j ∩ S = ∅] ≤
(

(1− δ)C ′

λ

)/(C ′
λ

)
≤ (1− δ)λ

where S ⊆ [C ′] is a random subset of size |S| = λ. By the union bound, the probability that
the bad event happens during some operation j ∈ {1, . . . , q} is at most q(1− δ)λ.

Game’ 3. In this game, the client runs the setup procedure using the dummy database D′ (as in
the simulation) instead of the one given by the environment. Furthermore, for each access
operation, the client just runs a dummy operation consisting of a read with the index ind′ = 0
instead of the operation chosen by the environment. (We also introduce an ideal functionality
F in this world which is given the correct database D at setup and the correct access operations

19

as chosen by the environment. Whenever the client doesn’t abort, it forwards the outputs of
F to the environment.)

Games 3 and Game’ 3 are indistinguishable by the semi-honest Onion ORAM scheme. In
particular, in both games whenever the client doesn’t abort, the client reads the correct
metadata and data blocks as when interacting with an honest server, and therefore follows the
same protocols as when interacting with an honest server. Furthermore, the decision whether
or not the client aborts in these games (with abort0 or abort1; there is no more abort2) only
depends on the secret set S and the internal state of the memory checking scheme, but is
independent of any of the secret state or decryption keys of the underlying semi-honest Onion
ORAM scheme. Therefore, the view of the adversarial server in these games can be simulated
given the view of the honest server.

Game’ 2,1,0. We define Game’ i for i = 0, 1, 2 the same way as Game i except that the client uses
the dummy database D′ and the dummy operations (reads with index idx′ = 0) instead of
those specified by the environment.

The arguments that Game’ i+ 1 and Game’ i are indistinguishable as the same as those for
Game i+ 1 and Game i. Finally, we notice that Game 0 is the ideal game IdealF ,S,Z with
the simulator S.

Putting everything together, we see that the real and ideal games RealΠF ,A,Z and IdealF ,S,Z
are indistinguishable as we wanted to show.

C Cryptosystem Background

In this section we provide relevant details for the AHE and SWHE cryptosystems that underlie our
constructions.

C.1 Damg̊ard-Jurik Cryptosystem

The Damg̊ard-Jurik cryptosystem [7], a generalization of Paillier’s cryptosystem [39], is based
on the hardness of the decisional composite residuosity assumption. In this system, the public
key pk = n = pq is an RSA modulus (p and q are two large, random primes) and the secret key
sk = lcm(p− 1, q − 1). In the terminology from our onion encryptions, ski, pki = Gi() for i ≥ 0.

We denote the integers mod n as Zn. The plaintext space for the i-th layer of the Damg̊ard-Jurik
cryptosystem encryption, Li, is Zns0+i for some user specified choice of s0. The ciphertext space for
this layer is Zns0+i+1 . Thus, we clearly have the property that ciphertexts are valid plaintexts in
the next layer. An interesting property that immediately follows is that if s0 = Θ(i), then |Li|/|L0|
is a constant. In other words, by setting s0 appropriately the ciphertext blowup after i layers of
encryption is a constant.

We further have that ⊕ (the primitive for homomorphic addition) is integer multiplication
and ⊗ (for scalar multiplication) is modular exponentiation. If these operations are performed on
ciphertexts in Li, operations are mod Zns0+i .

C.2 BGV-Style Somewhat Homomorphic Cryptosystems

BGV-style cryptosystems [3] are a framework for constructing efficient FHE or SWHE schemes. For
concreteness, we assume the underlying cryptosystem used is Ring Learning with Errors (RLWE)
as in [3]. Let A(x) mod (Φm(x), p), denoted Rp for short, denote the ring of polynomials A(x)

20

modulo the m-th cyclotomic polynomial (of degree n = φ(m) where φ is the totient function) and
coefficients modulo p. Plaintexts are polynomials in Rt for some t of the user’s choice. If the
circuit we are evaluating has depth d, a ciphertext encoding the plaintext polynomial x ∈ Rt at
the `-th level ` ∈ [0..d] is an element in R2

q`
where q`/q`+1 = qL/t = poly(n) (RLWE ciphertexts

consist of 2 polynomials). The scheme is additively and multiplicatively homomorphic; that
is, given x, y ∈ Rt and E`(x), E`(y) ∈ R2

q`
, we have E`(x)⊕E`(y) = E`(x + y) ∈ R2

q`
and that

E`(x)⊗E`(y) = E`+1(x · y) ∈ R2
q`+1

. Implicit in the ⊗ operator, there is a Refresh operation
performed after each homomorphic multiplication operation. There is also a Scale procedure that
promotes a level-i ciphertext into a level-j (j > i) ciphertext encrypting the same plaintext.

D Onion ORAM with BGV Somewhat Homomorphic Encryption

As discussed in Section 2, our bounded feedback ORAM can be viewed as an ORAM protocol with
very shallow circuit depth. Shallow circuit depth is interesting beyond onion AHE: it also gives us a
way to construct efficient constant bandwidth ORAM using SWHE.

With this observation, we will describe how to efficiently map our bounded feedback ORAM to
a BGV SWHE scheme [3].4 For concreteness, we assume BGV built on top of RLWE, although in
practice, we can also switch to the LTV variant of NTRU [30] which achieves better parameters by
constant factors. Our construction based on BGV SWHE has the following attractive features over
the construction that uses AHE:

1. No layers. SWHE select (multiplication) operations do not add encryption layers. Thus, the
client only needs to decrypt once to retrieve the underlying plaintext.

2. Coefficient packing to achieve small blocks. One downside of AHE Onion ORAM is that
block size is at least as large as the number of encrypted coefficients needed to manage reads
and evictions. Using plaintext packing techniques developed for SWHE/FHE schemes [3, 17],
we can pack many select bits into a single ciphertext and achieve a much smaller block size.

Connection to encryption layers. The chain of moduli used by BGV (see Appendix C.2 for
background) is analogous to encryption layers in our AHE construction. That is, a BGV ciphertext
living in R2

q`
is analogous to a ciphertext that has accumulated ` + 1 AHE encryption layers in

Section 4, and our layer bound in Section 4.3 applies directly through this isomorphism. To get a
similar abstraction, we write R2

q`
as L` just as in the AHE construction. However, unlike the AHE

construction, here L0 has the biggest ciphertext size (to leave room for noise that will be added by
future homomorphic operations). This will change several design decisions.

The other differences in the protocols are minor, which we explain below.

D.1 Somewhat Homomorphic Select Sub-protocol

We now describe a single homomorphic select, using the same notation as in Section 4.1:

1. Let ` := max(`1, . . . , `m). The client first creates and sends to the server the following
homomorphic select vector 〈E`(b1), E`(b2), . . . E`(bm)〉.

2. The server “lifts” each ciphertext chunk (C chunks per block) to L`, by performing Scale on
each chunk.

4We will refer to BGV without bootstrapping as a SWHE scheme as opposed to as a “leveled FHE scheme”.

21

3. Then, the server evaluates the following homomorphic select operation on all chunks j ∈ [1..C]
(of the lifted blocks):

ctout[j] :=
⊕

i

(
E`(bi) ⊗ ct′i[j]

)
= E`(ct′i∗)

There is a subtle optimization that is worth mentioning. The Refresh procedure is typically
performed after each homomorphic multiplication and is typically an expensive part of the BGV
construction (costing poly-logarithmic factors of computation more than a regular homomorphic
multiplication). However, we can perform Refresh only once per select operation, after the results
of the select are added together. In this way, we can amortize its cost when the select operation’s
fan-in is Ω(λ).

D.2 Onion ORAM Protocol over BGV

We can plug in the BGV select sub-protocol from the previous section directly into the complete
Onion ORAM protocol from Section 4.2. The only difference between AHE and SWHE is how we
initialize the system, which we now detail:

Initialization and ORAM tree setup. To start, the user and server use the layer bound
from Section 4.3 to compute L′ = 2L + 1, the BGV circuit depth, from the ORAM tree height
L. The user and server then agree on t and qi for i ∈ [0..L′] which satisfy t = Ω(poly(n)) and
qi/qi+1 = q′L/t = Ω(poly(n)). Finally, the user shares public and evaluation keys for each modulus
with the server.

We remark that in Step 3 of ReadPath (Section 4.2), the client must re-encrypt blocks using a
symmetric encryption scheme. Sending a “layer 1” ciphertext, which lives in L0, is no longer an option,
because in BGV, L0 is R2

q0 where q0 = poly(n)L
′
, which implies that sending back a L0 ciphertext

immediately makes the ORAM bandwidth blowup increase to log q0/ log t = L′ = Θ(logN)!

D.3 CRT Packing to Reduce Coefficient Size

As with the AHE scheme from Section 4, the above scheme so far has to send a lot of encrypted
coefficients to the server, which are large because each encrypted coefficient will live in L0. We can
reduce block size substantially by using FHE CRT packing techniques, described in [3, 17]. At a
high level, the client can pack multiple coefficients into a single L0 ciphertext. The server will then
unpack each coefficient and post-process it into a form that can be used in the protocol (e.g., by
using the full replication procedure from [23]) from Section D.2.

All data blocks must also be encoded using the CRT representation. This will be done by the
server since the client just sends symmetric-encrypted blocks. With suitable parameters, we can
pack Θ(λ) coefficients per ciphertext, reducing the encrypted coefficient size by a factor of Θ(λ).

Packing parameters. Encoding blocks in CRT form and packing coefficients places several
additional constraints on how we choose parameters. To maximize the number of coefficients that
can be packed into a single ciphertext, we desire that t ≡ 1 mod m (the scheme is over the m-th
cyclotomic polynomial) which is simple to achieve since t = Ω(poly(n)). To implement the full
replication procedure from [23], we require the largest cyclic subgroup of Z∗m to be as large as

possible with respect to m. For example, using Φm(x) = x2h + 1 (which is a typical setting), 1/4-th
of available slots will be usable for rotations which would mean that for that choice of Φm(x), the
ORAM scheme’s bandwidth overhead with respect to block size has a hidden constant 4.

22

E Optimizations and Analysis

In this section, we introduce two optimizations to our basic protocols. We then analyze our schemes
to get the results in Tables 2 after applying one or both optimizations.

E.1 Hierarchical Select Operation and Benes Network

For simplicity, we have discussed select operations as inner products between the data vector and the
coefficient vector. As an optimization, we may use the Lipmaa construction [28] to implement select
hierarchically as a tree of d-to-1 select operations for a constant d (say d = 2). In that case, for a

given 1 out of Z selection, ~bhier ∈ {0, 1}logZ . Eviction along a path requires O(logN) bucket-triplet
operations, each of which is a Z-to-Z permutation. To implement an arbitrary Z-to-Z permutation,
we can use the Benes network, which consists of a total of O(Z logZ) 2-to-1 select operations in a
network.

At the same time, both the hierarchical select and the Benes network add Θ(logZ) layers to the
output as opposed to a single layer. Clearly, this makes the layer bound from Lemma 2 increase to
Θ(logZ logN). But we can set related parameters larger to compensate.

E.2 Permuted Buckets

Observe that on a read operation, the client and the server need to run a homomorphic select
protocol among O(λ logN) blocks. We can reduce this number to O(λ) using the permuted bucket
technique from Ring ORAM [41] (similar ideas were used in hierarchical ORAMs [21]). Instead
of reading all slots along the tree path during each read, we can randomly permute blocks in
each bucket and only read/remove a block at a random looking slot (out of Z = Θ(λ) slots) per
bucket. Each random-looking location will either contain the block of interest or a dummy block.
We must ensure that no bucket runs out of dummies before the next eviction refills that bucket’s
dummies. Given our reverse-lexicographic eviction order, a simple Chernoff bound shows that
adding Θ(A) = Θ(λ) dummies, which increases bucket size by a constant factor, is sufficient to
ensure that dummies don’t run out except with probability 2−Θ(λ). Note that the root bucket cannot
be permuted. Therefore, a read path selects among O(Z + logN) = O(λ+ logN) = O(λ) blocks.

E.3 Analysis of the Damg̊ard-Jurik AHE Construction

The AHE construction uses both of the above optimizations.

E.3.1 Semi-Honest Case

Chunk size. The Damg̊ard-Jurik cryptosystem encrypts a message of length γs0 bits to a ciphertext
of length γ(s0 + 1) bits, where γ is a parameter dependent on the security parameter λ, and s0 is a
user-chosen parameter. Using the Benes network, each ciphertext chunk accumulates O(log λ logN)
layers of encryption at the maximum. Suppose the plaintext chunk size is Bc := γs0, then at the
maximum onion layer, the ciphertext size would be γ(s0 + O(log λ logN)). Therefore, to ensure
constant ciphertext expansion at all layers, it suffices to set s0 := Ω(log λ logN) and chunk size
Bc := Ω(γ log λ logN). This means ciphertext chunks and homomorphic select vectors are also
Ω(γ log λ logN) bits.

Then we want our block size to be asymptotically larger than the select vectors at each step of
our protocol (other metadata are much smaller).

23

Size of select vectors. Each read requires O(log λ) encrypted coefficients of O(Bc) bits each.
Eviction along a path requires O(logN) Benes network (bucket-triplet operations), a total of
O(λ log λ logN) encrypted coefficients. Also recall that one eviction happens per A = Θ(λ) accesses.
Therefore, the select vector size per ORAM access (amortized) is dominated by evictions, and is
Θ(Bc log λ logN) bits. We remark that it is easy to de-amortize evictions over the next A read
operations because moving blocks from buckets (possibly on the eviction path) to the root bucket
does not impact our eviction algorithm.

Setting the block size. Clearly, if we set the block size to be B := Ω(Bc log λ logN), the cost of
homomorphic select vectors could be asymptotically absorbed, thereby achieving constant bandwidth
blowup. Since the chunk size Bc = Ω(γ log λ logN), we have B = Ω(γ log2 λ log2N) bits.

Server computation The bottleneck of server computation is to homomorphically multiple a
block with a encrypted select coefficient. In Damg̊ard-Jurik, this is a modular exponentiation

operation, which has Õ(γ2) computational complexity for γ-bit ciphertexts. This means the per-bit

computational overhead is Õ(γ). The server needs to perform this operation on O(λ) blocks of size

B, and therefore has a computational overhead of Õ(γ)O(Bλ).

Client computation Client needs to decrypt O(log λ logN) layers to get the plaintext block, and

therefore has a computational overhead of Õ(γ)O(B log λ logN).

Concrete bandwidth analysis For the interested reader, Appendix F gives a concrete evaluation
of the above scheme taking into account all constant factors.

E.3.2 Malicious Case

Setting the block size. The main difference from semi-honest case is that on a read, the client
must additionally download Θ(λ) verification chunks from each of the Θ(λ) blocks (assuming
permuted buckets). Select vector size stays the same, and the error-correcting code increases block
size by only a constant factor. Thus, the block size we need to achieve constant bandwidth over the
entire protocol is B = Ω(Bcλ

2) = Ω(γλ2 log λ logN).

Client computation. Another difference is that the client now needs to emulate the server’s
homomorphic select operation on the verification chunks. But a simple analysis will show that
the bottleneck of client computation is still onion decryption, and therefore remains the same
asymptotically.

E.4 Analysis of BGV SWHE Construction

We now analyze Onion ORAM over BGV. The SWHE construction we will analyze below uses
permuted buckets, but not the Benes network optimization, as this trick will result in non-constant
server storage blowup (Section E.4.3). We do note that Benes network does reduce server computation
and can be applied if server storage is cheap.

E.4.1 Semi-Honest Case

Chunk size. With BGV SWHE, all ciphertexts returned to the user will be polynomials whose
coefficients are in qL′ where qL′/t = Θ(poly(n)). Therefore, to achieve constant bandwidth we
require t = Ω(poly(n)). We note that n = Θ(λ) [4] and that the circuit depth of the entire protocol
is O(logN) = O(log λ). Thus, each coefficient (or set of packed coefficients, if CRT packing is used)
is B′c = 2n log n = Ω(λ log λ) bits.

24

Size of select vectors With CRT packing, the user needs O(logN) ciphertexts to pack the
O(λ logN) coefficients (without using the Benes network)

Setting the block size. To absorb the above select vectors, block size is B′ := Ω(B′c logN) =
Ω(λ log2 λ).

Server computation In BGV SWHE, multiplying a block with a encrypted coefficient is a

polynomial multiplication operation, which has Õ(n log n log q) computational complexity for n log q-

bit ciphertexts. This means the per-bit computational overhead is Õ(log n) = Õ(log λ), which
is much cheaper than that in AHE Onion ORAM. When the block size is small, unpacking will
actually become the bottleneck, and its cost is still polylog(λ). Therefore, server computation is
polylog(λ)O(Bλ logN) = polylog(λ)O(Bλ).

Client computation Client only needs to decrypt once (no more layers) and therefore has a
computational overhead of polylog(λ)O(B).

E.4.2 Malicious Case

Setting the block size. The client needs to download and perform computation on Θ(λ) chunks
for each of the O(λ logN) blocks per ORAM access (amortized). Thus, block size becomes
B′ := Ω(B′cλ

2 logN) = Ω(λ3 log2 λ).

Client computation Besides decryption, the client has to emulate server computation on the λ

verification chunks for O(λ logN) blocks, costing O(λ2 logN)polylog(λ) = Õ(λ2).

E.4.3 Server Storage

The alert reader will have noticed that our scheme over BGV will potentially have a non-constant
server storage blowup since log q0/ log t = ω(1). We now show that server storage blowup is still
constant. The intuition is that few buckets (towards the root) has large blowup, and most buckets
(towards the leaves) has small or constant blowup. Specifically, server storage blowup is given by:∑L

i=0 2 · n · log qi · 2i∑L
i=0 n · log t · 2i

= 2 ·
L∑
i=0

2(L− i+ 1) · 2i

2L+1
= 4

L∑
i=0

(L− i+ 1)

2L−i+1
= 4

L+1∑
i=1

i

2i
≈ 8

which is a constant blowup as desired. In the first equation, the factor of 2 outside the sum is
because RLWE ciphertexts are in R2

qi for each i. The factor of 2 in 2(L− i+ 1) is due to the bound
on qi at level i of the ORAM tree being approximately q2i.

F Concrete Bandwidth Analysis

To be concrete, Figure 2 shows bandwidth as a function of block size for our semi-honest AHE-based
scheme from Section 4. For this study, we apply all previous optimizations (including permuted
bucket and sorting network from Section E) and take into account all constant factors (including
the extra bandwidth cost and roundtrips to recursively look up the position map).

We compare to Path PIR and Circuit ORAM, the most bandwidth-efficient constructions
with/without server computation that match our server/client storage asymptotics. We only show
the semi-honest case under the Damg̊ard-Jurik cryptosystem [7] since other scheme variants have the
same general trend. To get our result, we use an additional constant factor optimization described
later in the section.

25

Takeaway. The high order bit is that as block size increases, Onion ORAM’s bandwidth approaches
2 · B. Note that 2 · B is the inherent lower bound in bandwidth since every read path operation
must at least send and receive one block from the server. Given an 8 MB block size, which is
approximately the size of an image file, we improve in bandwidth over Circuit ORAM by 35× and
improve over Path PIR by 22×. For very large block sizes, our improvement continues to increase
but Circuit ORAM and Path PIR improve less dramatically because their asymptotic bandwidth
blowup has a logN factor. Note that for sufficiently small block sizes, both Path PIR and Circuit
ORAM beat our bandwidth because our select vector bandwidth dominates. Yet, this crossover
point is acceptable in settings with large blocks and we see an improvement as long as the block
size is 128 KB or greater.

Constant factor optimization: Less frequent leaf post-processing. Since Z = A = Θ(λ),
we must send and receive one additional data block (amortized) per ORAM request to post-process
leaf buckets during evictions (Section 4.3). To save bandwidth, we can perform this post-processing
on a particular leaf bucket every p evictions to that leaf (p is a free variable). The consequence
is that the number of layers that accumulate on leaf buckets increases by p which makes each
ORAM read path more expensive by the corresponding amount. In practice, p ≥ 8 yields the best
bandwidth.

Parameterization details. For both schemes, we set acceptable ORAM failure probability to
2−80 which results in Z = A ≈ 300 for Onion ORAM, Z = 120 for Path PIR [43] and a stash size
(stored on the server) of 50 blocks for Circuit ORAM [49]. For Onion ORAM and Path PIR we
set γ = 2048 bits. For Circuit ORAM, we use the reverse lexicographic eviction order as described
in that work, which gives 2 evictions per access and Z = 2. For Path PIR, we set the eviction
frequency v = 2 [43].

26

Table 2: Detailed asymptotics. N is the number of blocks. The optimal block size is the data block size
needed to achieve the stated bandwidth, and is measured in bits. All schemes achieve O(B) client storage
and O(BN) server storage (asymptotically optimal) and have 2−λ failure probability (λ = 80 is a reasonable
value). Computation measures the number of two-input plaintext gates evaluated per ORAM access. “M”
stands for malicious security, and “SH” stands for semi-honest. For Path-PIR and AHE Onion ORAM, γ
denotes the length of the modulus of the Damg̊ard-Jurik cryptosystem [7]. For SWHE Onion ORAM, n is
the degree of the polynomial in the Ring-LWE cryptosystem [4].

Scheme
Optimal Bandwidth Server Client

Security
Block size B Blowup Computation Computation

Circuit ORAM [49] Ω(log2N) O(Bλ) N/A N/A M

Path-PIR [34] Ω(γλ logN) O(B logN) Õ(γ)O(Bλ logN) Õ(γ)O(B logN) SH

AHE Onion ORAM
Ω(γ log2 λ log2N) O(B) Õ(γ)O(Bλ) Õ(γ)O(B log λ logN) SH

Ω(γλ2 log λ logN) O(B) Õ(γ)O(Bλ) Õ(γ)O(B log λ logN) M

SWHE Onion ORAM
Ω(n logn logN) O(B) polylog(λ)O(Bλ logN) Õ(log λ)O(B) SH

Ω(nλ2 logn logN) O(B) polylog(λ)O(Bλ logN) Õ(log λ)O(B) + Õ(λ2) M

To achieve negligible in N security and get our results in Table 1, we have set λ = ω(logN), γ = Θ(log3N)
and n = Θ(λ) according to best known attacks [27,28].

1

10

100

1000

18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

B
an

d
w

id
th

 m
u

lt
ip

lie
r

log B (in bits)

Path PIR
Onion ORAM
Circuit ORAM

Figure 2: Plots the bandwidth multiplier (i.e., the hidden constant for O(B)) for semi-honest Onion
ORAM and two prior proposals. We fix the ORAM capacity to NB = 250 and give each scheme
the same block size across different block sizes (hence as B increases, N decreases).

27

	Introduction
	Server Computation in ORAM
	Attempts to ``Break'' the Goldreich-Ostrovsky Lower Bound
	Our Contributions
	Related Work

	Overview of Techniques
	Bounded Feedback ORAM
	Bounded Feedback ORAM Basics
	New Triplet Eviction Procedure

	Onion ORAM with Additively Homomorphic Encryption
	Additive Homomorphic Select Sub-protocol
	Detailed Protocol
	Bounding Layers
	De-Amortization

	Security Against Fully Malicious Server
	Abstract Server-Computation ORAM
	Semi-Honest to Malicious Compiler

	Organization of Appendices
	Conclusion and Open Problems
	Definitions of Server-Computation ORAM
	Security Definition

	Proofs
	Bounded Feedback ORAM: Bounding Overflows
	Onion ORAM: Bounding Layers of Encryption
	Malicious Security Proof

	Cryptosystem Background
	Damgård-Jurik Cryptosystem
	BGV-Style Somewhat Homomorphic Cryptosystems

	Onion ORAM with BGV Somewhat Homomorphic Encryption
	Somewhat Homomorphic Select Sub-protocol
	Onion ORAM Protocol over BGV
	CRT Packing to Reduce Coefficient Size

	Optimizations and Analysis
	Hierarchical Select Operation and Benes Network
	Permuted Buckets
	Analysis of the Damgård-Jurik AHE Construction
	Semi-Honest Case
	Malicious Case

	Analysis of BGV SWHE Construction
	Semi-Honest Case
	Malicious Case
	Server Storage

	Concrete Bandwidth Analysis

