
Use of SIMD-Based Data Parallelism to Speed up
Sieving in Integer-Factoring Algorithms ?

Binanda Sengupta and Abhijit Das

Department of Computer Science and Engineering
Indian Institute of Technology Kharagpur, West Bengal, PIN: 721302, India

binanda.sengupta,abhij@cse.iitkgp.ernet.in

Abstract. Many cryptographic protocols derive their security from the appar-
ent computational intractability of the integer factorization problem. Currently,
the best known integer-factoring algorithms run in subexponential time. Effi-
cient parallel implementations of these algorithms constitute an important area
of practical research. Most reported implementations use multi-core and/or dis-
tributed parallelization. In this paper, we use SIMD-based parallelization to speed
up the sieving stage of integer-factoring algorithms. We experiment on the two
fastest variants of factoring algorithms: the number-field sieve method and the
multiple-polynomial quadratic sieve method. Using Intel’s SSE2 and AVX in-
trinsics, we have been able to speed up index calculations in each core during
sieving. This performance enhancement is attributed to a reduction in the pack-
ing and unpacking overheads associated with SIMD registers. We handle both
line sieving and lattice sieving. We also propose improvements to make our im-
plementations cache-friendly. We obtain speedup figures in the range 5–40%. To
the best of our knowledge, no public discussions on SIMD parallelization in the
context of integer-factoring algorithms are available in the literature.

Keywords: Integer Factorization, Sieving, Multiple-Polynomial Quadratic Sieve
Method, Number-Field Sieve Method, Single Instruction Multiple Data, Stream-
ing SIMD Extensions, Advanced Vector Extensions

? Part of this work is presented at SPACE 2013.

1 Introduction

Let n be a large composite integer having the factorization

n = p
vp1
1 p

vp2
2 · · · p

vpk
k =

k

∏
i=1

p
vpi
i .

The integer factorization problem deals with the determination of all the prime divisors
p1, p2, . . . , pk of n and their corresponding multiplicities vp1 ,vp2 , . . . ,vpk . The earlier al-
gorithms proposed to solve this problem run in exponential time in the input size (the
number of bits in n, that is, log2 n or lgn). Modern factoring algorithms have subexpo-
nential running times of the form

L(n,ω,c) = exp
(
(c+o(1))(lnn)ω(ln lnn)1−ω

)
,

where c and ω are positive real constants with 0 < ω < 1. The smaller the constants ω

and c are, the faster these algorithms are. The fastest known general-purpose factoring
algorithm is the (general) number-field sieve method (NFSM) for which ω = 1/3 and
c = (64/9)1/3 ≈ 1.923. The multiple-polynomial quadratic sieve method (MPQSM)
is reported as the second fastest factoring algorithm. Its running time corresponds to
ω = 1/2. Although the NFSM is theoretically faster than the MPQSM, the asymptotic
behavior shows up only when the input integer n is moderately large (having at least
a few hundred bits). Better than fully exponential-time algorithms as they are, these
subexponential algorithms are still prohibitively slow, and it is infeasible to factor a
1024-bit composite integer in a reasonable amount of time (like a few years). Many
cryptographic protocols (including RSA) derive their security from this apparent in-
tractability of the integer-factoring problem.

The most time-consuming part in the NFSM and the MPQSM is the sieving stage
in which a large number of candidates (suitably small positive or negative integers) are
generated. Only those candidates which factor completely over a predetermined set of
small primes yield useful relations. We combine these relations using linear-algebra
tools in order to arrive at a congruence of the form x2 ≡ y2 (mod n). If x 6≡ ±y (mod n),
the nontrivial factor gcd(x− y,n) is discovered.

In this paper, we deal with efficient implementations of the sieving stage in the
NFSM and the MPQSM. Sieving turns out to be massively parallelizable on multi-core
and even distributed platforms. All recent implementations of sieving in the literature
deal with issues of such large-scale parallelization. In this paper, we look at the problem
from a different angle. We plan to exploit SIMD features commonly available in modern
desktop and server machines. We investigate whether SIMD-based parallelization can
lead to some speedup in the computation of each core. The sieving procedure involves
two data-parallel operations: computation of indices and subtraction of log values. We
theoretically and experimentally demonstrate that the index-calculation process can be
effectively parallelized by SIMD intrinsics. This effectiveness banks on that we can
avoid packing of data in SIMD registers in each iteration of the sieving loop. The sub-
traction operations, on the other hand, do not benefit from such parallelization efforts.
First, we need packing and unpacking of SIMD registers in each iteration of the loop.

Second, the individual data items that are packed in SIMD registers do not belong to
contiguous locations in the memory.

The main technical contribution of this paper is the successful parallelization of
index calculations in the sieving stage using Intel’s SSE2 (Streaming SIMD Exten-
sions) and AVX (Advanced Vector Extensions) features on a Sandy Bridge platform.
We have been able to speed up the sieving stage of both the NFSM and the MPQSM
by 5–40%. Intel’s recently released AVX2 instruction set is expected to increase this
speedup further (AVX uses 256-bit vectorization only on floating-point values, whereas
AVX2 has this feature for integer operands too). We study two variants of sieving—
the line sieve and the lattice sieve—in the NFSM implementation. We also propose a
cache-friendly implementation strategy. To the best of our knowledge, no SIMD-based
parallelization attempts on sieving algorithms for integer factorization are reported in
the literature. The implementations described by [1] and [2] use the term SIMD but are
akin to multi-core parallelization in a 16K MasPar SIMD machine with a 128× 128
array of processing elements.

The rest of the paper is organized as follows. Section 2 introduces the background
relevant for the remaining sections, namely, the sieving procedures in the MPQSM and
in the NFSM, the lattice sieve, and Intel’s SSE2 and AVX components. In Section 3,
we detail our implementation strategies for the MPQSM and the NFSM sieves. Section
4 presents our experimental results achieved on a Sandy Bridge platform. We analyze
the speedup figures, and demonstrate the effectiveness of our cache-friendly imple-
mentation. We conclude the paper in Section 5 after highlighting some possible future
extensions of our work.

2 Background

2.1 A Summary of Known Integer-Factoring Algorithms

Most modern integer-factoring algorithms construct Fermat congruences of the form
x2≡ y2 (mod n). If x 6≡ ±y (mod n), then gcd(x−y,n) is a non-trivial factor of n. If these
congruences are available for many random values of x and y, at least some of these
pairs is/are expected to reveal non-trivial factors of n with high probability. In order
to generate such congruences, one collects many relations, each of which supplies a
linear equation modulo 2. Relation collection is efficiently carried out by sieving. After
sufficiently many relations are collected, the linear equations are combined to find non-
zero vectors in the nullspace of the system. Each such non-zero vector yields a Fermat
congruence. The factoring algorithms differ from one another in the way the relations
are generated, that is, in their sieving techniques. The linear-algebra phase turns out to
be identical in all these algorithms.

J. D. Dixon [3] proposes the simplest variant of such a factoring method. Based on
the work of Lehmer and Powers [4], Morrison and Brillhart introduce another variant
known as the CFRAC method [5], where relations are obtained from the continued
fraction expansion of

√
n.

In Pomerance’s quadratic sieve method (QSM) [6], the polynomial T (c) = J +
2Hc+ c2 (where H = d

√
ne and J = H2 − n) is evaluated for small values of c (in

the range −M 6 c 6 M). If some T (c) value factors completely over the first t primes
p1, p2, . . . , pt , we get a relation. In Dixon’s method, the smoothness candidates are O(n),
whereas in CFRAC and QSM, these are O(

√
n), resulting in a larger proportion of

smooth integers (than Dixon’s method) in the pool of smoothness candidates. More-
over, QSM replaces trial divisions by sieving (subtractions after some preprocessing).
This gives QSM a better running time than Dixon’s method and CFRAC.

R. D. Silverman introduces a variant of quadratic sieve method, called the multiple
polynomial quadratic sieve method (MPQSM) [7]. Instead of using the fixed polyno-
mial T (c), the MPQSM uses a more general polynomial T (c) =Wc2 +2V c+U so that
the smoothness candidates are somewhat smaller than those in the QSM.

The number field sieve method (NFSM) is originally proposed for integers of a
special form [8], and is later extended to factor arbitrary integers [9]. Pollard introduces
the concept of lattice sieving [10] as an efficient implementation of the sieves in the
NFSM. The conventional sieving is called line sieving.

Some other methods for factoring large integers include the cubic sieve method
(CSM) [11] and the elliptic curve method (ECM) [12].

The linear-algebra phase in factoring algorithms can be reasonably efficiently solved
using sparse system solvers like the block Lanczos method [13]. We do not deal with
this phase in this paper. We focus our attention only to the relation-collection stage
(more precisely, the sieving part of it).

2.2 A Brief Introduction to SIMD Features

All our implementations of sieving use SIMD (Single Instruction Multiple Data) par-
allelization. We carry out our experiments on a Sandy Bridge architecture from Intel.
This architecture provides two types of vectorization primitives SSE2 and AVX.

SSE (Streaming SIMD Extensions) [14] is an extension of the previous x86 instruc-
tion set, and SSE2 enhances the SSE instruction set further. Intel introduces SSE2 [15]
in Pentium 4. SSE2 instructions apply to 128-bit SIMD registers (XMM). In each XMM
register, we can accommodate multiple data of some basic types (like four 32-bit inte-
gers, four single-precision floating-point numbers, and two double-precision floating-
point numbers). There are special instructions to perform vector operations (like arith-
metic, logical, shift, conversion, and comparison) on these XMM registers. The basic
idea to exploit this architecture is to pack these registers with multiple data, perform
a single vector instruction, and finally unpack the output XMM register to obtain the
desired individual results.

AVX (Advanced Vector Extensions) [16] is a recent extension to the general x86
instruction set. It is introduced in Intel’s Sandy Bridge processor. This architecture is
designed with sixteen 256-bit SIMD registers (YMM). Now, we can accommodate eight
single-precision or four double-precision floating-point numbers in one YMM register.
AVX is designed with three-operand non-destructive SIMD instructions, where the des-
tination register is different from the two source registers.

Another important point to note here is that mixing of AVX instructions and legacy
(that is, non-VEX-encoded) SSE instructions is not recommended. XMM registers are
aliased as the lower 128 bits of YMM registers. Every AVX-SSE or SSE-AVX transi-
tion incurs severe clock-cycle penalties. To eliminate AVX-SSE transitions, legacy SSE

instructions can be converted to their equivalent VEX-encoded instructions by zeroing
the upper 128 bits of the YMM registers, as suggested in [17].

Programming languages come with intrinsics for high-level access to SIMD in-
structions. We can use these intrinsics directly in our implementations to exploit data
parallelism.

2.3 The MPQSM Sieve

The MPQSM is a variant of the quadratic sieve method (QSM). Instead of using a sin-
gle polynomial (with fixed coefficients), the MPQSM deals with a general polynomial
and tunes its coefficients to generate small smoothness candidates. This variant is par-
allelizable in the sense that different polynomials can be assigned to different cores.

The MPQSM sieve deals with a polynomial

T (c) =Wc2 +2V c+U (1)

with V 2−UW = n. The factor base consists of the first t primes p1, p2, . . . , pt , where
t is chosen based on a bound B. Only those primes are included in the factor base,
modulo which n is a quadratic residue. First, we calculate the values of T (c) for all c
in the range −M 6 c 6 M. Now, we try to find those values of c, for which T (c) is
B-smooth, that is, T (c) factors completely into primes 6 B. If T (c) = pα1

1 pα2
2 · · · p

αt
t for

some non-negative integral values of αi, then by multiplying Eqn (1) by W we get the
relation

(Wc+V)2 ≡W pα1
1 pα2

2 · · · p
αt
t (mod n). (2)

We include W too in the factor base.
Now, we briefly discuss the sieving step in the MPQSM. The smoothness candidates

are the values T (c) of Eqn (1) for all c in the range [−M,M]. We need to locate those
values of c for which T (c) is smooth over the factor base. We take an array A indexed
by c. Initially, we store log |T (c)| in A[c], truncated after three decimal places. Indeed,
we can avoid floating-point operations by storing b1000log |T (c)|c.

After this initialization, we try to find solutions of the congruence T (c)≡ 0 (mod ph),
where p is a small prime in the factor base, and h is a small positive exponent. The so-
lutions of the congruence

Wc2 +2V c+U ≡ 0 (mod ph),

are

c≡ −2V ±
√

4V 2−4UW
2W

≡ −V ±
√

n
W

≡W−1(−V ±
√

n) (mod ph). (3)

For h = 1, we use a root-finding algorithm to compute the square roots of n modulo
p (see [18, 19]). For h > 1, we obtain the solutions modulo ph by lifting the solutions
modulo ph−1 (see [20]).

Let s1,s2 be the solutions of T (c) ≡ 0 (mod ph) chosen to be as small as possible
in the range [−M,M]. Then, all the solutions of T (c) ≡ 0 (mod ph) are s1 + jph and
s2 + jph for j = 0,1,2,3, We subtract b1000log pc from these array locations. For

p = 2 and h = 1, there is only one initial solution of the congruence. For p = 2 and
h > 1, there may be more than two initial solutions.

When all appropriate values of ph are considered, the array locations storing A[c]≈
0 correspond to the smooth values of T (c). We apply trial division on these smooth
values of T (c). If some T (c) value is not smooth, then the corresponding array entry
A[c] holds an integer > b1000log pt+1c for the smallest prime pt+1 > B. This justifies
the correctness of the calculations using approximate (truncated) log values.

2.4 The NFSM Sieve

The NFSM [9] involves a monic irreducible polynomial f (x)∈Z[x] of a small degree d
and an integer m≈ n1/d such that f (m)≡ 0 (mod n), n being the integer to be factored.
One possibility is to take m = bn1/dc, and express n in base m as n = md +cd−1md−1 +
· · ·+ c0, with the integers ci varying in the range 0 to m− 1. For this choice, we take
f (x) = xd + cd−1xd−1 + · · ·+ c0, provided that it is an irreducible polynomial in Z[x].
We have f (m) = n, implying that f (m)≡ 0 (mod n), as desired.

If θ ∈C is a root of a monic irreducible polynomial f (x) of degree d with integral
coefficients and m ∈Z is an integer such that f (m)≡ 0 (mod n), then there exists a ring
homomorphism φ : Z[θ]→ Zn defined by φ(θ) = m (mod n) (and φ(1) = 1 (mod n)).
1

Now, let E be a set of pairs of integers (a,b) satisfying

∏
(a,b)∈E

(a+bθ) = α
2,

∏
(a,b)∈E

(a+bm) = y2,

for some α ∈Z[θ] and y ∈Z. Let φ(α) = x ∈Zn. Then, we get the Fermat congruence

x2 ≡ φ(α)2 ≡ φ(α2)≡ φ(∏
(a,b)∈E

(a+bθ))

≡ ∏
(a,b)∈E

φ(a+bθ)≡ ∏
(a,b)∈E

(a+bm)≡ y2 (mod n).

The NFSM uses a rational factor base (RFB) and an algebraic factor base (AFB).
The RFB consists of the first t1 primes p1, p2, . . . , pt1 , where t1 is chosen based on a
bound Brat . The AFB consists of some primes of small norms in O. Application of
the homomorphism φ lets us rewrite the AFB in terms of t2 rational (integer) primes
p1, p2, . . . , pt2 , where t2 is chosen based on a bound Balg.

Now, we describe the rational sieve and the algebraic sieve of the NFSM. Here, we
deal with incomplete sieving (see [20]), that is, higher powers of factor-base primes are
not considered in sieving.

1 C denotes the field of complex numbers, and Q the field of rational numbers. For an algebraic
element θ ∈ C, Q(θ) stands for the field obtained by adjoining θ to Q. O is the set of all
algebraic integers in Q(θ). Z[θ], a subring of O, is the set of all Z-linear combinations of the
elements 1,θ ,θ 2, . . . ,θ d−1.

Let T (a,b) = a+bm. First, we calculate the values of T (a,b) for all b in the range
1 6 b 6 u and a in the range −u 6 a 6 u. Now, we try to find those (a,b) pairs with
gcd(a,b) = 1 and b 6≡ 0 (mod p), for which T (a,b) is Brat -smooth, that is, T (a,b) fac-
tors completely into the primes p1, p2, . . . , pt1 . The determination whether a small prime
pi divides some a+ bm is equivalent to solving the congruence a+ bm ≡ 0 (mod pi).
The sieving bound u is determined based upon certain formulas which probabilistically
guarantee that we can obtain the requisite number of relations from the entire sieving
process.

We take a two-dimensional array A indexed by a and b. Initially, we store log |T (a,b)|
in A[a,b], truncated after three decimal places (or the integers b1000log |T (a,b)|c). Af-
ter this initialization, we find solutions of the congruence T (a,b)≡ 0 (mod p), where p
is a small prime in the RFB. For a fixed b, the solutions are a≡−bm (mod p). Let s be
the least possible solution of T (a,b)≡ 0 (mod p) in the range [−u,u] for a particular b.
Then, all the solutions of T (a,b)≡ 0 (mod p) for that b are s+ jp, j = 0,1,2,3, We
subtract b1000log pc from all the array locations A[a,b] such that a = s+ jp. We repeat
this procedure for all small primes p in the RFB and for all allowed values of b. As
we deal with only small primes with exponent h = 1, the array locations storing A[a,b]
values less than b1000ξ log pt1+1c (where pt1+1 is the smallest prime greater than Brat ,
and ξ lies between 1.0 and 2.5) are subjected to trial division to verify the smoothness
of T (a,b).

The algebraic sieve uses the norm function N : Q(θ)→ Q. Its restriction to Z[θ]
yields norm values in Z. For an element of the form a+bθ ∈Z[θ], we have the explicit
formula:

N(a+bθ) = (−b)d f (−a/b) = ad− cd−1ad−1b+ · · ·+(−1)dc0bd ,

where f (x) = xd + cd−1xd−1 + · · ·+ c0.
An element α ∈ Z[θ] is smooth with respect to the small primes of O if and only

if N(α) ∈Z is Balg-smooth. For each small prime p in the AFB, we compute the set of
zeros of f modulo p, that is, all r values satisfying the congruence f (r) ≡ 0 (mod p).
For a particular b with b 6≡ 0 (mod p) and 16 b6 u, the norm values with N(a+bθ)≡
0 (mod p) correspond to the a values given by a ≡ −br (mod p) for some root r of f
modulo p. It follows that the same sieving technique as discussed for the rational sieve
can be easily adapted to the case of the algebraic sieve.

An (a,b) pair for which both a+ bm and a+ bθ are smooth gives us a relation.
Sufficiently many relations obtained from the two sieves are combined using linear
algebra to get the set E of (a,b) pairs such that ∏

(a,b)∈E
(a+ bm) = y2 and ∏

(a,b)∈E
(a+

bθ) = α2.

2.5 The Lattice Sieve Method

Pollard [10] introduces the lattice sieve method based on an idea proposed in [21]. Here,
we describe the lattice sieve (its sieving-by-rows variant) for the rational sieve only. The
same technique can be used in the algebraic sieve too. First, we take the rational factor
base Brat , and partition Brat in the following way. By S, we denote the set consisting of

Algorithm 1 : Lagrange’s rank-2 lattice-basis reduction algorithm
Input : A basis {w1,w2} of a two-dimensional lattice L
Output: A Lagrange-reduced basis {v1,v2} of L
v1 = w1 and v2 = w2 . Initialization
if (||v1||> ||v2||) then . ||v|| denotes Euclidean norm of vector v

swap(v1,v2)
end if
while (||v1||< ||v2||) do

u = (v1 ·v2)/(v1 ·v1) . uv1 is the orthogonal projection of v2 on v1
. Here, · denotes the inner or dot product of two vectors

v2 = v2− round(u)v1
swap(v1,v2)

end while
swap(v1,v2) . To ensure ||v1||6 ||v2||
Return (v1,v2)

all small primes p of the factor base with p 6 B′rat . Moreover, we denote by M the set
consisting of all medium primes q of the factor base with B′rat < q 6 Brat . Usually, B′rat
is selected in such a way that the ratio B′rat/Brat lies between 0.1 and 0.5.

Let q ∈ M be a medium prime (also called a special q in the notation of [21]).
Unlike the line sieve described in earlier chapters, we now take into account a region
R in the (a,b) plane. For a particular q, we sieve only those (a,b) pairs which satisfy
the congruence a+bm≡ 0 (mod q). Furthermore, we consider only the small primes p
with p < q while sieving the integers a+bm for a fixed q.

All the pairs (a,b) satisfying a+bm≡ 0 (mod q) form a lattice Lq in the (a,b) plane.
The vectors w1 = (q,0) and w2 = (−m,1) generate the lattice Lq. This basis is reduced
using Lagrange’s lattice-basis reduction algorithm for two-dimensional lattices (see [22,
23]). The algorithm is similar to Euclid’s gcd computation and is given as Algorithm 1.
The iterations of the while loop monotonically decrease the Euclidean norms of v1 and
v2 by subtracting an appropriate multiple of the shorter vector from the other.

From Algorithm 1, we get a reduced basis {v1,v2} of the lattice Lq with v1 being
the shorter one. Let us write v1 = (a1,b1) and v2 = (a2,b2). All the points of Lq can
be uniquely represented as l1v1 + l2v2 for l1, l2 ∈ Z. The lattice sieving takes place in
the (l1, l2) plane. Given a pair (l1, l2), we can retrieve the corresponding (a,b) pair as
(a,b) = (l1a1 + l2a2, l1b1 + l2b2).

We take two sieving bounds L1 and L2 and a two-dimensional array A indexed by
l1 and l2. The indices vary in the ranges −L1 6 l1 6 L1 and 1 6 l2 6 L2. The array
location (l1, l2) represents the value a+ bm = l1u1 + l2u2, where u1 = a1 + b1m and
u2 = a2+b2m with gcd(u1,u2) = q. As v1 is shorter than v2, we choose L1 > L2 in order
to make sieving efficient. All the array elements are initialized to zero. Subsequently,
b1000log pc values are added to A[l1, l2] for all primes p < q for which l1u1 + l2u2 ≡
0 (mod p). After all primes p are considered, the sum stored in A[l1, l2] is subtracted
from b1000log(a+ bm)c for the corresponding (a,b) pair. If the difference is smaller
than a threshold, trial division is used to verify whether a + bm is actually smooth.
The threshold is usually chosen to be b1000ξ log pt1+1c for the smallest prime pt1+1 >

Brat and with 1.0 6 ξ 6 2.5. This liberal selection is necessitated by the fact that the
congruence a+bm≡ 0 (mod ph) is now solved only for h = 1.

The above steps are repeated for each medium prime q ∈M.

3 Implementation Details

Currently, the largest general-purpose integer that has been factored by a subexponen-
tial algorithm is a 768-bit (232-digit) RSA modulus (see [24]). Consequently, we restrict
our experiments to integers with no more than 250 decimal digits. For the NFSM, we
experiment with two integers n1 and n2 having 60 and 120 decimal digits, respectively.
Each of these is like an RSA modulus (that is, a product of two primes of the same bit
length). In the MPQSM, we have implemented the complete sieve, that is, the congru-
ence T (c) ≡ 0 (mod ph) is solved for all relevant p,h values. For the NFSM, on the
other hand, we have implemented only the incomplete sieve, that is, the value h = 1 is
only considered. We have not gone for any sophisticated polynomial-selection proce-
dure in the NFSM. We have instead chosen f (x) to be the polynomial obtained from
the m-ary representation of n, where m =

⌊
n1/d

⌋
. As suggested in [2, 25], we take d = 3

if the number of digits in n is less than 80, and d = 5 for larger integers.

3.1 Sequential Implementations

The sequential implementations are straightforward. Let us consider the MPQSM sieve
first. For a small prime p in the factor base, let H be the largest exponent h for which
Eqn (3) is satisfied by some c ∈ [−M,M]. For each h ∈ {1,2, . . . ,H}, these solutions
are precomputed before the sieving loop. Let s be a solution for some p,h values. We
take s to be the minimum location in the sieving interval [−M,M]. We sieve the array
A by subtracting b1000log pc from all the array locations c = s+ jph with j ∈N. This
procedure is repeated for all small primes in the factor base. Algorithm 2 presents a
pseudocode of our sequential implementation of the MPQSM sieve.

In the NFSM, the rational and the algebraic sieves are carried out independently in
two two-dimensional arrays. If for some pair (a,b) with gcd(a,b) = 1, both a+bm and
a+ bθ are found to be smooth from the two sieves, we obtain a relation. The number
of relations depends on the sieving bound u. Our basic goal is to investigate the benefits
of SIMD parallelization instead of generating a complete solvable system, so we have
experimented with small sieving bounds only.

In the lattice sieve method, we choose a medium prime q ∈M. Then, we determine
a reduced basis {v1,v2} for Lq using Algorithm 1 (see Section 2.5). Subsequently, the
rational sieve is carried out in a two-dimensional array whose rows and columns are in-
dexed by l2 and l1, respectively. We consider sieving by rows only, that is, we fix l2, start
with the least array location l1 in the sieving interval satisfying l1u1+ l2u2 ≡ 0 (mod p),
and sieve all the other locations for the particular row l2. We precompute u−1

1 (mod p)
to find the initial solutions for different l2 values. If u1 ≡ 0 (mod p) or u2 ≡ 0 (mod p),
we sieve all elements of every p-th row or every p-th column, respectively. We consider
only the coprime (l1, l2) pairs. Finally, the gcd of every pair (a,b) indicating smooth-
ness is calculated. If this gcd is one, the (a,b) pair provides a relation. If gcd(a,b) = q,

Algorithm 2 Pseudocode for the sequential implementation of the MPQSM sieve
Input : Factor base FB, sieving bound M, and sieving array A indexed by c
Output: Sieving array A after subtractions of log values

for all c in the range −M 6 c 6 M do
A[c]← b1000logT (c)c

end for
for all prime powers ph do . Prime p ∈ FB and h small positive integer

Let s be a solution of of T (c)≡ 0 (mod ph) . These solutions are precomputed
for all solutions s do

c← the smallest solution congruent to s (mod ph) in the range [−M,M]
while c 6 M do . Sieving loop

A[c]← A[c]−b1000log pc . b1000log pc are globally constant values
c← c+ ph . The next solution

end while
end for

end for

we take the pair (a/q,b/q) into account. If the value of b turns out to be negative, we
change the signs of both a and b.

3.2 Parallel Index Calculations

The procedure for data-parallel index calculations is shown in Figure 1. An SIMD
register is packed with k 32-bit integer or single-precision floating-point values. The
SIMD registers are of sizes 128 and 256 bits in SSE2 and AVX, respectively. So we
have k = 4 or 8. Parallel index calculations proceed in the following way. We pack
an SIMD register with the values s1,s2, . . . ,sk and another SIMD register with the val-
ues ph1

1 , ph2
2 , . . . , phk

k , where s1,s2, . . . ,sk are the solutions of the congruence T (c) ≡ 0
modulo ph1

1 , ph2
2 , . . . , phk

k , respectively. These initial solutions are taken to be as small as
possible in the sieving range. Then, k parallel additions take place with the help of a
single SIMD addition instruction. The individual indices are obtained by extracting the
components of the SIMD register storing the sum. However, a repacking of these indices
is not needed in the next iteration. The output SIMD register of one iteration is directly
fed as an input in the next iteration. In all these index calculations, the second SIMD
register (holding the ph values) remains constant. The parallel index-calculation loop
terminates when the value of any of the k components goes beyond the sieving range.
The smoothness candidates in the NFSM are polynomial expressions in two variables
a,b. If we fix b and vary a, sieving becomes identical to the univariate case of T (c). A
couple of general points concerning these data-parallel implementations are in order.

In both the SSE2 and AVX implementations, we use 32-bit chunks (integers or
floating-point numbers) to populate SIMD registers. This means that a single vector
addition in SSE2 computes four sums in parallel. For AVX, eight sums are carried out
by each such vector addition. Both SSE2 and AVX support packing of 64-bit units
(double-precision integers or floating-point numbers). But this reduces the extent of
parallelism. Moreover, so long as array indices are restricted to single-precision values

Fig. 1. SIMD-based index calculations during sieving

s1
s2
s3
.
.
.

sk

+

ph1
1

ph2
2

ph3
3
.
.
.

phk
k

=

s1 + ph1
1

s2 + ph2
2

s3 + ph3
3

.

.

.

sk + phk
k

,

s1 + ph1
1

s2 + ph2
2

s3 + ph3
3

.

.

.

sk + phk
k

+

ph1
1

ph2
2

ph3
3
.
.
.

phk
k

=

s1 +2ph1
1

s2 +2ph2
2

s3 +2ph3
3

.

.

.

sk +2phk
k

, · · · .

(as is usually the case), use of 64-bit units not only is wasteful of space but also increases
the relative overhead associated with packing and unpacking.

AVX provides 256-bit vector operations on floating-point numbers only. Therefore,
we transform 32-bit integers to 32-bit single-precision floating-point numbers and pack
these floating-point numbers in an SIMD register. After a vector addition, the floating-
point units are converted back to integers after unpacking. This, however, comes at a
cost. First, this introduces overheads associated with conversion between integer and
floating-point formats. Second, this reduces the maximum index value from 232 to 223

(since the length of the mantissa segment of a 32-bit single-precision floating-point
number is 23 bits according to the IEEE Floating-Point Standard). Converting integers
to double-precision floating-point numbers eliminates this restriction. But as mentioned
above, it is preferable to avoid 64-bit units in SIMD registers.

3.3 SSE2 Implementations

SSE2 provides 128-bit SIMD registers, that is, we take k = 4 in Fig 1. We take four
integer solutions si as small as possible in the sieving interval. These four solutions
correspond to four phi

i values, all of which need not be distinct from one another. For
j > 1, four index calculations si + jphi

i are carried out in parallel by adding phi
i to si +

(j− 1)phi
i . The indices are extracted in each iteration and log pi values are subtracted

from these array locations. Algorithm 3 summarizes this SSE2-based implementation
of the MPQSM sieve in the form of a pseudocode.

The choice of the four phi
i values in each parallel sieving loop has a bearing on

the running time of the loop. This is mostly relevant to the MPQSM in which the phi
i

values may differ considerably from one another if the exponents hi are large. We have
implemented only the incomplete sieving for the NFSM and the lattice sieve, so all hi
values are 1, and we can choose the primes pi close to one another.

For each phi
i , the number of iterations in the sieving loop is b(2M + 1)/phi

i c. We
stop data-parallel index calculations as soon as one of the indices si + jphi

i exceeds the
sieving bound. If all the phi

i values were the same, then the loop would run for an optimal
number of iterations. But, in general, there are only two solutions for each phi

i value in
the MPQSM, since we are dealing with a quadratic congruence T (c) ≡ 0 (mod phi

i).
Therefore, all the phi

i values loaded in the SIMD register cannot be the same. If one of

Algorithm 3 Pseudocode for the implementation of the MPQSM sieve using SSE2
Input : Factor base FB, sieving bound M, sieving array A indexed by c
Output: Sieving array A after subtractions of log values

for all c in the range −M 6 c 6 M do
A[c]← b1000logT (c)c

end for
for all prime powers ph and all solutions s of T (c)≡ 0 (mod ph) do

. Prime p ∈ FB and the solutions are precomputed
Divide these solutions in groups of four: Let s1,s2,s3,s4 be such a group

. si corresponds to the value phi
i , the four values being not necessarily the same

for all groups of solution values s1,s2,s3,s4 do
ci← the smallest solution congruent to si (mod phi

i) in the range [−M,M]

Load four phi
i values in SIMD register R0 . Fast 16-byte aligned packing

Load four ci values in SIMD register R1 . Fast 16-byte aligned packing
while all ci 6 M do . Sieving loop

A[c1]← A[c1]−b1000log p1c
A[c2]← A[c2]−b1000log p2c . The log values are
A[c3]← A[c3]−b1000log p3c . globally constant
A[c4]← A[c4]−b1000log p4c
R1← R0 +R1 . Four additions replaced by one vector operation
Unpack c1,c2,c3,c4 from R1 . Fast 16-byte aligned unpacking

end while
for i = 1 to 4 do . Handle the leftover values sequentially

while ci 6 M do
A[ci]← A[ci]−b1000log pic
ci← ci + phi

i
end while

end for
end for

end for

the phi
i values is significantly larger than the other components in the SIMD register, the

index calculations for the smaller phi
i values suffer from a premature termination in the

parallel SIMD loop. Moreover, widely different phi
i values endanger spatial proximity

during log-value subtractions, leading to an increased number of cache misses.
If we take the same p and use different hi values in the components of the SIMD

register, the problem just mentioned becomes quite acute. It is instead preferable to use
the same or close pi values and take the same h value in all the components of the
SIMD register. This means that we first sieve for all the solutions of T (c)≡ 0 (mod pi)
for i= 1,2,3, . . . , t in groups of four. Next, we take h= 2 and do sieving for the solutions
of T (c)≡ 0 (mod p2

i), again in groups of four, and so on. For this choice, the iteration
counts b(2M+1)/phi

i c are nearly the same for all the four components, and the extent of
parallelism increases. Moreover, the spatial proximity during the access of A improves
for small values of p and h. Notice that our NFSM and lattice sieve implementations
use h = 1 only, and therefore we only need to take the pi values in the four components
as close to one another as possible (like consecutive primes).

We have used some other optimization tricks. If T (c) ≡ 0 (mod ph) has only a
few solutions in the sieving interval, then it is preferable to sieve for these values se-
quentially, since in this case the benefits of parallelization is shadowed by packing and
unpacking overheads. The threshold, up to which parallelizing solutions modulo ph

remains beneficial, is determined experimentally.
The MPQSM deals with a quadratic congruence T (c)≡ 0 (mod ph) which usually

has two solutions (if p is odd). If there is a unique solution of this congruence (this
is rather infrequent), we handle the sieving for this solution sequentially in order not
to lose the alignment of using a pair of two distinct prime powers in a round of data-
parallel sieving. For the NFSM and the lattice sieve, we solve a linear congruence to
generate the initial solutions. In this case, there is always a unique initial solution si for
each pi (or for each root of f (x) modulo pi in the algebraic sieve of the NFSM). Here,
we carry out sieving for four solutions in parallel.

Intrinsics Used for SSE2 The SSE2 intrinsics used in our implementation are shown
in Figure 2.2 The header file emmintrin.h defines the 128-bit data type m128i and
the prototypes for intrinsics mm load si128, mm add epi32 and mm store si128.
The registers xmm p (for ph or p values) and xmm l (for s values) are packed each
with four contiguous 32-bit integers starting from the locations P and L, respectively,
using mm load si128. Then, they are added with a single vector instruction defined
by mm add epi32. Finally, the output SIMD register xmm l is unpacked and its content
is stored in the location L. However, unpacking is not destructive, that is, we can reuse
this output register later, if required. Now, we subtract the log values from the array
locations stored in L[0], L[1], L[2] and L[3]. To use the intrinsics mm load si128

and mm store si128, it is necessary that the addresses P and L are 16-byte aligned. If
they are not, we have to use the intrinsics mm loadu si128 and mm storeu si128.
However, these intrinsics are more time-consuming compared to the ones for 16-byte

2 Only the SIMD intrinsics are shown in the figure. The first two intrinsics are used before the
sieving loop, whereas the last two intrinsics are used in each iteration of the sieving loop. The
same comments apply to Figure 3 as well.

Fig. 2. SSE2 intrinsics used for index calculations

m128i xmm p = mm load si128 (m128i *P);

m128i xmm l = mm load si128 (m128i *L);

m128i xmm l = mm add epi32 (m128i xmm l, m128i

xmm p);

mm store si128 (m128i *L, m128i xmm l);

Fig. 3. AVX intrinsics used for index calculations

m256 ymm p = mm256 load ps (float *P);

m256 ymm l = mm256 load ps (float *L);

m256 ymm l = mm256 add ps (m256 ymm l, m256

ymm p);

mm256 store ps (float *L, m256 ymm l);

aligned memory. Another important point is that the packing overhead is much larger
in case we attempt to pack from four non-contiguous locations using mm set epi32

or similar intrinsics. So, we avoid them in our implementations.

3.4 AVX Implementations

Following the same basic idea discussed above for SSE2, we implement data-parallel
index calculations using AVX intrinsics. The AVX instruction set of Sandy Bridge does
not support 256-bit vector integer operations. In order to exploit the power of 256-
bit registers, we carry out floating-point index calculations. But then, we also need
conversions between floating-point numbers and integers, since array indices must be
integers.

Intrinsics Used for AVX The intrinsics we employ in our AVX implementation are
shown in Figure 3. The 256-bit data type m256 and the prototypes for the intrinsics
mm256 load ps, mm256 add ps and mm256 store ps are defined in the header file
immintrin.h. Two 256-bit SIMD registers (ymm p and ymm l) are packed each with
eight contiguous 32-bit floating-point numbers starting from the locations P (for ph or
p values) and L (for s values), respectively, using mm256 load ps. A single vector
instruction defined by mm256 add ps is used to add them. The individual results in the
output SIMD register ymm l are then extracted in the location starting from the address
L. Now, we need to convert the floating-point values L[0], L[1], L[2], L[3], L[4],
L[5], L[6] and L[7] to integers to obtain the array locations for sieving. The addresses
P and L should be 32-byte aligned, for otherwise we need to use the inefficient intrinsics
mm256 loadu ps and mm256 storeu ps. Moreover, we avoid using mm256 set ps

or similar inefficient intrinsics which are used to pack eight floating-point numbers from
arbitrary non-contiguous locations.

4 Experimental Results and Analysis

4.1 Experimental Setup

Our focus is on implementing the sieving part efficiently using SIMD parallelization.
Version 4.6.3 of GCC supports SSE2 and AVX intrinsics. Our implementation platform
is a 2.40GHz Intel Xeon machine (Sandy Bridge microarchitecture with CPU Number
E5-2609). Version 2.5.0 of the GP/PARI calculator (see [26]) is used to calculate the
log values of large integers and to find the zeros of f modulo p (for only the algebraic
sieve in the NFSM). We use the optimization flag -O3 with GCC for all sequential and
parallel implementations. To avoid the AVX-SSE and SSE-AVX conversions, we use
the flag -mavx in the AVX implementation. To handle large integers and operations on
them, we use version 5.0.5 of the library [27].

4.2 Speeding up Implementations of the Sieving Using SSE2 and AVX

MPQSM Table 1 summarizes the timing (in milliseconds) and speedup figures for the
implementations of the MPQSM sieve. For each n,M,B values used in our experiments,
we take the average of the times taken by fifty executions. In all the tables, the speedup
figures are calculated with respect to the sequential implementations. We have incorpo-
rated all the improvement possibilities discussed in Section 3.3. The rows in the same
cluster have the same values for M and B, but differ in the count of digits in the integer
being factored.

NFSM Timings for our implementations are reported in milliseconds. For each data
set, we record the average of the times taken over fifty executions. We take Brat =
Balg = B′ as the bounds on the small primes in the two sieves. We document the results
for 1 6 b 6 10. Timing and speedup figures for the implementations (sequential and
SIMD-based) are summarized in Table 2 and Table 3 for the 60- and 120-digit integers
n1 and n2, respectively (see Section 3). The experimental results for the rational sieve
and the algebraic sieve are shown separately.

Lattice Sieve Method We have implemented the rational sieve of the NFSM using
the lattice sieve method. For each data set, we record the average of the times taken by
fifty executions. Table 4 and Table 5 show the experimental results for the 60- and 120-
digit integers n1 and n2, respectively (see Section 3), with Brat = 10000 and L2 = 10.
Different values of B′rat are considered. Times are measured in seconds.

Observations Tables 1–5 suggest the following points.

– For the MPQSM sieve, the speedup varies in the range 20–35% on an average,
except in the last two clusters where both M and B values are large.

– For the NFSM sieve, we get a speedup in the range 15–40%.

Table 1. Timing and speedup figures of our implementations of the MPQSM sieve

Number of Sieving Bound on Sequential SSE2 Parallelization AVX Parallelization
digits limit small primes Time Time Speedup Time Speedup
in n M B (in ms) (in ms) (in %) (in ms) (in %)
39 500000 46340 9.14 7.00 23.38 7.02 23.17

100 500000 46340 10.66 8.40 21.22 8.45 20.74
152 500000 46340 15.21 10.65 29.99 11.46 24.68
247 500000 46340 10.34 7.84 24.24 7.97 22.97
89 2000000 46340 69.37 49.54 28.59 49.86 28.12

187 2000000 46340 76.51 49.67 35.08 50.08 34.55
247 2000000 46340 85.59 56.19 34.35 58.31 31.88
93 5000000 46340 319.63 216.38 32.30 228.93 28.38

152 5000000 46340 398.74 260.60 34.64 262.27 34.22
241 5000000 46340 196.84 156.62 20.44 160.11 18.66
65 3000000 300000 120.36 92.22 23.38 94.57 21.43

158 3000000 300000 206.41 124.75 39.56 124.88 39.50
241 3000000 300000 115.81 91.59 20.91 92.35 20.26
100 5000000 463400 333.82 265.41 20.49 259.05 22.40
187 5000000 463400 258.99 193.09 25.45 194.93 24.74
241 5000000 463400 217.96 177.25 18.67 179.33 17.72
65 5000000 803400 231.10 187.93 18.68 189.14 18.16

158 5000000 803400 370.68 264.92 28.53 256.66 30.76
247 5000000 803400 295.03 253.97 13.92 256.43 13.08
65 4000000 4000000 211.23 183.36 13.19 192.86 8.70

187 4000000 4000000 248.04 207.85 16.21 208.36 16.00
251 4000000 4000000 260.76 211.87 18.75 212.01 18.70
65 5000000 5000000 274.38 242.38 11.66 244.66 10.83

158 5000000 5000000 370.98 312.51 15.76 312.53 15.76
241 5000000 5000000 256.53 238.41 7.06 240.24 6.35

Table 2. Timing and speedup figures of our implementations of the NFSM sieve for n1

Sieving Bound on Sequential SSE2 Parallelization AVX Parallelization
limit small primes Time Time Speedup Time Speedup

u B′ (in ms) (in ms) (in %) (in ms) (in %)

Rational
Sieve

500000 50000 95.59 79.40 16.93 79.11 17.24
3000000 50000 1677.30 1208.97 27.92 1206.97 28.04
3000000 300000 1816.98 1358.18 25.25 1354.13 25.47

Algebraic
Sieve

500000 50000 90.49 71.69 20.78 71.66 20.81
3000000 50000 1564.31 1116.66 28.62 1118.55 28.50
3000000 300000 1700.84 1266.34 25.55 1260.98 25.86

Table 3. Timing and speedup figures of our implementations of the NFSM sieve for n2

Sieving Bound on Sequential SSE2 Parallelization AVX Parallelization
limit small primes Time Time Speedup Time Speedup

u B′ (in ms) (in ms) (in %) (in ms) (in %)

Rational
Sieve

600000 60000 126.32 100.02 20.82 101.59 19.58
2000000 60000 970.24 607.13 37.42 605.07 37.64
2000000 200000 993.67 666.97 32.88 663.11 33.27

Algebraic
Sieve

600000 60000 111.50 83.10 25.47 83.52 25.10
2000000 60000 866.23 523.22 39.60 527.01 39.16
2000000 200000 912.86 581.89 36.26 579.06 36.57

Table 4. Timing and speedup figures of our implementations of the rational sieve of the NFSM
using the lattice sieve method for n1

Ratio Sieving Sequential SSE2 Parallelization AVX Parallelization
B′rat/Brat limit Time Time Speedup Time Speedup

L1 (in seconds) (in seconds) (in %) (in seconds) (in %)

0.1
100000 11.72 10.98 6.31 10.98 6.32
500000 96.81 77.66 19.78 77.53 19.92
800000 164.42 126.59 23.00 126.98 22.77

0.2
100000 10.51 9.73 7.40 9.78 6.88
500000 86.64 68.86 20.52 69.87 19.35
800000 148.50 112.63 24.15 112.71 24.10

0.3
100000 9.14 8.50 6.97 8.53 6.64
500000 75.16 60.10 20.04 60.06 20.09
800000 129.79 98.70 23.95 98.67 23.98

0.4
100000 7.85 7.30 6.95 7.30 6.93
500000 64.54 51.55 20.13 51.53 20.16
800000 111.79 84.47 24.43 84.71 24.23

0.5
100000 6.54 6.14 6.11 6.14 6.07
500000 53.55 42.84 20.01 42.83 20.02
800000 94.49 70.40 25.50 70.30 25.60

Table 5. Timing and speedup figures of our implementations of the rational sieve of the NFSM
using the lattice sieve method for n2

Ratio Sieving Sequential SSE2 Parallelization AVX Parallelization
B′rat/Brat limit Time Time Speedup Time Speedup

L1 (in seconds) (in seconds) (in %) (in seconds) (in %)

0.1
100000 11.91 11.04 7.32 11.04 7.32
500000 95.95 76.46 20.32 76.42 20.35
800000 167.25 125.34 25.06 127.78 23.60

0.2
100000 10.57 9.76 7.67 9.77 7.57
500000 85.20 67.66 20.59 67.62 20.63
800000 148.42 110.92 25.26 110.75 25.38

0.3
100000 9.18 8.49 7.50 8.52 7.23
500000 75.33 59.99 20.37 60.00 20.35
800000 129.66 99.08 23.59 98.87 23.75

0.4
100000 7.85 7.28 7.26 7.29 7.06
500000 63.71 50.55 20.66 50.55 20.66
800000 110.06 82.92 24.65 82.86 24.71

0.5
100000 6.55 6.05 7.64 6.05 7.55
500000 52.98 42.05 20.63 42.07 20.58
800000 92.53 69.03 25.40 71.22 23.03

– The speedup obtained in the lattice sieve (in the range 5–25%) is less compared to
what is achieved by the line sieve. This is attributed to the fact that the lattice sieve
involves some extra work like resetting the sieving array and calculating a reduced
basis for each medium prime q ∈M.

– The speedup increases when the sieving limit increases. This is due to fact that
larger sieving bounds allow parallel index calculations to proceed for a larger num-
ber of iterations.

– We get higher speedup for smaller bounds on the primes in the factor base. In this
case too, the number of iterations in the sieving loop increases.

– Because of frequent conversions between integer and floating-point formats in each
iteration of the sieving loop, the speedup with AVX, despite the use of 256-bit
registers, is below our expectation, and turns out to be almost the same as that with
SSE2.

– For the NFSM, the speedup is found to be somewhat higher for the algebraic sieve
compared to the rational sieve. The rational sieve packs four (or eight) different
primes in a SIMD register. The largest of these determines how many times the
loop iterates. In the algebraic sieve, the primes packed in the SIMD register may be
repeated, since the polynomial f may have multiple roots modulo a small prime.
Repeated primes indicate the possibility of an increased number of iterations in the
sieving loop. This is the most likely reason why we obtain better speedup in the
algebraic sieve.

Table 6. Cache-profiling figures for the MPQSM sieve using SSE2

Sieving Bound on Sum of L1 cache misses Sum of L3 cache misses
limit small primes Basic Improved Basic Improved

M B Version Version Version Version
3000000 300000 8777554 8044299 5631142 4997079
5000000 46340 12968558 11980434 10656421 9135800
5000000 463400 14957182 13995977 12145165 10623400

4.3 Cache-Profile Analysis of Our Implementations of the MPQSM Sieve Using
SSE2

The idea of packing close phi
i values in SIMD registers, as discussed in Section 3.3,

was motivated by the heuristic assumption that the improvement makes our implemen-
tations more cache-friendly than the basic one (which corresponds to the same pi value
and different hi values). In order to verify the effectiveness of our cache-friendly im-
plementation, we have done cache-profile analysis our implementations (both the basic
and the improved versions) using SSE2.

We have used the Cachegrind tool along with Valgrind (Version 3.7.0) to profile
our basic and improved SIMD implementations using SSE2. From those profile infor-
mation, we get an idea about the L1 and LL (last level, L3 in this case) cache misses.
The sum of L1 misses includes L1 instruction-fetch misses, L1 data-read misses, and L1
data-write misses. Similarly, the sum of L3 misses includes L3 instruction-fetch misses,
L3 data-read misses, and L3 data-write misses. The sum of L1 cache misses and the sum
of L3 cache misses for an integer with 241 digits for different M and B values are re-
ported in Table 6. The table clearly indicates that our cache-friendly implementation
encounters about 10% less cache misses compared to the unoptimized version.

5 Conclusion

Sieving is used to make the relation-collection phase in modern integer-factoring algo-
rithms faster than trial divisions. In this work, we have exploited SIMD features, com-
monly available in modern microprocessors, in our implementations of the sieving pro-
cedure. We have chosen the two most efficient factoring algorithms (the MPQSM and
the NFSM) in our experiments. We have implemented both the line sieve and the lattice
sieve. We have used SSE2 and AVX features provided by Intel’s Sandy Bridge architec-
ture. Our data-parallel implementations have achieved noticeable speedup over sequen-
tial implementations. Line sieving enjoys slightly higher speedup than lattice sieving.
We have also employed some optimization techniques in our SIMD-based implemen-
tations, and these have been experimentally verified to increase the cache-friendliness
of our implementations. We conclude this paper after mentioning some directions in
which this research can be extended.

– Although we have been able to speed up index calculations using SIMD-based par-
allelization, a similar approach was not effective during data-parallel subtractions

Fig. 4. SIMD-based subtraction of log values during sieving

A[s1]

A[s2]

A[s3]

A[s4]

−

log p1
log p2
log p3
log p4

=

A[s1]− log p1
A[s2]− log p2
A[s3]− log p3
A[s4]− log p4

,

A[s1 + ph1
1]

A[s2 + ph2
2]

A[s3 + ph3
3]

A[s4 + ph4
4]

−

log p1
log p2
log p3
log p4

=

A[s1 + ph1
1]− log p1

A[s2 + ph2
2]− log p2

A[s3 + ph3
3]− log p3

A[s4 + ph4
4]− log p4

, · · · .

of log values. Our efforts on parallelizing the subtraction operations, as described
in Figure 4, have not produced any benefit. Here, the bottleneck is that we cannot
reuse the content of the output SIMD register (used for storing array elements) in
the next iteration. Consequently, packing is required in every iteration of the siev-
ing loop. Moreover, both packing and unpacking access non-contiguous memory
locations, leading to additional slowdown in the implementations.

Efficient data parallelization of the subtraction operations seems to be quite chal-
lenging, since a straightforward use of SIMD intrinsics is not beneficial, as men-
tioned above. The main bulk in the sieving computations includes index calcula-
tions and subtractions of log values. It requires non-trivial experimental investi-
gations to settle whether subtractions can at all be effectively handled by SIMD
intrinsics.

– Our implementations using 256-bit SIMD registers can be easily ported to Intel’s
recently released Haswell architecture, where 256-bit vector integer instructions are
available. Using this AVX2 instruction set helps us to avoid frequent conversions
between floating-point numbers and integers. This has the potential to increase the
performance gains significantly.

– Table 1 for sieving in the MPQSM shows that the speedup is somewhat small when
both M and B are large. Improving the performance of our SIMD-based implemen-
tations for large values of M and B deserves further attention.

– For the lattice sieve method, Pollard [10] proposes two different variants: sieving by
rows and sieving by vectors. In our work, we have dealt with the first variant only.
It is an interesting experimental investigation to determine how SIMD features can
benefit sieving by vectors.

– Our implementations of the MPQSM and NFSM sieves are not readily portable
to polynomial sieves used in the computation of discrete logarithms over finite
fields of small characteristics (for example, see [28, 29]). Fresh experimentation
is needed to investigate the effects of SIMD parallelization on polynomial sieves.
Data-parallel implementations of the pinpointing algorithm of Joux [30] also merits
attention.

References

1. Dixon, B., Lenstra, A.K.: Factoring integers using SIMD sieves. In: EUROCRYPT. (1993)
28–39

2. Bernstein, D.J., Lenstra, A.K.: A general number field sieve implementation. In: The devel-
opment of the number field sieve, Lecture Notes in Mathematics, vol. 1554. (1993) 103–126

3. Dixon, J.D.: Asymptotically fast factorization of integers. Mathematics of Computation 36
(1981) 255–260

4. Lehmer, D.H., Powers, R.E.: On factoring large numbers. Bulletin of the American Mathe-
matical Society 37 (1931) 770–776

5. Morrison, M.A., Brillhart, J.: A method of factoring and the factorization of F7. Mathematics
of Computation 29 (1975) 183–205

6. Pomerance, C.: The quadratic sieve factoring algorithm. In: EUROCRYPT. (1984) 169–182
7. Silverman, R.D.: The multiple polynomial quadratic sieve. Mathematics of Computation 48

(1987) 329–339
8. Lenstra, A.K., Lenstra, H.W., Manasse, M.S., Pollard, J.M.: The number field sieve. In:

STOC. (1990) 564–572
9. Buhler, J.P., Lenstra, H.W., Pomerance, C.: Factoring integers with the number field sieve.

In: The development of the number field sieve, Lecture Notes in Mathematics, vol. 1554.
(1993) 50–94

10. Pollard, J.M.: The lattice sieve. In: The development of the number field sieve, Lecture
Notes in Mathematics, vol. 1554. (1993) 43–49

11. Coppersmith, D., Odlyzko, A.M., Schroeppel, R.: Discrete logarithms in GF(p). Algorith-
mica 1(1) (1986) 1–15

12. Lenstra, H.W.: Factoring integers with elliptic curves. Annals of Mathematics 126 (1987)
649–673

13. Montgomery, P.L.: A block Lanczos algorithm for finding dependencies over GF(2). In:
EUROCRYPT. (1995) 106–120

14. Intel Corporation: Intrinsics for Intel(R) Streaming SIMD Extensions (2011)
http://software.intel.com/sites/products/documentation/hpc/composerxe/

en-us/2011Update/cpp/lin/intref_cls/common/intref_bk_sse.htm.
15. Intel Corporation: Intrinsics for Intel(R) Streaming SIMD Extensions 2 (2011)

http://software.intel.com/sites/products/documentation/hpc/composerxe/

en-us/2011Update/cpp/lin/intref_cls/common/intref_bk_sse2.htm.
16. Intel Corporation: Intrinsics for Intel(R) Advanced Vector Extensions. http:

//software.intel.com/sites/products/documentation/hpc/composerxe/

en-us/2011Update/cpp/lin/intref_cls/common/intref_bk_advectorext.htm

(2011)
17. Konsor, P.: Avoiding AVX-SSE transition penalties (2012) http://software.intel.

com/en-us/articles/avoiding-avx-sse-transition-penalties/.
18. Shanks, D.: Five number-theoretic algorithms. In: Proceedings of the Second Manitoba

Conference on Numerical Mathematics. (1973) 51–70
19. Tonelli, A.: Bemerkung über die Auflösung Quadratischer Congruenzen. Göttinger

Nachrichten (1891) 344–346
20. Das, A.: Computational Number Theory (Discrete Mathematics and Its Applications). Chap-

man and Hall/CRC (2013)
21. Davis, J.A., Holdridge, D.B.: Factorization using the quadratic sieve algorithm. In:

CRYPTO. (1983) 103–113
22. Etienne, H.: LLL lattice basis reduction algorithm (March 2010) http://algo.epfl.ch/

_media/en/projects/bachelor_semester/rapportetiennehelfer.pdf.

23. Nguyen, P.Q., Stehlé, D.: Low-dimensional lattice basis reduction revisited. In: ANTS.
(2004) 338–357

24. Kleinjung, T., Aoki, K., Franke, J., Lenstra, A.K., Thomé, E., Bos, J.W., Gaudry, P., Kruppa,
A., Montgomery, P.L., Osvik, D.A., te Riele, H.J.J., Timofeev, A., Zimmermann, P.: Factor-
ization of a 768-bit RSA modulus. In: CRYPTO. (2010) 333–350

25. Briggs, M.E.: An introduction to the general number field sieve. Master’s thesis, Virginia
Polytechnic Institute and State University (1998)

26. Cohen, H., Belabas, K.: PARI/GP home (2003–2013) http://pari.math.u-bordeaux.
fr/.

27. GMP: The GNU Multiple Precision Arithmetic Library (2012) http://gmplib.org/.
28. Adleman, L.M., Huang, M.D.A.: Function field sieve method for discrete logarithms over

finite fields. Information and Computation 151(1-2) (1999) 5–16
29. Gordon, D.M., McCurley, K.S.: Massively parallel computation of discrete logarithms. In:

CRYPTO. (1992) 312–323
30. Joux, A.: Faster index calculus for the medium prime case application to 1175-bit and 1425-

bit finite fields. In: EUROCRYPT. (2013) 177–193

