
Automated Dynamic Cube Attack on Block
Ciphers: Cryptanalysis of SIMON and KATAN

Zahra Ahmadian, Shahram Rasoolzadeh, Mahmoud Salmasizadeh, and
Mohammad Reza Aref

Sharif University of Technology, Tehran, Iran.
{ahmadian,sh_rasoolzadeh}@ee.sharif.edu,{salmasi,aref}@sharif.edu

Abstract. A few work has ever been performed in cryptanalysis of block
ciphers using cube attacks. This paper presents a new framework for an
efficient key recovery attack on block ciphers based on cube technique.
In this method, a cube tester is positioned at the middle of the cipher
which is extended in two directions over the maximum possible upper
and lower rounds, given that some subkey bits are guessed. It is shown
that an automated algorithm for this dynamic cube attack on block
ciphers can be realized. Furthermore, we show its effectiveness on two
lightweight block ciphers KATAN and SIMON. Our results shows that
this method can break 117 and 152 out of 254 rounds of KATAN-32
in non-full-codebook and full-codebook attack scenarios, respectively. In
the case of SIMON32/64, we succeed to cryptanalyse 16 and 18 out of
32 rounds, by the same scenarios. Both results show that although this
method does not outperform all the existing attacks on these two ciphers,
it can absolutely compete with the well-established and mature methods
of cryptanalysis of block ciphers, such as linear, differential and meet in
the middle attack families.

Keywords: block cipher, cryptanalysis, cube attack, SIMON, KATAN

1 Introduction

In 2007, Vielhaber proposed the idea of Algebraic IV Differential Attack (AIDA)
[1], which was then continued by Dinur and Shamir under the new title Cube
attack [2]. In this attack, the cipher is treated as a black box whose input consists
of a public tweakable variable (e.g. IV in stream ciphers and plaintext in block
ciphers) and a secret fixed parameter, (the key of the algorithm). The main
idea behind this attack is to find some information about the secret key of the
algorithm by choosing all values for an appropriate subset of the public input
variables and summing up all the corresponding outputs.

This technique can also introduce a distinguisher, the so called cube tester
in [3], where instead of retrieving some information from the key bits, a non-
random property of the cipher is discovered by such an oracle access to the cipher.
Dynamic cube attack can be regarded as a more advanced version of the cube
attack, in which a cube tester is employed not to detect a non-random property,

2 Z. Ahmadian et al.

but to determine if a specific guess for a subset of key bits could be correct or not
[4]. In spite of the classic cube attack where the attacker sees the cipher as the
black box and does not use the structural information of the algorithm, dynamic
cube attack make use of such information, hence it can potentially reach better
results than classic cube attack.

Cube attack family has shown to be very effective in cryptanalysis of lightweight
stream ciphers. Grain [5] and Trivium [6] are two lightweight stream ciphers,
for both of which the most successful attacks are a kind of cube attack family
[1,2,3,4,7,8,9]. In contrast to its significant results in cryptanalysis of lightweight
stream ciphers, apart from a combination of cube attack and algebraic attack
[10], it has not yet been applied to block ciphers1.

In this paper, we aim to take the first steps for an efficient application of cube
technique for cryptanalysis of block ciphers. The technique that we propose
is apparently similar to dynamic cube attack on stream ciphers [4], since it
makes use of some distingushers to discard some wrong guesses of the secret
key. Furthermore, some specific functions of the cube variables and secret key
bits should be assigned to the input variables, similar to the so called dynamic
variables in [4]. But, the mechanism by which these functions are derived are
totally different. The main approach in the dynamic cube attack on stream
ciphers is to use the recursive description of the cipher’s output function in order
to nullify/simplify some appropriate intermediate variables which consequently
leads to a simplified algebraic function for the output bit. This process demands
a “complex process that can not be fully automated and involves manual work
to analyse the cipher” [4]. However, the situation is completely different in block
ciphers, where a key-only-dependent function, i.e. the key schedule, is always
available in any round of the cipher which enables the cryptanalyst to do partial
encryption/decryption anywhere in the cipher, conditioned that she guesses the
relevant subkeys. This option is not available in stream ciphers in any case,
where the secret key as well as the IV are loaded into the state of the cipher at
the first step, then they are mixed during the initialization phase so a key-only
dependent function would never be conceivable then.

In spite of the very complex manual procedure of the dynamic cube attack
on stream ciphers, our attack can be fully automated. We put the rc-round cube
tester (distinguisher) in the middle of the cipher. Hence, in spite of all the cube
attacks, the cube variables in our attack are not among the plaintext bits but
they are basically some bits of an intermediate state. Then, we extend the attack
to ru rounds before, and rl rounds after the distinguisher. Both the extensions
potentially involve guessing some key bits. In addition, the backward ru-round
extension determines exactly what each bit of the plaintext must be (i.e. its
precise description in the guessed key bits and cube variables).

1 There are some instances of combinations of cube and side channel attacks
[10,11,12,13] and cube and fault injection attacks [14] in the literature. These at-
tacks are defined in the leakage and fault injection attack models, both of which are
out of our attacker model.

Automated Dynamic Cube Attack on Block Ciphers 3

Table 1. Result of Previous Attacks on Katan32 and Simon32/64

Algorithm Type Round Time Data Memory Ref.

KATAN32

Cube/Algebraic 79 14.72 min 20 - [10]
Conditional Differantial 78 222 222 - [17]

MITM ASR 110 277 138 275.1 [19]
Differential 114 277 231.9 - [18]

Dynamic Cube 116 278.83 219 26 Sec. 4.2
Dynamic Cube 117 278.77 227 27 Sec. 4.2

MITM ASR 119 279.1 144 279.1 [19]
Matchbox MITM 121 277.5 4 25 [20]
Dynamic Cube 152 278.92 232 232 Sec. 4.2
Matchbox MITM 153 278.5 25 276 [20]

SIMON32/64

Linear 11 - 223 - [23]
Linear (Matsui’s 1st Alg.) 13 232∗∗ 232 - [21]
Impossible Differential 13 250.1 230 220 [23]

Linear (Matsui’s 2nd Alg.) 16 254 232 - [21]
Differential 16 226.48 229.48 216 [25]

Dynamic Cube 16 251.5 219 210 Sec. 5.2
Dynamic Cube 18 251 232 232 Sec. 5.2

Differential* 18 246 231.2 215 [23]
Multiple Linear 18 232 232 - [21]

Impossible Differential 19 262.56 232 244 [22]
Differential 19 232 231 - [24]
Differential 20 231 231 - [26]
Linear Hull 20 259.69 231.69 - [21]
Differential 21 246 231 - [26]

* Its probability of success is 63%.
** Its needed time for computing one bit of key. So, the total time complexity is 263.

Having introduced our attack framework in a general view, we examine its
efficiency and flexibility on two lightweight block ciphers: the recently proposed
NSA cipher, SIMON32/64 [15], and KATAN-32 [16]. We found them good tar-
gets for our attack since both has a low-degree round function compensated by
relatively large number of rounds, similar to stream cipher potential targets of
cube attack [5,6].

Our attack algorithm is flexible enough to set the maximum allowable value
for data and time complexities. So, we report our results in two scenarios: full-
codebook and non-full-codebook attacks. In case of KATAN, we could anal-
yse up to 152 and 117 rounds out of 254 rounds by full-codebook attack non-
full-codebook scenarios, respectively which absolutely outperform the only in-
stance of cube attack [10] which could break 79 rounds. In case of SIMON32/64,
we could break 18-round and 16-round version of full 32-round cipher in full-
codebook and non-full-codebook scenarios, respectively. Although our attacks
does not yet reach the maximum rounds of the ciphers analysed by now, our
results shows that in spite of the conventional view that cube attack is an ap-
propriate tool just for cryptanalysis of stream ciphers, this newcomer attack can

4 Z. Ahmadian et al.

absolutely compete with the well-established and accepted methods for crypt-
analysis of block ciphers such as differential and meet in the middle attack fam-
ilies for KATAN-32 [17,18,19,20] and differential and linear attack families for
SIMON32/64 [21,22,23,24] and overtake many of them.

This paper is organized as follows: In Section 2, we give some preliminaries
and notations for cube attacks. In Section 3, the proposed framework for dynamic
cube attack on block ciphers is explained in a general view. We present our
results on KATAN-32 and Simon 32/64 in Sections 4 and 5, respectively. Finally
we conclude our work in Section 6.

2 Preliminaries and Notations

Suppose f : {0, 1}l → {0, 1} is the boolean function representing one output bit
of the cipher based on the m-bit public input variable P = {pm−1, ..., p0} and
n-bit secret key K = {kn−1, ..., k0} where l = m+ n. Let X = P ∪K be the set
of all inputs of f . f can be represented as follows:

f(xl−1, ..., x0) =
∑
i∈F l

2

ai · x
il−1

l−1 ...x
i1
1 xi0

0 (1)

where {il−1, ..., i0} is the binary representation of i, and ai is a binary constant.
Now suppose that I is a certain index subset of {0, 1, ..., l − 1} of size d,

namely cube. d is called the cube dimension. We denote the set of cube variables
by XI = {xi|xi ∈ I}. If we factorize function f by the monomial tI =

∏
i∈I xi,

it can be written in the following form

f(xl−1, ..., x0) = tI · PS(I) + q(xl−1, ..., x0) (2)

where PS(I) is a polynomial that has no variable in common with tI , and no
monomial in q contains tI . The PS(I) is called the superpoly of I.

The main idea behind all the variants of cube attack is to deal with the lower
degree and simpler polynomial PS(I) rather than the potentially very complex
polynomial f , where XI ⊆ P . To do so, we enjoy the following property of
Boolean functions: ∑

XI∈{0,1}d

f(xl−1, ..., x0) = PS(I) (3)

In other words, if the attacker query all the possible values of XI ∈ {0, 1}d
from the encryption oracle where the other public variables are fixed, and sum
up all the corresponding outputs, she will come up with the evaluation of PS(I)

in which the other public variables have the same fixed values. The notations
used in this paper are listed in Table 2.

3 Dynamic Cube Attack on Block ciphers

Apart from a distinguishing attack on hash function MD5 [3], all the major
results published for the cube attack family implies its efficiency in crptanalysis

Automated Dynamic Cube Attack on Block Ciphers 5

Table 2. Notations

Symbol Definition

m/n block/key size for block cipher

I cube

d cube dimension

XI set of cube variables {xi|i ∈ I}
PS(I) the superpoly for cube I

U/Z index set for neutral/static bits

rc number of rounds in the cube tester part

ru/rl number of rounds in the upper/lower extension part

Ku/Kl set of key bits involved in the upper/lower extension part

S(i) intermediate state at the end of round i

Sj/SJ bit j of intermediate state S, SJ = {Sj |j ∈ J}
T distinguisher bit

N number of tests

p(j)(XI ,Ku) jth plaintext description in XI and Ku

T ime/Data time/(upper bound for) data complexity

Timemax/Datamax maximum allowable time/data complexity

enc(S(i),K)/dec(S(i),K) one-round symbolic encryption/decryption of S(i) under K
Enc(A,K, r1, r2)/ r2-round partial encryption/decryption of A ∈ {0, 1}m

Dec(A,K, r1, r2) starting at round r1 under key K ∈ {0, 1}n

of lightweight stream ciphers with a low degree round function compensated
by a large number of initialization rounds. For Trivium [6], classic cube attack
has led to cryptanalysis of the highest rounds analysed ever [2,3,7,8] and for
Grain family [5], the best cryptanalytic results are reported by dynamic cube
attack [4,9]. In spite of significant results in stream ciphers, no remarkable result
on block ciphers using cube technique has appeared, by now. The only one is
cryptanalysis of KATAN block cipher which analysed 79 rounds out of 254 round
using a combination of cube and algebraic attack.

In this section we will present a framework for cryptanalysis of block ciphers
using a kind of dynamic cube attack. We will show that, this method can also
be applied efficiently in cryptanalysis block ciphers. Due to the algebraic essence
of this attack, those block ciphers with a low-degree round function compen-
sated by a large number of rounds are potentially good targets for this attack.
SIMON32/64 [15] and KATAN-32 [16] are two instance of such ciphers that we
have adopted to examine our method. For more details, see Tab 1.

3.1 Attack Framework

As for all methods of cube attack family, this attack proceeds in two phases:
preprocessing phase and online phase. In the preprocessing phase, the attacker
tries to find a cube tester for a subset of key bits as well as sufficiently many
corresponding plaintext descriptions (in cube variables and that subset of key

6 Z. Ahmadian et al.

Plaintext

Ku

Kl

ru rounds

rc rounds

rl rounds

Ciphertext

distinguisher bit

Cube variables

Fig. 1. An overview of the attack

bits). In the online phase, for each key guess, the attacker runs the cube tester
by appropriate queries from the encryption oracle and checks if such collections
of (P,C) pairs conform the cube tester. If so, the guessed key is treated as a
correct key candidate to be rechecked then.

Preprocessing In this phase, inspiring from the distinguisher-based attacks on
block ciphers, we position the cube tester at the middle of the cipher (e.g. exactly
after round ru) and extend it in two directions over the maximum possible upper
and lower rounds. Such a position for the cube tester immediately implies that
cube variables are defined among S(ru) rather than the plaintext bits. Both
the upper and lower extensions demands guessing some key bits. We denote
the subset of key bits (or equivalent bits) that should be guessed in the upper
extension by Ku and that of the lower extension by Kl. A schematic view of the
attack is shown in Fig. 1.

In general, the lower and upper extensions of a distinguisher for a block ci-
pher is a straightforward procedure. At least, in none of the distinguisher-based
attacks, the distinguisher itself is affected by those extensions. But in our cube
attack, the upper extension procedure is not so straightforward insofar as it
determines the role of the other-than-cube variables in S(ru), hence it affects di-
rectly on the cube tester behavior. In other words, after determining the starting
round of the distinguisher, ru, and choosing the cube variables among S(ru), we
are not free enough to statically assign zero to the other variables (In fact, such
a strategy is possible but so costly). It is actually the upper extension procedure
that beside finding the specification of the plaintext bits in cube variables and
Ku, i.e. P = p(XI ,Ku), determines the status of the other-than-cube variables
of S(ru): statically zero or neutrally zero or one.

Having determined the status of all bits of S(ru) whether cube, static or
neutral, we find the maximum length cube tester for such input variables at

Automated Dynamic Cube Attack on Block Ciphers 7

round ru. Suppose that the length of the cube tester is rc. So, the distinguisher
bit T is one bit among the the intermediate state S(ru+rc). In our analysis we
have assumed only deterministic cube testers, but it can be any function with a
non-random easily detectable property. Once rc is known, we find the maximum
possible rounds that the lower extension part covers. The limiting factor here is
the number of key bits that should be guessed i.e. |Kl|. This extension is not as
complicated as the upper extension.

Therefore, the total rounds attacked by this method would be r = ru+rc+rl.
An optimum partitioning is the one maximizing r. To get such a partitioning,
Algorithm 1 of Appendix C is proposed. In this algorithm, the cube tester slides
along a pre-defined range, i.e. ru,min ≤ ru ≤ ru,max, for which it tests randomly
chosen cube sets of dimension d at round ru and returns the one, whose attack
covers the maximum rounds r = ru+rc+rl, satisfying the complexity constraints
Data < Datamax, T ime < Timemax. For each ru and cube set XI of dimenssion
d, this algorithm proceeds in 3 subroutines: Upper-Extension-Subroutine, Cube-
Tester-Subroutine and Lower-Extension-Subroutine.

Upper-Extension-Subroutine
The input parameters for this subroutine are {ru, I} and it is supposed to

return the followings.

– the subset of (equivalent) key bits, i.e. Ku, which should be guessed.
– the plaintext description p(XI ,Ku) in such a way that its ru-round partial

encryption yields S(ru) where

S
(ru)
i =

{
xi + fi(K) i ∈ I

fi(K) i ̸∈ I
, i = 0, . . . ,m− 1 (4)

where S
(ru)
i is the ith bit of S(ru), xi is a cube variable and fi is any function

of the key only.
– the set of neutral and static variables of S(ru), namely U and Z, respectively.

It means that Z = {0 ≤ i < m|fi(K) = 0} and U = {0 ≤ i < m|fi(K) ̸= 0}.

So, it returns {Ku, p(XI ,Ku), U, Z}. The procedure of this subroutine is given
in Algorithm 2 of Appendix C, where all the variables including cube variables,
keys and intermediate states have symbolic values.

To see how this subroutine works, first assume that the attacker is going to
extend the upper part for one round (ru = 1). At first, all the bits of S(ru) are
set to zero except those whose indexes are in I which are assigned symbolic cube
variables {xi|i ∈ I}. Then, the attacker partially decrypts S(ru) for one round
while setting K = 0 to get the pure dependency of S(ru−1) to cube variables.
Then, she partially encrypt the resulted S(ru−1) again, this time taking K into
account, to find out how the subkey of round ru−1 affects on S(ru). There would
be no need to guess any bits of K as far as all the bits of S(ru) can be written
consistent with (4).

But, once there is a state bit whose representation violates (4), e.g. those
containing AND of a xi with a key bit, she has to zero an appropriate internal

8 Z. Ahmadian et al.

. . .

ur

1ur

2ur

1

0

round

0t

1t

2t

1 urt

urt

Fig. 2. schematic view of Upper-Extension-Subroutine

state bit to avoid such an event. This zero forcing is equivalent to one bit key
guess which will be stored inKu list. Having discovered such key bits, the attacker
repeats the one-round partial decryption of S(ru), this time with a subkey with
nonzero symbolic value Ku. So, S

(ru−1) would be a function of XI and Ku while
S(ru) is a function of XI and K consistent with (4).

The procedure for ru > 1 is similar. Suppose that the attacker has already
finished step t, 0 ≤ t < ru of upper extension. She has driven S(ru−t) and a list
Ku of key bits to be guessed by now, each of which corresponds to one internal
state bit to be zero. S(ru−t) is specified based on XI and Ku which guaranties
that all bits of S(ru) do not violate the form given in (4). This necessitate also
the following representation for the other internal states

S
(ru−t+j)
i = h

(j)
i (XI ,Ku) + g

(j)
i (K), 1 ≤ j < t, 0 ≤ i < m. (5)

Now, for step t + 1 the attacker performs a one-round partial decryption of
S(ru−t) under Ku to get S(ru−t−1). This is followed by a (t + 1)-round partial
encryption of S(ru−t−1) under K. Throughout the partial encryption, she should
check if any bit of intermediate state violates condition (5) for all S(ru−t−j),
1 ≤ j < t and condition (4) for S(ru). Once such an event occurs, she breaks
the partial encryption procedure, detects the internal state bit which should be
forced to zero in order to avoid this event, finds the appropriate key bit to be
guessed, and updates Ku.

Having updated Ku, the attacker repeats the one-round partial decryption
of S(ru−t) under the updated Ku. Then, she performs the (t + 1)-round partial
encryption using K, regularly checks conditions (4) and (5) and repeat the above
scenario until these conditions are completely satisfied. In this way, at the end of
step t+1, the the attacker has derived a list Ku of key bits to be guessed as well
as the description of S(ru−t−1) based on XI and Ku which guaranties conditions
(4) and (5).

Automated Dynamic Cube Attack on Block Ciphers 9

This subroutine terminates at t = ru, when all the required outputs {Ku, p(XI

,Ku), U, Z} are provided. A schematic view can be seen in Fig. 2. It should be
noted that, for a given {ru, I}, this attack requires N different plaintext descrip-
tions, denoted by p(i)(XI ,Ku), i = 1, 2, . . . N all for the same Ku, U and Z. As
we will see in the case studies, given one p(XI ,Ku), it is an easy task to derive
the other ones.

This subroutine solely determines the attack data complexity for a given
{ru, I} and a number of N tests. Since each of the N tests requires 2d plaintexts
for 2|Ku| key guesses, the data complexity would be bounded to D = N ·2d+|Ku|.
After calling Upper-Extension-Subroutine for a given {ru, I} in Algorithm 1 of
Appendix C, the (upper bound of) data complexity is computed and this algo-
rithm will continue if the computed data complexity is less than Dmax, otherwise
it turns into the next {ru, I} pair.

Cube-Tester-Subroutine
Once the attacker defined the status of all bits of S(ru), i.e. U and Z for a given
I, she can find the longest cube tester. To do so, for a given I, Z, U she runs
Cube-Tester-Subroutine given in Algorithm 3 of Appendix C. First, the potentially
lowest algebraic degree bit in any round is identified as the distinguisher bit T
(i.e. the bit whose non-randomness is supposed to be distinguished), based on
the cipher internal structure.

This algorithm starts from rc = 1, increases rc in each step, and checks if a
cube tester can be found for T at round ru+ rc, while the input cube, static and
dynamic variables are set at S(ru) according to I, Z and U , respectively. The
tool used here is similar to probabilistic linear test in [2] which is modified to
tolerate a linear dependency to neutral bits (which is a function of key bits, in
turn) as well as a linear dependency to key bits. So, this subroutine returns the
maximum rc, for which the distinguisher bit can be described as

T (rc) = L(K) +
∑
i∈U

bi · S(ru)
i

= L(K) +
∑
i∈U

bi · fi(K) = F (K) (6)

where, L is a linear function. If F (K) is not a constant function, Ku should be
updated as Ku = Ku ∪ F (K). Therefore, for a given {U,Z, I, ru}, Cube-Tester-
Subroutine returns the maximum possible rc, for which the distinguisher bit has
a non-random property.

The reader should be noticed that we called the variables whose index are
in U neutral variables, since they contain an unknown constant value. Although
the distinguisher should not naturally depend on a neutral variable by definition,
our algorithm accepts a distinguisher as far as it is dependency on neutral bits
is at most a linear dependency.

Lower-Extension-Subroutine
Once the cube tester length is determined, the only thing remaining in the

10 Z. Ahmadian et al.

preprocessing phase is to trace the distinguisher bit at round ru+rc towards the
ciphertext to find a subset of (equivalent) key bits, Kl, whose guess is sufficient
for computation of the distinguisher bit from the ciphertext. This subroutine
returns the maximum rounds rl which can be covered by the lower extension
part. The limiting factor here is the total time complexity of the attack which
is directly influenced by d, |Ku| and |Kl| according to (7). The procedure of this
subroutine is detailed in Algorithm 4 of Appendix C.

Having run the three subroutines for all candidate pairs of {ru, I}, the pair
which covers maximum rounds r, as well as all the relevant parameters {r, rl,Ku,
Kl, p

(j)(XI ,Ku), 1 ≤ j ≤ N,T ime,Data} is returned as the output of prepro-
cessing phase.

Online Phase This phase of the attack is detailed in Algorithm 5 of Ap-
pendix C. By this algorithm, the whole secret key is retrieved as follows. For
each guess for Ku ∪ Kl, the attacker computes N batch of plaintexts according
to p(j)(XI ,Ku), 1 ≤ j ≤ N and queries the encryption oracle to get the corre-
sponding batch of ciphertexts. Then, she checks whether this specific guess for
Ku ∪ Kl passes all the N tests. If so, this guess is regarded as a candidate for
these subset of key bits and will be rechecked by another (P,C) pair while the
remaining key bits have been guessed. So, the attack complexities are:

Time Complexity = N · 2d+|Ku| +
rl

ru + rc + rl
N · 2d+|Ku∪Kl| + 2|K|−N

Data Complexity = N · 2d+|Ku| (7)

Memory Complexity = N · 2d

According to Algorithm 5, this memory is required for storing all N batch of
plaintext/ciphertext pairs.

4 Cryptanalysis of KATAN-32

4.1 Specification of KATAN-32

KATAN-32, the smallest member of KATAN family of block ciphers with a 32-
bit and 80-bit block and key sizes. The plaintext is loaded into two registers L1,
and L2 with 13 and 19 bits length, respectively. The least significant bit of each
register, nunbered by 0, is the rightmost one, and the LSB of plaintext is loaded
into the LSB of L2 while its MSB is loaded into the MSB of L1. Each round,
L1 and L2 are shifted to the left for one bit, where the newly computed bits
generated according to the following equations, are loaded into the LSB of L2
and L1, respectively.

fa(L1) = L1[12] + L1[7] + (L1[8] · L1[5]) + (L1[3] · IR) + a

fb(L2) = L2[18] + L2[7] + (L2[12] · L2[10]) + (L2[8] · L2[3]) + b (8)

Automated Dynamic Cube Attack on Block Ciphers 11

where IR is a round-dependent constant, and a, b are two subkey bits generated
by the key schedule of the cipher. After 254 rounds, the contents of the registers
are then exported as the ciphertext.

Key schedule. KATAN-32 has a linear key schedule based on a LFSR struc-
ture which generates 2× 254 = 508 subkey bits according to the following rule:

rki =

{
ki 0 ≤ i < 80

rki−80 + rki−61 + rki−50 + rki−13 80 ≤ i < 508
(9)

For round i = 1, . . . , 254, ai is defined to be rk2i−2, whereas bi is rk2i−1.

4.2 Cube Attack on KATAN32

Selecting appropriate values for input parameters ru,min, ru,max, and d plays an
important role in the efficiency of the resulted attack. Both the upper and lower
extension parts, make a few key bits active in the first rounds of the extensions
while it approach to 2 key bits per round in the higher rounds which we call
the saturated domain for the upper/lower extensions. So, the best strategy is to
make the best use of the both unsaturated domains. The optimum ru locates the
cube distinguisher in such a way that both of the unsaturated parts are included
in the rounds covered by the attack. A too long upper or lower extension part
makes the opposite side too short which does not allow an efficient use of the
unsaturated part.

The other important choice is the cube dimension. Although the larger d
makes rc potentially larger, it also makes the second term of the attack time
complexity (7) larger. In addition, A larger d increases the chance of guessing key
bits in the upper extension part, i.e. increasing |Ku|, which in turn increases the
time complexity. Furthermore, be noticed that data complexity is exponentially
dependent to d and |Ku|, but independent of |Kl|. The number of tests N , on
the one hand reduces the last term of time complexity, but on the other hand it
increases the second term. For Timemax = 279, we set N = 2. For KATAN-32,
we select the MSB of register L2 as the distinguisher bit which had the lowest
degree compared to the other state bits at the same round. We perform our
attack in two scenarios: non-full-codebook and full-codebook attacks. In non-
full-codebook attack we set Datamax = 220 and 227 and searched through the
small dimension cubes. The best results belongs to cubes of dimensions 5 and
6 which could break up to 116 and 117 rounds of KATAN-32, respectively. In
full-codebook scenario, we set Datamax = 232 and searched through cubes of
d = 31 one of which could attack 152 rounds of KATAN-32. The details of the
best found cubes are reported in Table 3. As an example, all the parameters of
attack Case I are reported in details in Appendix A.

12 Z. Ahmadian et al.

Table 3. Details of the best dynamic cube attacks on KATAN-32

Case d N I ru rc rl |Ku| |Kl| r Time Data

I 5 2 7, 13, 14, 17, 18 22 50 45 14 59 116 278.83 219

II 6 2 9, 13, 14, 15, 17, 19 23 53 41 21 51 117 278.77 227

III 31 2 1, 2, . . . , 31 17 101 34 11 37 152 278.92 232

5 Cryptanalysis of SIMON32/64

5.1 Specification of SIMON32/64

SIMON32/64 is a 32-round Feistel block cipher whose round function composed
of AND, XOR and rotations. The internal state at the input and output of round
i are denoted by S(i−1) = (L(i−1), R(i−1)) and S(i) = (L(i), R(i)) respectively,
where

L(i) = R(i−1) + F (L(i−1)) + k(i)

R(i) = L(i−1)

F (L(i−1)) = (L(i−1) ≪ 1) · (L(i−1) ≪ 8) + (L(i−1) ≪ 2)

where ≪ denotes the left rotation operation and k(i) is the subkey of round i,
1 ≤ i ≤ 32.

Key schedule. SIMON has a linear key schedule as follows. Assume that
K = K3,K2,K1,K0 is the representation of secret key in four 16-bit words Ki.
The subkey of SIMON32/64 at round i is generated as follows.

k(i) =

{
Ki+1 0 ≤ i ≤ 3

k(i−4) + Y + (Y ≫ 1) + c+ (z0)i 4 ≤ i ≤ 32

where Y = k(i−3)+(k(i−1) ≫ 3), c is a constatnt value and z0 is a binary stream
whose precise value is given in [15].

5.2 Cube Attack on SIMON32/64

Similar to KATAN, we consider the non-full-codebook and full-codebook sce-
narios, where in the former the cubes with small dimensions are searched and
for the latter, cubes with dimension 31 are examined. For the non-full-codebook
scenario, we set Dmax = 220 and N = 16. Amongst all the the small dimen-
sion cubes which were examined, the best result belongs to a cube of dimension
5 which could break 16 round of SIMON32/64. In the full-codebook scenario,
we could attack 18-round SIMON32/64 by a number of N = 17 tests. In this
special case, we found many cubes of size 31 all for the same distinguisher bit,
each of which can be regarded as tester for the same subset of Kl. So, in this
case instead of generating N different plaintext descriptions we make use of N
different cube testers. The parameters related two our attacks are reported in
Table 4. For Case II, only one of out of the 17 cubes is written. Furthermore, as
an example all the parameters of attack Case I are given in details in Appendix
B.

Automated Dynamic Cube Attack on Block Ciphers 13

Table 4. Details of the best dynamic cube attacks on SIMON32/64

Case d N I ru rc rl |Ku| |Kl| r Time Data

I 5 16 8, 14, 16, 22, 24 3 8 5 10 34 16 251.5 219

II 31 17 0, . . . , 30 1 13 4 0 18 18 251 232

6 Conclusions and Discussions

In this paper we proposed a new framework for dynamic cube attacks on block
ciphers. The algorithm proposed for this attack can be made fully automated, in
spite of its counterpart in stream ciphers. We analysed the efficiency of attack on
two block ciphers KATAN and SIMON and the results shows that this newcomer
method for cryptanalysis of block cipher can competes well with the mature and
well-organized cryptanalysis methods in this domain.

Although our attack is similar to the dynamic cube attack on stream ciphers
[4] in some properties, it is completely different in the tools, which are used. In
more details, our attack shares the following properties with the dynamic cube
attack on stream ciphers.

– Assigning the public variables some functions of cube variables and guessed
keys (dynamic variables).

– Using a cube tester to check the validity of guessed key bits.

But, the main differentiations of our work with the dynamic cube attack on
stream ciphers are as follows.

– The cipher is explicitly divided into three distinct parts: upper extension
part, cube part, and lower extension part. Each part are treated in sequence
and semi-independently. In dynamic cube attack on stream ciphers, the lower
part is not present and the first two parts can not be separated.

– This partition enables the attacker to fully automate the attack and get
rid of the manual complex process of dynamic cube attack for deriving the
description of dynamic variables.

– The cube variables are defined among the intermediate state bits rather than
the public variables.

– The keys guessed in the attack are not only those involved in the dynamic
variables. They are also involved in the lower rounds of the cipher.

In fact, the main feature of block ciphers from which most of these differences
arise, especially the possibility to automate the attack, is availability of an only-
key-dependent function in any round of the cipher, i.e. the key schedule. Key
schedule enables the attacker to perform partial encryption/decryption anywhere
among the cipher rounds conditioned that she has guessed the required subkeys.
Such a facility is not provided in stream ciphers, where the secret key along with
the IV are loaded into the stream cipher state in the first clock and after that
there would be no pure access to the secret key, either in the initialization or
key stream generation phases.

14 Z. Ahmadian et al.

References

1. M. Vielhaber, “Breaking ONE.FIVIUM by AIDA, an Algebraic IV Differential At-
tack”, Cryptology ePrint Archive, Report 2007/413, 2007.

2. I. Dinur, and A. Shamir, “Cube Attacks on Tweakable Black Box Polynomials”,
EUROCRYPT’09, LNCS, vol. 5479, pp. 278-299, Springer, 2009.

3. J. Aumasson, I. Dinur, W. Meier, and A. Shamir, “Cube Testers and Key Recovery
Attacks on Reduced-Round MD6 and Trivium”, FSE’09. LNCS, vol. 5665, pp. 1-22,
Springer, 2009.

4. I. Dinur, and A. Shamir, “Breaking Grain-128 with Dynamic Cube Attacks”,
FSE’11, LNCS, vol. 6733, pp. 167187, Springer, 2011.

5. M. Hell, T. Johansson, A. Maximov, and W. Meier, “The Grain Family of Stream
Ciphers”, New Stream Cipher Designs - The eSTREAM Finalists, LNCS, vol. 4986,
pp.179190, Springer, 2008.

6. C. De Canniere, and B. Preneel, “Trivium”, New Stream Cipher Designs - The
eSTREAM Finalists. LNCS, vol. 4986, pp. 244-266, Springer, 2008.

7. P. -A. Fouque and T. Vannet, “Improving Key Recovery to 784 and 799 rounds of
Trivium using Optimized Cube Attacks”, FSE’13, LNCS, vol. 8424, pp. 502-517,
Springer, 2013.

8. A. Vardasbi, M. Salmasizadeh, and J. Mohajeri, “Superpoly Algebraic Normal Form
Monomial Test on Trivium”, IET Information Security, vol. 7, no. 3, pp. 230-238,
2013.

9. M. Rahimi, M. Barmshory, M. H. Mansouri, and M. R. Aref, “Dynamic Cube Attack
on Grain-v1”, IACR Cryptology ePrint Archive, vol. 2013, p.268, 2013.

10. G. V. Bard, N. T. Courtois, J. Nakahara, P. Sepehrdad, and B. Zhang, “Alge-
braic, Aida/Cube and Side Channel Analysis of Katan Family of Block Ciphers”,
INDOCRYPT’10, LNCS, vol. 6498, pp. 176196, Springer, 2010.

11. I. Dinur and A. Shamir, “Side Channel Cube Attacks on Block Ciphers”, IACR
Cryptology ePrint Archive, vol. 2009, Report 2009/127, 2009.

12. Z. Li, B. Zhang, J. Fan, and I. Verbauwhede, “A New Model for Error-Tolerant
Side-Channel Cube Attacks”, CHES’13, LNCS, vol. 8086, pp. 453-470, 2013.

13. L. Yang, M. Wang, and S. Qiao, “Side Channel Cube Attack on PRESENT”,
CANS’09, LNCS, vol. 5888, pp. 379-391, 2009.

14. S. F. Abdul-Latip, R. Reyhanitabar, W. Susilo, and J. Seberry, “Fault Analysis
of the Katan Family of Block Ciphers”, ISPEC’12, LNCS, vol. 7232, pp.319-336,
Springer, 2012.

15. R. Beaulieu, D. Shors, J. Smith, S. Treatman-Clark, B. Weeks, and L. Wingers,
“The Simon and Speck Families of Lightweight Block Ciphers”, IACR Cryptology
ePrint Archive, vol. 2013, Report 2013/404, 2013.

16. C. D. Cannire, O. Dunkelman, and M. Knezevic, “Katan and Ktantan - a Family of
Small and Efficient Hardware-oriented Block Ciphers”, CHES’09, LNCS, vol. 5747,
pp. 272-288, Springer, 2009.

17. S. Knellwolf, W. Meier, and M. Naya-Plasencia, “Conditional Differential Crypt-
analysis of NLFSR-based Cryptosystems”, ASIACRYPT’10, LNCS, vol. 6477, pp.
130-145, Springer, 2010.

18. M. R. Albrecht and G. Leander, “An all-in-one Approach to Differential Crypt-
analysis for Small Block Ciphers, SAC’12, LNCS, vol. 7707, pp. 115, Springer, 2013.

19. T. Isobe and K. Shibutani, “Improved All-Subkeys Recovery Attacks on Fox, Katan
and Shacal-2 Block Ciphers, in the proceeding of FSE’14, LNCS, Springer, 2014.

Automated Dynamic Cube Attack on Block Ciphers 15

20. T. Fuhr and B. Minaud, “Match Box Meet-in-the-Middle Attack Against Katan”.
(in C. Cid ed.), in the proceeding of FSE’14, LNCS, Springer, 2014.

21. J. Alizadeh, H. A. Alkhzaimi, M. R. Aref, N. Bagheri, P. Gauravaram, A. Ku-
mar, M. M. Lauridsen, and S. K. Sanadhya, “Cryptanalysis of Simon variants with
Connections”. in the proceeding of RFIDsec14.

22. C. Boura, M. Naya-Plasencia, and V. Suder, “Scrutinizing and Improving Im-
possible Differential Attacks: Applications to Clefia, Camellia, Lblock and Simon”,
ASIACRYPT 2014.

23. Farzaneh Abed, E. List, S. Lucks, and J. Wenzel, “Differential Cryptanalysis of
Round-Reduced Simon and Speck”, in the proceeding of FSE’14, LNCS, Springer,
2014.

24. A. R. Alex Biryukov and V. Velichkov, “Differential Analysis of Block Ciphers
Simon and Speck”, in the proceeding of FSE’14, LNCS, Springer, 2014.

25. H. AlKhzaimi and M. M. Lauridsen, “Cryptanalysis of the SIMON family of block
ciphers”, IACR Cryptology ePrint Archive, Report 2013/543, 2013.

26. N. Wang, X. Wang, K. Jia, and J. Zhao, “Improved differential attacks on reduced
SIMON versions”, IACR Cryptology ePrint Archive, vol.2014, p.448, 2014.

Appendix A. Details of attack case I on KATAN-32

In this appendix the details of attack case I on KATAN-32 are reported. The set
of upper extension key is Ku = {ui|1 ≤ i ≤ 14} where

u1 = a3, u2 = a4, u3 = a10, u4 = a13, u5 = b5, u6 = b1, u7 = a7 + b3,

u8 = a6 + b2, u9 = a11 + b7 + b3, u10 = a14 + b10 + b6, u11 = a13 + b7 · b4,
u12 = a11 + a7 + a2 + b7, u13 = a10 + b2 + b4 · (a14 + b10 + b6),

u14 = a9 + a14 + b10 + b6 + b3 · (a13 + b7 · b4)

The first descryption for plaintext is p(1)(XI ,Ku) = S(0) = (L1(0), L2(0)) where

L1(0) = { u9 + u13 + u8 + (x3 + u4) · (x2 + x5 + u10 + u3) + u11 · (x5 + u13)

u12 + u10 · u9 + (x3 + u14) · (x5 + u8 + u9 + u11 · (x5 + u13))

x3 + u4 + u1 + (u7 + u9 · u10) · (x5 + u8)

x1 + x4 + u2 + u11 + u14 + (x3 + u4) · u9

x2 + x5 + u3 + u10, x5 + u8 + u9 + u11 · (x5 + u13), u7 + u10 · u9

x3 + u4, x4 + u14, x5 + u13, u9, 0, u11}
L2(0) = { x1 + u10 + u6, x5 + x2, 0, 0, x3 + u5, x4, 0, 0, 0, 0, 0,

x1, x2 + x1 · x4, 0, 0, x3, x4, 0, 0} (10)

16 Z. Ahmadian et al.

which yields the following descrption for S(22) = (L1(22), L2(22)) which is com-
pletely consistent with (4).

L1(22) = { b10, b11, b12, a5 + b13 + b2 + b4 · u10, b14, b15, a8 + b16 + b7 · b4,
b17, b18, b19, a1 + b6 · b3 + b4 + b8 + a12 + b20,

b21 + (b6 · b3 + b4 + b8 + a12) · (b4 + b11 · b8 + a1 + b9 + a17), b22}
L2(22) = { x1,x2 + a5 + b2 + b4 · (a14 + b10 + b6), 0, 0, x3 + a8 + b7 · b4,

x4, 0, 0, b6 · b3 + b4 + b8 + a12, 0, 0,

x5 + b2 + b6 · (a1 + b9) + b7 + a15, b3 + b10 · b7 + b8 + b12 + a16,

b4 + b11 · b8 + a1 + b9 + a17, b12 · (a1 + b9) + b10 + b14 + a18,

b6 + b10 · (a5 + b13 + b2 + b4 · (a14 + b10 + b6)) + b11 + a19,

b7 + b14 · b11 + b12 + a8 + b16 + b7 · b4 + a20,

b8 + b15 · b12 + a5 + b13 + b2 + b4 · (a14 + b10 + b6) + b17 + a21,

b9 + a1 + (a8 + b16 + b7 · b4) · (a5 + b13 + b2 + b4 · (a14 + b10 + b6)) +

b14 + b18 + a21}

The set of neutral and static variables are as follows.

U = {0, 1, 2, 3, 4, 5, 6, 10, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31}
Z = {8, 9, 11, 12, 15, 16}]

To get the second plaintext description, let p(2)(XI ,Ku) = p(1)(XI ,Ku) + ∆2

where ∆2 and its corresponding difference at round 22, ∆
(22)
2 , are as follows.

∆2 = {0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
∆

(22)
2 = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, b6 · b3 + b4 + b8 + a12 + b4 + b11 · b8 + a1 + b9 +

a17 + 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, b11, 0, 0, 0, 1, 0}

which shows that all the nonzero differences are constant and confined to neutral
bits. Finally, the set of key bits to be guessed in the lower extension part are as
follows.

Kl = {ai|i ∈ Al} ∪ {bi|i ∈ Bl}
Al = {77, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101,

102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117}
Bl = {98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114,

115, 116, 117}

Appendix B. Details of attack case I on SIMON32/64

In this appendix the details of attack case I on SIMON32/64 are reported. The
set of upper extension key is Ku = {ui|1 ≤ i ≤ 10} where

u1 = c15, u2 = c1, u3 = c5, u4 = b15, u5 = b13,

u6 = b9, u7 = b7, u8 = b3, u9 = b1, u10 = b5 + c7,

Automated Dynamic Cube Attack on Block Ciphers 17

The first descryption for plaintext is p(1)(XI ,Ku) = S(0) = (L(0), R(0)) where

L(0) = {u1, x2, 0, x1, 0, x5, 0, x1 + x4, u10, 0, u3, 0, 0, x2 + x3, u2, 0}
R(0) = {x2 · u10 + u4, x1, x1 · u3 + u6, x5, 0, x4, u2 · (x1 + x4) + u10 + u6,

x5, u3 + u7, x4 + x2 + u3, 0, x2 + x3, u2 + u8, x5 · u2, u1 + u9,

x2 + u1 · (x1 + x4)}

which yields the following descrption for S(3) = (L(3), R(3)) which is completely
consistent with (4).

L(3) = {k(1)5 · k(1)12 + k
(1)
11 + k

(2)
13 + k

(3)
15 ,

(k
(1)
5 · k(1)14 + k

(1)
4 + k

(2)
6) · (k(1)5 · k(1)12 + k

(1)
11 + k

(2)
13) + k

(1)
10 + k

(1)
4 · k(1)11 +

k
(2)
12 + k

(1)
14 + k

(3)
14 k

(2)
11 + k

(3)
13 , k

(2)
11 · (k(1)2 + k

(2)
4) + k

(1)
8 + k

(2)
10 + k

(1)
12 + k

(3)
12 ,

(k
(1)
8 + k

(2)
10) · (k

(1)
2 · k(1)11 + k

(2)
3) + k

(2)
9 + k

(1)
11 + k

(3)
11 ,

k
(1)
6 + k

(1)
10 + k

(2)
8 + k

(2)
9 · (k(1)0 + k

(2)
2) + k

(3)
10 , k

(3)
9 ,

x5 + k
(1)
5 · k(1)14 + k

(1)
4 + k

(2)
6 + k

(1)
8 + k

(3)
8 , k

(3)
7 , x4 + k

(1)
2 + k

(2)
4 + k

(1)
6 + k

(3)
6 ,

(k
(1)
2 + k

(2)
4) · (k(1)5 · k(1)12 + k

(1)
11 + k

(2)
13) + k

(1)
2 · k(1)11 + k

(2)
3 + k

(1)
5 + k

(3)
5 ,

(k
(1)
2 · k(1)11 + k

(2)
3) · (k(1)10 + k

(1)
4 · k(1)11 + k

(2)
12) + k

(1)
0 + k

(2)
2 + k

(1)
4 + k

(3)
4 ,

k
(2)
11 · (k(1)0 + k

(2)
2) + k

(3)
3 , k

(1)
14 + k

(2)
0 + k

(1)
2 + k

(3)
2 ,

k
(2)
9 · (k(1)14 + k

(2)
0) + k

(3)
1 ,

x3 + k
(1)
0 + k

(1)
12 + k

(2)
14 + k

(3)
0 }

R(3) = {0, x2 + k
(1)
12 + k

(2)
14 , k

(1)
5 · k(1)12 + k

(1)
11 + k

(2)
13 , k

(1)
10 + k

(1)
4 · k(1)11 + k

(2)
12 ,

k
(2)
11 , k

(1)
8 + k

(2)
10 , k

(2)
9 , x1 + k

(1)
6 + k

(2)
8 , 0, k

(1)
5 · k(1)1 4 + k

(1)
4 + k

(2)
6 , 0,

k
(1)
2 + k(2), , k

(1)
2 · k(1)11 + k

(2)
3 , k

(1)
0 + k

(2)
2 , 0, k

(1)
14 + k

(2)
0 }

The set of neutral and static variables are identified as follows.

Z = {1, 5, 7, 15}
U = {0, 2, 3, 4, 6, 9, 10, 11, 12, 13, 17, 18, 19, 20, 21, 22, 24, 25, 26, 27, 28, 29, 30, 31}

To get the remaining 15 plaintext descriptions, let p(j)(XI ,Ku) = p(1)(XI ,Ku)+
∆j , j = 2, . . . , 16. ∆j could be any difference in the right half of p(1)(XI ,Ku)

since it would result in a difference at round 3,∆
(3)
j , with nonzero constant values

confined to U and I indexes. For example see the following pair of differences:

∆j = {0, 1}

∆
(3)
j = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, k(2)11 , 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0}

18 Z. Ahmadian et al.

Finally, the set of key bits to be guessed in the lower extension part are as
follows.

Kl = {k(14)i |i ∈ I14} ∪ {k(15)i |i ∈ I15} ∪ {k(16)i |i ∈ I16} ∪ {k(17)i |i ∈ I17}
I14 = {7, 14}, I15 = {5, 6, 12, 13, 15}
I16 = {3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15}, I17 = {0, 1, . . . , 15}

Appendix C. Attack algorithms

Algorithm 1 Preprocessing Phase

1: Input: {ru,min, ru,max, d,N, T imemax, Datamax}.
2: Output: {r, rl,Ku,Kl, p

(j)(XI ,Ku), 1 ≤ j ≤ N,T ime,Data}.
3: r = 0; Out′ = {};
4: for ru = ru,min to ru,max do
5: for randomly chosen I of size d do
6: (Ku, p(XI ,Ku), U, Z) = Upper-Extension-Subroutine(ru, I)
7: Data = N · 2d+|Ku|;
8: if Data ≤ Datamax then
9: rc = Cube-Tester-Subroutine(U,Z, ru, d);
10: (rl,Kl, T ime)=Lower-Extension-Subroutine(rc + ru, d,Ku, T imemax, N);
11: if ru + rc + rl > r then
12: r = ru + rc + rl;
13: Out′ ← {r, rl,Ku,Kl, p(XI ,Ku), T ime,Data};
14: end if
15: end if
16: end for
17: end for
18: p(1)(XI ,Ku) = p(XI ,Ku);
19: for j = 2 to N do
20: p(j)(XI ,Ku) = p(1)(XI ,Ku) +∆j ; ▷ for some appropriate ∆j chosen by the

attacker.
21: end for
22: Out← {r, rl,Ku,Kl, p

(j)(XI ,Ku), 1 ≤ j ≤ N,T ime,Data}; return Out;

Automated Dynamic Cube Attack on Block Ciphers 19

Algorithm 2 Upper-Extension-Subroutine

1: Input: {ru, I}.
2: Output: {Ku, p(XI ,Ku), U, Z}.
3: XI = {xi|i ∈ I}; ▷ xi is symbolic.
4: K = {kn−1, . . . , k0}; ▷ ki is symbolic.

5: S(ru) = 0, S
(ru)
I = XI , Ku = {};

6: for t = 0 to ru − 1 do
7: S̃(ru−t−1) = dec(S(ru−t),Ku);
8: for j = 0 to t do
9: S̃(ru−t+j) = enc(S̃(ru−t+j−1),K);
10: if conditions (4) and (5) are not satisfied due to the key bit kf then
11: update Ku by kf ;
12: go to 7;
13: end if
14: end for
15: S(ru−t−1) = S̃(ru−t−1);
16: end for
17: p(XI ,Ku) = S(0);
18: S(ru) = S̃(ru);
19: Identify sets U and Z from S(ru);
20: return {Ku, p(XI ,Ku), U, Z};

Algorithm 3 Cube-Tester-Subroutine

1: Input: {U,Z, I, ru, d}.
2: Output: {rc}.
3: for rc = 1 to rc,max do ▷ rc,max is set by the attacker.
4: T0 = 0;
5: for i = 0 to 2d − 1 do
6: S = 0, SI = i; ▷ writes the binary representation of i in bits I of S.
7: T0 = T0 + Enc(S, 0, ru, rc);
8: end for
9: for j = 1 to M do ▷ M is the number of linearity tests, set by the attacker
10: Randomly choose x, y ∈ {0, 1}|U| and k1, k2 ∈ {0, 1}|K|;
11: S1Z = 0, S1U = x;
12: S2Z = 0, S2U = y;
13: S3Z = 0, S3U = x+ y;
14: T1 = 0, T2 = 0, T3 = 0;
15: for i = 0 to 2d − 1 do
16: S1I = i , S2I = i, S3I = i;
17: T1 = T1 + Enc(S1, k1, ru, rc);
18: T2 = T2 + Enc(S2, k2, ru, rc);
19: T3 = T3 + Enc(S3, k1 + k2, ru, rc);
20: end for
21: if T1 + T2 + T3 + T0 ̸= 0 then return rc − 1; halt.
22: end if
23: end for
24: end for

20 Z. Ahmadian et al.

Algorithm 4 Lower-Extension-Subroutine

Input: {r′,Ku, d, T imemax}.
Output: {rl,Kl, T ime}
Kl = {}, rl = 0, T ime = N × 2d+|Ku| + 2|K|−N ;
while Time < Timemax do
K̃l ← Kl, ˜Time← Time;
Trace T in forward direction for one round;
Update Kl;
T ime = N · 2d+|Ku| + rl

r′+rl
N · 2d+|Ku∪Kl| + 2|K|−N ;

rl = rl + 1;
end while
return {rl − 1, K̃l, ˜Time};

Algorithm 5 Online Phase

1: Input: d,N, rl,Ku,Kl, p
(j)(XI ,Ku), 1 ≤ j ≤ N

2: Output: secret key K.
3: for k1 = 0 to 2|Ku| − 1 do
4: for i = 0 to 2d − 1 do
5: for j = 0 to N do
6: Compute plaintext P (j, i, k1) = p(j)(XI ,Ku)|XI=i,Ku=k1 ;
7: Query the r-round encryption oracle and save the corresponding cipher-

text C(j, i, k1);
8: end for
9: end for
10: for k2 = 0 to 2|Kl−Kl∩Ku| − 1 do
11: fail = 0; j = 0;
12: while j < N and fail = 0 do
13: T = 0;
14: for i = 0 to 2d − 1 do
15: T = T +Dec(C(j, i, k1), (k1, k2), r, rl);
16: end for
17: if T ̸= 0 then
18: fail = 1;
19: end if
20: j = j + 1;
21: end while
22: if fail = 0 then
23: Randomly choose P and query its ciphertext C;
24: for k3 = 0 to 2|K−Kl∪Ku| − 1 do
25: if C = Enc(P, (k1, k2, k3), 0, r) then return (k1, k2, k3);
26: end if
27: end for
28: end if
29: end for
30: end for

	 Automated Dynamic Cube Attack on Block Ciphers: Cryptanalysis of SIMON and KATAN
	Introduction
	Preliminaries and Notations
	Dynamic Cube Attack on Block ciphers
	Attack Framework
	Preprocessing
	Online Phase

	Cryptanalysis of KATAN-32
	Specification of KATAN-32
	Cube Attack on KATAN32

	Cryptanalysis of SIMON32/64
	Specification of SIMON32/64
	Cube Attack on SIMON32/64

	Conclusions and Discussions

