A LINEAR ATTACK ON KAHROBAEI-LAM-SHPILRAIN KEY EXCHANGE PROTOCOL

JINTAI DING, ALEXEI MIASNIKOV, AND ALEXANDER USHAKOV

Abstract

In this paper we analyze the Kahrobaei-Lam-Shpilrain (KLS) key exchange protocols that use extensions by endomorpisms of matrices over a Galois field proposed in 2. We show that both protocols are vulnerable to a simple linear algebra attack. Keywords. Group-based cryptography, semidirect product, Galois field. 2010 Mathematics Subject Classification. 94A60, 68W30.

1. Introduction

The key-exchange protocol proposed by Habeeb, Kahrobaei, Koupparis, and Shpilrain (HKKS) in [1] uses exponentiation in general semidirect products of (semi)groups. When used with an appropriate finite field, it gives the standard Diffie-Hellman protocol based on cyclic groups. The authors of [1] claimed that "when the protocol is used with non-commutative (semi)groups, it acquires several useful features" and proposed a particular platform semigroup which is the extension of the semigroup of 3×3 matrices over the group ring $\mathbb{F}_{7}\left[A_{5}\right]$ (where A_{5} is the alternating group) using inner automorphisms of $\mathbf{G L}_{3}\left(\mathbb{F}_{7}\left[A_{5}\right]\right)$. It was shown in [3] that the protocol is susceptible to a simple linear algebra attack.

Later, Kahrobaei, Lam, and Shpilrain in [2] (see also [patent]) proposed two other instantiations of the HKKS protocol that use certain extension of the semigroup of 2×2 matrices over the field $\mathbb{G F}\left(2^{127}\right)$ and claim that the new protocols are safe for the linear attack described in [3]. In this paper we discuss security properties of the new protocols and show that they are susceptible to attacks similar to those of 3].

2. HKKS KEY EXChANGE PROTOCOL

Let G and H be groups, let $\operatorname{Aut}(G)$ be the group of automorphisms of G, and let $\rho: H \rightarrow \operatorname{Aut}(G)$ be a group homomorphism. The semidirect product of G and H with respect to ρ is the set of pairs $\{(g, h) \mid g \in G, h \in H\}$ equipped with the binary operation given by

$$
(g, h) \cdot\left(g^{\prime}, h^{\prime}\right)=\left(g^{\rho\left(h^{\prime}\right)} g^{\prime}, h \circ h^{\prime}\right)
$$

for $g \in G$ and $h \in H$. It is denoted by $G \rtimes_{\rho} H$. Here $g^{\rho\left(h^{\prime}\right)}$ denotes the image of g under the automorphism $\rho\left(h^{\prime}\right)$, and $h \circ h^{\prime}$ denotes a composition of automorphisms with h acting first.

Some specific semidirect products can be constructed as follows. First choose your favorite group G. Then let $H=\operatorname{Aut}(G)$ and $\rho=\mathrm{id}_{G}$. In which this case the semidirect product $G \rtimes_{\rho} H$ is called the holomorph of G. More generally, the

[^0]group H can be chosen as a subgroup of $\operatorname{Aut}(G)$. Using this construction, the authors of [1] propose the following key exchange protocol.

Algorithm 1. HKKS key exchange protocol
Initial Setup: Fix the platform group G, an element $g \in G$, and $\varphi \in \operatorname{Aut}(G)$. All this information is made public.
Alice's Private Key: A randomly chosen $m \in \mathbb{N}$.
Bob's Private Key: A randomly chosen $n \in \mathbb{N}$.
Alice's Public Key: Alice computes $(g, \varphi)^{m}=\left(\varphi^{m-1}(g) \ldots \varphi^{2}(g) \varphi(g) g, \varphi^{m}\right)$ and publishes the first component $a=\varphi^{m-1}(g) \ldots \varphi^{2}(g) \varphi(g) g$ of the pair.
Bob's Public Key: Bob computes $(g, \varphi)^{n}=\left(\varphi^{n-1}(g) \ldots \varphi^{2}(g) \varphi(g) g, \varphi^{n}\right)$ and publishes the first component $b=\varphi^{n-1}(g) \ldots \varphi^{2}(g) \varphi(g) g$ of the pair.
Alice's Shared Key: Alice computes the key $K_{A}=\varphi^{m}(b) a$ taking the first component of the product $\left(b, \varphi^{n}\right) \cdot\left(a, \varphi^{m}\right)=\left(\varphi^{m}(b) a, \varphi^{n} \varphi^{m}\right)$. (She cannot compute the second component since she does not know φ^{n}.)
Bob's Shared Key: Bob computes the key $K_{B}=\varphi^{n}(a) b$ taking the first component of the product $\left(a, \varphi^{m}\right) \cdot\left(b, \varphi^{n}\right)=\left(\varphi^{n}(a) b, \varphi^{m} \varphi^{n}\right)$. (He cannot compute the second component since he does not know φ^{m}.)

Note that $K_{A}=K_{B}$ since $\left(b, \varphi^{n}\right) \cdot\left(a, \varphi^{m}\right)=\left(a, \varphi^{m}\right) \cdot\left(b, \varphi^{n}\right)=(g, \varphi)^{n}$. The general protocol described above can be used with any non-abelian group G and an inner automorphism φ (conjugation by a fixed non-central element of G). Furthermore, since all formulas used in the description of this protocol hold if G is a semigroup and φ is a semigroup automorphism of G, the protocol can be used with semigroups. The private keys m, n can be chosen smaller than the order of (g, ϕ). For a finite group G, this can be bounded by $(\# G) \cdot(\# \operatorname{Aut}(G))$.
2.1. Proposed parameters for the HKKS key exchange protocol. In the original paper [1], the authors propose and extensively analyze the following specific instance of their key exchange protocol. Consider the alternating group A_{5}, i.e. the group of even permutations on five symbols (a simple group of order 60) and the field $\mathbb{F}_{7}=\mathbb{G F}(7)$. Let $G=\operatorname{Mat}_{3}\left(\mathbb{F}_{7}\left[A_{5}\right]\right)$ be the monoid of all 3×3 matrices over the ring $\mathbb{F}_{7}\left[A_{5}\right]$ equipped with multiplication. As usual, by $\mathbf{G L}_{3}\left(\mathbb{F}_{7}\left[A_{5}\right]\right)$ we denote the group of invertible 3×3 matrices over the ring $\mathbb{F}_{7}\left[A_{5}\right]$. Fix an inner automorphism of G, i.e., a map $\varphi=\varphi_{H}: G \rightarrow G$ for some $H \in \mathbf{G L}_{3}\left(\mathbb{F}_{7}\left[A_{5}\right]\right)$ defined by:

$$
M \mapsto H^{-1} M H
$$

Clearly, we have $\left(\varphi_{H}\right)^{m}=\varphi_{H^{m}}$ and

$$
\begin{aligned}
& \varphi_{H}^{m-1}(M) \ldots \varphi_{H}^{2}(M) \varphi_{H}(M) M \\
= & H^{-(m-1)} M H^{m-1} \ldots H^{-2} M H^{2} \cdot H^{-1} M H^{1} \cdot M \\
= & H^{-m}(H M)^{m} .
\end{aligned}
$$

This way we obtain the following specific instance of the HKKS key exchange protocol.

Algorithm 2. HKKS key exchange protocol using $\operatorname{Mat}_{3}\left(\mathbb{F}_{7}\left[A_{5}\right]\right)$

Initial Setup: Fix matrices $M \in \operatorname{Mat}_{3}\left(\mathbb{F}_{7}\left[A_{5}\right]\right)$ and $H \in \mathbf{G L}_{3}\left(\mathbb{F}_{7}\left[A_{5}\right]\right)$. They are made public.
Alice's Private Key: A randomly chosen $m \in \mathbb{N}$.
Bob's Private Key: A randomly chosen $n \in \mathbb{N}$.
Alice's Public Key: Alice computes $A=H^{-m}(H M)^{m}$ and makes A public.
Bob's Public Key: Bob computes $B=H^{-n}(H M)^{n}$ and makes B public.
Shared Key: $K_{A}=K_{B}=H^{-n-m}(H M)^{n+m}$.

The security of this protocol is based on the assumption that, given the matrices $M \in \operatorname{Mat}_{3}\left(\mathbb{F}_{7}\left[A_{5}\right]\right), H \in \mathbf{G L}_{3}\left(\mathbb{F}_{7}\left[A_{5}\right]\right), A=H^{-m}(H M)^{m}$, and $B=H^{-n}(H M)^{n}$, it is hard to compute the matrix $H^{-n-m}(H M)^{n+m}$.

In [3] it was shown that the problem above can be easily solved using the fact that H is invertible. Indeed, any solution of the system:

$$
\left\{\begin{array}{l}
L A=R \\
L H=H L \\
R H M=H M R \\
L \text { is invertible }
\end{array}\right.
$$

with unknown matrices L, R immediately gives the shared key as the product $L^{-1} B R$. To solve the system above we describe the set of all solutions to the linear system:

$$
\left\{\begin{array}{l}
L A=R \\
L H=H L \\
R H M=H M R
\end{array}\right.
$$

and try-and-check if L is invertible for randomly chosen solutions. With high probability a required solution will be found in a few tries.

3. Defense against the linear attack

The attack described in Section 2.1 splits the public key A into a product of two "appropriate" matrices L, R that act as H^{-m} and $(H M)^{m}$, respectively. The following countermeasure was proposed in [2, Section 5] to prevent the attack. If M is not invertible, then M is not invertible and the annihilator of $H M$:

$$
\operatorname{Ann}(H M)=\left\{K \in \operatorname{Mat}_{3}\left(\mathbb{F}_{7}\left[A_{3}\right]\right) \mid K \cdot H M=O\right\}
$$

(where O is the zero matrix) is not trivial. Since in addition we have $m, n>0$, then adding $O_{A}, O_{B} \in \operatorname{Ann}(H M)$ to the public keys A and B changes the keys, but does not change the deduced shared key. This gives the following scheme.

Algorithm 3. Modified HKKS key exchange protocol using $\operatorname{Mat}_{3}\left(\mathbb{F}_{7}\left[A_{5}\right]\right)$
Initial Setup: Fix matrices $M \in \operatorname{Mat}_{3}\left(\mathbb{F}_{7}\left[A_{5}\right]\right)$ and $H \in \mathbf{G L}_{3}\left(\mathbb{F}_{7}\left[A_{5}\right]\right)$. They are made public.
Alice's Private Key: A randomly chosen $m \in \mathbb{N}$ and $O_{A} \in \operatorname{Ann}(H M)$.
Bob's Private Key: A randomly chosen $n \in \mathbb{N}$ and $O_{B} \in \operatorname{Ann}(H M)$.
Alice's Public Key: Alice computes $A=H^{-m}(H M)^{m}+O_{A}$ and makes A public.
Bob's Public Key: Bob computes $B=H^{-n}(H M)^{n}+O_{B}$ and makes B public.
Shared Key: $K_{A}=K_{B}=H^{-n-m}(H M)^{n+m}$.

The idea behind this modification is that one can not simply split A into a product of two matrices and move one of them to the left hand side. Below, using the property that annihilator is a left ideal and H is invertible, we show that this is incorrect and the same attack applies. Indeed, it is easy to see that any solution of the system of equations:

$$
\left\{\begin{array}{l}
L A=R+Z \\
L H=H L \\
R \cdot H M=H M \cdot R \\
Z \cdot H M=O \\
L \text { is invertible }
\end{array}\right.
$$

with unknown matrices L, R and Z, immediately gives the shared key as the product $L^{-1} B R$. It is important that H is invertible.

4. HKKS protocol using an extension of the semigroup of matrices OVER a Galois field by an endomorphism

Another countermeasure suggested in [2, Section 4] is to replace the inner automorphism φ_{H} with a more complex endomorphism. That requires change of the platform semigroup. Consider the semigroup $G=\operatorname{Mat}_{2}\left(\mathbb{G F}\left(2^{127}\right)\right)$ of 2×2 matrices over a finite field $\mathbb{G F}\left(2^{127}\right)$. Let ψ be the endomorphism of G which raises every entry of a given matrix to the 4 th power:

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \quad \stackrel{\psi}{\mapsto}\left[\begin{array}{ll}
a^{4} & b^{4} \\
c^{4} & d^{4}
\end{array}\right] .
$$

Fix $H \in \mathbf{G L}_{2}\left(\mathbb{G F}\left(2^{127}\right)\right)$ and the corresponding inner automorphism φ_{H}. Now, $\varphi=\psi \circ \varphi_{H}$ with ψ acting first. This choices give us another instance of the HKKS protocol.
4.1. Analysis of the protocol. The map $x \stackrel{\tau}{\mapsto} x^{4}$ defined on $\mathbb{G F}\left(2^{127}\right)$ can be recognized as a square of the Frobenius automorphism and, in particular, $\tau \in$ $\operatorname{Aut}\left(\mathbb{G F}\left(2^{127}\right)\right)$. It induces an automorphism ψ of $\operatorname{Mat}_{2}\left(\mathbb{G F}\left(2^{127}\right)\right)$:

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \quad \stackrel{\psi}{\mapsto}\left[\begin{array}{ll}
a^{4} & b^{4} \\
c^{4} & d^{4}
\end{array}\right]
$$

Lemma 4.1. $|\tau|=127$ in $\operatorname{Aut}\left(M_{2}\left(\mathbb{G F}\left(2^{127}\right)\right)\right)$. Therefore, $|\psi|=127$ in $\operatorname{Aut}\left(\operatorname{Mat}_{3}(\mathbb{G F}(7))\right)$.
Proof. Consider the Frobenius automorphism ρ which squares elements of $\mathbb{G F}\left(2^{127}\right)$. Then $\rho^{127}(x)=x^{2^{127}}=x$ for every $x \in \mathbb{G F}\left(2^{127}\right)$. On the other hand, since $x^{2^{k}}-x=0$ can not have more than 2^{k} solutions in a field, we can deduce that $|\rho|=127$. Now $|\tau|=\left|\rho^{2}\right|=127$.

Now, φ is the composition of the endomorphism ψ and conjugation by H :

$$
\varphi(M)=H^{-1} \psi(M) H
$$

for every $M \in M_{2}\left(\mathbb{G F}\left(2^{127}\right)\right)$. For every $k \in \mathbb{N}$ we have:

$$
\varphi^{k}(M)=\prod_{i=0}^{k-1} \psi^{i}\left(H^{-1}\right) \cdot \psi^{k}(M) \cdot \prod_{i=k-1}^{0} \psi^{i}(H)
$$

With so defined φ, the Alice's public key $A=\varphi^{m-1}(M) \ldots \varphi(M) M$ is of the form:

$$
\begin{aligned}
& \left(\prod_{i=0}^{m-1} \psi^{i}\left(H^{-1}\right) \cdot \psi^{m}(M) \cdot \prod_{i=m-1}^{0} \psi^{i}(H)\right) \cdot\left(\prod_{i=0}^{m-2} \psi^{i}\left(H^{-1}\right) \cdot \psi^{m-1}(M) \cdot \prod_{i=m-2}^{0} \psi^{i}(H)\right) \ldots H^{-1} \psi(M) H \cdot M \\
& =\left(\prod_{i=0}^{m-1} \psi^{i}\left(H^{-1}\right) \cdot \psi^{m}(M)\right) \psi^{m-1}(H) \psi^{m-1}(M) \cdot \psi^{m-2}(H) \psi^{m-2}(M) \cdot \ldots \cdot \psi(H) \psi(M) \cdot H M \\
& =\left(\prod_{i=0}^{m} \psi^{i}\left(H^{-1}\right)\right) \cdot\left(\prod_{i=m}^{0} \psi^{i}(H M)\right)
\end{aligned}
$$

Since $|\psi|=127$ we can divide $m=127 \cdot q+r$ and write the key as follows:

$$
A=\left(\prod_{i=0}^{126} \psi^{i}\left(H^{-1}\right)\right)^{q} \cdot\left(\prod_{i=0}^{r} \psi^{i}\left(H^{-1}\right)\right) \cdot\left(\prod_{i=r}^{0} \psi^{i}(H M)\right) \cdot\left(\prod_{i=126}^{0} \psi^{i}(H M)\right)^{q}
$$

The Bob's public key B is has a similar form (with $n=127 \cdot s+t$):

$$
B=\left(\prod_{i=0}^{126} \psi^{i}\left(H^{-1}\right)\right)^{s} \cdot\left(\prod_{i=0}^{t} \psi^{i}\left(H^{-1}\right)\right) \cdot\left(\prod_{i=t}^{0} \psi^{i}(H M)\right) \cdot\left(\prod_{i=126}^{0} \psi^{i}(H M)\right)^{s}
$$

Now we can use the "old trick". For each $0 \leq r \leq 126$ try to solve the system of equations:

$$
\left\{\begin{array}{l}
L \cdot A=\left(\prod_{i=0}^{r} \psi^{i}\left(H^{-1}\right)\right) \cdot\left(\prod_{i=r}^{0} \psi^{i}(H M)\right) \cdot R \\
L \cdot \prod_{i=0}^{126} \psi^{i}\left(H^{-1}\right)=\prod_{i=0}^{126} \psi^{i}\left(H^{-1}\right) \cdot L \\
R \cdot \prod_{i=126}^{0} \psi^{i}(H M)=\prod_{i=126}^{0} \psi^{i}(H M) \cdot R \\
L \text { is invertible. }
\end{array}\right.
$$

If the pair (L, R) satisfies the system above, then $L^{-1} B R$ is the shared key.

5. Conclusion

In this paper we analyzed two modifications of the HKKS protocol proposed in [2] and proved that both protocols can be easily broken by simple linear algebra attacks.

References

[1] M. Habeeb, K. Kahrobaei, C. Koupparis, and V. Shpilrain. Public key exchange using semidirect product of (semi)groups. In Applied Cryptography and Network Security - ACNS 2013, volume 7954 of Lecture Notes Comp. Sc., pages 475-486. Springer, 2013.
[2] D. Kahrobaei, H. Lam, and V. Shpilrain. Public key exchange using extensions by endomorphisms and matrices over a Galois field. Preprint, available at http://www.sci.ccny.cuny.edu/~shpil/semi_galois.pdf
[3] A. D. Myasnikov and A. Ushakov. A linear algebra attack to group-ring-based key exchange protocols. In Applied Cryptography and Network Security - ACNS 2014, volume 8479 of Lecture Notes Comp. Sc., pages 37-43. Springer, 2014.

Department of Mathematics, University of Cincinnati, OH, USA
E-mail address: jintai.ding@gmail.com

Department of Mathematics, Stevens Institute of Technology, Hoboken, NJ, UsA
E-mail address: amiasnik,aushakov@stevens.edu

[^0]: The work was partially supported by NSF grant DMS-1318716.

