A More Explicit Formula for Linear Probabilities of Modular Addition Modulo a Power of Two

S. M. Dehnavi ${ }^{1}$, A. Mahmoodi Rishakani ${ }^{2}$, M. R. Mirzaee Shamsabad ${ }^{3}$
${ }^{1}$ Kharazmi University, Faculty of Mathematical and Computer Sciences, Tehran, Iran std_dehnavism@khu.ac.ir
${ }^{2}$ Shahid Rajaee Teacher Training University, Faculty of Sciences, Tehran, Iran am.rishakani@srttu.edu
${ }^{3}$ Shahid Bahonar University, Faculty of Mathematics and Computer Science, Kerman, Iran mohammadmirzaeesh@yahoo.com

Abstract

Linear approximations of modular addition modulo a power of two was studied by Wallen in 2003. He presented an efficient algorithm for computing linear probabilities of modular addition. In 2013 Schulte-Geers investigated the problem from another viewpoint and derived a somewhat explicit formula for these probabilities. In this note we give a closed formula for linear probabilities of modular addition modulo a power of two, based on what Schulte-Geers presented: our closed formula gives a better insight on these probabilities and more information can be extracted from it.

Key Words: Modular addition modulo a power of two, Linear probability, Symmetric cipher, Linear cryptanalysis

1. Introduction

Linear cryptanalysis is a strong tool in cryptanalysis of symmetric ciphers. In [1] linear approximations of modular addition modulo a power of two is investigated and an efficient algorithm for computing these probabilities is given. A somewhat explicit formula for linear probabilities of this operator is also given in [2]. In this note, we propose a closed formula for linear probabilities of modular addition modulo a power of two based on the algorithm presented in [2]. Our closed formula exhibits a better insight for these probabilities and more information can be derived from it.

In this note, we use the following notations:
$w(x)$: Hamming weight of a binary vector $x=\left(x_{n-1}, \ldots, x_{0}\right)$,
\cdot : Standard dot product,
\oplus : Bitwise XOR operator,
$|B|$: Number of symbols in a block B,
$\bar{\alpha}$: Complement of a bit α,
o-block: A block of symbols 1,2 or 4,
e-block: A block of symbols 3,5 or 6 ,
0-block: A block of symbol 0,
7-block: A block of symbol 7,
[cond]: 1 if cond = true and 0 otherwise.

2. A Closed Formula for Linear Probabilities of Modular Addition

Suppose that the input masks $\left(a_{n-1}, \ldots, a_{0}\right)$ and $\left(b_{n-1}, \ldots, b_{0}\right)$ and the output mask $\left(c_{n-1}, \ldots, c_{0}\right)$ are given. We wish to compute

$$
\begin{equation*}
\left|P(a \cdot x \oplus b \cdot y=c \cdot r)-\frac{1}{2}\right| \tag{1}
\end{equation*}
$$

where

$$
r=x+y \bmod 2^{n}
$$

$x=\left(x_{n-1}, \ldots, x_{0}\right), y=\left(y_{n-1}, \ldots, y_{0}\right)$ and $r=\left(r_{n-1}, \ldots, r_{0}\right)$. To compute (1), we recall the algorithm presented in [2]: put

$$
s_{i}=a_{n-1-i} \oplus b_{n-1-i} \oplus c_{n-1-i}, \quad 0 \leq i<n
$$

Now put $z_{0}=0$ and

$$
z_{i+1}=z_{i} \oplus s_{i}, \quad 1 \leq i<n-1 .
$$

The bias (1) is zero if there exists an $0 \leq i<n$ such that $z_{i}=0$ holds and $a_{i}=b_{i}=c_{i}$ does not hold. Otherwise, we have

$$
\left|P(a \cdot x \oplus b \cdot y=c \cdot r)-\frac{1}{2}\right|=2^{-(w(z)+1)}, \quad z=\left(z_{n-1}, \ldots, z_{0}\right)
$$

We can reformulate the above algorithm in this form: put

$$
S_{i}=a_{n-1-i}+2 b_{n-1-i}+4 c_{n-1-i}, \quad 0 \leq i<n
$$

So we have a sequence S_{0}, \ldots, S_{n-1} of symbols in $\{0, \ldots, 7\}$. Is not hard to see that (1) can be computed by means of the (informal) automata of Picture 1 . We begin by state 0 in the automata and traverse the diagram symbol by symbol. If we meet "halt" then (1) is equal to zero, and otherwise (1) is equal to 2^{-w}. We illustrate our algorithm through some examples:

Example 1. Let $n=9$ and

$$
\begin{aligned}
& \left(a_{8}, \ldots, a_{0}\right)=(0,1,1,0,1,1,1,0,0) \\
& \left(b_{8}, \ldots, b_{0}\right)=(0,1,1,0,1,1,0,0,0) \\
& \left(c_{8}, \ldots, c_{0}\right)=(0,1,1,0,1,0,1,0,1)
\end{aligned}
$$

Then we have

$$
S_{0} \ldots S_{8}=077073504
$$

Traversing the diagram, we get the bias 2^{-5}.

Example 2. Let $n=11$ and

$$
\begin{aligned}
& \left(a_{10}, \ldots, a_{0}\right)=(0,0,1,1,1,0,1,1,0,0,1) \\
& \left(b_{10}, \ldots, b_{0}\right)=(0,0,1,1,1,0,0,0,1,1,1) \\
& \left(c_{10}, \ldots, c_{0}\right)=(0,0,1,1,1,0,0,1,0,1,1)
\end{aligned}
$$

Then we have

$$
S_{0} \ldots S_{10}=00777015267
$$

Traversing the diagram, we get the bias 0 .
In the appendix we have presented a pseudo-code for computing (1). It can be easily checked that the algorithm is very fast.

With the aid of Picture (1) which is by itself derived from [2], the proof of following theorem is straightforward:

Picture 1

Theorem 1. Notations as before, let

$$
S_{0}, \ldots, S_{n-1}=B_{1} \ldots B_{m} .
$$

Here, B_{i} 's, $1 \leq i \leq m$, are o-blocks, e-blocks, 0 -blocks or 7 -blocks. Define $\alpha_{1}=0$ and for $1<i \leq m$

$$
\alpha_{i}=\left\{\begin{array}{cc}
1 \quad \#\left\{B_{j}: 1 \leq j<i, B_{j} \text { is } 7-\text { block of odd length }\right\}+\#\left\{B_{j}: 1 \leq j<i, B_{j} \text { is o }- \text { block }\right\} \text { is odd }, \\
0 & \#\left\{B_{j}: 1 \leq j<i, B_{j} \text { is } 7-\text { block of odd length }\right\}+\#\left\{B_{j}: 1 \leq j<i, B_{j} \text { is o }- \text { block }\right\} \text { is even. } .
\end{array}\right.
$$

Then (1) is equal to

$$
\frac{q}{2^{w}}
$$

where

$$
q=\prod_{i=1}^{m}\left(1-\bar{\alpha}_{i}\left[B_{i} \text { is } o-\text { block or } e-b l o c k\right]\right)
$$

and

$$
w=1+\sum_{B_{i} \text { is o-block or e-block }}\left|B_{i}\right|+\sum_{B_{i} \text { is } 7-\text { block }} \frac{\left.\| B_{i} \mid\right\rfloor}{2}+\sum_{B_{i} \text { is } 0-\text { block }} \alpha_{i}\left|B_{i}\right| .
$$

We state some of the direct consequences of Theorem 1 here:

- If (1) is not zero, then we cannot see a symbol in $\{1,2,4\}$ followed by some blocks which are not 7 -blocks followed by a symbol in $\{1, \ldots 6\}$: as a special case, there cannot be a symbol in $\{1,2,4\}$ before a symbol in $\{1, \ldots, 6\}$.
- If (1) is not zero, then it is less than or equal to $2^{-(d+1)}$ where d is the total number of symbols in $\{1, \ldots, 6\}$.
- If (1) is not zero, then there are (at least) $3^{f} 4^{g}-1$ other sequences with the same probability, where

$$
\begin{gathered}
f=\sum_{B_{i} \text { is o-block or }}\left|B_{i}\right|, \\
g=\sum_{B_{i} \text { is }{ }^{0} 0-\text { block }} \alpha_{i}\left|B_{i}\right| .
\end{gathered}
$$

- If (1) is zero, then there are (at least) $3^{f} 4^{g}-1$ other sequences with zero bias, where

$$
\begin{gathered}
f=\sum_{B_{i} \text { is o-block or } \text { e-block }}\left|B_{i}\right|, \\
g=\sum_{B_{i} \text { is } 0-\text { block }}\left|B_{i}\right| .
\end{gathered}
$$

References

[1] Johan Wallén: Linear Approximations of Addition Modulo 2 ${ }^{\text {n }}$. FSE 2003: 261-273
[2] Ernst Schulte-Geers: On CCZ-equivalence of addition mod 2 ${ }^{\text {n }}$. Des. Codes Cryptography 66(1-3): 111-127 (2013)

Appendix

Input: $\mathrm{S}[0], \ldots, \mathrm{S}[\mathrm{n}-1]$
Output: halt (zero bias) or w (value of the exponent)
$\mathrm{i}=0, \mathrm{~s}=0, \mathrm{w}=1$
while ($\mathrm{i}<\mathrm{n}$) do
index=i
$j=0$
if (S[index]=7)
while ($\mathrm{S}[\mathrm{i}]=7$)
$\mathrm{j}=\mathrm{j}+1$
$\mathrm{i}=\mathrm{i}+1$
end (while)
if $(\mathrm{j}$ is odd) $\mathrm{s}=1-\mathrm{s}$
$\mathrm{w}=\mathrm{w}+(\mathrm{j} \operatorname{div} 2)$
else if (S[index]=0)
$i=i+1$
if ($\mathrm{s}=1$) $\mathrm{w}=\mathrm{w}+1$
else if (S[index] is in $\{1,2,4\}$)
if ($s=0$) halt
$\mathrm{s}=1-\mathrm{s}$
$\mathrm{w}=\mathrm{w}+1$
$\mathrm{i}=\mathrm{i}+1$
else if (S[index] is in $\{3,5,6\}$)
if $(s=0)$ halt
else
$\mathrm{w}=\mathrm{w}+1$
$\mathrm{i}=\mathrm{i}+1$
end (if)
end (if)
end (while)

