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Abstract: Linear approximations of modular addition modulo a power of two was studied by 

Wallen in 2003. He presented an efficient algorithm for computing linear probabilities of 

modular addition. In 2013 Schulte-Geers investigated the problem from another viewpoint and 

derived a somewhat explicit formula for these probabilities. In this note we give a closed formula 

for linear probabilities of modular addition modulo a power of two, based on what Schulte-Geers 

presented: our closed formula gives a better insight on these probabilities and more information 

can be extracted from it. 
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1. Introduction 

Linear cryptanalysis is a strong tool in cryptanalysis of symmetric ciphers. In [1] linear 

approximations of modular addition modulo a power of two is investigated and an efficient 

algorithm for computing these probabilities is given. A somewhat explicit formula for linear 

probabilities of this operator is also given in [2]. In this note, we propose a closed formula for 

linear probabilities of modular addition modulo a power of two based on the algorithm presented 

in [2]. Our closed formula exhibits a better insight for these probabilities and more information 

can be derived from it. 

In this note, we use the following notations: 

𝑤(𝑥): Hamming weight of a binary vector 𝑥 = (𝑥𝑛−1, … , 𝑥0), 
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∙ : Standard dot product, 

⊕: Bitwise XOR operator, 

|𝐵|: Number of symbols in a block 𝐵, 

�̅�: Complement of a bit 𝛼,  

o-block:  A  block  of  symbols 1,2 or 4,  

e-block:  A  block  of  symbols 3,5 or 6,  

0-block: A block of symbol 0,  

7-block: A block of symbol 7,  

[𝑐𝑜𝑛𝑑]: 1 if 𝑐𝑜𝑛𝑑 = 𝑡𝑟𝑢𝑒 and 0 otherwise. 

    

2. A Closed Formula for Linear Probabilities of Modular Addition 

Suppose that the input masks (𝑎𝑛−1, … , 𝑎0) and (𝑏𝑛−1, … , 𝑏0) and the output mask (𝑐𝑛−1, … , 𝑐0)  

are given. We wish to compute  

|𝑃(𝑎 ∙ 𝑥 ⊕ 𝑏 ∙ 𝑦 = 𝑐 ∙ 𝑟) −
1

2
|,                                                             (1) 

where 

𝑟 = 𝑥 + 𝑦   𝑚𝑜𝑑   2𝑛, 

𝑥 = (𝑥𝑛−1, … , 𝑥0), 𝑦 = (𝑦𝑛−1, … , 𝑦0) and 𝑟 = (𝑟𝑛−1, … , 𝑟0). To compute (1), we recall the 

algorithm presented in [2]: put  

                                             𝑠𝑖 = 𝑎𝑛−1−𝑖 ⊕ 𝑏𝑛−1−𝑖 ⊕ 𝑐𝑛−1−𝑖,       0 ≤ 𝑖 < 𝑛.  

Now put 𝑧0 = 0 and 

𝑧𝑖+1 = 𝑧𝑖⨁𝑠𝑖 ,       1 ≤ 𝑖 < 𝑛 − 1. 

The bias (1) is zero if there exists an 0 ≤ 𝑖 < 𝑛 such that 𝑧𝑖 = 0  holds and 𝑎𝑖 = 𝑏𝑖 = 𝑐𝑖 does not 

hold. Otherwise, we have 

|𝑃(𝑎 ∙ 𝑥 ⊕ 𝑏 ∙ 𝑦 = 𝑐 ∙ 𝑟) −
1

2
| = 2−(𝑤(𝑧)+1),     𝑧 = (𝑧𝑛−1, … , 𝑧0). 

We can reformulate the above algorithm in this form: put 



𝑆𝑖 = 𝑎𝑛−1−𝑖 + 2𝑏𝑛−1−𝑖 + 4𝑐𝑛−1−𝑖,       0 ≤ 𝑖 < 𝑛. 

So we have a sequence 𝑆0, … , 𝑆𝑛−1 of symbols in {0, … ,7}. Is not hard to see that (1) can be 

computed by means of the (informal) automata of Picture 1. We begin by state 0 in the automata 

and traverse the diagram symbol by symbol. If we meet “halt” then (1) is equal to zero, and 

otherwise (1) is equal to 2−𝑤. We illustrate our algorithm through some examples: 

 

Example 1. Let 𝑛 = 9 and  

(𝑎8, … , 𝑎0) = (0,1,1,0,1,1,1,0,0), 

(𝑏8, … , 𝑏0) = (0,1,1,0,1,1,0,0,0), 

(𝑐8, … , 𝑐0) = (0,1,1,0,1,0,1,0,1). 

Then we have 

𝑆0 … 𝑆8 = 077073504. 

Traversing the diagram, we get the bias 2−5. 

 

Example 2. Let 𝑛 = 11 and  

(𝑎10, … , 𝑎0) = (0,0,1,1,1,0,1,1,0,0,1), 

(𝑏10, … , 𝑏0) = (0,0,1,1,1,0,0,0,1,1,1), 

(𝑐10, … , 𝑐0) = (0,0,1,1,1,0,0,1,0,1,1). 

Then we have 

𝑆0 … 𝑆10 = 00777015267. 

Traversing the diagram, we get the bias 0. 

    In the appendix we have presented a pseudo-code for computing (1). It can be easily checked 

that the algorithm is very fast. 

    With the aid of Picture (1) which is by itself derived from [2], the proof of following theorem 

is straightforward: 



     

Picture 1 

     

Theorem 1. Notations as before, let  

𝑆0, … , 𝑆𝑛−1 = 𝐵1 … 𝐵𝑚. 

Here, 𝐵𝑖’s, 1 ≤ 𝑖 ≤ 𝑚, are o-blocks, e-blocks, 0-blocks or 7-blocks. Define 𝛼1 = 0 and for     

1 < 𝑖 ≤ 𝑚 

 

𝛼𝑖 = {

 1    ⋕ {𝐵𝑗: 1 ≤ 𝑗 < 𝑖, 𝐵𝑗  𝑖𝑠 7 − 𝑏𝑙𝑜𝑐𝑘 𝑜𝑓 𝑜𝑑𝑑 𝑙𝑒𝑛𝑔𝑡ℎ} +⋕ {𝐵𝑗 : 1 ≤ 𝑗 < 𝑖, 𝐵𝑗  𝑖𝑠 𝑜 − 𝑏𝑙𝑜𝑐𝑘} 𝑖𝑠 𝑜𝑑𝑑,
 

0    ⋕ {𝐵𝑗: 1 ≤ 𝑗 < 𝑖, 𝐵𝑗  𝑖𝑠 7 − 𝑏𝑙𝑜𝑐𝑘 𝑜𝑓 𝑜𝑑𝑑 𝑙𝑒𝑛𝑔𝑡ℎ} +⋕ {𝐵𝑗 : 1 ≤ 𝑗 < 𝑖, 𝐵𝑗  𝑖𝑠 𝑜 − 𝑏𝑙𝑜𝑐𝑘} 𝑖𝑠 𝑒𝑣𝑒𝑛.
 

 

Then (1) is equal to 

𝑞

2𝑤
 , 

where 

𝑞 = ∏(1 − �̅�𝑖[𝐵𝑖 𝑖𝑠  𝑜 − 𝑏𝑙𝑜𝑐𝑘 𝑜𝑟  𝑒 − 𝑏𝑙𝑜𝑐𝑘])

𝑚

𝑖=1

 , 

and 

𝑤 = 1 + ∑ |𝐵𝑖|

𝐵𝑖 𝑖𝑠 𝑜−𝑏𝑙𝑜𝑐𝑘 𝑜𝑟 𝑒−𝑏𝑙𝑜𝑐𝑘

+ ∑
⌊|𝐵𝑖|⌋

2
+ ∑ 𝛼𝑖|𝐵𝑖|

𝐵𝑖 𝑖𝑠 0−𝑏𝑙𝑜𝑐𝑘𝐵𝑖 𝑖𝑠 7−𝑏𝑙𝑜𝑐𝑘

 . 

 

We state some of the direct consequences of Theorem 1 here: 



 If (1) is not zero, then we cannot see a symbol in {1,2,4} followed by some blocks which 

are not 7-blocks followed by a symbol in {1, … 6}: as a special case, there cannot be a 

symbol in {1,2,4} before a symbol in {1, … ,6}. 
 

 

 If (1) is not zero, then it is less than or equal to 2−(𝑑+1) where 𝑑 is the total number of 

symbols in {1, … ,6}. 

 

 If (1) is not zero, then there are (at least) 3𝑓4𝑔 − 1 other sequences with the same 

probability, where 

𝑓 = ∑ |𝐵𝑖|

𝐵𝑖 𝑖𝑠 𝑜−𝑏𝑙𝑜𝑐𝑘 𝑜𝑟 𝑒−𝑏𝑙𝑜𝑐𝑘

, 

 

𝑔 = ∑ 𝛼𝑖|𝐵𝑖|

𝐵𝑖 𝑖𝑠 0−𝑏𝑙𝑜𝑐𝑘

. 

 

 If (1) is zero, then there are (at least) 3𝑓4𝑔 − 1 other sequences with zero bias, where 

𝑓 = ∑ |𝐵𝑖|

𝐵𝑖 𝑖𝑠 𝑜−𝑏𝑙𝑜𝑐𝑘 𝑜𝑟 𝑒−𝑏𝑙𝑜𝑐𝑘

, 

 

𝑔 = ∑ |𝐵𝑖|

𝐵𝑖 𝑖𝑠 0−𝑏𝑙𝑜𝑐𝑘

. 
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Appendix 
 

Input: S[0],…,S[n-1] 

Output: halt (zero bias) or w (value of the exponent) 
 

i=0, s=0, w=1 
 

while (i<n) do 

           index=i 

           j=0 

           if (S[index]=7) 

               while (S[i]=7) 

                         j=j+1 

                         i=i+1 

               end (while) 

               if (j is odd) s=1-s 

               w = w + (j div 2) 

           else if (S[index]=0) 

                       i=i+1 

                       if (s=1) w=w+1 

           else if (S[index] is in {1,2,4}) 

                      if (s=0) halt 

                      s=1-s 

                      w=w+1 

                      i=i+1 

            else if (S[index] is in {3,5,6}) 

                     if (s=0) halt 

                     else 

                           w=w+1 

                           i=i+1 

                     end (if) 

           end (if) 

 end (while)      


