
Balloon: A Forward-Secure Append-Only Persistent
Authenticated Data Structure

Tobias Pulls
Dept. of Mathematics and Computer Science

Karlstad University
Universitetsgatan 2, Karlstad, Sweden

tobias.pulls@kau.se

Roel Peeters
KU Leuven, ESAT/COSIC & iMinds
Kasteelpark Arenberg 10 bus 2452

3001 Leuven, Belgium
roel.peeters@esat.kuleuven.be

ABSTRACT
We present Balloon, a forward-secure append-only persis-
tent authenticated data structure. Balloon is designed for an
initially trusted author that generates events to be stored in
a data structure (the Balloon) kept by an untrusted server,
and clients that query this server for events intended for
them based on keys and snapshots. The data structure is
persistent such that clients can query keys for the current
or past versions of the data structure based upon snapshots,
which are generated by the author as new events are in-
serted. The data structure is authenticated in the sense that
the server can verifiably prove all operations with respect to
snapshots created by the author. No event inserted into the
data structure prior to the compromise of the author can be
modified or deleted without detection. Balloon supports ef-
ficient (non-)membership proofs and verifiable inserts by the
author, enabling the author to verify the correctness of in-
serts without having to store a copy of the Balloon. We also
sketch how to use Balloon to enable client-specific forward-
secure author consistency. In case of author inconsistency,
a client can make a publicly verifiable statement that shows
that the author was inconsistent with respect to his events.

1. INTRODUCTION
This paper is motivated by the lack of an appropriate

data structure that would enable to relax the trust assump-
tions needed in transparency logging. In the setting of trans-
parency logging, an author logs messages intended for clients
through a server : the author sends messages to the server,
and clients poll the server for messages intended for it. In
previous work [22], we constructed a cryptographic scheme
in this setting for which we proved a number of security
and privacy properties of that scheme in the forward secu-
rity model: both the author and the server are assumed to
be initially trusted and will become compromised at some
point in time. Any messages logged before this compro-
mise remain secure and private. To reduce the level of trust
needed in the server, we also presented a secure hardware
extension for the server [27]. With this extension the server
does not need to be trusted, but the hardware needs to be.

In this paper, we propose a novel append-only authenti-
cated data structure that allows the server to be untrusted
without the need for trusted hardware. Our data structure,
which is called Balloon1, allows for efficient proofs of both

1Like an ideal balloon, a vacuum balloon, our balloon is filled
with nothingness (seemingly random data) without giving in
to any external pressures (attackers) to collapse (remove or

membership and non-membership. As such, the server is
forced to provide a verifiable reply to all queries. Hence the
server needs to be honest or risk being caught when cheat-
ing. Since Balloon is append-only, we can greatly improve
the efficiency in comparison with other authenticated data
structures, such as persistent authenticated dictionaries [1].

As already discussed, Balloon can be used for transparency
logging to make data processing by service providers trans-
parent to data subjects whose personal data are being pro-
cessed in a secure and privacy-friendly way. Balloon can also
be also used as part of a secure logging system, similar to the
history tree system by Crosby and Wallach [9]. In Certifi-
cate Transparency (CT) [15], Balloon can be used to provide
efficient non-membership proofs, which are highly relevant
in relation to certificate revocation for CT [14, 15, 21].

We make the following contributions:

• A novel append-only authenticated data structure called
Balloon that allows for both efficient membership and
non-membership proofs while keeping the storage and
memory requirements minimal (Section 4).

• Efficient verifiable inserts into our append-only au-
thenticated data structure that enable both the au-
thor and monitors to ensure consistency of the data
structure (Section 4). Verifiable inserts can have ap-
plications for monitors in, e.g., [3, 13, 14, 15, 24, 28].

• A thorough security evaluation of Balloon and its al-
gorithms (Section 5).

• How to use an authenticated data structure, like a Bal-
loon, to achieve client-specific forward-secure author
consistency and how the client can make author in-
consistencies publicly verifiable (Section 6).

The rest of the paper is structured as follows. Section 2
defines our setting, adversary model, and high-level security
and privacy requirements. Section 3 presents the intuition
behind our idea and the two key building blocks. Section 7
presents related work and compares Balloon to prior work.
Section 8 concludes the paper. Of independent interest, the
appendix shows why probabilistic proofs are insufficient for
ensuring consistency of a Balloon without greatly increasing
the burden on the prover.

replace nothingness with something).



2. SETTING
We have three types of entities: an author A, a server S,

and one or more clients C. The author is trusted to insert
events into a data structure kept by the server, where an
event e is defined as being composed of a key k and a value
v, such that e = (k, v). Each insert into the data structure,
kept by the server, produces a snapshot s that covers all
data stored at the server up to that point. Clients query
the server for events based on keys and snapshots, and the
server proves the correctness of the replies to clients based
on signatures made by the author as part of the snapshots.
The author is assumed to gossip snapshots to clients, and
clients to gossip snapshots between each other. The author
may, e.g., make snapshots publicly available on a website
that clients continuously poll and clients opportunistically
compare snapshots they know2.

Figure 1 illustrates our setting, giving an example with
one author, one server, and three distinct clients. For trans-
parency logging, the author could be a data processor and
the clients data subjects. For syslog, the author could be an
intrusion detection system (IDS), the server a collector, and
clients different security information and event management
(SIEM) systems. For increasing transparency in certificate
issuance, the author could be a certificate authority (CA)
and clients browsers.

SA C

gossip s

Figure 1: Our setting with one author A inserting events into
a data structure kept by an untrusted server S. A gossips
snapshots s to one or more clients C, who gossips s between
each other, and use the snapshots to query S for events.

For achieving client-specific forward-secure author consis-
tency, as described in Section 6, one key assumption is that
the author and each client share a secret. The secret is used
by the author to generate deterministic keys for events in-
tended for specific clients. We assume that the secret is
unique per client, and generated uniformly at random from

a sufficiently large sample space: secret
R←− {0, 1}φ with 2φ

being the intended security level. How this secret is agreed
upon is out-of-scope of this paper, but could, e.g., be gener-
ated using an authenticated key-agreement protocol [6].

2.1 Adversary Model and Assumptions
The author A is assumed to be initially trusted, but will

turn into an active adversary at some point in time. Our
goal is to protect events sent by A prior to compromise,
commonly known as forward security [5]: events that are
sent now are secure from a future compromise of A. We
consider this adversary model more realistic than, e.g., the
“only trust author at time of generating events” model used
in some related work [9]. This is because in our setting,

2While exceptionally important for security, we consider the
exact gossip mechanism out of scope of our work, as done in
closely related work, such as [9, 11, 15].

once the author is compromised, so is its signing key. Fur-
thermore, in any realistic setting, once a system has been
compromised any future actions from said system are highly
questionable. Unlike A, we consider the server S to be an
active adversary from the beginning. We assume that at
least one client C is honest. For communication, we assume
a secure channel between A, S, and all C. We explicitly con-
sider availability out of scope, that is, A and S will always
reply, however, their replies may be malicious.

We assume idealised cryptographic building blocks in the
form of a hash function Hash(·) and signature scheme that is
used to sign a message m and verify the resulting signature:

{>,⊥} ← Verifyvk
(
Signsk(m),m

)
(1)

The signature scheme should be existentially unforgeable un-
der known message attack [12]. The hash function should
be collision and pre-image resistant [23]. In Section 5 we
show that these properties are sufficient for fulfilling the se-
curity and privacy requirements in our setting, as defined
below. The message authentication (MAC) function, used in
Section 6, should be existentially unforgeable [4].

2.2 Requirements
We identify the following high-level requirements related

to the data structure kept at the server:

R1. Minimal trust in the server Even if an adversary
controls the server, the server should be unable to
cheat without violating any of our assumptions stated
in Section 2.1.

R2. (Non-)membership proofs The server must always
provide a reply (either a membership or a non-membership
proof) that is provably consistent with a statement
made by an honest author. (Non-)membership proofs
for keys should be verifiable both by the author and the
clients. The (non-)membership proofs keep the server
honest, i.e., force the server to follow the protocol.

R3. Publicly verifiable integrity & deletion detection
The data structure should be publicly verifiable in the
sense that anyone can detect any modifications or dele-
tions between snapshots.

R4. Minor overhead at the author The author should
be able to discard most of the data that is stored at
the server. In some settings the author may be greatly
resource-constrained, e.g., as a log relay or sensor.

R5. Event privacy When the server proves the correct-
ness of a reply to a query, the resulting proof should
not leak any information about events other than the
events which are being queried for (if applicable).

Requirements R1–R3 focus on the verifiability of safely out-
sourcing events to an untrusted server by the author. R4
is a matter of efficiency. Finally, R5 impacts all other re-
quirements in the sense that no proof from the server should
leak information about events to an adversary that is not in
control of the server.

3. OUR IDEA
The intuition behind Balloon is that S keeps two tree-

based authenticated data structures, that we merge into one
data structure (the Balloon), over all events created by A.



Periodically, A sends new events to S. S updates its data
structure and proves the correctness of the update to A.
This convinces A to sign the roots of the two composing
data structures, forming a snapshot, and the snapshot is
gossiped to clients and shared with the server. Clients can
then query S for events based on keys and snapshots.

Balloon is composed of two data structures: a history tree
and a hash treap. The reason for this is simple: a history
tree, as defined by Crosby and Wallach [9], can provide ef-
ficient membership proofs (for any snapshot), while a hash
treap can provide efficient non-membership proofs. A sim-
ilar approach of composing two data structures has been
used by, e.g., ECT [24], DTKI [28] and Revocation Trans-
parency [14]. In Section 7 we compare our solution to these
solutions. Next, we present our two composing data struc-
tures before defining how they are merged together into one
data structure in Section 4 to form a Balloon.

3.1 History Tree
A tamper-evident history system, as defined by Crosby

and Wallach [9], consists of a history tree data structure
and five algorithms. A history tree is in essence a versioned
Merkle tree [18] (hash tree). Each leaf node in the tree is
the hash of an event, while interior nodes are labeled with
the hash of its children nodes in the subtree rooted at that
node. The root of the tree fixes the content of the entire
tree. Different versions of history trees, produced as events
are added, can be proven to make consistent claims about
the past. The five algorithms, adjusted to our terminology,
were initially defined by Crosby and Wallach [9], as follows:

• H.Add(e) → ci. Given an event e the system appends
it to the history tree H as the i:th event and then
outputs a commitment3 ci.

• H.MembershipGen(i, cj) → (P, ei). Generates a mem-
bership proof P for the i:th event with respect to com-
mitment cj , where i ≤ j, from the history tree H. The
algorithm outputs P and the event ei.

• H.IncGen(ci, cj)→ P . Generates an incremental proof
P between ci and cj , where i ≤ j, from the history tree
H. Outputs P .

• P.MembershipVerify(i, cj , e
′
i) → {true, false}. Veri-

fies that P proves that e′i is the i:th event in the history
defined by cj (where i ≤ j). Outputs true if true, oth-
erwise false.

• P.IncVerify(c′i, cj) → {true, false}. Verifies that P
proves that cj fixes every event fixed by c′i (where i ≤
j). Outputs true if true, otherwise false.

Proof generation works in essence by creating a pruned tree
containing just the nodes needed to convince the verifier.
The verifier traverses the pruned tree and is provided with
the values needed to compute the relevant hashes. Every
other value can safely be discarded due to the properties
of the cryptographic hash function [9]. For membership
proofs, the pruned tree in the proof forms an authenticated
path from the root of the tree in the commitment cj to the
i:th event (stored in the i:th leaf). Incremental proofs be-
tween two commitments ci and cj are generated by creating

3A commitment ci is the root of the history tree for the i:th
event, signed by the system.

a pruned tree that enables the verifier to compute both ci
and cj from the same pruned tree. Similar to membership
queries, this boils down to authenticated paths. While not
mentioned by Crosby and Wallach, the security of authen-
ticated paths in Merkle trees are well studied. Coronado [7]
shows that the security of the authenticated path in the
Merkle tree, as part of the Merkle signature scheme, reduces
to finding a collision for the underlying hash function.

3.2 Hash Treap
A treap is a type of randomised binary search tree [2],

where a binary search tree is balanced using heap priorities.
Each node in a treap has a key, value, priority, and a left
and a right child. A treap has three important properties:

1. Traversing the treap in order gives the sorted order of
the keys;

2. Treaps are structured according to the nodes’ priori-
ties, where each node’s children have lower priorities;

3. Given a deterministic attribution of priorities to nodes,
a treap is set unique and history independent, i.e., its
structure is unique for a given set of nodes, regard-
less of the order in which nodes were inserted, and
the structure does not leak any information about the
order in which nodes were inserted.

When a node is inserted in a treap, its position in the treap
is first determined by a binary search. Once the position is
found, the node is inserted in place, and then rotated up-
wards towards the root until its priority is consistent with
the heap priority. When the priorities are assigned to nodes
using a cryptographic hash function, the tree becomes prob-
abilistically balanced with an expected depth of logn, where
n is the number of nodes in the treap. Inserting a node takes
expected O(logn) operations and results in expected O(1)
rotations to preserve the properties of the treap [8]. Given
a treap, it is straightforward to build a hash treap: have
each node calculate the hash of its own attributes4 together
with the hash of its children. Since the hash treap is a
Merkle tree, its root fixes the entire hash treap. The con-
cept of turning treaps into Merkle trees for authenticating
the treap has been used for example in the context of per-
sistent authenticated dictionaries [10] and authentication of
certificate revocation lists [21].

We define the following algorithms on our hash treap:

• T.Add(k, v) → r. Given a unique key k and value v,
where |k| > 0 and |v| > 0, the system inserts them into
the hash treap T and then outputs the updated hash
of the root r. The add is done with priority Hash(k),
which results in a deterministic treap. After the new
node is in place, the hash of each node along the path
from the root has its internal hash updated. The hash
of a node is Hash(v||k||left.hash||right.hash).

• T.AuthPath(k) → (P, v). Generates an authenticated
path P from the root of the treap T to the key k. The
algorithm outputs P and, in case of when a node with
key k was found, the associated value v. For each node
i in P , ki and vi need to be provided to verify the hash
in the authenticated path.

4The priority can safely be discarded since it is derived solely
from the key and implicit in the structure of the treap.



• P.AuthPathVerify(k, v)→ {true, false}. Verifies that

P proves that k is a non-member if v
?
= ⊥ or otherwise

a member.

Now that we have explained our idea and its two core
building blocks, we can define a Balloon more precisely and
the algorithms on a Balloon.

4. BALLOON
Here we define a Balloon as a data structure composed of a

hash treap and history tree, and a number of algorithms on a
Balloon. Since a Balloon is append-only, we decided to only
keep the latest version of the hash treap and consequently
make the membership queries in the hash treap only against
this latest version. To link both underlying data structures
together, we insert events as follows: the hash of the event is
first inserted into the history tree, the position (leaf index)
in the history tree is then used as value together with the
hash of the event key as key to insert a node to the hash
treap. Note that events are inserted in batches or sets, and
that only one snapshot will be generated for each set, as such
the numbering of the snapshots might be non-consecutive,
e.g., s10 is the next snapshot after s5 if 5 events where added
in the last insert.

We present the following algorithms for Balloon:

• B.Insert(E) → P . Given a set of events E with
unique keys and non-zero values the system appends
it to the Balloon B, and then outputs proof P .

• P.VerifyInsert(E, sl)→ {sl+|E|, false}. Verifies that
P proves that events E were correctly inserted into the
Balloon with the latest verified snapshot sl. Outputs
the next snapshot sl+|E| if the proof is correct, false
otherwise.

• B.MembershipQuery(k, sj) → (P, sl, ei). Generates a
(non-)membership proof P for the event with key k
from snapshot sj for the Balloon B. The algorithm
outputs P , the latest snapshot sl, and, in the case of
membership, the event ei, where i ≤ j ≤ l.

• P.MembershipVerify(k, sj , sl, e
′
i)→ {true, false}.

Verifies that P proves the (non-)membership of the
event e′i with key k in sl and, if member, that e′i is the
i:th event in sj , where i ≤ j ≤ l.

To define our algorithms we make use of the high-level al-
gorithms previously defined on history trees and hash treaps
in Section 3, and two other algorithms: BuildPrunedTree

and root. The BuildPrunedTree algorithm takes one or
more authenticated paths in the same hash treap or history
tree and constructs a single pruned Merkle tree based on the
provided paths. The tree is pruned in the sense that sev-
eral paths in the original tree the authenticated paths were
generated in are replaced by the hashes of branches not vis-
ited along the paths. In case of operating on output from
our T.AuthPath, the pruned tree qualifies as a pruned hash
treap, since the output of T.AuthPath contains the key (k in
Section 3.2) and priority (derived from k) used to structure
the treap. This fact is later used for our verifiable insert al-
gorithm. The root algorithm takes either a (pruned) Merkle
tree or a commitment from a history tree as input and re-
turns the hash of the root node that fixes the entire tree
represented by the input.

Next, in Section 4.1, we describe how membership queries
are performed (B.MembershipQuery and P.MembershipVerify).
Section 4.2 presents how new events are inserted into the
hash treap and history tree, resulting in new snapshots cre-
ated by the author (B.Insert and P.VerifyInsert). Sec-
tion 4.3 discusses hash treap and history tree consistency.

4.1 Membership Query
A membership query is performed between a client/author

and a server. Algorithm 1 defines how the server, given
a key k and a snapshot sj , performs a membership query
for an event with the provided key. First, in step 1, the
server generates an authenticated path in the hash treap
for the hash of the provided key. In steps 2–3, the proof
of non-membership is complete if there was no event with
the provided key, indicated by the empty value, or if the
event was inserted after the provided snapshot was created.
The proof, in step 3 (and in step 5), includes the latest
snapshot sl since the authenticated path in the hash treap
is performed on the current hash treap at the server, not
past versions, and the value of the key in the hash treap,
which is the index (position) of the event in the history tree
(if applicable). Step 4 generates a membership proof for
the event at the position indicated by the value in the hash
treap. This proof is performed on the commitment cj , as
part of sj , since this was the snapshot the client queried
for. Note that for a membership proof the hash treap is
irrelevant. We include searching in the hash treap regardless
since it provides us with an expected O(logn) lookup time
for the index of the event in the history tree, instead of
assuming some other data structure facilitating this lookup.
Finally, step 5 returns the full membership proof, including
the event ei in question together with the two proofs in the
hash treap and history tree. In the history tree we store the
hash of the event, and not the event itself. Where the server
actually stores events is out of scope for our work, as noted
by Crosby and Wallach [8].

Algorithm 1 A membership query for a key in a snapshot.

Require: The history tree H, the hash treap T , a key k, where
|k| > 0, and a snapshot sj .

Ensure: A proof P of the (non-)membership of an event with
key k, the latest snapshot sl, and, if an event with the key
exists, the event ei, where i ≤ j ≤ l and e.k = k.

1: (PT , i)← T.AuthPath
(
Hash(k)

)
2: if i

?
= ⊥ ∨ i > j then . key not in treap or after snapshot

3: return (P ← (PT , i), sl) . sl cached Algorithm 3

4: (PH , ei)← H.MembershipGen(i, cj) . cj is part of sj
5: return

(
P ← (PT , i, PH), sl, ei

)
Algorithm 2 describes how a client/author verifies a proof

from a membership query, as defined in Algorithm 1. First,
in steps 1–2, the client/author verifies the provided authen-
ticated path in the hash treap and that the root of the au-
thenticated path matches the root provided in the latest
snapshot sl (rl is part of sl). Steps 3–4 check if the value
in the hash treap indicates a non-membership proof, either
by the value being empty or the value indicating that the
event was added after queried for snapshot sj . In step 4,
the proof is a valid non-membership proof only if there was
no included event. Finally, step 5 verifies that the root of
the authenticated path in the history tree matches the com-
mitment cj (as part of sj), that the event key matches the



queried for key k, and that the membership proof is correct
in the history tree. Note that when we require as input to
Algorithm 2 (and later also to Algorithms 3 and 4) one or
more snapshots s, we assume that the verifier will indeed
verify that each snapshot is valid, i.e., that it is signed by
the author and of expected length.

Algorithm 2 Verify a membership query proof.

Require: A proof P , a key k, snapshots sj and sl where j ≤ l,
an optional event e′i.

Ensure: true if the query is correct, false otherwise.
1: if PT .AuthPathVerify

(
Hash(k), i

)
6= true ∨ root(PT ) 6= rl

then . i is part of P , rl of sl
2: return false . invalid path or root in treap proof

3: if i
?
= ⊥ ∨ i > j then . no key in treap or event after sj

4: return e′i
?
= ⊥ . non-membership proof if e′i is empty

5: return root(PH)
?
= cj ∧ e′i.k

?
= k ∧

PH.MembershipVerify
(
i, cj , Hash(e′i)

)
. cj is part of sj

4.2 Verifiable Insert
A verifiable insert is performed by the author and the

server. The intuition is that the server will provide only the
necessary pruned trees of the history tree and hash treap
such that the author can perform the insert itself into the
pruned trees and calculate the resulting roots. This con-
vinces the author to sign the updated resulting roots of the
history tree and hash treap, resulting in a new snapshot.

Algorithm 3 defines how the server inserts a set of events
E, provided by the author, into the hash treap and history
tree such that the author can verify the correctness of the in-
sertion. A function Ω, that deterministically orders events,
is part of the input to the algorithm. This is needed because
the history tree is, unlike the hash treap, not history inde-
pendent and we need to order the events in the history tree.
Step 1 generates a membership proof for the latest event in-
serted into the history tree. This authenticated path in the
tree fixes all events inserted into the history tree this far [8].
Next, steps 2–3 generate |E| authenticated paths in the hash
treap and store the resulting pruned hash treap. This fixes
the path in the hash treap to all events in E. The generation
can be done in parallel, since the treap is not modified, and
redundant nodes as part of the resulting pruned hash treap
can safely be omitted. Steps 4–6 inserts all events into the
hash treap and the history tree. Step 5 inserts the hash of
the event into the history tree, and the commitment ci is
returned for the newly inserted event with index i. Step 6
inserts the hash of the event key as the key in the hash treap,
and the value is the index of the hash of the event in the
history tree. This merges the hash treap and history tree
into one data structure. Finally, steps 7–9 add the updated
roots of the two trees to the proof and return the proof.

Algorithm 4 verifies a proof from Algorithm 3 and is run
by the author. First, in steps 1–2, the author verifies that
the roots of the pruned history tree and hash treap matches
the last verified roots by the author. Steps 3–4 check the
membership proof in the history tree. Step 5 builds a pruned
hash treap and history tree based on the nodes included in
the proof. Steps 6–8 add all events to the pruned history tree
and hash treap, similar to steps 4–6 in Algorithm 3. For
the history tree, events are added chronologically and the
authenticated path fixes all past events. For the hash treap,
the authenticated paths also contain the hashed keys (and

Algorithm 3 Verifiably insert a set of events.

Require: A set of events E, the history tree H, the hash treap
T , a function Ω that deterministically orders events, and the
latest snapshot sl.

Ensure: The events have been inserted and a proof P of correct-
ness has been created.

1: (PH , Pe)← H.MembershipGen(l, cl) . cl is part of sl, l is the
latest index

2: for all e ∈ E do . This can be done in parallel
3: PT ← PT ∪ T.AuthPath

(
Hash(ek)

)
4: for all e ∈ E in the order generated by Ω do
5: ci ← H.Add

(
Hash(e)

)
. the value is Hash(e), the key the

position i in H
6: T.Add

(
Hash(ek), i

)
. key is Hash(ek), value the position i

7: PHr ← ci . Only the latest ci from adding events
8: PTr ← root(T ) . The root of the treap
9: return P

therefore also the priorities) of the nodes along the relevant
paths. Last, but most importantly, step 9 compares the
provided updated roots of the history tree and hash treap
with the calculated roots.

Algorithm 4 Verify the correctness of an insertion proof.

Require: A set of events E, a function Ω that deterministically
orders events, a proof P , the last verified hash treap root Tr
and history tree commitment cl.

Ensure: true if the proof is correct, false otherwise.
1: if root(PH) 6= cl ∨ root(PT ) 6= Tr then
2: return false
3: if PH .MembershipVerify

(
l, cl, Hash(Pe)

)
6= > then

4: return false
5: H ← BuildPrunedTree(PH), T ← BuildPrunedTree(PT )
6: for all e ∈ E in the order generated by Ω do
7: ci ← H.Add

(
Hash(e)

)
8: T.Add

(
Hash(ek), i

)
9: return root(H)

?
= root(PHr ) ∧ root(T )

?
= PTr

If Algorithm 4 succeeds, the author creates a snapshot:

si ←
(
Signsk(i||ci||root(T )), i, ci, root(T )

)
(2)

The new snapshot is gossiped to clients and shared with the
server. Now that we have the basic functionality of querying
and updating a Balloon in place, we look at consistency, a
key consideration for security in the setting when the author
may become compromised.

4.3 Ensuring Consistency
Efficient incremental proofs, realised by the IncGen and

IncVerify algorithms, are a key feature of history trees [8].
Anyone can challenge the server to provide a proof that one
commitment as part of a snapshot is consistent with an-
other commitment as part of another snapshot. Consistency
means that all commitments make consistent claims about
the past, i.e., the data structure is append-only. While these
proofs give strong assurance about the consistency of com-
mitments on a history tree, these say nothing about the
signed roots of a hash treap as part of snapshots. We are
not aware of any efficient algorithms for incremental proofs
in hash treaps (or any lexicographically sorted data struc-
ture), it appears to be an open problem [11], and we note it
as interesting future work. In the appendix, we show why
one cannot efficiently use probabilistic proofs of consistency
for a Balloon. In absence of efficient (both for the server and



verifier in terms of computation and size) incremental proofs
in hash treaps, we rely on a concept from, e.g., Certificate
Transparency: monitors [15].

We assume that a subset of clients, or any third party,
will take on a role referred to as a “monitor”, “auditor”, or
“validator” in ,e.g., [3, 13, 14, 15, 24, 28]. A monitor con-
tinuously monitors all data stored at a server and ensures
that all snapshots issued by an author are consistent (among
other things). Note that a monitor, for ensuring consistency,
do not directly need to concern itself about what is stored
in a server: the monitor can operate on the hashes that are
inserted into the Balloon, instead of the events directly. A
monitor can request all hashes of events and hashes of event
keys as part of a snapshot from the server. This, together
with the function Ω5 for a Balloon, enables the monitor to
continuously reconstruct both the hash treap and history
tree starting from scratch. When a monitor has verified the
consistency of all snapshots generated so far, then the mon-
itor has an identical copy of the history tree and hash treap
as the server. At this point in time, the monitor can take
the same approach as the author for verifiably inserts: the
monitor can remove all data and only keep the latest verified
snapshot. When new events are inserted, the server can for-
ward the insertion proof P to the monitors as well as to the
author. Figure 2 illustrates this setting. The monitor will
also need hashes from each new event, E′, which contains
the hashes of each event and its key. With this, monitors
can use a version of Algorithm 4, denoted Algorithm 4’ in
Figure 2, to verify updates (steps 7 and 8 need to be modi-
fied). This saves storage at monitors at the cost of the extra
bandwidth needed for sending also the insertion proofs P to
the monitors.

SA

CM

E
Algorithm 3

P
Algorithm 4

Algorithm 4’

P,E′

Figure 2: Clients may take on the role of a monitor, M,
and receive proofs (P ) and hashes of events (E′) from the
server generated by Algorithm 3 as part of the verifiable
insert of new events by the author. This enables monitors to
continuously verify snapshots without a copy of the Balloon.

It may be in the interest of server to store one or more
proofs and events (P,E′) for the latest x snapshots to fa-
cilitate monitors that only periodically verifies consistency.
The server can of course opt to recompute P and/or E′ for
any snapshot, but calculating past versions of a hash treap
are relatively expensive [11]. We note that there are with a
high-probability redundancies between subsequent insertion
proofs, just like there are redundant nodes in the authen-
ticated paths of the hash treap when inserting events (Al-
gorithm 3). This redundancy could be used to make sub-
sequent proofs more efficient for both authors and monitors
that are willing to use some storage to keep past proofs. We

5Note that for monitors, Ω has to produce the same order
given only the hashes of events and their keys, as when given
the original events.

leave this to future work.

4.4 Event Privacy
A membership query for a Balloon involves an authen-

ticated path in the hash treap. Along the authenticated
path in the hash treap, each node contains a key and value.
The key is the hash of an event key (due to step 3 in Algo-
rithm 3), and the value the index of an event in the history
tree. Thanks to hashing event keys, an authenticated path
in a hash treap does not reveal event keys that can be used
to query the server for valid events. However, the authen-
ticated path reveals the relationship between other hashed
event keys and their values, i.e., when other events have been
inserted into the Balloon, relative to other events as they are
represented in Balloon. In settings where the server may be
considered semi-trusted, it may be of interest to hide this
information. Also note that there is little point in trying
to hide values in the hash treap from monitors, since mon-
itors will learn the relationship between internal nodes as a
consequence of reconstructing the Balloon.

One can hide the relationship between nodes in authen-
ticated paths by making the following changes in the algo-
rithms on the hash treap specified in Section 3.2:

• T.Add(k, v) → r. A node key is calculated as k′ ←
Hash(k) and the priority Hash(k′). The hash for a node
is Hash

(
Hash(v||k)||k′||left.hash||right.hash

)
.

• T.AuthPath(k)→ (P, v). For each node i in P , Hash(vi||ki)
and k′i are provided, not vi or ki.

• P.AuthPathVerify(k, v)→ {true, false}. Verifies the
authenticated path using the updated form of calculat-
ing the hash of a node. If a membership proof (v 6= ⊥),
Hash(v||k) of the node with the queried for key is cal-
culated and compared to the output included in P .

The main change above involves in each node hashing the
value v together with k, Hash(v||k), to hide the value. It is
not sufficient to hash the value alone, since it is an incremen-
tal index of leaf nodes in the history tree. Presumably, keys
in the hash treap have sufficient entropy to prevent brute-
force attacks6. We therefore hash the value with the key k,
and use the hash of the key k′ as the node key in the hash
treap. The verification algorithm, P.AuthPathVerify, veri-
fies that both k and v are correct in authentication proofs.
This only reveals a verifiable v for events which a client
queries for, in line with our event privacy requirement.

5. EVALUATION
We will first do a security evaluation of the two main

components of a Balloon: membership queries and verifi-
able insert. Verifiable insert is of great importance to prove
consistency of our data structure with its past (and indi-
rectly, that the two underlying trees are consistent with each
other). Finally, we will evaluate how the requirements, as
set in Section 2.2 are met.

5.1 Membership Queries
An adversary is said to forge a response to a membership

query for a given key and snapshot if it can provide either:

6This is at least the case for our client-specific forward au-
thor consistency extension, as described in Section 6.



1. a non-membership proof for an event with the given
key k that was added to the Balloon before the given
snapshot si, or

2. a membership proof for an event with the given key
k that was not added to the Balloon before the given
snapshot si.

A snapshot is said to be correct if the snapshot is consistent
with previous snapshots and the author’s signature on it
verifies using Verify.

Theorem 1. Assuming a collision resistant hash func-
tion and correct snapshots, membership proofs in a Balloon
are universal unforgeable. I.e., there exists no polynomi-
ally computationally bounded adversary A that can forge a
membership proof for a given key and snapshot with a non-
negligible success probability.

Proof. We will start by showing that there exists no
polynomially computationally bounded adversary that can
create a non-membership proof for an event with the given
key that was added to the Balloon before the given snapshot.
Recall that a non-membership proof consists of the latest
snapshot sl (containing the root of the latest hash treap),
an authenticated path for the root of the latest hash treap to
the hash of the given key Hash(k), and if the key is present
in the latest hash treap, the corresponding value j.

Under the assumption that the latest snapshot, and thus
the root of the latest hash treap, is correct, the hash treap
is a fixed Merkle tree. An adversary can only succeed by
constructing a different authenticated path for the correct
root of the latest hash treap to the given key to show that
either a) Hash(k) is not present in the treap; or b) the value j
corresponding to Hash(k) is greater than i, meaning that the
event with the given key k has been added after snapshot si.
Coronado [7] showed that the security of authenticated paths
in Merkle trees can be reduced to the collision resistance of
underlying the hash function.

Now, we only need to show that there also exists no poly-
nomially computationally bounded adversary that can cre-
ate a membership proof for an event with the given key that
was not added to the Balloon before the given snapshot. A
membership proof consists of the latest snapshot sl, an au-
thenticated path in the hash treap, the corresponding value
in the hash treap j ≤ i, an authenticated path in the history
tree from the root as present in the given snapshot si to the
index (position) j and the event ej .

Assuming that the given snapshot is correct, the adversary
needs to construct two different authenticated paths (one in
the hash treap and one in the history tree) with a number
of constraints to show that: a) there is a node in the hash
treap with key Hash(k) and value j ≤ i, b) there is a node
in the history tree with key j for which the adversary can
also return an event ej . Similar to the first case, this can be
reduced to the collision resistance of the hash function.

If snapshots can no longer be assumed to be correct due to
author compromise at some point in time, one needs to dif-
ferentiate between proofs of membership and proofs of non-
membership. The former are done against a given snapshot
si, the latter against the latest snapshot sl. For the proofs
of membership one has forward security: provided with a
snapshot si, received through gossip before the time of au-
thor compromise, the proof of membership can be trusted.

However, after author compromise, one cannot trust any
more the proofs of non-membership nor the proofs of mem-
bership against a snapshot that was generated after author
compromise, unless one is convinced of the consistency of
the snapshots.

5.2 Consistent Snapshots
In a Balloon, it is the author (verifiable insert) and the

monitors (ensuring consistency) that determine whether or
not a snapshot is consistent with all previous snapshots.
This has an influence on the attacker model: as long as the
author is honest and verifies the insert before signing the new
snapshot, correctness of the snapshot can be reduced to the
existential unforgeability of the author’s signature. From
the moment the author turns malicious, both the monitors
and the gossiping mechanism (to ensure that monitors have
access to every snapshot) play an essential role to ensure the
continued correctness of the snapshots.

Lemma 1. Assuming a collision resistant hash function,
for a given snapshot that is consistent with the past, inserting
all events into a Balloon, snapshot by snapshot, according to
the sorting function Ω up till a given snapshot will result in
an identical Balloon, fixed by the same roots as present in
the given snapshot.

A history tree is determined by the events and the order
these were inserted into the tree. The order is deterministi-
cally set by Ω within each snapshot. For the hash treap the
order is irrelevant because the data structure is set unique
and history independent.

Theorem 2. Assuming a collision resistant hash func-
tion, verifiable insert ensures that the roots of snapshots are
consistent with the past.

Proof. By induction. First, we show that the first snap-
shot is consistent with the events added with verifiable in-
sert, by applying Lemma 1.

Then we show that using the current snapshot, verifiable
insert ensures the consistency of the next snapshot. In the
history tree, the membership proof for the latest added event
fixes the entire tree up to the time of the current snapshot.
By doing membership queries in the hash treap for the keys
of the new events to insert, one gets authenticated paths in
the hash treap that form a relevant pruned version of the
hash treap. With this pruned hash treap, one can insert
the events into the hash treap and compute its new root.
This follows from the fact that the position to insert each
a new node is determined by a binary search (which path
the membership query proves), and that balancing the treap
using the heap priority only rotates nodes along the authen-
ticated path. We showed that both pruned sub-trees fix
the Balloon with respect to the currents snapshot. Due to
Lemma 1, we get that adding the events of the next snap-
shot to the Balloon according to the sorting function Ω will
result in a consistent Balloon that is fixed by its roots.

Monitors do not work directly on the event key and value
but instead are supplied with the hash of the event key and
the hash of the entire event. Because of the way inserting
events to Balloon is done, these hashes can also serve as
input, be it for a slightly modified Algorithm 4’.



5.3 Requirements
We fulfil our requirements as follows:

R1. Minimal trust in the server This follows directly from
the fact that neither the membership queries nor the
verifiable insert rely on any trust assumptions at the
server. It is also the author that signs the snapshots.

R2. (Non-)membership proofs Since the server must al-
ways provide a reply (either a membership or a non-
membership proof) that is provably consistent with a
statement made by the author, it must follow the pro-
tocol.

R3. Publicly verifiable integrity & deletion detection
The data structure is publicly verifiable, in the sense
that any modifications or deletions between snapshots
are detected. This follows directly from Lemma 1.

R4. Minor overhead at the author With the verifiable
insert, the author only needs to store the latest snap-
shot. As an added benefit, this also holds for monitors,
as soon as they have catched up with the author.

R5. Event privacy A Balloon achieves computational f-
Zero Knowledge as defined by Naor and Ziv [20], where
f(R) is some information about the set which can be
tolerated to leak to resolvers (in our case, clients).
Given a hash function that is pre-image resistant, no
keys that can be used to query the server for an event
leak from the server’s replies to membership queries
or from the verifiable inserts run by clients. This is
because Balloon uses the hash of the event key as the
key for nodes in hash treaps and the hash of the event
in the history tree. Note however that we do leak the
cardinality of the events, both in total and per snap-
shot. The total number of events can be determined
by querying the server for random keys to eventually
retrieve a full copy of the Merkle tree formed by the
hash treap. By observing how the tree changes over
time the number of events inserted per snapshot, as
they take place, will be apparent.

Clients acting as monitors also learn the relationship
between nodes in the hash treap and the history tree,
i.e., the values of all nodes in the hash treap and the
indices they specify in the history tree. For clients that
do not act as monitors, this information leakage can be
prevented by modifying the hash treap, as described
in Section 4.4.

6. CLIENT-SPECIFIC FORWARD AUTHOR
CONSISTENCY

Balloon can be used to provide client-specific forward au-
thor consistency similar to [22], i.e., integrity protection with
deletion detection for the chain of events generated for a
specific client, up to the time of compromise of the author.
As such one can be assured of the data structure’s consis-
tency, be it only for the subset of events one is interested in,
without having to rely on monitors. To be able to provide
client-specific consistency, the author has to:

• generate the keys for the events in a client-specific, de-
terministic, forward-secure manner that includes event
values;

• provide the client upon request with a signed state-
ment on the the key for the next client-specific event,
the latest snapshot, and the identity of the client; and

• sign the initial secret together with the identity of the
client on setup.

This will ensure that the author remains honest, otherwise
the author will have signed two conflicting statements (the
author also signs each snapshot on its own) that can be used
to prove to a third party that the author is inconsistent.

6.1 Generating Client-Specific Keys
The client-specific keys for events will be generated based

on the client’s identifier (IDi), the secreti, and the value
of the previous event vi,j−1. The server only keeps the lat-
est value of the intermediate key k′i,j , that can be used to
generate the next client-specific key ki,j . The j-th key for
client i with identity IDi is generated as follows:

ki,j = MACk′i,j (IDi) with

{
k′i,j = Hash(k′i,j−1||vi,j−1)
k′i,0 = secreti

.

Bellare and Yee [5] showed that this type of construction
provides forward security.

6.2 Verifying Consistency
The client can verify the data structure’s consistency with

respect to events created for it by the author, up till the
point in time of author compromise, as follows. The client
will generate its keys, starting from the shared secret, in the
same way as the author. For each key, the client will query
the server and receive an event together with a membership
proof. Note that the author can only request events sequen-
tially since the next key also depends on the value of the
currently queried event. At a certain key, the client will re-
ceive a non-membership proof. At this point, the client will
request a signed statement from the author on the value of
its next key. This key needs to correspond with the key on
which the non-membership proof was received7.

6.3 Proving Author Inconsistency
When the client-specific consistency verification fails, the

client might want to make a complaint about the author to
a third party. One has to differentiate between two cases:

1. There is an event in the Balloon for the key and snap-
shot from the signed statement; or

2. There is no such event with the indicated key.

Case 1
A proof of author inconsistency towards a third party is
straightforward:

• The signed statement on the key and snapshot sl; and

• A membership proof for the given key in snapshot si,
where i ≤ l.

The membership proof can only be with respect to a snap-
shot before or the same snapshot as the signed statement.
If the membership proof is with respect to a snapshot after

7One has to make sure that both the proof of non-
membership and the signed statement are with respect to
the same latest snapshot.



the statement snapshot, then the event could have been in-
serted after the statement, and therefore the author is not
necessarely inconsistent.

Case 2
We have to distinguish between two sub-cases:

a. There exists at least one event for the client; or

b. There is no event for the client in the Balloon.

For case 2a, the inconsistency proof can leverage the ex-
istance of an event for the client and the structure in which
client-specific keys are generated. The proof of inconsistency
is then:

• The signed statement on an incorrect value and snap-
shot sl;

• A membership proof for the last key that exists for the
client in snapshot si, where i ≤ l;

• A non-membership proof for the key, that follows on
the last existing key for the client, in snapshot sj ,
where j ≥ l; and

• The last intermideate key and the client’s identity needed
to calculate the last key and the one following on the
last key8.

For the membership proof, the proof has to be in a snapshot
si where i ≤ l, because otherwise the event was inserted after
the statement. For the non-membership proof, the proof
has to be in a snapshot sj where j ≥ l, because otherwise
the event might be somewhere in a snapshot sk where i <
k ≤ l. The event key and identifier needed to calculate
the event keys for the last event and its successor (the non-
membership proof) are required to link the membership and
non-membership proofs together in succession and to the
same identifier as for the client in the signed statement.

For case 2b, the inconsistency proof leverages the initial
signature by the author on the secret and identity of the
client used to generate event keys. The proof of inconsis-
tency is then:

• The signed statement on an incorrect value and snap-
shot sl;

• A non-membership proof for the first event of the client
in snapshot si, where i ≥ l; and

• The signed secret and identity from the author.

For the non-membership proof, the proof has to be in a
snapshot si where i ≥ l, because otherwise the event might
be somewhere in a snapshot sk where i < k ≤ l. The
signed secret from the author links the statement and non-
membership proof together to the same client.

Note that by proving to a third party that the author
has been inconsistent, for some cases, the client leaks all
future event keys to the third party. However, given that the
author is inconsistent, the loss of privacy for event existence
is of secondary importance, since presumably the author is
already malicious.

8Note that the value of the last event is also needed to be
able to compute the next key. The value is part of the
membership proof for the last event.

Theorem 3. Assuming a pre-image and collision resis-
tant hash function, an existentially unforgeable MAC algo-
rithm and an existentially unforgeable digital signature scheme
being used, Balloon with its extension provides client-specific
forward author consistency. Moreover, in case of an incon-
sistent author, the client can show this to a third party.

7. RELATED WORK
Certificate Transparency [15] uses a nearly identical9 data

structure and operations as in the tamper-evident history
system by Crosby & Wallach [9] (summarised in Section 3.1).
The setting of Certificate Transparency and Crosby & Wal-
lach’s history system is fundamentally different from ours: a
number of minimally trusted authors insert data into a his-
tory tree kept by a server, and clients query the server for
data and acts as auditors to challenge the server to prove
consistency between commitments. Clients play a similar
role in our setting, however, in our setting it is the author’s
signatures as part of snapshots that are being challenged,
not the server’s. Our verifiable insert algorithms, described
in Section 4.2, enable the author to verify that the server
updated the data structure correctly, without the author
storing a copy of the entire data structure. Author verifica-
tion is not needed in the setting of Certificate Transparency
or Crosby & Wallach’s history system, since it is the server
signing, not authors.

Balloon is an authenticated data structure [16, 19, 26],
closely related to authenticated dictionaries [21] and per-
sistent authenticated dictionaries (PADs) [1]. In a PAD,
clients can query a server based on key and snapshot, as in
Balloon. However, in a PAD it is possible for the author
to delete keys. By allowing clients to query past versions
of the PAD, the server needs to be able to construct past
versions of the PAD to calculate proofs. This is relatively
costly, and even the most efficient solution10 for tree-based
PADs according to Crosby and Wallach [11] incurs O(logn)
expected storage per insert. Table 1 compares this PAD
with Balloon. Balloon only requires constant total storage
size at the author, thanks to verifiable inserts, at the cost
of a logarithmic insert size due to the transport of verifiable
insert proofs11. Performing a membership query for past
snapshots is more efficient in Balloon, since we do not have
to calculate past versions of our data structure, while the
PAD has to query the version cache of each node along the
path (each cache of size v). We can make this improvement
in Balloon due to not allowing deletion of keys (i.e. Balloon
is append only). The insert storage size at the server is also
more efficient in Balloon thanks to not having to maintain
a version cache.

For PADs, Crosby and Wallach [11] note that red-black
trees are more efficient than treaps due to their worst-case
instead of expected logarithmic bounds on several important
operations. We opt for using a treap due to its relative sim-
plicity and its history independence property, which is im-
portant for our event privacy requirement (see Section 2.2).

9The only difference is how non-full trees are handled, as
noted in Section 2.1 of [15].

10Using Sarnak-Tarjan versioned nodes with a cache-
everywhere strategy for calculated hash values [25, 10].

11Verifying this proof is what causes the insert time at the
author. For the PAD, the insert time is due to updating the
data structure.



Table 1: A comparison between Balloon and a PAD based upon a red-black tree using Sarnak-Tarjan versioned nodes with a
cache-everywhere strategy for calculated hash values [10, 11, 25]. Values are expected complexity. Note that red-black trees
also have the same worst-case complexity, while Balloon due to being a probabilistic data structure does not. The number of
events in the data structure is n and v is the size of the version cache.

Total Storage
Size (A)

Query Time
(current)

Query Time
(past)

Insert Storage
Size (S)

Insert
Time (A)

Insert
Time (S)

Insert Proof
Size

Balloon O(1) O(logn) O(logn) O(1) O(logn) O(logn) O(logn)
Tree-based PAD O(n) O(logn) O(log v · logn) O(logn) O(logn) O(logn) O(1)

Miller et al. [19] present a generic method for authenti-
cating operations on any data structure that can be defined
by standard type constructors. In essence, their generic so-
lution works by having the prover provide the authenticated
paths (if viewed as a directed acyclic graph) in the data
structure that are traversed by the prover when perform-
ing an operation. The verifier can then perform the same
operation on only the authenticated paths provided in the
proof. The verifier only has to store the latest correct di-
gest that fixes all the contents in the data structure, like our
snapshots. Our verifiable insert algorithms are based on the
same principle, i.e., we provide authenticated paths in the
hash treap and history tree that correspond to the part of
the data structures that the verifier needs to insert the data
itself and calculate the updated roots.

In Revocation Transparency, Laurie and Kasper [14] present
two options for data structures for certificate revocation: a
sorted list and a sparse Merkle tree. The sorted list is, as
noted by Laurie and Kasper, inferior to the sparse Merkle
tree approach, so we only discuss sparse Merkle trees. Sparse
Merkle trees create a Merkle tree with 2N leafs, where N is
the bit output length of a hash algorithm Hash(·). A leaf is
set to 1 if the certificate with the hash value fixed by the
path to the leaf from the root of the tree is revoked, and 0 if
not. While the tree in general is too big to store or compute
on its own, the observation that most leafs are zero (i.e., the
tree is sparse), means that most authenticated paths in the
tree are redundant, and only paths including non-zero leafs
need to be computed (and potentially stored) on their own.
We are unaware of any thorough work on sparse Merkle trees
beyond the idea presented by Laurie and Kasper [14]. At
first glance, it appears like sparse Merkle trees could replace
the hash treap in a Balloon with similar size/time complex-
ity operations. We note this as future work.

Enhanced Certificate Transparency (ECT) by Ryan [24]
extends CT by using two data structures: one chronologi-
cally sorted and one lexicographically sorted. The chrono-
logically sorted data structure corresponds to a history tree
(like CT). The lexicographically sorted data structure is sim-
ilar to our hash treap. In ECT, each new operation on a
subject (like a certificate) is inserted into the chronological
data structure together with the hash that fixes the entire
lexicographical data structure after it has been updated.
Each entry in the lexicographical data structure contains
the operations for a subject, such as a domain name or other
form of identity. Updating the lexicographical data struc-
ture involves adding the operation to the list of operations
performed on the subject of the operation in the lexicograph-
ical data structure. An operation to e.g. revoke a certificate
for a subject does not remove any data from the data struc-
ture, but simply records the operation by appending it to the
list of performed operations. Checking consistency between

the two data structures then comes down to two options:
random checking or auditors that check everything. Audi-
tors correspond to monitors in CT or validators in e.g. AKI
and ARPKI [13, 3]. Random checking involves probabilistic
proofs that e.g. browsers can make. The random checking
verifies that a random operation recorded in the chronolog-
ical data structure has been correctly performed in the lexi-
cographical data structure. To check non-current versions of
the lexicographical data structure, this requires the prover
to generate past versions of the lexicographical data struc-
ture, as for PADs, which is relatively costly [11]. Distributed
transparent key infrastructure (DTKI) [28] builds upon the
same data structures as ECT. ETC and DTKI only supports
probabilistic proofs of the current lexicographic data struc-
ture. This is safe, assuming that the probability that each
version of the lexicographic data structure (presented to any
client) is fully verified is high enough to deter an attacker.

CONIKS [17] is a key management system, in a setting
similar to CT, where minimally trusted clients manage their
public keys in directories at untrusted key servers. To en-
sure consistency of the directory, clients download and ver-
ify their keys in every commitment (version) of the direc-
tory, somewhat similar to how our clients in Balloon can
ensure consistency of their own events using client-specific
forward author consistency. This requires the key server to
be able to reconstruct past versions of the directory. Keys
for entries in the directory are predictable (.e.g. an email
address), leading to privacy problems similar to our event
privacy requirement. CONIKS uses verifiable unpredictable
functions, based on verifiable random functions, to prevent
key enumeration. This could be used for Balloon in case
event keys are predictable. Finally, CONIKS link commit-
ments together into a commitment chain, together with a
specified (instead of assumed, as in our and related work)
gossiping mechanism that greatly increases the probability
that an attacker creating inconsistent snapshots is caught.

8. CONCLUSIONS
This paper presented Balloon, an authenticated data struc-

ture composed of a history tree and a hash treap. With
Balloon, a forward-secure author can safely outsource stor-
age of events intended for different clients to an untrusted
server. Our security evaluation shows that different parts of
Balloon are secure under the modest assumptions of a col-
lision resistant hash function and an unforgeable signature
algorithm. Balloon is a more efficient solution in our setting
than using a PAD, as summarised by Table 1.

The idea behind verifiable inserts for Balloon may be of
interest, e.g., for monitors in several schemes focused on cer-
tificate issuance transparency. Minimising storage at moni-
tors, at the cost of increased bandwidth, may be beneficial in
some settings such as for exceedingly large data structures.



Using Balloon for client-specific forward author consis-
tency, with publicly verifiable proofs of author inconsistency,
is a promising approach for tacking the problems of data
structure and snapshot consistency. Monitors can be seen
as prohibitively expensive and probabilistic proofs as too
unlikely to catch an attacker performing a targeted attack.
In the appendix we present a negative result on the use of
probabilistic proofs for consistency in a Balloon.

Moving forward, our intent is to use Balloon as a build-
ing block for an improved version of our prior work on dis-
tributed privacy-preserving transparency logging [22], pro-
viding client-specific forward author consistency. Another
interesting avenue of future work is investigating sparse Merkle
trees as a replacement for the hash treap in Balloon.
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Negative Result on Probabilistic Consistency
Here we present a negative result from our attempt at en-
suring consistency of a Balloon with probabilistic proofs.
Probabilistic proofs are compelling, because they may enable
more resource-constrained clients en-mass to verify consis-
tency, removing the need for monitors that perform the rel-
atively expensive role of downloading all events at a server.
Assume the following pair of algorithms:

• B.IncGen(si, sj , r) → P . Generates a probabilistic in-
cremental proof P using randomness r between si and
sj , where i ≤ j, from the Balloon B. Outputs P .

• P.IncVerify(s′i, sj , r) → {true, false}. Verifies that
P probabilistically proves that sj fixes every event fixed
by s′l, where i ≤ j, using randomness r.

Our attempt
Our envisioned B.IncGen algorithm shows consistency in two
steps:

• First, it uses the H.IncGen algorithm from the history
tree. This ensures that the snapshots are consistent on
the history tree.

• Secondly, it selects deterministically and uniformly based
on r a number of events E from the history tree. Which
events to select from depends on the two snapshots.
For each selected event, the algorithm performs a
B.MembershipQuery for the event key to show that the
event is part of the hash treap and points to the index
of the event in the history tree.

The P.IncVerify algorithm checks the incremental proof in
the history tree, each membership query, and that the events
E were selected correctly based on r. Next, we explain an
attack, why it works, and possible lessons learned.

Attack
Here we explain an attack on our attempt that allows an
attacker to hide an arbitrary event that was inserted before
author compromise. The attacker takes control over both the
author and server just after snapshot st. Assume that the
attacker wants to remove an event ei from Balloon, where
i ≤ t.

The attacker does the following:

1. Remove the event identifier of ei from the hash treap
and insert a random key. Do any rebalancing of the
treap if needed.

2. Insert a new event with a random key and value using
B.Insert.

3. Create the new snapshot, st+1 .

We know that the snapshot st+1 is inconsistent with all other
prior snapshots, sp, where p ≤ t.

Now, we show how the attacker can avoid being detected
by P.IncVerify in the case that the verifier challenges the
server (and therefore the attacker) to probabilistically prove
the consistency between sp and st+1, AND that the ran-
domness provided by the verifies selects the event ei that
was modified by the attacker12. The attacker can provide a
valid incremental proof in the history tree, using H.IncGen,
since the history tree has not been modified. However, the
attacker cannot create a valid membership query for the
modified event, since its key was removed from the hash
treap in st+1. To avoid detection, the attacker creates a
new snapshot sl that contains the event in question in the
hash treap and performs the B.MembershipQueries using
this new snapshot for the hash treap.

Lessons learnt
This attack succeeds because the attacker can, once having
compromised the author and server, a) create snapshots at
will; and b) membership queries are always performed on
the current version of the hash treap.

In settings where snapshots are generated periodically,
e.g., once a day, the probability of the attacker getting caught
in this way is non-neglible given a sufficient number of queries.
However, as long as the attacker can create snapshots at will,
the probability that it will be detected with probabilistic in-
cremental proofs is zero, as long as:

• it cannot be challenged to generate past versions of the
hash treap; and

• there are no monitors or another mechanism like client-
specific forward author consistency, presented in Sec-
tion 6, that prevent the attacker from modifying or
deleting events.

12Note that this case only happens with a very small proba-
bility.
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