
A More Explicit Formula for Linear Probabilities of Modular

Addition Modulo a Power of Two

S. M. Dehnavi1, A. Mahmoodi Rishakani2, M. R. Mirzaee Shamsabad3

1 Kharazmi University, Faculty of Mathematical and Computer Sciences, Tehran, Iran

std_dehnavism@khu.ac.ir

2 Shahid Rajaee Teacher Training University, Faculty of Sciences, Tehran, Iran

am.rishakani@srttu.edu

3 Shahid Bahonar University, Faculty of Mathematics and Computer Science, Kerman, Iran

mohammadmirzaeesh@yahoo.com

Abstract: Linear approximations of modular addition modulo a power of two was studied by

Wallen in 2003. He presented an efficient algorithm for computing linear probabilities of

modular addition. In 2013 Schulte-Geers investigated the problem from another viewpoint and

derived a somewhat explicit formula for these probabilities. In this note we give a closed formula

for linear probabilities of modular addition modulo a power of two, based on what Schulte-Geers

presented: our closed formula gives a better insight on these probabilities and more information

can be extracted from it.

Key Words: Modular addition modulo a power of two, Linear probability, Symmetric cipher,

Linear cryptanalysis

1. Introduction

Linear cryptanalysis is a strong tool in cryptanalysis of symmetric ciphers. In [1] linear

approximations of modular addition modulo a power of two is investigated and an efficient

algorithm for computing these probabilities is given. A somewhat explicit formula for linear

probabilities of this operator is also given in [2]. In this note, we propose a closed formula for

linear probabilities of modular addition modulo a power of two based on the algorithm presented

in [2]. Our closed formula exhibits a better insight for these probabilities and more information

can be derived from it.

In this note, we use the following notations:

𝑤(𝑥): Hamming weight of a binary vector 𝑥 = (𝑥𝑛−1, … , 𝑥0),

mailto:std_dehnavism@khu.ac.ir
mailto:am.rishakani@srttu.edu
mailto:mohammadmirzaeesh@yahoo.com

∙ : Standard dot product,

⊕: Bitwise XOR operator,

|𝐵|: Number of symbols in a block 𝐵,

�̅�: Complement of a bit 𝛼,

o-block: A block of symbols 1,2 or 4,

e-block: A block of symbols 3,5 or 6,

0-block: A block of symbol 0,

7-block: A block of symbol 7,

[𝑐𝑜𝑛𝑑]: 1 if 𝑐𝑜𝑛𝑑 = 𝑡𝑟𝑢𝑒 and 0 otherwise.

2. A Closed Formula for Linear Probabilities of Modular Addition

Suppose that the input masks (𝑎𝑛−1, … , 𝑎0) and (𝑏𝑛−1, … , 𝑏0) and the output mask (𝑐𝑛−1, … , 𝑐0)

are given. We wish to compute

|𝑃(𝑎 ∙ 𝑥 ⊕ 𝑏 ∙ 𝑦 = 𝑐 ∙ 𝑟) −
1

2
|, (1)

where

𝑟 = 𝑥 + 𝑦 𝑚𝑜𝑑 2𝑛,

𝑥 = (𝑥𝑛−1, … , 𝑥0), 𝑦 = (𝑦𝑛−1, … , 𝑦0) and 𝑟 = (𝑟𝑛−1, … , 𝑟0). To compute (1), we recall the

algorithm presented in [2]: put

 𝑠𝑖 = 𝑎𝑛−1−𝑖 ⊕ 𝑏𝑛−1−𝑖 ⊕ 𝑐𝑛−1−𝑖, 0 ≤ 𝑖 < 𝑛.

Now put 𝑧0 = 0 and

𝑧𝑖+1 = 𝑧𝑖⨁𝑠𝑖 , 1 ≤ 𝑖 < 𝑛 − 1.

The bias (1) is zero if there exists an 0 ≤ 𝑖 < 𝑛 such that 𝑧𝑖 = 0 holds and 𝑎𝑖 = 𝑏𝑖 = 𝑐𝑖 does not

hold. Otherwise, we have

|𝑃(𝑎 ∙ 𝑥 ⊕ 𝑏 ∙ 𝑦 = 𝑐 ∙ 𝑟) −
1

2
| = 2−(𝑤(𝑧)+1), 𝑧 = (𝑧𝑛−1, … , 𝑧0).

We can reformulate the above algorithm in this form: put

𝑆𝑖 = 𝑎𝑛−1−𝑖 + 2𝑏𝑛−1−𝑖 + 4𝑐𝑛−1−𝑖, 0 ≤ 𝑖 < 𝑛.

So we have a sequence 𝑆0, … , 𝑆𝑛−1 of symbols in {0, … ,7}. Is not hard to see that (1) can be

computed by means of the (informal) automata of Picture 1. We begin by state 0 in the automata

and traverse the diagram symbol by symbol. If we meet “halt” then (1) is equal to zero, and

otherwise (1) is equal to 2−𝑤. We illustrate our algorithm through some examples:

Example 1. Let 𝑛 = 9 and

(𝑎8, … , 𝑎0) = (0,1,1,0,1,1,1,0,0),

(𝑏8, … , 𝑏0) = (0,1,1,0,1,1,0,0,0),

(𝑐8, … , 𝑐0) = (0,1,1,0,1,0,1,0,1).

Then we have

𝑆0 … 𝑆8 = 077073504.

Traversing the diagram, we get the bias 2−5.

Example 2. Let 𝑛 = 11 and

(𝑎10, … , 𝑎0) = (0,0,1,1,1,0,1,1,0,0,1),

(𝑏10, … , 𝑏0) = (0,0,1,1,1,0,0,0,1,1,1),

(𝑐10, … , 𝑐0) = (0,0,1,1,1,0,0,1,0,1,1).

Then we have

𝑆0 … 𝑆10 = 00777015267.

Traversing the diagram, we get the bias 0.

 In the appendix we have presented a pseudo-code for computing (1). It can be easily checked

that the algorithm is very fast.

 With the aid of Picture (1) which is by itself derived from [2], the proof of following theorem

is straightforward:

Picture 1

Theorem 1. Notations as before, let

𝑆0, … , 𝑆𝑛−1 = 𝐵1 … 𝐵𝑚.

Here, 𝐵𝑖’s, 1 ≤ 𝑖 ≤ 𝑚, are o-blocks, e-blocks, 0-blocks or 7-blocks. Define 𝛼1 = 0 and for

1 < 𝑖 ≤ 𝑚

𝛼𝑖 = {

 1 ⋕ {𝐵𝑗: 1 ≤ 𝑗 < 𝑖, 𝐵𝑗 𝑖𝑠 7 − 𝑏𝑙𝑜𝑐𝑘 𝑜𝑓 𝑜𝑑𝑑 𝑙𝑒𝑛𝑔𝑡ℎ} +⋕ {𝐵𝑗 : 1 ≤ 𝑗 < 𝑖, 𝐵𝑗 𝑖𝑠 𝑜 − 𝑏𝑙𝑜𝑐𝑘} 𝑖𝑠 𝑜𝑑𝑑,

0 ⋕ {𝐵𝑗: 1 ≤ 𝑗 < 𝑖, 𝐵𝑗 𝑖𝑠 7 − 𝑏𝑙𝑜𝑐𝑘 𝑜𝑓 𝑜𝑑𝑑 𝑙𝑒𝑛𝑔𝑡ℎ} +⋕ {𝐵𝑗 : 1 ≤ 𝑗 < 𝑖, 𝐵𝑗 𝑖𝑠 𝑜 − 𝑏𝑙𝑜𝑐𝑘} 𝑖𝑠 𝑒𝑣𝑒𝑛.

Then (1) is equal to

𝑞

2𝑤
 ,

where

𝑞 = ∏(1 − �̅�𝑖[𝐵𝑖 𝑖𝑠 𝑜 − 𝑏𝑙𝑜𝑐𝑘 𝑜𝑟 𝑒 − 𝑏𝑙𝑜𝑐𝑘])

𝑚

𝑖=1

 ,

and

𝑤 = 1 + ∑ |𝐵𝑖|

𝐵𝑖 𝑖𝑠 𝑜−𝑏𝑙𝑜𝑐𝑘 𝑜𝑟 𝑒−𝑏𝑙𝑜𝑐𝑘

+ ∑
⌊|𝐵𝑖|⌋

2
+ ∑ 𝛼𝑖|𝐵𝑖|

𝐵𝑖 𝑖𝑠 0−𝑏𝑙𝑜𝑐𝑘𝐵𝑖 𝑖𝑠 7−𝑏𝑙𝑜𝑐𝑘

 .

We state some of the direct consequences of Theorem 1 here:

 If (1) is not zero, then we cannot see a symbol in {1,2,4} followed by some blocks which

are not 7-blocks followed by a symbol in {1, … 6}: as a special case, there cannot be a

symbol in {1,2,4} before a symbol in {1, … ,6}.

 If (1) is not zero, then it is less than or equal to 2−(𝑑+1) where 𝑑 is the total number of

symbols in {1, … ,6}.

 If (1) is not zero, then there are (at least) 3𝑓4𝑔 − 1 other sequences with the same

probability, where

𝑓 = ∑ |𝐵𝑖|

𝐵𝑖 𝑖𝑠 𝑜−𝑏𝑙𝑜𝑐𝑘 𝑜𝑟 𝑒−𝑏𝑙𝑜𝑐𝑘

,

𝑔 = ∑ 𝛼𝑖|𝐵𝑖|

𝐵𝑖 𝑖𝑠 0−𝑏𝑙𝑜𝑐𝑘

.

 If (1) is zero, then there are (at least) 3𝑓4𝑔 − 1 other sequences with zero bias, where

𝑓 = ∑ |𝐵𝑖|

𝐵𝑖 𝑖𝑠 𝑜−𝑏𝑙𝑜𝑐𝑘 𝑜𝑟 𝑒−𝑏𝑙𝑜𝑐𝑘

,

𝑔 = ∑ |𝐵𝑖|

𝐵𝑖 𝑖𝑠 0−𝑏𝑙𝑜𝑐𝑘

.

References

[1] Johan Wallén: Linear Approximations of Addition Modulo 2n. FSE 2003: 261-273

[2] Ernst Schulte-Geers: On CCZ-equivalence of addition mod 2n. Des. Codes Cryptography 66(1-3):

111-127 (2013)

http://www.informatik.uni-trier.de/~ley/db/conf/fse/fse2003.html#Wallen03
http://dblp.uni-trier.de/db/journals/dcc/dcc66.html#Schulte-Geers13

Appendix

Input: S[0],…,S[n-1]

Output: halt (zero bias) or w (value of the exponent)

i=0, s=0, w=1

while (i<n) do

 index=i

 j=0

 if (S[index]=7)

 while (S[i]=7)

 j=j+1

 i=i+1

 end (while)

 if (j is odd) s=1-s

 w = w + (j div 2)

 else if (S[index]=0)

 i=i+1

 if (s=1) w=w+1

 else if (S[index] is in {1,2,4})

 if (s=0) halt

 s=1-s

 w=w+1

 i=i+1

 else if (S[index] is in {3,5,6})

 if (s=0) halt

 else

 w=w+1

 i=i+1

 end (if)

 end (if)

 end (while)

