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ABSTRACT
In this paper, we assess the practicability of HashSieve, a
recently proposed sieving algorithm for the Shortest Vector
Problem (SVP) on lattices, on multi-core shared memory
systems. To this end, we devised a parallel implementation
that scales well, and is based on a probable lock-free sys-
tem to handle concurrency. The probable lock-free system,
implemented with spin-locks and compare-and-swap opera-
tions, acts, likely, as a lock-free mechanism, since threads
block only when strictly required and chances are that they
are not required to block, because resource contention is
very low. With our implementation, we were able to solve
the SVP on an arbitrary lattice in dimension 96, in less than
17.5 hours, using 16 physical cores. The least squares fit of
the execution times of our implementation, in seconds, lies
between 2(0.32n−15) or 2(0.33n−16), which indicates that siev-
ing algorithms are indeed way more practical than believed.

1. INTRODUCTION
Cryptography is mainly used to protect information that

is sent over an insecure channel. In the late 90s, Ajtai dis-
covered that certain lattice problems have interesting prop-
erties for cryptography, such as average-case hardness, and
that lattices can be used for building cryptographic primi-
tives [2]. At that point, the news had already broken that
several classical cryptographic schemes (such as RSA) were
insecure against quantum computers [22]. This led many re-
searchers to engage on an intensive investigation of lattice-
based alternatives for classical schemes, as these are believed
to be, among others, secure against quantum attacks. One of
the many discoveries in the field of lattice cryptography since
then is that lattices can be used to construct the “holy grail”
of cryptography, Fully Homomorphic Encryption [9], which
made lattice-based cryptography one of the most prominent
and rapidly growing fields of quantum resistant (also known
as post-quantum) cryptography.

.

Cryptosystems (also called schemes in the cryptography
world) are generally built on problems known to be hard. To
estimate the actual computational complexity of these prob-
lems in practice is of prime importance, because the param-
eters of cryptosystems are chosen based on this complexity.
Overestimating the computational complexity of these prob-
lems might lead to overly strong parameters, which might
render the scheme impractical. On the other hand, under-
estimating their computational complexity might lead to in-
secure cryptosystems. Given that, in most cases, the only
way of estimating the actual complexity of these problems
is to consider the performance of the algorithms that solve
them, highly optimized, parallel solvers are needed to obtain
realistic estimates.

Lattices are discrete subgroups of the n-dimensional Eu-
clidean space Rn, with a strong periodicity property. A lat-
tice L generated by a basis B, a set of linearly independent
vectors b1,...,bn in Rn, is denoted by:

L(B) = {x ∈ Rn : x =

n∑
i=1

uibi, u ∈ Zn}. (1)

Lattice-based cryptosystems can be broken when specific
(hard) lattice problems can be solved in a timely manner.
One of these hard problems is to find short vectors in a
given lattice. Although the shortest vector might not be
always needed to break a cryptosystem, the Shortest Vec-
tor Problem (SVP) is usually the central problem in this
context, since algorithms that find very short vectors in a
lattice usually use algorithms for the SVP as part of their
logic. The SVP consists in finding the non-zero vector v of
a given lattice L, whose Euclidean norm ‖v‖ is the smallest
among the norms of all non-zero vectors in the lattice L and
is denoted by λ1(L). We refer to an algorithm that solves
this problem as an SVP-solver.

SVP-solvers work faster on reduced lattice bases, i.e. lat-
tice bases with short, nearly orthogonal vectors. The main
algorithms that can be used to reduce lattices are the Lenstra-
Lenstra-Lovász (LLL) and the Block Korkine Zolotarev (BKZ)
algorithms (cf. [13]). LLL is a fast, polynomial-time algo-
rithm that offers a moderate guarantee on the quality of
the output basis; the resulting basis vectors are somewhat
short and orthogonal. BKZ is a generalization of LLL, and
offers an adjustable trade-off between the time complexity
and the output quality, through a block-size parameter β:



the higher the block-size β, the longer the algorithm takes
to terminate, but the probability of obtaining a basis with
better quality is higher.

Currently, there are three main classes of SVP-solvers: al-
gorithms based on computing the Voronoi cell of a lattice,
sieving algorithms, and enumeration algorithms (see [13] for
a comprehensive overview). These algorithms sparked three
distinct, competitive lines of research. The class of algo-
rithms based on the Voronoi cell of a lattice, however, has
been inactive for some years, with the most relevant contri-
bution, due to Agrell et al., dating back to 2002 [1, Relevant
vectors, Section VI C]. Even though this class of algorithms
currently offers the best theoretical time-complexity bounds,
its algorithms are intractable in practice.

Sieving and enumeration algorithms have competed for
the place of the best SVP-solver since 2001. An overview of
the advances in both classes of algorithms is given in Sec-
tion 2. GaussSieve was considered, up until this point, the
most practical among sieving algorithms [16]. This led to a
series of implementations for both shared- and distributed-
memory systems (e.g. [5, 11, 15, 17]). Very recently, Hash-
Sieve, a new sieving algorithm with theoretical speedups
over GaussSieve, was proposed in [12], which raised impor-
tant questions. First, it is still unclear if HashSieve out-
performs optimized implementations of GaussSieve. This
is because it is not uncommon that algorithms with better
theoretical complexity are indeed worse in practice. Second,
it is relevant to know if scalable parallel implementations of
this algorithm can be developed and how they compare to
efficient parallel versions of GaussSieve. Last but not least,
one must validate the estimates of the time complexity of the
algorithm presented in [12], which are crucial for accurately
choosing parameters of lattice-based cryptosystems.

The contribution of this paper is two-fold. First, we as-
sess the practicability of the HashSieve algorithm, of which
we devised an optimized implementation. Throughout this
process, we present a memory usage model for our imple-
mentation, since memory usage is particularly high in Hash-
Sieve. Second, we propose a parallel variant of this algo-
rithm, which outperforms, the parallel version of GaussSieve
on shared-memory systems proposed in [15]. Our parallel
variant makes extensive use of fine grained synchronization
primitives, implemented with atomic Compare and Swap
(CAS) operations, as a way of avoiding locks, thus simulta-
neously increasing the performance and the scalability of the
algorithm. Although we implemented spin-locks to main-
tain thread-safety, chances are that locks will not spin. If
this holds during the whole execution of our application, the
synchronization primitives will be equivalent to single CAS
operations, and the code will indeed be lock-free.

2. RELATED WORK
There are three main classes of SVP-solvers: algorithms

based on computing the Voronoi cell of a lattice, sieving
algorithms, and enumeration algorithms. Random sampling
and associated variants have also been published (e.g. [21])
and reported on the SVP-challenge1, but have attracted far
less attention than sieving and enumeration. In Section 2.1,
we briefly compile the available SVP-solvers and in Section
2.2 we overview implementations of sieving algorithms.

1http://www.latticechallenge.org/svp-challenge/

2.1 SVP-solvers
Currently, enumeration algorithms are considerably more

practical than sieving algorithms on random lattices. While
enumeration algorithms have been studied since the early
eighties, the progress in sieving algorithms started off only
in 2008, when they were first-hand shown to be tractable
for moderate dimensions, via the AKS algorithm [18], even
though still uncompetitive with enumeration routines. Enu-
meration algorithms are compute-bound, whereas sieving al-
gorithms are essentially memory-bound, and therefore less
suited for current computer architectures, where memory
accesses are expensive.

In 2010, Micciancio et al. presented GaussSieve, the first
sieving heuristic that outperformed enumeration routines
[16]. However, very little time would pass by before enu-
meration with extreme pruning was published [8], thus ren-
dering sieving algorithms uncompetitive again. While many
top-entries in the SVP-challenge are nowadays due to enu-
meration algorithms with extreme pruning, few are due to
sieving (e.g., the highest dimension solved with sieving was
116, whereas enumeration-based entries made it to 130).
With respect to ideal lattices, where sieving algorithms per-
form particularly well, the picture is different and sieving
dominates.

2.2 Implementations of sieving algorithms
The literature records considerable effort in porting both

enumeration and sieving algorithms to parallel, high-end ar-
chitectures. In particular, considerable effort has been put
into implementations of sieving algorithms, because they are
asymptotically faster than enumeration (2O(n) vs. 2O(n logn)

for lattices in dimension n) and they can take advantage of
specific lattice structures such as ideal lattices, currently the
most interesting type of lattice to build cryptosystems. Al-
though enumeration currently dominates sieving in arbitrary
lattices, recent work has allowed sieving to surpass enumer-
ation on ideal lattices [11], as shown by the SVP-challenge
for ideal lattices2. In this section, we compile sieving-related
implementations.

Many implementations of sieving algorithms have been
published in the last years. Up until this point, GaussSieve
was undoubtedly the most practical among all sieving al-
gorithms. The first parallel implementations of GaussSieve
date back to 2010 [17], but considerable headway was made
since. Currently, GaussSieve is known to scale well on shared-
memory systems as well as on distributed systems [15, 5].
On shared-memory systems, the most efficient version of
GaussSieve makes use of a lock-free, scalable linked-list,
which aggregates the vectors centrally, thereby permitting
threads to work together on sieving the list [15]. It was also
shown that ListSieve (a simplified version of GaussSieve) can
scale super-linearly [14]. This is because sieving algorithms
can tolerate both loss of vectors and missed reductions, as
long as they are punctual. A missed reduction happens when
the implementation does not check if two vectors can be
reduced against each other, an useful property for parallel
implementations of sieving algorithms [15, 14].

There are also implementations of GaussSieve for distributed
memory systems. Ishiguro et al. presented an MPI imple-
mentation of GaussSieve where each processor has a copy

2http://www.latticechallenge.org/ideallattice-
challenge/index.php



of the full list in memory [11]. On top of that, Ishiguro et
al. presented ways of taking advantage of the structure of
ideal lattices with GaussSieve, as well as suggestions that
certain kernels could be vectorized. Finally, it was shown
that Klein’s algorithm, used as the sieving sampler, could be
tweaked to deliver shorter vectors. Both optimizations speed
up the algorithm (these were later on revisited [7, 15]). This
implementation still incurs high communication overhead
(e.g. with 224 threads the implementation spends more time
in communication than in computation). Very recently, Bos
et al. presented another approach to parallelize GaussSieve
on distributed memory systems [5], with better results on
random lattices than the previous approach, as well as higher
speedups for ideal lattices, using the Fast Fourier Transform
to speedup the computation of inner products between one
vector and the rotations of another. This version splits the
list across the used nodes, without replicating it, but hav-
ing a chunk of the list on each node, and then executing
synchronized rounds to reduce samples.

In this paper, we show that HashSieve can solve the SVP
on lattices in the same dimensions much faster than previous
GaussSieve implementations, using less resources.

3. THE HASHSIEVE ALGORITHM
A common operation in sieving algorithms is a repeated

search for nearby vectors in high-dimensional space. In clas-
sical approaches to sieving, including various provable algo-
rithms [3, 10, 16, 18, 19] and some faster heuristic alterna-
tives [16, 18], these searches are done in a brute-force man-
ner; given a list of vectors L and a target vector v, searching
for list vectors w ∈ L which are close to this target vector v is
simply done by going through the list and comparing its el-
ements, one by one, to v. A recent line of research on multi-
level sieving [23, 24] considered methods to perform these
searches faster, but the large polynomial overhead, as well
as the exponential increase in the space complexity, seem to
render these methods ineffective for any practical dimension
n. To this day, no implementations of these multi-level sieve
algorithms were reported.

Very recently, Laarhoven [12] showed that a well-known
method from the field of nearest neighbor search, called
locality-sensitive hashing, can be used to significantly speed
up the search step in sieving. The resulting exponential
speedup is significantly higher compared to previous results
of [4, 23, 24], and the polynomial overhead seems to be small.
The preliminary experiments in the paper indicated that
HashSieve might be faster than the fastest sieving algorithm
to date, GaussSieve, already in low dimensions. However, as
mentioned in [12], these preliminary results were based on
a comparison of näıve implementations of both algorithms,
and did not take into account the effect of various heuristic
speedups to sieving suggested in the literature [7, 11, 14, 15,
16, 17, 21, 20].

3.1 Description
The pseudo-code of the HashSieve algorithm is given in

Algorithm 1. After the initialization, in Line 3, the algo-
rithm repeats the following procedure: (i) sample a random
lattice vector v (or get one from the stack S); (ii) find nearby
candidate vectors w in the hash tables to reduce v with; (iii)
use the reduced vector v to reduce other vectors w in the
hash tables (and if such a vector w is reduced, move it onto
the stack); and finally (iv) add v to the stack or hash tables.

Algorithm 1: The HashSieve algorithm

1 Input: Basis B;
2 Initialize S ← {}, cl← 0
3 Initialize T empty hash tables H1, . . . , HT

Sample T · K random hash vectors ai,j

4 while cl < c do
5 Get a vector v from the stack (or sample a new one)

6 Obtain the set of candidates C =
⋃T

i=1 Hi[hi(±v)]
7 for each w ∈ C do
8 Reduce v against w
9 Reduce w against v

10 if w has changed then
11 Remove w from all T hash tables Hi
12 if w == 0 then cl++ else Add w to the

stack S

13 if v has changed then
14 if v == 0 then cl++ else Add v to the stack S

15 else
16 Add v to all T hash tables Hi

The algorithm aims at building a large set of short, pair-
wise reduced lattice vectors until two are λ1(L) apart from
each other. After that, the size of the set does not increase
any more, and collisions, which happen when vectors are
reduced to the zero-vector, are generated instead. The al-
gorithm terminates when a given number of collisions c is
reached.

As previously discussed, the crucial difference between
HashSieve and previous sieving algorithms is the way steps
(ii) and (iii) above are carried out. Instead of going through
all the vectors in the system (in the hash tables) in linear
time, the algorithm uses T independent hash tables H1, . . . , HT
to look up nearby vectors. Intuitively, the size of the search
space of vectors to compare to v is significantly reduced,
before actual comparisons of vectors are done. Given a tar-
get vector v, the algorithm performs these hash table look-
ups by first computing the hash value hi(v) (where hi is
a locality-sensitive hash function, which can be efficiently
evaluated in O(n2) time), and then looking up vectors in the
hash table Hi which are contained in the hash bucket labeled
hi(v). The vectors in these buckets H1[hi(v)], . . . , HT[hT(v)]
are then used to potentially reduce v. These locality-sensitive
hash functions have the property that vectors mapped to the
same bucket have a higher probability of being nearby than
“average” list vectors.

In [12], a specific locality-sensitive hash function family
was considered, namely the angular or cosine LSH family of
Charikar [6]. Given a target vector v and a hash vector a,
the hash value consists of a single bit ha(v) ∈ {0, 1} and is
computed as

ha(v) =

{
1 if 〈a,v〉 ≥ 0;

0 if 〈a,v〉 < 0.
(2)

Here the hash family consists of the family of functions
H = {ha} where a ∈ Rn is drawn at random from, say,
an n-dimensional Gaussian distribution. To combine K ran-
dom hash functions hi,j = hai,j from this hash family H
into one combined hash function hi with range {0, 1}K, we
define hi(v) = (hi,1(v), hi,2(v), . . . , hi,K(v)). In other words,
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Figure 1: Hash tables and buckets, containing pointers to vectors in memory, in our HashSieve implementa-
tion. Example with 9 vectors in the system.

hi(v) = hi(w) if and only if hi,j(v) = hi,j(w) for all j =
1, . . . , K. For each of the T hash tables, we build such a ran-
dom, combined hash function hi, leading to T hash tables
H1, . . . , HT with different associated hash functions h1, . . . , hT.
As the range of each of these combined hash functions is
{0, 1}K, the number of hash buckets in each table is 2K.

Finally, by increasing K and T, the hash functions become
more and more selective and will only map vectors to the
same bucket if they are really close to one another in space.
However, increasing K and T comes at the cost of increasing
the space complexity; to actually be able to find list vectors
in this hash table, we need to store all list vectors in each
of the hash tables as well. Also, to find candidate reducing
vectors in these hash tables, we need to compute the T hash
values of the target vector v and perform T hash table look-
ups. Thus, at some point, making the number of hash tables
T bigger will not improve the time complexity any more. A
detailed analysis reveals the (asymptotic) optimal choices of
K and T. For the angular hash family considered in [12], it

was shown that K = 0.2209n + o(n) and T = 20.1290n+o(n)

are asymptotically optimal. Thus, for high dimensions, the
choices K = b0.2209ne and T = b20.1290ne (i.e., the lead-
ing terms rounded to the nearest integer) seem reasonable.
We will refer to these, from now on, as optimal parame-
ters, although this is an abuse of notation since they are not
necessarily optimal.

3.2 Implementation
In order to implement HashSieve efficiently, many deci-

sions have to be made and practical tweaks have to be con-
sidered. The original paper already considered some prac-
tical improvements to the most general, theoretical formu-
lation of the algorithm, such as using very sparse random
hash vectors ai,j to make hash computations significantly

cheaper. Also, since commonly both w and −w are com-
pared to v, one can merge the buckets labeled hi(v) and
hi(−v) into one bucket, as done in Line 6 of Algorithm 1.

Implementation details do matter for performance, and
they must be addressed in our implementation if high per-
formance is to be achieved. Buckets can be implemented
with linked-lists or vectors which must be re-sized whenever
they become full. Figure 1 shows the scheme that we im-
plemented. Whenever a vector is to be added to a bucket,
we store a pointer to the vector, that is stored sparsely in
memory, without any particular organization, so no mem-
ory is replicated. Both linked-lists and vectors would have
advantages and disadvantages to implement buckets, but as
the pointers to vectors are stored within the buckets without
any particular order, we chose to implement them as arrays,
which are more cache-friendly. The arrays start with a pool
of pointers, to avoid several (expensive) singular allocations,
and are resized whenever needed.

Another important point with regards to our implemen-
tation is that we combine steps (ii) and (iii) together. That
is, we reduce w with unreduced vectors v as well, instead
of waiting until v is completely reduced. We performed
some experiments to find out that our decision is right,
performance-wise, because many inner products are saved.
Inner products were also vectorized with SSE4.1 and the al-
gorithm stops once c collisions, where c = α × no_vectors

+ β, are generated (in the experimental section, we define
both α and β). To generate samples, we used Klein’s algo-
rithm, as implemented in [15].

4. A PARALLEL VARIANT OF HASHSIEVE
It is well documented that coarse-grained parallelization

is a good scheme (if not the best) for implementing sieving



algorithms on shared-memory architectures [15, 14]. In such
a scheme, each thread executes the sequential sieving kernel,
i.e., generation of a sample (either from scratch or popped
from stack), reduction against existing samples, and storing
in memory (e.g. in a global list, as in GaussSieve). How-
ever, this results in multiple concurrent memory accesses,
which must be handled via some sort of synchronization. In
GaussSieve, the concurrency comes down to concurrent in-
sertions and removals in a list of vectors, which was solved
before with a lock-free, scalable, linked-list list on shared-
memory systems [15].

In this section, we analyse the concurrency of a coarse-
grained parallel version of HashSieve and we present a prob-
able lock-free system that ensures the correctness of that
parallel version, while probably executing without actual
locks.

Concurrency in parallel HashSieve. While coarse-grained
parallelization can be applied to HashSieve as well (each
thread would then sample a vector, reduce it against the
elements in the hash tables and insert/remove elements ac-
cordingly), it becomes considerably more difficult to ensure
correctness without resorting to very conservative (and ex-
pensive) locking mechanisms. There are two concurrent op-
erations in such a scheme. The most obvious is the concur-
rent insertion and removal of vectors in each bucket. The
other is the concurrent use of multiple vectors throughout
the execution, for actual reductions. Since every hash ta-
ble has one pointer to every vector in the system, several
threads can access (and potentially write) the same vector
at the same time, either via the same hash table, or via
different hash tables. In short, different threads can access
the same buckets and vectors (even if they are working with
different hash tables and different buckets).

A (probable) lock-free mechanism. To enable the safe
use of these operations in a parallel execution, we imple-
mented a probable lock-free mechanism, i.e., a synchroniza-
tion mechanism implemented with locks that will likely act
as a lock-free mechanism. This means that locks are only
used when strictly required, and chances are that they are
never required, because contention is very low. When locks
are not strictly required, they are executed as a single, non-
blocking CAS operation (i.e. no locking occurs).

To implement this probable lock-free mechanism, we in-
troduced a variable per vector and per bucket, which is
atomically updated whenever a vector is used (both to read
and write). For the buckets, each thread loops until the vari-
able is successfully set to “1”, which happens only when the
value is originally “0”, as in a spin-lock. This resolves two
sources of concurrency: concurrent management of buckets,
by different threads, and concurrent accesses to the same
vector, by different threads, through the same hash table.

For vectors, that can still be accessed concurrently through
different hash tables, each thread tries to set the variable
atomically to “1” as well, but in this case the vector is ig-
nored if the operation is not successful, and the next vector
in line is considered (we refer to this as “a lock”, which never
causes thread locking). An illustrative example of this case
is the reduction of a sample v against a given set of candi-
dates w1,...,wn. If the candidate vector w1≤k≤n is “locked”
(which means that it is either being read or written by an-
other thread), the reduction of v against wk will not be

attempted, and the executing thread will continue the pro-
cess from wk+1 onwards. This means that, in this specific
iteration, wk will not be revisited again. The update of these
variables is done once the vector is not needed any longer,
and no atomic updates are used. This guarantees that the
same vector is only accessed by one thread at a time.

There are two caveats that need to be addressed in this
process. First and foremost, we refer to our implemen-
tation as a relaxed variant of HashSieve, since punctual
missed reductions might occur in specific iterations, if dif-
ferent threads try to access the same vectors concurrently
(one gets “the lock” and the others are not considered), as
mentioned before. We believe that this is not too much of
a problem because (1) the probability of having different
threads accessing the same vectors is very low and (2) the
vast majority of vectors is not suitable for the reduction of
samples anyway [7, 15, 14]. This is known from the exper-
iments with relaxed versions of sieving algorithms, which
showed that disregarding vectors at some point does not in-
crease the convergence time of the algorithms unless those
vectors are ignored from that moment on [15, 17], which
is not the case in our implementation. The biggest proof
that missing reductions occasionally is not a serious issue,
is HashSieve itself, since HashSieve is already a somewhat
relaxed version of GaussSieve, as explained in [12].

In HashSieve, however, it must be noted that the proba-
bility of vectors to be suitable candidates is higher than in
GaussSieve. Thus, our probable lock-free mechanism intro-
duces a second level of relaxation. Again, we stress that this
relaxation is not problematic, due to the aforementioned rea-
sons, which is ultimately proved by our experiments, which
delivered the optimal solution with all numbers of threads
and in all lattices.

The second important point in our implementation is that,
although we implement spin-locks to ensure that only one
thread modifies the contents of each bucket at a time, these
will, probabilistically speaking, act only as atomic updates
of variables (i.e. only the first iteration of the loop is ex-
ecuted), thus not causing any actual blocking of threads.
This is because the number of buckets per hash table grows
exponentially with the dimension of the lattice, according
to the optimal values of T and K (which we used, whenever
possible). For instance, we use 212 buckets per hash table
for a lattice in dimension 60, whereas that number increases
to 218 for a lattice in dimension 90. For a sensible num-
ber of threads in shared-memory systems (e.g. <128), the
probability of having two or more threads accessing the same
bucket is very small (plus, threads do many more operations
then accessing buckets).

5. EXPERIMENTS AND RESULTS
An analysis was carried out with several random lattices,

generated with Goldstein-Mayer bases, in multiple dimen-
sions, available on the SVP-challenge3 website (all of which
of seed 0). Table 1 provides the specifications of the test
platform, which runs Ubuntu 11.10, kernel 3.0.0-32-generic.

The code was compiled with Intel icpc 13.1.3. We
used the -O2 optimization flag, since it was slightly better
than -O3. Every experiment was repeated three times and
the best sample was chosen, except when said otherwise.
The elapsed time of lattice reduction is not included in the

3http://www.latticechallenge.org/svp-challenge/



#Sockets 2
CPU manufacturer Intel
Model number E5-2670
Launch date Q1’12
Micro-architecture Sandy Bridge
Frequency 2600 MHz
Cores 8
SMT Hyper-threading
L1 Cache 8 × 32 kB
L2 Cache 8 × 256 kB
L3 Cache 20 MB shared
System memory 128 GBs

Table 1: Specifications of the test platform. SMT
stands for Simultaneous multi-threading.

results. Target norms (i.e., the algorithm stops as soon as it
finds a vector whose norm is equal or smaller than the tar-
geting norm) were never used, and the norm of the output
vector of each and every run (sequential and parallel) was
always the same. We used the default stopping criterion, i.e.
α = 0.1 and β = 200, and we used version 5.5.2 of NTL4.

5.1 Sequential implementation
In this section, we present several results pertaining to the

performance of our implementation of HashSieve running in
sequential, i.e. our parallel implementation running with one
thread. In particular, we show the results of the following
experiments:

• Quantification of the overhead of the (probable) lock-
free mechanism we implemented, necessary for the cor-
rectness of our parallel variant of HashSieve, and com-
parison with an implementation of GaussSieve;

• Comparison of HashSieve and GaussSieve with respect
to convergence rate, in terms of used vectors. Devel-
opment of a memory usage model that captures the
majority of the memory usage of our implementation.

For these trials, we reduced the input lattices with NTL’s
BKZ, running with window β = 20, we set the d parameter
in Klein’s algorithm to log(n)/20 (a smaller value leads to
incorrect results for lattices in dimensions <70, as discussed
in Section 4.4 of [15]), and our pool of vectors per bucket
starts with 20 vectors, increasing by 20 vectors whenever it
is seen full. We also vectorized the inner product kernel and
the kernel which adds one vector to another, with SSE 4.1.
The coordinates of the vectors are stored as shorts, thereby
permitting us to store 8 coordinates per SSE register.

5.1.1 Overhead of (probable) lock-free mechanism
and comparison with GaussSieve

In this subsection, we compare the efficiency of our im-
plementation with the probable lock-free system turned on
and off (for which we used compiler pragmas), with the
lock-free GaussSieve implementation presented in [15], all
of which running with one thread (otherwise the implemen-
tation would have data races with the lock-free mechanism
turned off).

Our results confirm that HashSieve outperforms GaussSieve
not only in theory but also in practice. As Figure 2 shows,
HashSieve outperforms GaussSieve for every tested dimen-
sion, in a single-threaded application, with a speedup fac-
tor of up to ≈2.2x with the lock-free mechanism turned
4http://www.shoup.net/ntl/
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Figure 2: Execution time, in seconds, for HashSieve
with (HashSieveL) and without the probable lock-
free system (HashSieve), and GaussSieve (1 thread),
on lattices in dimensions 60-70 (less is better).

on and a factor of up to ≈2.5x with the lock-free mecha-
nism turned off. According to the theoretical complexity
bounds, the speedups are expected to increase with the di-
mension, but it is impractical to test higher dimensions with
a single thread and, therefore, confirm this in practice for
a single thread (Section 5.2.2 shows such results for parallel
executions). The (probable) lock-free system incurs about
20% overhead, compared to the single-threaded execution of
HashSieve. However, it should be noticed that for parallel
executions, some computations will likely be discarded due
to the relaxation of the algorithm, thereby amortizing this
overhead. For these trials, we used the optimal values of
K, T and BUCKETS, as shown in Table 2, since no memory
restrictions were encountered.

5.1.2 HS vs GS: convergence rate and memory
In the following, we show results pertaining to the con-

vergence rate of GaussSieve and HashSieve, in terms of used
vectors. Figure 3 shows the number of vectors used by the
sequential versions of HashSieve and GaussSieve, for lattices
in dimensions 40-70, in steps of 2, when executed with one
thread (both parallel versions relax the properties of the
algorithms, thereby possibly changing the number of vec-
tors used to converge). Since the probable lock-free mecha-
nism we implemented for HashSieve does not interfere with
the work-flow of the algorithm when executing with a sin-
gle thread (other than introducing the overhead shown in
Section 5.1.1), our HashSieve implementation uses the same
number of vectors both when the probable lock-free mecha-
nism is turned on and off.

We conclude that, as expected in [12], HashSieve uses
more vectors to converge than GaussSieve, for lattices up
to dimension 70. In particular, the number of vectors in

Dimension 60 62 64 66 68 70
K 13 14 14 15 15 15
T 214 256 306 366 437 523

BUCKETS 212 213 213 214 214 214

Table 2: HashSieve parameters used for K, T and
BUCKETS for lattices in dimensions 60-70.
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Figure 3: Number of vectors for convergence of
HashSieve and GaussSieve (1 thread), for lattices
in dimensions 40-70.

HashSieve grows roughly according to 2(0.21n+1.95), a func-
tion we obtained by curve fitting, for lattices in dimensions
40-70, in steps of 2. The relative difference between the al-
gorithms seem to decrease with the lattice dimension of the
lattice, but it is impractical to test higher dimensions with
a single thread and therefore no assumptions can be made
for bigger dimensions.

The number of vectors that HashSieve uses is closely re-
lated to a critical factor of the algorithm: the amount of
used memory. GaussSieve samples vectors and reduces them
against one another, storing them in a big list that grows
over time. HashSieve uses vectors likewise, storing them in
memory without any particular organization, but makes also
use of many hash tables of pointers to those vectors, which
increases memory consumption. For big dimensions, this
becomes a problem, since even 128 GB of RAM are easily
exceeded. In order to estimate beforehand what parameters
can be used for each execution without exceeding the avail-
able memory, we devised the following memory usage model
of our HashSieve implementation:

mHS = T ∗ BUCKETS ∗ (16 + 20 ∗ 8)︸ ︷︷ ︸
HashTables

+ 2 ∗ T ∗ K ∗ 2︸ ︷︷ ︸
A

bytes.

The first term on the right hand side, labeled HashTables,
is given by the data structure that holds the buckets: bucket
HashTables[T][BUCKETS]. Each bucket is a structure in the
following form:

struct bucket{

Vector** vectors; (pool starts with 20 pointers)

unsigned int length;

unsigned int size;

}

i.e., 8 bytes for length and size (4 bytes each) and 8 bytes
for the pointer vectors (the word size on the test system is
64 bits), which starts off with a pool of 20 pointers (i.e., 20
× 8 = 160 bytes) to structs of the type vector. Each of
these structures has the following form:

struct vector{

USED_TYPE data[N];

unsigned long norm;

struct vector *next;

char lock;

}

where USED_TYPE can either be int or short. We use the
latter, which is implemented in Unix systems with 2 bytes,
since we can make better use of the SSE registers. The
pointer to an element of the same type is used for the stack.
The second part of the equation is given by the data struc-
ture that represents the Hash matrices: unsigned short

A[T][K][2].
This model accounts for the memory that the implementa-

tion allocates at launch time, i.e. right before the reduction
of the basis. In order to estimate the memory that is used
throughout the execution, there are other factors that must
be taken into account. There are essentially two other rele-
vant contributions to the total memory of the application.

The first is the memory that is used to store vectors. We
extrapolate that the number of vectors is governed by the
function v(n) = 2(0.21n+1.95), as mentioned before. Although
we noticed that the number of used vectors in the parallel
version is different from the the sequential version, we be-
lieve that the function of the sequential version offers reason-
able estimates of the number of used vectors in the parallel
version. The size of each vector is 2n + 17 bytes, where n
is the dimension of the lattice and we use shorts for each
coordinate.

The second is the memory used to extend the arrays that
represent the buckets. While we can provide a good estimate
for the former, it is not trivial to provide such estimate for
the latter. In our implementation, we extend each bucket
in 20 positions whenever they become full. What can be
calculated is the average and worst case scenarios of memory
used by the buckets. However, our model is intended to
determine whether a set of parameters is feasible, and so it
does not account for bucket extensions.

The probable lock-free system that we implemented in-
creases the memory usage of our implementation as well,
with a 1-byte (char) lock per bucket and per hash table,
and a 1-byte (char) lock per vector. In particular, we allo-
cate a matrix char LocksForHashTables[T][BUCKETS], and
a char per vector. Therefore, the final memory usage model
we arrived at, for our parallel implementation of HashSieve
is the following:

mHSL = mHS+ T ∗ BUCKETS︸ ︷︷ ︸
LocksForHashTables

+ v︸︷︷︸
no. vectors

∗(2n+17) bytes.

Apart from these data-structures and vectors that are cre-
ated throughout the execution of the application, there are
additional data-structures, all of which have lower order
contribution to the memory usage of the implementation.
Padding can also be used to ensure that the addresses of the
data structures are multiples of the word size, which might
increase the memory spent with each vector. For instance,
a vector in dimension 80 occupies 177 bytes, which would
be augmented to 192 bytes. However, we expect that our
model is accurate enough to predict whether the memory
used by our implementation exceeds the available memory
in the system or not, especially for high lattice dimensions,
which are more interesting to test.

In order to verify this, we conducted some experiments



to capture the Resident Set Size (RSS), i.e. the amount of
process’s memory that is held in RAM, of our application.
To this end, we invoke the (ps -x pid) system call after
the execution of the parallel region but before the applica-
tion terminates. The RSS captures the memory spent by
the whole application, which includes memory spent by the
libraries that are used in the implementation (e.g. NTL for
lattice reduction with BKZ and OpenMP for creating and
managing the parallel region), which is not predicted by our
model.
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Figure 4: Data size, in kB, stored in RAM. Resident
Set Size (RSS), prediction of our model. The grayed
out area concerns the difference between the actual
RSS and our model, in percentual points.

As Figure 4 shows, our model gets very close to the actual
RSS of our implementation for big lattice dimensions. This
is due to the fact that, although our model only accounts for
the main (i.e., bigger) data structures in the implementation,
they grow exponentially in size with the lattice dimension,
and so the remaining data structures become negligible. In
particular, Figure 4 shows that for lattices bigger than di-
mension 58, the difference between the actual RSS and our
model is always lower than 20%, and most of the times very
close to 10%.

Our model shows that, by choosing the optimal param-
eters of T, K and BUCKETS, the 128 GB of our machine are
only enough to test lattices up to dimension 86, wherein the
application spends around 100 GB of RAM (where T, K and
BUCKETS are assigned 19, 2189 and 218, respectively). Ac-
cording to our model, executing a lattice in dimension 100
with optimal parameters would require over 2.5 TB of RAM.

Due to the memory restriction of our test machine, we will
use, from here on, the parameters T, K and BUCKETS as 19,
2189 and 218, respectively, for lattices in dimensions ≥ 86.

5.2 Parallel implementation

5.2.1 Scalability
This section records the trials that we conducted to quan-

tify the scalability of our implementation on our test plat-
form, for random lattices in dimensions 60, 64, 70, 74 and
80. Lower dimensions are either solved very quickly or the
lattice reduction process finds the shortest vector per se,
rendering a scalability analysis worthless. Running the im-
plementation for higher dimensions, on the other hand, is

impractical for a single thread. We were still able to use the
optimal parameters of HashSieve in these dimensions, which
are shown in Tables 2 and 4. We BKZ-reduced the lattices
up to dimension 70 with β = 20, and higher dimensions with
β = 30.

As in [15], the time spent within the sampling routine
increases for lower values of Klein’s algorithm parameter d,
which lowers the scalability of the implementation because
the sampler routine does not scale well. For that reason, and
to properly assess the scalability of our implementation, we
set the Klein’s algorithm parameter d to 20 for every lattice.
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Figure 5: Execution time, in seconds, for HashSieve
with 1-32 threads, on lattices in dimensions 60-80
(less is better).

Figure 5 shows the execution time of our implementation,
for 1-32 threads. The application scales well for up to 32
threads, for various lattices between dimensions 60 and 80.
Unfortunately, scalability experiments are impractical for
higher lattices, since every and each thread set-up is exe-
cuted three times (e.g., solving a lattice in dimension 84
with 1 thread would take about 38 hours). As shown in Ta-
ble 3, the speedup of our implementation increases, in gen-
eral, with the dimension, because the higher the dimension,
the more time is spent on reducing each sample, rather than
on generating more samples. In some cases, our implemen-
tation achieves efficiency levels of almost 90%. We believe
that the integration of a very scalable sampler in our im-
plementation would increase its scalability. This could also
be achieved with higher values for Klein’s parameter d (e.g.,
log(n)), as mentioned above, but lower values for d decrease
the overall performance of the algorithm, because larger vec-
tors are sampled and the algorithm converges faster when
fed with shorter algorithms.

5.2.2 Comparison with GaussSieve
This section shows a series of tests comparing the par-

allel implementation of GaussSieve described in [15], and
our parallel implementation of HashSieve, running with 32
threads. For these experiments, we were able to use the op-
timal values for T, K and BUCKETS, shown in Table 4. We
varied the BKZ window β, as also shown in Table 4 and we
set the Klein’s parameter d to 20 for every lattice dimen-
sion. We used lattices in dimensions 66-78, since there is
not much benefit in increasing the dimension any further, as
the difference between the performance of both algorithms



Dimension 60 Dimension 64 Dimension 70 Dimension 74 Dimension 80

Cores S E S E S E S E S E

2 1.37x 69% 1.40x 70% 1.69x 84% 1.76x 88% 1.77x 89%
4 2.66x 67% 2.75x 69% 3.33x 83% 3.43x 86% 3.45x 86%
8 5.07x 63% 5.27x 66% 6.42x 80% 6.64x 83% 6.56x 82%
16 9.05x 57% 9.80x 61% 11.83x 74% 12.16x 76% 11.76x 74%
32 13.01x 41% 14.08x 44% 17.48x 55% 17.14x 54% 16.26x 51%

Table 3: Speedups (S) and Efficiency (E) of our HashSieve implementation running on five random lattices
(dimensions 60, 64, 70, 74 and 80). SMT is used in grayed out rows.

will only get bigger with increasing dimensions, unless sub-
optimal parameters are used.

Dim 66 68 70 72 74 76 78

K 15 15 15 16 16 17 17
T 366 437 523 625 748 894 1069

BUCKETS 214 214 214 215 215 216 216

BKZ-β 20 20 20 30 30 30 30
mHSL 1.00 1.19 1.43 3.40 4.06 9.70 11.60

Table 4: HashSieve parameters used for K, T and
BUCKETS, BKZ-β and memory model prediction
(in GB) for various lattices in dimensions 66-78.

Figure 6 shows the execution time of our implementation
and the GaussSieve implementation presented in [15], both
running with 32 threads. HashSieve outperforms GaussSieve,
as verified with the sequential versions, and the difference
between both algorithms grows with the lattice dimension.
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Figure 6: Execution time, in seconds, for HashSieve
and GaussSieve, with 32 threads, on lattices in di-
mensions 66-78 (less is better).

5.2.3 Practicability experiments
In this section, we report the results of our experiments on

the practicability of our parallel HashSieve implementation
on lattices in large dimensions. We report the largest lat-
tice dimensions that we were able to find and the execution
time that our implementation took. The main limitation we
encountered during the trials we conducted was the lack of
RAM to use the optimal parameters of HashSieve.

Since the machine we used has 128 GB of RAM, our ex-
periments were limited to K = 18, T = 1828 and BUCKETS

= 131072, i.e., far from being the optimal parameters. Un-
fortunately, the optimal parameters are impractical for ma-
chines that are not equipped with unusual amounts of RAM.
For instance, the optimal parameters for dimension 96, (K =
21, T = 5345 and BUCKETS = 220) would require almost 1 TB
of RAM only for the data structures that are allocated at
launch time. Therefore, we expect that better parameters
would result in a much better execution time of our imple-
mentation. Yet, we were able to solve the SVP on several
lattices, from dimension 86 to dimension 96, all in less than
24h, as Table 5 shows.

Dim 86 88 90 92 94 96

Time (h) 1.92 2.38 3.43 7.35 11.07 17.38

Table 5: Execution time of our parallel implemen-
tation of HashSieve running with 32 threads on the
test platform, in hours.

For these experiments, we used BKZ-β = 34, and Klein’s
parameter = 70 (which is expected to be the best for di-
mensions higher than 80, even if poor scalability is achieved
- a claim that is too time consuming to be verified). Each
execution was run only once.

6. CONCLUSIONS AND OUTLOOK
This paper presents a parallel implementation of Hash-

Sieve, a recently proposed sieving algorithm to solve the
SVP on lattices. Our implementation scales considerably
well on a 16-core system with SMT, and outperforms the
most efficient shared-memory GaussSieve implementation,
published in [15]. Therefore, we were able to verify in prac-
tice the results that were expected from theory.

In parallel, HashSieve has more concurrent operations than
GaussSieve. Our implementation uses a probable lock-free
algorithm, which might cause missed reductions, but chances
are that, for sufficiently large numbers of hash tables and
buckets, no locks are used (or, in other words, no threads
block). With our implementation, we are able to solve the
SVP on an arbitrary lattice in dimension 96 in less than 17.5
hours, with our 16-core test machine.

Although HashSieve is considerably better than its coun-
terparts and it renders the execution of the SVP on high-
dimensional lattices much more practical, sieving algorithms
are yet less efficient than enumeration with extreme pruning
on random lattices, but very promising. The least squares



fit of the execution times of our implementation for lattices
between 80 and 96 (all of which with BKZ-β = 34, Klein’s

parameter d = 70), in seconds, lies between 2(0.32n−15) or

2(0.33n−16). This means that, if we disregard memory usage
and loss of efficiency when using larger numbers of cores, we
would solve the SVP in dimension 120 in less than 2 days,
with 100 machines identical to our benchmarking machine.

The main drawback of HashSieve is the amount of used
memory. In fact, this limited our expectation of determin-
ing how practical HashSieve is for high dimensional lattices
with optimal parameters, since our system limited our ex-
periments to 128 GB. With more RAM, one would be able
to determine if HashSieve can outperform enumeration al-
gorithms with extreme pruning. Depending on this answer,
which we plan to assess in future work, it might be prefer-
able to invest money on systems with very large memories
rather than high core counts, if the SVP on high dimensional
lattices is to be solved.

The results we achieved with the proposed parallel imple-
mentation of HashSieve are, in our view, very promising.
However, due to the inherent characteristics of the algo-
rithm, our implementation is not as scalable as GaussSieve,
and there is an array of subjects which affect the perfor-
mance of HashSieve, that we will study in the near future:

• Impact of different samplers on our implementation;

• Different bucket organizations (e.g. vectors by increas-
ing norm, as done in GaussSieve, for list L);

• Implementation of probing (cf. [12]), to reduce mem-
ory usage.
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[14] Artur Mariano, Özgür Dagdelen, and Christian
Bischof. A comprehensive empirical comparison of
parallel ListSieve and GaussSieve. In APCI&E, 2014.

[15] Artur Mariano, Shahar Timnat, and Christian
Bischof. Lock-free GaussSieve for linear speedups in
parallel high performance SVP calculation.
SBAC-PAD’14, 2014.

[16] Daniele Micciancio and Panagiotis Voulgaris. Faster
exponential time algorithms for the shortest vector
problem. In SODA, pages 1468–1480, 2010.

[17] Benjamin Milde and Michael Schneider. A parallel
implementation of GaussSieve for the shortest vector
problem in lattices. In PaCT, pages 452–458, 2011.

[18] Phong Q. Nguyen and Thomas Vidick. Sieve
algorithms for the shortest vector problem are
practical. Journal of Mathematical Cryptology,
2(2):181–207, 2008.

[19] Xavier Pujol and Damien Stehlé. Solving the shortest
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