
On the concrete hardness of Learning with Errors

Martin R. Albrecht1, Rachel Player1, and Sam Scott1

Information Security Group, Royal Holloway, University of London

Abstract. The Learning with Errors (LWE) problem has become a central building block
of modern cryptographic constructions. This work collects and presents hardness results for
concrete instances of LWE. In particular, we discuss algorithms proposed in the literature
and give the expected resources required to run them. We consider both generic instances of
LWE as well as small secret variants. Since for several methods of solving LWE we require
a lattice reduction step, we also review lattice reduction algorithms and use a refined model
for estimating their running times. We also give concrete estimates for various families of
LWE instances, provide a Sage module for computing these estimates and highlight gaps in
the knowledge about algorithms for solving the Learning with Errors problem.

1 Introduction

Lattice-based cryptography. Lattice-based cryptography has become popular in recent years for
several reasons. One dates back to the work of Ajtai [Ajt96] who linked the average case complex-
ity of lattice problems to the worst case, showing that a random instance of the shortest vector
problem in a lattice is hard. A second reason is its potential application in a post-quantum world,
since no efficient quantum algorithms are known for lattice problems. On the other hand, problems
such as factoring and discrete logarithm would no longer be hard in the presence of a quantum
computer [BBD09]. A third reason is the wealth of applications of lattice-based cryptography,
perhaps the most notable of which is its role in the realisation of fully homomorphic encryption
by Gentry [Gen09] and in follow up works (e.g. [vDGHV10,BGV12,GHS12a]). Lattice problems
have also been the basis of Public Key Encryption [Reg05], including CCA secure schemes [Pei09];
Identity Based Encryption [GPV08] and the more general Hierarchical Identity Based Encryp-
tion [CHKP12]; oblivious transfer schemes [PVW08]; Circular-Secure Encryption [ACPS09]; and
Leakage-Resilient Encryption [GKPV10]. Recently, candidate constructions for multi-linear maps
based on presumed hard problems in lattices have been proposed [GGH13,GGH14].

Learning with Errors. One lattice problem on whose hardness several cryptographic constructions
are based is the Learning with Errors (LWE) problem [Reg05,Pei09,PW11]. LWE was introduced
by Regev in [Reg05] and is provably as hard as worst-case lattice problems [Reg05,BLP+13]. It is
a generalisation of the Learning Parity with Noise (LPN) problem [KMR+94] into large moduli q.

Definition 1 (LWE [Reg09]). Let n, q be positive integers, χ be a probability distribution on Z
and s be a secret vector in Znq . We denote by Ls,χ the probability distribution on Znq ×Zq obtained
by choosing a ∈ Znq uniformly at random, choosing e ∈ Z according to χ and considering it in Zq,
and returning (a, c) = (a, 〈a, s〉+ e) ∈ Znq × Zq.
Decision-LWE is the problem of deciding whether pairs (a, c) ∈ Znq × Zq are sampled according to
Ls,χ or the uniform distribution on Znq × Zq.
Search-LWE is the problem of recovering s from (a, c) = (a, 〈a, s〉+e) ∈ Znq ×Zq sampled according
to Ls,χ.

Contributions. The first contribution of this survey is to gather and present algorithms available in
the literature used for solving LWE. In particular, we identify three strategies for solving LWE and
give the algorithms available in the literature for solving LWE via one of these strategies. While in
recent years several such algorithms were proposed and analysed, most treatments of LWE do not
consider these results when discussing its hardness. By providing an accessible survey on available
techniques we hope to motivate research to push the state-of-the-art in this area forward.

We note that in most previous works the hardness of LWE is treated only asymptotically. Indeed,
it is not uncommon to hide logarithmic and constant factors in the exponent of complexity expres-

sions. For example, Arora and Ge [AG11] specify the complexity of their algorithm as 2Õ(n2ξ), for
some ξ such that αq = nξ. While such statements – separating essential from inessential factors
– allow us to understand the behaviour of various families of algorithms and of the problem in
general, they need to be refined in order to gain insights into the concrete hardness of LWE. The
importance of this could be seen, for example, when it comes to designing actual systems based on
LWE. Here we must select parameters to ensure that the problem instance generated is hard with
respect to a particular security parameter λ while still keeping parameters as small as possible for
performance reasons. For this we must be able to identify the fastest known way of solving LWE
with that choice of parameters and be assured that this attack takes 2λ operations. The second
contribution of this survey is hence that where possible we provide concrete estimates for how long
it takes to solve LWE.

Since for most algorithms no tight closed formulae are known expressing their complexities, the
third contribution of this survey is that we provide a module for the Sage mathematics soft-
ware [S+14] which, given the parameters of an LWE instance, outputs estimates for the concrete
running time of the algorithms discussed in this survey. We also apply this estimator to various
families of LWE parameters from the literature and discuss areas where the collective knowledge
is limited in order to motivate further research.

Instances. To this end we need to characterise LWE instances. In this survey we always let χ be a
discrete Gaussian distribution on Z with centre zero and width parameter αq, denoted by DZ,αq.
A discrete Gaussian distribution with centre µ and width parameter αq samples elements with a

probability proportional to exp(−π (x−µ)2
(αq)2). The standard deviation of a continuous Gaussian with

width parameter αq is σ = αq√
2π

and we roughly have this relation when we discretise, as long as

σ is bigger than the smoothing parameter ηε(Z) of Z [DB13]. For ease of analysis, some works
(e.g. [LP11]) treat the error terms as not too dissimilar from samples from a continuous Gaussian,
and we join them in this approach whenever this occurs.

We then characterise LWE instances in the following way.

1. Typically, we have q ≈ nc and αq =
√
n, i.e. α ≈ n1/2−c, for c a small constant. Having

αq >
√
n allows the reduction of GapSVP to LWE to go through [Reg09]. In particular,

Regev uses αq = 2
√
n. Intuitively this is because a step in the reduction loses a factor of

√
n.

Furthermore, if αq <
√
n then Arora and Ge’s algorithm is subexponential [AG11]. In this

survey, we simply pick αq =
√
n, ignoring the constant 2 as it does not affect our estimates

much. In this case we may characterise the instance by n (and c).
2. The most generic characterisation is by n, α, q.
3. In some applications, the components of the secret s are not chosen uniformly at random from

Zq but instead we have the guarantee that they are all “small”, e.g. s(i) ∈ {0, 1}. In this case
we characterise the instance by n, α, q, ψ where ψ is the distribution of the s(i).

In many applications, we are only given access to m = Õ (n) samples. In this case, we would
characterise the instance by m,n, α, q. However, in this work we will assume that we have access to

2

as many samplesm as we require. This is a reasonable assumption because the hardness of the LWE
problem itself is essentially independent of the number of samples [Reg10]. This could be explained
by the result that given a fixed (polynomial) number of samples, one can generate arbitrarily many
more (independent) samples, with only a slight worsening in the error [GPV08,ACPS09].

Structure. In Section 2 we give relevant tools which we will use later. In Section 3 we review lattice
reduction algorithms as these will also be used later. In Section 4 we give the three main strategies
for solving LWE. In Section 5 we describe the algorithms which can be used to solve LWE via a
chosen strategy. In particular we consider instances of LWE characterised both by n, α, q and the
special case q = nc, αq =

√
n. In Section 6 we concentrate on the third characterisation of LWE:

those instances with a small secret. In Section 7 we apply our estimator to parameter choices from
the literature. Finally, in Section 8 we make some concluding remarks.

2 Notation & Tools

Logarithms are base 2 if not stated otherwise. We write ln for the natural logarithm. We denote
vectors in bold, e.g. a, and matrices in upper-case bold, e.g. A. By a(i) we denote the i-th com-
ponent of a, i.e. a scalar. In contrast, ai is the i-th element of a list of vectors. The concatenation
of two vectors a and b is denoted (a||b). We denote by 〈·, ·〉 the usual dot product of two vectors
and by 〈·, ·〉p this dot product modulo p. We write 2 ≤ ω < 3 for any constant such that there is
an algorithm which multiplies matrices in O (nω) operations for sufficiently large n. Hence, our ω
differs slightly from the definition in [BCS97] which hides logarithmic factors (cf. [Per14]). Unless
stated otherwise, we use ≈ to denote something sufficiently close to equal that we treat it as equal
for our estimates.

Since we will use lattice reduction later on, we need some basic definitions about lattices. A lattice
L in Rm is a discrete additive subgroup. In this survey we restrict our attention to viewing a
lattice L(B) as being generated by a (non-unique) basis B = {b0, . . . ,bn−1} ⊂ Zm of linearly-
independent integer vectors. The rank of the lattice L is defined to be the rank of the basis matrix
B with rows consisting of the basis vectors. If the rank equals m we say that L is full-rank. We
are only concerned with such lattices in this work and henceforth assume that the lattices we
deal with are full-rank. In addition, we are only concerned with q-ary lattices which are those
such that qZm ⊆ L ⊆ Zm. Note that every q-ary lattice is full-rank. Throughout, we adopt the
convention that a lattice is generated by integer combinations of row vectors, to match software
conventions. The volume vol (L) of a full-rank lattice L is the absolute value of the determinant
of any basis of the lattice. The ith successive minimum of a lattice, λi(L), is the radius of the
smallest ball centred at the origin containing at least i linearly independent lattice vectors. The

Gaussian heuristic states that λ1(L) ≈
√

m
2πevol (L)

1/m
. We adopt the convention that the first

non-zero vector, say b0, in a reduced lattice basis is the shortest vector in the basis.

We now give four lemmas which will be useful later. The first shows that given samples from Ls,χ

we can construct LWE instances where the secret vector follows the same distribution as the error.

Lemma 1 ([ACPS09]). Let DZn,αq be an n-dimensional extension of DZ,αq to Zn in the obvious
way, i.e. each component is sampled according to DZ,αq. Then, given access an oracle Ls,χ returning
samples of the form (a, c) = (a, 〈a, s〉+e) ∈ Znq×Zq with a ←$ U

(
Znq
)
, e←$ DZ,αq and s ∈ Znq , we

can construct samples of the form (a, c) = (a, 〈a, e〉+e) ∈ Znq ×Zq with a ←$ U
(
Znq
)
, e←$ DZ,αq

and e ←$ DZn,αq in 2n2 operations in Zq per sample, at the loss of n samples overall and with
O (nω) operations for precomputation.

3

Proof. Take n samples from Ls,χ and write:

(A0, c0) = (A0,A0 · s + e0)

where A0 ∈ Zn×nq . With probability
∏n
i=1(qn − qi−1)/qn

2

this matrix is invertible. Precompute

A−10 and store it; this costs O (nω) operations. Now, to produce n samples of the form (a, c) =
(a, 〈a, e〉+ e) ∈ Znq × Zq with a ←$ U

(
Znq
)
, e←$ DZ,αq and e ←$ DZn,αq we sample:

(a1, c1) = (a1,a1 · s + e1)

from Ls,χ and compute:

a1 ·A−10 · c0 − c1 = a1 ·A−10 (A0 · s + e0)− a1 · s − e1

= a1 ·A−10 ·A0 · s + a1 ·A−10 e0 − a1 · s − e1

= a1 · s + a1 ·A−10 e0 − a1 · s − e1

= a1 ·A−10 e0 − e1.

Now, since DZ,αq is symmetric and A−10 has full rank, we get that

(a1 ·A−10 ,a1 ·A−10 c0 + c1) = (a1 ·A−10 ,a1 ·A−10 e0 − e1)

are n valid samples of the form (a, c) = (a, 〈a, e〉+ e) ∈ Znq × Zq with a ←$ U
(
Znq
)
, e ←$ DZ,αq

and e ←$ DZn,αq. Finally, computing a1 ·A−10 takes 2n2 operations in Zq. ut

Given samples from Ls,χ, we may be able to construct LWE instances where the modulus is now p
for some particular p < q by modulus switching. This technique was initially introduced to speed-
up homomorphic encryption [BV11] but can also be employed to reduce the cost of solving LWE
in certain cases [AFFP14]. Modulus switching can be thought of as analogous to the difference
between computing with single instead of double precision floating point numbers, where switching
refers to opting to compute in the lower precision of a machine float. In the LWE context, for some
p < q, modulus switching is considering an instance of LWE (mod q) as a scaled instance of LWE
(mod p). This incurs a noise increase which is only small if s is small, so the technique can only
be used for small secrets. The requirements on p must be balanced. On the one hand, minimising
p will minimise the running time of most algorithms (see Section 6). On the other hand, picking
p too small increases the noise level, which in general leads to a higher complexity for solving

LWE. Below, we choose p to ensure that
∥∥∥〈pq · a − ⌊pq · a⌉, s〉∥∥∥ ≈ p

q · ‖e‖ if s is small enough. This

means that the new error term after modulus switching is essentially the previous error scaled. In
particular, the new distribution is LWE with errors having standard deviation

√
2αp/

√
2π+O(1).

Following [BV11,BLP+13] we have the following lemma.

Lemma 2. Let (a, c) = (a, 〈a, s〉+ e) ∈ Znq ×Zq be sampled from Ls,χ. Let p ≈
√

2π n
12 ·

σs
α , where

σs is the standard deviation of elements in the secret s. Assume that the distribution of the secret
s is such that it has mean 0. If p < q then

(ã, c̃) =

(⌊
p

q
· a
⌉
,

⌊
p

q
· c
⌉)
∈ Znp × Zp

is sample from an LWE distribution with error of standard deviation
√

2αp/
√

2π +O (1).

4

Proof. Consider ⌊
p

q
· c
⌉

=

⌊
p

q

(
〈a, s〉+ e

)⌉
=

⌊〈
p

q
· a, s

〉
p

+
p

q
· e

⌉

=

⌊〈⌊
p

q
· a
⌉
, s

〉
p

+

〈
p

q
· a −

⌊
p

q
· a
⌉
, s

〉
p

+
p

q
· e

⌉

=

〈⌊
p

q
· a
⌉
, s

〉
p

+

〈
p

q
· a −

⌊
p

q
· a
⌉
, s

〉
p

+
p

q
· e+ e′

=

〈⌊
p

q
· a
⌉
, s

〉
p

+ e′′ +
p

q
· e+ e′

where e′ is distributed in (−0.5, 0.5] and e′′ is an inner product of small n-dimensional vectors and
thus approaches a discrete Gaussian as n tends to infinity. Its standard deviation is

√
n/12σs,

since p
q · a −

⌊
p
q · a

⌉
takes values ∈ (−0.5, 0.5]. We have that p

q · e is a scaled discrete Gaussian of

standard deviation p
q ·

αq√
2π

= αp/
√

2π. Targeting e′′ ≈ p
q · e, i.e. that the standard deviations of

both distributions are the same, we get

αp/
√

2π ≈
√
n/12σs

p ≈
√

2π n

12
· σs
α
.

Since the standard deviations of pq · e and e′′ are the same for this p, the standard deviation of the

new distribution is
√

2αp/
√

2π +O (1) as claimed. ut

Following the literature, we assume that the new distribution output by the process described in
Lemma 2 is Ls,DZ,

√
2αp+1

, i.e. that the error is discrete Gaussian, even for relatively small n.

The following lemma shows the equivalence of Decision-LWE and Search-LWE. Search to decision
is trivial: if search is solved, s is known, so e = c−〈a, s〉 can be computed. The nontrivial direction
is due to Regev [Reg09], which is reproduced with proof below. Having established equivalence,
whenever a method can be shown to solve Search-LWE or Decision-LWE we can speak of it solving
LWE.

Lemma 3 (Lemma 4.2 in [Reg09]). Let n ≥ 1 be some integer, 2 ≤ q ≤ poly(n) be a prime,
and χ be some distribution on Zq. Assume that we have access to a procedure W that, for all s,
accepts with probability exponentially close to 1 on inputs from Ls,χ and rejects with probability
exponentially close to 1 on uniformly random inputs. Then, there exists an efficient algorithm W ′

that, given samples from Ls,χ for some s, outputs s with probability exponentially close to 1.

Proof. We show how W ′ finds the first component s(0) of s; finding the other components is similar.
For any k ∈ Zq consider the following transformation. Given a pair (a, c) as input to W ′, let it
output the pair (a + (l, 0, . . . , 0), c+ lk) where l ∈ Zq is chosen uniformly at random. It is easy to
see that this transformation takes the uniform distribution to itself. On the other hand suppose
the input pair (a, c) is sampled from Ls,χ. If k = s(0) then this transformation takes Ls,χ into
itself. If k 6= s(0) then this transformation takes Ls,χ to the uniform distribution. There are only
polynomially many (namely q) possibilities for s(0), so we can try all of them as possible k values.
For each k value, let the output of W ′ be the input to W . Then as W can distinguish Ls,χ from
uniform, it can tell whether k = s(0). ut

5

In what follows we will also make use of the following standard fact about the Gaussian distribu-
tion.

Lemma 4. Let χ denote the Gaussian distribution with standard deviation σ and mean zero.
Then, for all C > 0, it holds that:

Pr[e←$ χ : |e| > C · σ] ≤ 2

C
√

2π
exp

(
−C2/2

)
.

Proof. For t > C · σ, we have t/(C · σ) > 1. Hence, we have:

Pr [e←$ χ : |e| > C · σ] = 2 ·
∫ ∞
C·σ

1

σ
√

2π
exp

(
− t2

2σ2

)
dt

=
2√
2π

∫ ∞
C·σ

1

σ
exp

(
− t2

2σ2

)
dt

≤ 2√
2π

∫ ∞
C·σ

t

C σ2
exp

(
− t2

2σ2

)
dt

=
2

C
√

2π
exp

(
−C2/2

)
dt.

ut

3 Lattice Reduction Algorithms

Many algorithms for solving LWE rely on lattice reduction as the central step. Hence, in this
section we briefly review lattice reduction algorithms and discuss the current state-of-affairs in
terms of estimating their running time. Since this survey is concerned with discussing algo-
rithms for solving LWE this section is kept rather brief and the interested reader is directed
to [MR09,Ngu10,Ngu11,LP11,Che13] for further details on lattices.

Lattice reduction algorithms can be viewed as a hierarchy: cases of BKZ [SE94] based on the block
size parameter k. For k = 2 the algorithm runs in polynomial time but the reduced basis output
will only be LLL-reduced, i.e. it will only contain a short vector to within exponential factors of
a shortest vector. When k = n, i.e the full size of the basis, then the output basis would be HKZ
(Hermite-Korkine-Zolotarev) reduced. This is in some sense optimally reduced, but requires at
least exponential runtime. Hence, when performing lattice reduction, one generally uses BKZ with
some intermediary block size.

The quality of a basis output by a lattice reduction algorithm is characterised by the Hermite
factor δn0 , which is defined such that the shortest non-zero vector b0 in the output basis has the

following property: ‖b0‖ = δn0 vol (L)
1/n

. We may also refer to δ0 itself, and call it the root-Hermite
factor. We call its logarithm to base 2 the log root-Hermite factor.

3.1 LLL

LLL can be considered as a generalisation of the two dimensional algorithm by Lagrange and
sometimes attributed to Gauss (see for example [Jou09]). The output of the Lagrange / Gauss
algorithm is a basis {b0,b1} such that ‖b0‖ ≤ ‖b1‖ and the Gram-Schmidt coefficient µ1,0 ≤ 1

2 .
In particular, ‖b0‖ = λ1 and ‖b1‖ = λ2. The algorithm works by taking in a pair of vectors

6

{b0,b1} arranged such that ‖b0‖ ≤ ‖b1‖ and then setting b1 = b1−bµ1,0eb0, then swapping the
vectors and repeating until no more changes can be made. Thus, when this terminates, we must
have µ1,0 ≤ 1

2 .

To extend into higher dimensions one would like to do something similar but the optimal way to
do this is not clear because of the additional choice of directions. Notice that the Gauss algorithm

ensures that ‖b1‖
‖b0‖ is not too small, in particular, ‖b1‖

‖b0‖ ≥ 1 − µ2
1,0 ≥ 3

4 (see e.g. [NV10] for more

details). An LLL reduced basis satisfies a relaxed general version of this: ‖bi‖
‖bi−1‖ ≥ δ − µ2

i,i−1

for some δ ∈
(
1
4 , 1
)
. This relaxation, known as the Lovász condition, is necessary for polynomial

runtime. A typical choice is δ = 3
4 .

More formally, a basis {b0,b1, . . .bn−1} is LLL-reduced if it satisfies the Lovász condition (for
some δ) and it is size reduced; that is, µi,j ≤ 1

2 for 0 ≤ j < i ≤ n− 1.

Essentially, LLL works by size reducing the basis vectors pairwise, and then checking if the Lovász
condition still holds; if it does not, then it swaps the current vector with the previous vector. In
more detail, let the input basis be {b0, . . .bn−1}. Starting at i = 1 and incrementing upwards,
consider bi and size reduce with respect to bj for j = i− 1 down to j = 0. Then check if bi and
bi−1 satisfy the Lovász condition. If they do, increment i; if not, swap them and decrement i to
ensure the swap has not affected the Lovász condition holding in the previous pair.

Running Time. It is well known the runtime of LLL is polynomial and indeed this was proved as
it was introduced [LLL82]. In particular for an input basis where for all i, ‖bi‖ < B, LLL outputs
an LLL-reduced basis in time O

(
n5+ε log2+εB

)
(using fast integer multiplication). In more re-

cent variants, improvements have been made. For example, one variant introduced by Nguyen and
Stehlé called L2 [NS05] provably outputs an LLL-reduced basis in timeO

(
n5+ε logB + n4+ε log2B

)
(using fast integer multiplication). That is, one that only grows quadratically in logB. Heuristi-
cally, variants of LLL achieve O

(
n3 log2B

)
[CN11].

Quality of Output. LLL theoretically achieves a Hermite factor of
(
4
3

)n−1
4 [LLL82]. In practice,

it behaves much better and a root-Hermite factor δ0 of 1.0219 is reported in [GN08].

Implementations. LLL and its variants are implemented in many software packages, notably in
NTL [Sho], FLINT [HJP14] and fplll [CPS13]. The latter also implements L2.

3.2 BKZ

The BKZ algorithm [SE94] requires an algorithm solving exact SVP in possibly smaller dimensions
as a subroutine. The typical methods of doing this are computing the Voronoi cell of the lattice,
sieving or enumeration [HPS11b]. Below we refer to running any of these algorithms as calling an
SVP oracle.

The BKZ algorithm runs as follows, where at every stage b0, . . . ,bn−1 is the updated basis. The
input basis is LLL reduced, and the first block is b0, . . . ,bk−1. Call the SVP oracle to obtain a
short vector, b′0, in the space spanned by these vectors. We now have k + 1 vectors spanning a
k dimensional space, so we call LLL to obtain a new set of k linearly independent vectors. The
second block is made of vectors which are the projection of b1, . . . ,bk onto 〈b0〉⊥ (the space which
is the span of the orthogonal complement of b0). Again we call the SVP oracle to obtain a short
vector in this space, b′1, which can be viewed as the projection of some b′′1 in the lattice. Now

7

we call LLL on b0,b1, . . . ,bk,b
′′
1 to update the list of basis vectors. The next block is made of

vectors which are the projection of b2, . . . ,bk+1 onto 〈b0,b1〉⊥ (the space which is the span of the
orthogonal complement of b0 and b1), and again the SVP oracle is called to obtain a short vector
in this space, which can be viewed as a projected b′′2 ; and this procedure carries on through the
basis. The first n− k+ 1 blocks are all of size k, and then after this point each block is one vector
shorter than the previous block. The output basis of this process is another LLL reduced basis,
which can be treated as a new input, and the whole process continues again, until a basis passes
through unchanged, at which point the algorithm terminates.

A HKZ reduced basis {b0, . . .bn−1} is a basis such that its Gram-Schmidt vectors b∗i satisfy
‖b∗i ‖ = λ1(πi(L)) for 0 ≤ i ≤ n − 1 where πi(L) = 〈b0, . . . ,bi−2〉⊥. We can see that BKZ
constructively achieves a basis with the following property: each block of size k (e.g. b0, . . . ,bk−1),
that is all the first n − k + 1 blocks, is a HKZ reduced basis. Therefore, if k = n then the whole
output basis is HKZ reduced.

BKZ 2.0. Several improvements of BKZ have been suggested and their combination is often
referred to as BKZ 2.0 [CN11]. These improvements are extreme pruning [GNR10], early termi-
nation, limiting the enumeration radius to the Gaussian Heuristic and local block pre-processing.
Extreme pruning takes place in the enumeration subroutine, and it works by exploring only cer-
tain branches in the search tree, with the hope that a short enough vector is still found, therefore
decreasing the runtime. Early termination is based on the observation that the quality of the
output basis increases more dramatically in the earlier rounds of BKZ. Therefore, continuing to
reduce the lattice offers diminishing returns in the basis quality, and early termination decreases
the runtime while still returning a basis close to the desired quality. Local block pre-processing
takes the form of running BKZ-k′ with early termination for some value k′ so that the local basis
is more than merely LLL reduced.

Quality of Output. Assuming that the Gaussian Heuristic (GH) and the Geometric Series
Assumption (GSA) [Sch03] hold for a lattice, Chen [Che13] gives a limiting value of the root-
Hermite factor δ0 achievable by BKZ as a function of the block size k:

lim
n→∞

δ0 =
(
v
−1
k

k

) 1
k−1

≈
(

k

2πe
(πk)

1
k

) 1
2(k−1)

(1)

where vk is the volume of the unit ball in dimension k. Experimental evidence suggests that we
may apply the right hand side of (1) as an estimate for δ0 also when n is finite.

The ‘lattice rule of thumb’ is often used to given an approximation for δ0 for a given k as δ0 = k
1
2k .

To ease analysis, this expression, in turn, is often approximated by δ0 = 21/k [Ste13].

We note that depending on which estimate is used vastly different relations between k and δ0 are
assumed. To illustrate this we plot predictions for δ0 for block sizes 50 ≤ k ≤ 250 in Figure 1.

Assuming that (1) holds, we may conclude from Figure 1 that we do not need to consider the

approximation k
1
2k as it is always too pessimistic. The approximation 2

1
k is closer to the actually

expected behaviour, but as we will show below it implies a simple sub-exponential algorithm for
solving LWE via straightforward lattice reduction.

Running Time. The running time of BKZ is mainly determined by two factors: firstly, the time
tk it takes to find shortest or short enough vectors in lattices of dimension k; and secondly, the
number of BKZ rounds ρ needed. We assume CPU clock cycles as our basic unit to abstract from

8

40 60 80 100 120 140 160 180 200 220 240 260

1.005

1.01

1.015

1.02

1.025

k

δ 0

k
1
2k

2
1
k

(k
2πe
· (π k)1/k)

1
2(k−1)

Fig. 1. Estimates for δ0 for BKZ-k.

CPU clock speeds. If tk is the number of clock cycles it takes to solve SVP in dimension k we
expect BKZ to take ρ · n · tk clock cycles.

SVP Oracles. As mentioned above, three main families of algorithms exist for finding shortest
vectors [HPS11b]. Computing the Voronoi cell of the lattice takes about 22k+o(k) operations and
2k+o(k) memory. Sieving takes about 2k+o(k) operations and 2k+o(k) memory in its provable vari-
ant [ADRS14] and 20.2972 k+o(k) operations and memory in its heuristic variant [LdW15]. Enumer-

ation can be implemented in a fashion requiring 2O(k2) operations and poly(k) memory by running
enumeration on an LLL-reduced lattice (Fincke-Pohst), but can be also be done in kO(k) operations
and poly(k) memory by performing heavier preprocessing on the input lattice (Kannan). Achiev-
ing kO(k) was considered prohibitively expensive in practice until recently, but [MW15] proposed a
variant which achieves kO(k) with smaller overhead. Moreover, [Wal14] showed that preprocessing
local blocks with BKZ-O (k) before enumeration also reduces the complexity of BKZ-k to kO(k).

Estimating ρ. No closed formula for the expected number of BKZ rounds is known. The best

upper bound is exponential, but after ρ = n2

k2 log n many rounds, the quality of the basis is already
very close to the final output [HPS11a].

Asymptotic Behaviour. Before we discuss existing estimates in the literature for the running
time of BKZ, we briefly discuss the expected asymptotic behaviour of the algorithm. The ‘lattice
rule of thumb’ puts the relation between the block size k and δ0 as δ0 = k1/2k, which implies
k/ log(k) = 1/(2 log δ0). To solve this for k we need the following technical lemma:

Lemma 5. For i ≥ 1, let gi(x) = x log(gi−1(x)) with g0(x) = 2. Define g∞(x) = limn→∞ gn(x).
If a/ log(a) = b and log(a) ≥ 1 then

a ≥ gn(b)

for any n ≥ 0. In particular, for log(a) > 2, a = g∞(b).

9

Proof. For the first claim, notice that a ≥ g0(b) = 2 as log(a) ≥ 1. Furthermore, a ≥ g1(b) = b as
a/ log(a) = b so a ≥ b. We also have a ≥ g2(b) = b log(b):

a = b log a⇒ a ≥ b⇒ log a ≥ log b⇒ a ≥ b log b

For the inductive step,

suppose a ≥ gi(b)
⇒ log a ≥ log(gi(b))

a = b log a⇒ a ≥ b log(gi(b)) = gi+1(b).

So by induction, we have a ≥ gn(b). For the second claim, when log(a) > 2, b = a/ log(a) > 2.
We now prove by induction that gn(b) ≥ gn−1(b) for all n ≥ 1. For the base case, we have
g1(b) = b > 2 = g0(b). For the inductive step,

suppose gi(b) ≥ gi−1(b)

⇒ gi(b)
gi−1(b)

≥ 1

⇒ log (gi(b)
gi−1(b)

) ≥ 0

Now gi+1(b)− gi(b) = b log (gi(b)
gi−1(b)

) ≥ 0

⇒ gi+1(b) ≥ gi(b)

Thus we have that gn(b) is an increasing sequence, and by the first claim, it is bounded above by
a. So it is convergent and we may denote its limit by g∞(b). This satisfies g∞(b) = b log (g∞(b))

and so g∞(b)
log (g∞(b)) = a

log(a) . Now, for x ≥ 4, the function x
log(x) is one-to-one. Note that we have

gn(b) > 2 for all n so also g∞(b) > 2.

It remains to prove that g∞(b) ≥ 4, which implies g∞(b) = a. To show this, we require some
further properties of the function x

log(x) . Consider the solutions of the equation x
log(x) = 2. These

are precisely x = 2 and x = 4. By differentiating x
log(x) and evaluating at these values, and with

the observation that x
log(x) is continuous for x > 1, we can see that x

log(x) takes values below 2

precisely for 2 < x < 4. But, a/ log(a) > 2. So we must be in the region x ≥ 4. So, x
log(x) is

injective here and we may conclude g∞(b) = a as required. ut

By Lemma 5, we have k ≥ gn

(
1

2 log δ0

)
. In particular, k ≥ g2

(
1

2 log δ0

)
= − log(2 log δ0)

2 log δ0
. Ignoring

constants, this expression simplifies to − log(log δ0)
log δ0

. Since gn

(
1

2 log δ0

)
is an increasing sequence, we

can lower bound the log of the time complexity of the BKZ algorithm as follows.

Corollary 1. The log of the time complexity for running BKZ to achieve a root-Hermite factor
δ0 is:

Ω

(
log2 (log δ0)

log2 δ0

)
if calling the SVP oracle costs 2O(k2),

Ω

− log
(
− log log δ0

log δ0

)
log log δ0

log δ0

 if calling the SVP oracle costs kO(k),

Ω

(
− log log δ0

log δ0

)
if calling the SVP oracle costs 2O(k).

10

Remark 1. We typically have log(δ0) = O(log(n)/n) and so since k/ log(k) = 1/(2 log δ0) we have
that k/ log (k) = O (n/ log (n)). Since x/ log x is injective for sufficiently large x (e.g. x > 3) we
can conclude k = O(n) for sufficiently large k and n. Therefore, in most cases considered in this
work, the expressions in Corollary 1 could be given as O

(
n2
)
, O (n log n) and O (n) because we

have large n.

Existing Estimates. The following estimates for the running time of BKZ exist in the literature.

– Lindner and Peikert [LP11] give an estimate for the runtime (in seconds) of BKZ as

log tBKZ(δ0) =
1.8

log δ0
− 110

based on experiments with the implementation of BKZ in the NTL library [Sho]. That is,
improvements such as extreme pruning, early termination, and local block pre-processing were
not used. To convert the estimate to a more general metric, we may notice that it was derived
from experiments performed on a computer running at 2.3GHz. We can hence convert this to

clock cycles, giving a runtime of 2
1.8

log δ0
−110 · 2log (2.3·109) = 2

1.8
log δ0

−110+log (2.3·109) ≈ 2
1.8

log δ0
−78.9

clock cycles. It should be noted that this is a linear model, which does not fit the actual
implementation on BKZ in the NTL library as this uses an enumeration subroutine requiring

2O(k2) time. Moreover, as we will show below in Section 5.3, applying this model to predict
the behaviour of BKZ leads to a subexponential algorithm for solving LWE.

– Albrecht et al. [ACF+15] use data points of Liu and Nguyen [LN13] to extrapolate a model
similar to Lindner and Peikert’s [LP11] and conclude the running time of BKZ 2.0 (in seconds)
to be

log tBKZ(δ0) =
0.009

log2 δ0
− 27.

They argue that for current implementations and estimates based on them the runtime of
BKZ being nonlinear in log δ0 is more fitting than a linear model such as that of Lindner and
Peikert. The analysis also gives a runtime in seconds on a 2.3GHz computer, so we can convert

this into clock cycles to give a runtime of 2
0.009

log2 δ0
−27+log (2.3·109) ≈ 2

0.009
log2 δ0

+4.1
. We refer to

this as the delta-squared model. It should be noted, though, that the running times on which
this model is based were not independently verified which limits their utility. Note that this
estimate drops the log2(log δ0) factor compared Corollary 1 and assumes that enumeration in

BKZ 2.0 has a complexity of 2O(k2).
– Chen and Nguyen provide a simulation algorithm for BKZ 2.0 [CN11,Che13] for arbitrarily

high block size, under the assumption that each block behaves as a random basis. The authors
note that this assumption may not hold for block sizes k < 50. The algorithm takes as input
the logs of the norms of the Gram-Schmidt vectors belonging to the input matrix and a block
size k. It outputs the expected logs of the norms of the Gram-Schmidt vectors of the BKZ-
k reduced basis as well as the number of BKZ rounds ρ needed. The simulation algorithm
allows one to calculate what blocksize k will be required to obtain the approximate δ0 given
by BKZ 2.0 (c.f. [CN11, Table 2]). Chen and Nguyen assume the SVP is solved using a pruned
enumeration and they estimate the upper bound of the cost of this, for various values of
k, in terms of number of nodes of the enumeration tree [CN11, Table 3]. The cost of BKZ
is dominated by the cost of enumeration, and each round of BKZ costs “essentially m − 1
enumeration calls” [CN11] (where m is the dimension of the lattice). So the total cost of BKZ
is estimated to be the number of rounds multiplied by m − 1 multiplied by the cost of an
enumeration call.

– van de Pol and Smart [vdPS13] consider the problem from the perspective of using BKZ
to solve an LWE instance or some other computational problem in lattices. They assume
one has a desired level of security 2λ (a maximum number of operations an adversary can

11

perform) and a given lattice dimension m. These are used to find the lowest δ0 which can
be achieved in 2λ operations, minimising over possible choices of the block size k and the
number of rounds ρ = ρ(k,m, λ). This is in contrast to an approach where the parameters of
the system correspond to a δ0 which then implies a certain security level. They use a table
of Chen and Nguyen [CN11, Table 3] to estimate the cost of one enumeration for a given k
and to calculate the total number of enumerations one can perform for this k (to reach the
maximum of 2λ operations). Note that this means they do not consider block sizes k > 250 as
Chen and Nguyen do not give estimates for those. Smart and van de Pol remark that δ0 seems
to converge to a value depending only on k, corroborating other results in the literature. They
note further that the convergence is slower in higher dimension. The approach of van de Pol
and Smart was later refined in [LN14].

Estimates for tk. In Table 1 we list estimates for solving SVP in dimension k which were derived
as follows.

The first row — labelled ‘fplll’ — was derived by calling the SVP function available in fplll
4.0.4 [CPS13] for dimensions up to 53 and by fitting a k2 + b k + c to the logs of these averaged
running times.

The second row — labelled ‘enum’ — was derived by fitting a·k log(k)+b k+c to Table 4 in [CN12]
(we note that these estimates were not independently verified) and assuming one enumeration costs
200 clock cycles as in [CN12]. We note that while BKZ 2.0 does perform local block preprocessing
with BKZ-k′ before calling the SVP oracle it is not clear if it as implemented in [CN12] achieves a
complexity of kO(k). This is because [CN12] does not give sufficient details to decide if preprocessing
was performed with k′ = O (k). However, from a cryptanalytical perspective it is safer to assume
it achieves this bound, which is why we chose to fit the curve as we did.

The third row is based on [Laa14] which reports a time complexity of 20.3366 k+o(k) asymptoti-
cally and 20.45 k−19 seconds in practical experiments on a 2.66GHz CPU for small k. Note that
the leading coefficient in these experiments is bigger than 0.3366 from the asymptotic statement
because of the +o(k) term in the asymptotic expression. We brush over this difference and simply
estimate the cost of sieving as 20.3366 k+c operations where we derive the additive constant c from
timings derived from practical experiments in [Laa14]. We note that [LdW15] does not include
any experimental results. Hence, we cannot estimate when the cost hidden in the +o(k) term is
small enough. Indeed, estimating the cost of sieving in practice is stressed as an open problem
in [LdW15].

To fit curves we used Sage’s [S+14] find_fit function. This function calls SciPy’s [JOP+] function
scipy.optimize.leastsq which in turn uses MINPACK’s [MGH80] lmdif.

name data source log(tk)

fplll fplll 4.0.4 0.0135 k2 − 0.2825 k + 21.02
enum [CN12] 0.270189 k log(k)− 1.0192 k + 16.10
sieve [Laa14] 0.3366 k + 12.31

Table 1. Estimates for the cost in clock cycles to solve SVP in dimension k.

Overall. By setting ρ = n2

k2 log(n), we assume that running BKZ for block size k and dimension

n costs n3

k2 log(n) · tk CPU cycles where tk is taken from Table 1 based on how the SVP oracle is
instantiated.

12

Implementations. BKZ is implemented in NTL [Sho] and fplll [CPS13]. Neither of these im-
plementations incorporate all techniques which are collectively known as BKZ 2.0. Hence, both

implementations have a complexity of 2O(k2). However, the next version of fplll implements re-
cursive local block preprocessing with BKZ [ACPS14].

3.3 Choosing the number of samples m

In some of the algorithms below we will have a choice of which lattice to consider. In particular,
the situation will arise where our task is to find a vector with a target norm in a lattice with a
given volume vol (L) but variable dimension. Given this degree of freedom, we will have to choose
an optimal subdimension m to perform lattice reduction on. To find this optimal subdimension
we need to find m such that

‖v‖ = δm0 vol (L)
1/m

is minimised. If, as in many applications below, vol (L) = qn this becomes ‖v‖ = δm0 qn/m, then

m =

√
n log q

log δ0

is the optimal subdimension to consider [MR09]. This ‘optimal subdimension’ is also often heuris-
tically chosen even where the above relation between volume and dimension does not hold.
In [vdPS13] the authors choose m based on the best δ0 which can be obtained for a given se-
curity level. In one example the dimension they choose is similar to the ‘optimal subdimension’.

4 Strategies

In this section we discuss three strategies for solving LWE: solving Decision-LWE by finding a short
vector v such that 〈v,a〉 = 0; solving Search-LWE by finding a short e such that 〈a,x〉 = c − e
for some unknown x; or solving Search-LWE by finding an s′ such that 〈a, s′〉 is close to c. All
algorithms in Section 5 follow one of these strategies.

4.1 Short Integer Solutions (SIS)

To distinguish the case where m samples (A, c) either: follow Ls,χ, and hence satisfy c = As + e
with e(i) ←$ DZ,αq; or c is uniformly random, we can try to find a short vector v such that
v · A = 0. Expressed as a lattice problem, we aim to find a vector v in the scaled (by q) dual
lattice of the lattice generated by A, i.e. the lattice L = {w ∈ Zmq | wA ≡ 0 mod q}, which is
exactly solving the Short Integer Solutions problem [Ajt96]. Consider 〈v, c〉. If c = As + e then
〈v, c〉 = 〈v, e〉 which follows a Gaussian distribution over Z considered modulo q. In particular,
it often returns small samples as both v and e are small. On the other hand, if c is uniform then
〈v, c〉 is uniform on Zq. So we may distinguish these two cases, thus solving Decision-LWE. We
must however ensure ‖v‖ is suitably short. If ‖v‖ is too large then the (Gaussian) distribution of
〈v, e〉 will be too flat to distinguish from random. In particular, we have the following lemma:

Lemma 6 ([LP11]). Given an LWE instance characterised by n, α, q and a vector v of length
‖v‖ in the scaled dual lattice L = {w ∈ Zmq | wA ≡ 0 mod q}, the advantage of distinguishing
〈v, e〉 from random is close to exp(−π(‖v‖ · α)2).

13

Remark 2. For example, Stehlé [Ste13] states that a suitably short choice to distinguish Ls,χ from
random is ‖v‖ · αq ≤ q, i.e. ‖v‖ = 1/α. By Lemma 6, this results in an advantage of about 1/23
to distinguish correctly.

We note that depending on the algorithm used to obtain the short vector v, it may be advantageous
to accept a longer vector as output. This decreases the distinguishing advantage ε, but then running
the algorithm about 1/ε2 times will achieve a success probability close to 1 by the Chernoff bound
[Che52]. This may be faster than the alternative, which uses fewer vectors (runs of the algorithm)
at a higher success probability, but takes significantly longer to obtain these shorter vectors.

Corollary 2. To obtain a probability ε of success in solving an LWE instance parametrised by n,

q and α via the SIS strategy, we require a vector v of norm ‖v‖ = 1
α

√
ln(1

ε)/π.

Methods of finding a short vector in the dual lattice, or in a lattice generally, will be described in

the sections below. For ease of exposition we let f(ε) denote
√

ln(1
ε)/π.

4.2 Bounded Distance Decoding (BDD)

Given m samples (A, c = As + e) following Ls,χ we may observe that c is close to a linear
combination of the columns of A. Furthermore, since the noise is Gaussian, almost all of the
noise is within, say, three times the standard deviation (that is, 3αq√

2π
) from 0. Consider the lattice

spanned by the columns of A. We can see that c is a point which is bounded in distance from a
lattice point w = As. Hence, we may view the LWE instance as a Bounded Distance Decoding
(BDD) problem instance in this lattice. This problem is as follows: given a basis of a lattice, a
target vector, and a bound on the distance from the target to the lattice, find a lattice vector
within that bound of the target vector. In this case, our solution to the BDD problem would be
the lattice point w, from which we may then use linear algebra to recover s and therefore solve
Search-LWE. (In the event A is not invertible, call for more samples until it is.)

Again, depending on the algorithm, it may be advantageous to accept a lower success probability
ε. Then, approximately log(1− ε′)/ log(1− ε) iterations will achieve a success probability close to
the target ε′, since ε′ = 1− (1− ε)m.

4.3 Solving for s

A variant of the previous strategy is to search for a suitable s directly such that ‖As − c‖ is small.
This literally solves Search-LWE. While this and the previous technique are related by simple linear
algebra, i.e. knowing e trivially allows to recover s and vice versa, they differ in which of e or s
they target. For example, the Arora-Ge algorithm (cf. Section 5.6) directly recovers s.

5 Algorithms

5.1 Exhaustive Search

Exhaustive search directly solves for s as in Section 4.3.

14

Theorem 1. The time complexity of solving Search-LWE with success probability ε with exhaus-
tive search is m · (2tαq + 1)n · 2n = 2n log (2tαq+1)+logn+1+logm. The memory complexity is n, the
sample complexity is n+m with

m = (log(1− ε)− n log(2tαq + 1))/ log(2tα)

for some small parameter t = ω(
√

log n).

Proof. Consider {−tαq, . . . , tαq} for t = ω(
√

log n). By Lemma 4, an LWE sample has error which
falls in this range with overwhelming probability. Apply Lemma 1 to obtain an LWE instance
with s(i) ←$ DZ,αq, i.e. the secret is distributed the same as the error. We are therefore able to
estimate the size of each component of the secret as |s(i)| ≤ tαq. Therefore, to check all possible
secrets we must enumerate approximately (2tαq + 1)

n
vectors. For each vector we perform about

2n operations in Zq when computing the inner product.

We need n samples to apply Lemma 1 (if these n samples do not have full rank, pick n samples
again from the overall set of all samples). We know that the correct s will produce ei = 〈ai, s〉− ci
with ei ∈ {−tαq, . . . , tαq} with overwhelming probability. Wrong guesses s′ will produce random
elements in Zq which land within the acceptable range with probability ≤ (d2tαqe+1)/q ≈ 2tα. For
the wrong guess s′ to pass the test it must pass for all m samples, which happens with probability
(2tα)

m
. There are (2tαq + 1)

n − 1 wrong choices for s. By the union bound, we will hence accept
a false positive with probability pf ≤ (2tα)

m · (2tαq + 1)
n
. Choosing

m ≥ (log(pf)− n log(2tαq + 1)) / log(2tα)

this happens with a probability ≤ pf . Picking pf = 1 − ε to ensure that pf is sufficiently small
finishes the proof. ut

Corollary 3. Let q = nc and αq =
√
n. Then the time complexity of solving Search-LWE with

success probability ε with exhaustive search is

2n log (2t
√
n+1)+logn+1+logm.

The memory complexity is n. The sample complexity is m+ n with

m =
(
log (1− ε)− n log (2t

√
n+ 1)

)
/

((
1

2
− c
)

log n+ log (2t)

)
.

Remark 3. The complexity is independent of α and q but depends on their product αq and n.

Meet-in-the-Middle As mentioned in [BG14] there is also a Meet-in-the-Middle (MITM) al-
gorithm. MITM also directly solves for s as in Section 4.3. This is a time-memory trade-off and
hence a faster method than a naive brute force but at the cost of an increased requirement on
memory.

Theorem 2. Let an LWE instance be parametrised by n, α, q. If there are n+m samples satisfying
2tαm < 1/C for some constant C > 1 and

(2tα)
m · (2tαq + 1)

n/2
= poly(n)

for some small parameter t = ω(
√

log n), then there is a MITM algorithm which solves Search-
LWE with non-negligible probability which runs in time

O
(
m(2tαq + 1)

n/2
(2n+ (n/2 + poly(n)) · log (m(2tαq + 1)))

)
and requires memory m · (2tαq + 1)

n/2
.

15

Proof. Consider {−tαq, . . . , tαq} for t = ω(
√

log n). By Lemma 4, an LWE sample has error which
falls in this range with overwhelming probability. Apply Lemma 1 to obtain an LWE instance with
s(j) ←$ DZ,αq, i.e. the secret is distributed the same as the error. This costs n samples. Given m

samples (ak, 〈ak, s〉+ek), split ak = ak
l||akr in half and for each possibility si

l of the first half of s

compute the inner product of the first half of ak and si
l. Let the output of guess si

l ∈ Zn/2q for each
of the m samples be usil =

(〈
a0
l, si

l
〉
, . . . ,

〈
am−1

l, si
l
〉)

. Store a table T whose entries map vectors

usil to si
l. Generating the table costs m · 2n · (2tαq + 1)

n/2
operations, since we estimate the size

of each component of the secret as |s(i)| ≤ tαq and hence we expect (2tαq + 1)
n/2

candidates si
l

and for each of these we calculate m inner products. Sort the table into lexicographical ordering
component-wise. This costs

O
(
m(2tαq + 1)

n/2 · n/2 · log (m(2tαq + 1))
)

operations.

Now, for each candidate sj
r ∈ Zn/2q for the second half of the secret compute the inner product

of the second half of each ak with sj
r and then subtract from ck, to obtain the vector vsjr =

(c0 − 〈a0
r, sj

r〉 , . . . , cm−1 − 〈am−1r, sjr〉). Query T with vsjr ; that is, view T as a list and sort
vsjr into this list. We can do this in log(|T |) = n/2 · log (m(2tαq + 1)) operations per candidate

by binary search. Since there are (2tαq + 1)
n/2

possible second halves of the secret sj
r, the overall

cost of querying is (2tαq + 1)
n/2 · n/2 · log (m(2tαq + 1)). When we have sorted vsjr into the list,

we return which vectors usil it has fallen between, and check if they are near to vsjr in Euclidean
distance (we specify near in a moment).

If the vector vsrj
is near to the vector usil return si

l and treat si
l||sjr as a candidate secret, and

check if it is correct. If this process returns no secret overall, get fresh samples and start over.

If s = si′
l||si′r is the correct secret then vsi′

r − usi′
l = (e0, . . . , em−1) mod q. With overwhelm-

ing probability we will have ek ∈ {−tαq, . . . , tαq} for 0 ≤ k < m. Therefore
∥∥vsi′

r − usi′
l

∥∥ =
‖(e0, . . . , em−1)‖ =

√
m(tαq). A candidate should be rejected if the distance between usil and vsjr

is more than
√
m(tαq) and should be accepted otherwise.

This means that with overwhelming probability the algorithm will identify the correct secret as
long as the error does not cause a wrap around mod q on any component. That is, over the integers
we have vsjr − usil = (e0, . . . , em−1) + (qh0, . . . , qhm−1) for constants hk ∈ {−1, 0, 1}. A wrap
around mod q on one component corresponds to hk = ±1 on that component, but we require that
hk = 0 on all components (for our lexicographical ordering to work). The above is equivalent on
each component to ck = bk + ek + qhk where bk = 〈ak, s〉 mod q. We have that hk = ±1 will not
occur whenever bk is not in a band of width tαq either side of q, but may occur otherwise. So we
can bound the probability that a correct secret is rejected because of a wrap around error by the
probability that at least one of the m components has bk ∈ [0, tαq] ∪ [q − tαq, q). The probability
that one component has bk ∈ [0, tαq] ∪ [q − tαq, q) is 2tαq/q = 2tα so by the union bound the
probability that at least one of the m components has bk ∈ [0, tαq] ∪ [q − tαq, q) is ≤ m · 2tα. We
want to bound m so that this event only happens with probability at most 1/C for some constant
C, i.e. (2tαm) < 1/C.

Consider now the chance of a false positive, i.e. a wrong candidate secret si
l being suggested for

some candidate sj
r. Since ak is uniformly random, for any si

l, we have that usil is essentially a ran-
dom vector where each component takes one of q values. The chance of a wrong candidate sj

r pro-
ducing a vsjr matching to a given usil to within distance

√
m(tαq) is the chance of getting to within

±tαq on every component. Therefore the chance of a false positive is ((d2tαqe+ 1)/q)
m ≈ (2tα)

m

There are (2tαq + 1)
n/2 − 1 wrong choices for si

l. We hence expect to test (2tα)
m · (2tαq + 1)

n/2

16

candidates per sj
r and thus require

(2tα)
m · (2tαq + 1)

n/2
= poly(n).

ut

Remark 4. If q = nc and αq =
√
n, then setting m = n satisfies Theorem 2 for c ≥ 2 and

t = 2
√

log n.

5.2 BKW

The BKW (Blum, Kalai, Wasserman) algorithm was introduced in [BKW03] and shows that
subexponential algorithms exist for learning parity functions in the presence of noise: the BKW
algorithm solves the LPN (Learning Parity with Noise) problem in time 2O(n/ logn). BKW can
be adapted to solve LWE [Reg09] and the complexity of this has been studied in [ACF+15]. In
particular, BKW solves LWE via the SIS strategy (cf. Section 4.1).

To solve with this strategy, given m samples (A, c) following Ls,χ, we require short vectors vi in
the scaled (by q) dual lattice of the lattice generated by the rows of A. BKW constructs these by
adding elements from a tables with qb entries each, where each table is used to find collisions on
b components of a (a row of A).

In more detail, BKW constructs the vi as follows. Given a sample a, BKW splits the n components
into a blocks each of width b. There are a stages of the algorithm in which the algorithm creates
tables by searching for collisions in the appropriate b coefficients of a. In the first stage after
an appropriate number of samples we obtain two vectors which agree on a(0), . . . ,a(b−1). The
algorithm will then take these and subtract them producing a row with a(0) = · · · = a(b−1) = 0
which is stored for use in the next stage (considering a(b), . . . ,a(2b−1)).

The vi are of length
√

2a. In the first stage, suppose we find a collision with the first b components.
Adding those vectors clearing the first b components in a produces a vi candidate of length

√
2

as we are adding two vectors. Moving on to the next stage, two such vectors are added to clear
the next b columns, resulting in a vi candidate of length

√
22, and so on for all a stages.

The algorithm maintains a tables of size qb where b = n/a and its running time is typically
dominated by this magnitude. In general, we have the following complexity for solving Decision-
LWE with BKW.1

Theorem 3 ([ACF+15]). Let (ai, ci) be samples following Ls,χ or a uniform distribution on
Znq × Zq, 0 < b ≤ n be a parameter, 0 < ε < 1 the targeted success rate and a = n/b the addition
depth. Then, the expected cost of the BKW algorithm to distinguish Ls,χ from random with success
probability ε is

(
qb − 1

2

)
·
(
a(a− 1)

2
· (n+ 1)− ba(a− 1)

4

)
− b

6

(
qb − 1

2

)(
(a− 1)3 +

3

2
(a− 1)2 +

1

2
(a− 1)

)

1 [ACF+15] optimistically gives m = ε/ exp
(
−π α2 2a

)
, but by the Chernoff bound we need about

1/ exp
(
−π α2 2a

)2
samples to distinguish.

17

additions/subtractions in Zq to produce elimination tables,

m ·
(a

2
· (n+ 2)

)
with m = ε/ exp

(
−2π α2 2a

)
additions/subtractions in Zq to produce samples. Furthermore,

a ·
⌈
qb

2

⌉
+m

calls to Ls,χ and storage for

(
qb

2

)
· a ·

(
n+ 1− ba− 1

2

)

elements in Zq are needed.

To pick a and b, recall from Remark 2 that in order to distinguish Ls,χ from random using SIS
an appropriately short choice for vi is ‖vi‖ · αq =

√
2a · αq ≤ q hence a suitable choice for a is

a ≤ log(α−2).

Corollary 4 ([ACF+15]). Let a = −2 logα and b = n/a. The expected cost of the BKW algo-
rithm to distinguish Ls,χ from random is(

qb − 1

2

)
·
(
a(a− 1)

2
· (n+ 1)

)
+ poly(n) ≤ qb · a2n+ poly(n)

= O
(

2n log q/(−2 logα) · (−2 logα)2n
)

operations in Zq Furthermore, a ·
⌈
qb

2

⌉
+ poly(n) calls to Ls,χ and storage for

(
qb

2

)
· a ·n elements

in Zq are needed.

Specialising Corollary 4 with q = nc and αq =
√
n we get:

Corollary 5. Let q = nc, α q =
√
n. Set a = −2 logα and b = n/a. The expected cost of the BKW

algorithm to distinguish Ls,χ from random is(
qb − 1

2

)
·
(
a(a− 1)

2
· (n+ 1)

)
+ poly(n) ≤ qb ·

(
a2n
)

+ poly(n)

= 2
n

2−(1/c) · poly(n)

operations in Zq.

Remark 5. It is easy to see that the complexity of the BKW algorithm is determined by n and
αq and not α or q. However as q grows the leading coefficient of the complexity approaches 1/2
as 1/c vanishes.

18

Note, however, that this strategy of picking a and b is not optimal. These choices, which produce an
easy, closed form for the complexity, ensure that m = poly(n), which implies that almost all time
is spent constructing ‘elimination tables’, whereas the second step of the algorithm – producing
candidates for distinguishing – is very efficient. A better strategy is to balance both steps, i.e. to
find a and b such that(

qb − 1

2

)
·
(
a(a− 1)

2
· (n+ 1)

)
= ε/ exp

(
−2π α2 2a

)
·
(a

2
· (n+ 2)

)
.

By balancing both sides we may reduce the complexity of the BKW algorithm toO
(
2(cn log(n)/(2c log(n)−d))) =

2n/(2−o(1)) for some constant d. This can make a significant difference for picking concrete param-
eters.

Example 1. Choosing n = 256, q = 65537 and σ = αq/
√

2π ≈ 25.53 we expect the cost of
distinguishing Ls,χ to be 2188.1 operations in Zq by Corollary 4. Balancing the two steps of the
algorithm would reduce this to 2171 operations in Zq.

The search variant of BKW algorithm as given in [ACF+15] was later improved in [DTV15] by
using a discrete Fourier transform to recover a correct subset of components of s. In particular,
the authors of [DTV15] arrive at the following complexity result.

Theorem 4 ([DTV15]). Let an LWE instance be parametrised by n, α, q and let a, b ∈ N be
such that a · b = n. Let CFFT be the small constant in the complexity of the fast Fourier transform
computation. Let 0 < ε < 1 be a targeted success rate and define ε′ = (1− ε)/a. For 0 ≤ j ≤ a− 1
let

mj,ε = 8 · b · log
q

ε

(
1− 2π2σ2

q2

)−2a−j
.

The time complexity to recover the secret s with probability at least ε is c1 + c2 + c3 + c4 where

c1 =
qb − 1

2
·
(

(a− 1)(a− 2)

2
(k + 1)− b

6
(a(a− 1)(a− 2))

)
is the number of additions in Zq to produce tables,

c2 =

a−1∑
j=0

mj,ε′ ·
a− 1− j

2
(k + 2)

is the number of additions in Zq to recover s,

c3 = 2

a−1∑
j=0

mj,ε′

+ CFFT · k · qb · log q

is the number of operations in C to prepare and compute the discrete Fourier transforms, and

c4 = (a− 1)(a− 2) · b · q
b − 1

2

is the number of operations in Zq for back substitution. Furthermore we require (a− 1) q
b−1
2 +m0,ε

calls to Ls,χ and storage for(
qb − 1

2
(a− 1)

(
k + 1− ba− 2

2

)
+m0,ε

)
elements in Zq and qb elements in C.

A reference implementation of the BKW algorithm for LWE as described in [ACF+15] is available
as [Alb13].

19

5.3 Using Lattice Reduction To Distinguish

Lattice reduction is another means to find short vectors in the scaled dual lattice, enabling us to
solve LWE via the SIS strategy. Again, we consider the scaled dual lattice L = {w ∈ Zmq | wA ≡ 0
mod q}. To construct this lattice from a given A ∈ Zm×nq : compute a basis B for the nullspace of

AT over Zq, lift to Z and extend by qI ∈ Zm×m to make it q-ary and compute a basis for L. The
lattice L has dimension m, and with high probability rank m and volume vol (L) = qn [MR09].

By our convention lattice reduction will return the shortest non-zero vector b0 it found as the
first vector of a reduced basis, which by definition is a short vector in L, so that b0 A = 0 mod q.
Heuristically, for a good enough output basis all vectors could be used, as they will all be somewhat
short, i.e. not too dissimilar in length from each other.

Lemma 7. Let an LWE instance be parametrised by n, α, q. Any lattice reduction algorithm
achieving log root-Hermite factor

log δ0 =
log2

(
α 1
f(ε)

)
4n log q

can distinguish Ls,χ with probability ε.

Proof. With high probability vol (L) = qn and by definition the Hermite factor is δm0 = ‖v‖
vol(L)

1
m

so we have ‖v‖ = δm0 q
n
m . On the other hand, we require ‖v‖ = 1

αf(ε) by Corollary 2. By

Section 3.3 the optimal subdimension m which minimises the quantity δm0 q
n
m is m =

√
n log q
log δ0

.

Since we assume we can choose any number of samples m, we always choose to use this optimal

subdimension. Rearranging with this value of m, we obtain log δ0 =
log2 (1

α f(ε))
4n log q =

log2 (α 1
f(ε))

4n log q as
our desired log root-Hermite factor. ut

Corollary 6. Given an LWE instance parametrised by n, q = nc, αq =
√
n. Any lattice reduction

algorithm achieving log root-Hermite factor

log δ0 =

((
c− 1

2

)
log n+ log f(ε)

)2
4cn log n

can distinguish Ls,χ with advantage ε.

Proof.

δm0 q
n
m = ‖v‖

δm0 n
cn
m = nc−

1
2 f(ε)√

cn log n

log δ0
log δ0 +

cn√
cn logn
log δ0

log n =

(
c− 1

2

)
log n+ log f(ε)

cn log n log δ

log δ0
+ cn log n =

√
cn log n

log δ0

((
c− 1

2

)
log n+ log f(ε)

)

2cn log n =

√
cn log n

log δ0

((
c− 1

2

)
log n+ log f(ε)

)

20

2cn log n((
c− 1

2

)
log n+ log f(ε)

) =

√
cn log n

log δ0

(2cn log n)2((
c− 1

2

)
log n+ log f(ε)

)2 =
cn log n

log δ0

4cn log n((
c− 1

2

)
log n+ log f(ε)

)2 =
1

log δ0((
c− 1

2

)
log n+ log f(ε)

)2
4cn log n

= log δ0

ut

Remark 6. Assuming q = nc and αq =
√
n we can see that for large q and hence large c, lattice

reduction becomes easier, as we get a larger δ0. Contrasting this with BKW, we can see while it is
somewhat competitive in time complexity with lattice reduction for small q, it is much worse than
the latter for large q as they are, for example, used in homomorphic encryption schemes [GHS12b]
(cf. Section 7).

Having established the target δ0, we can combine it with estimates about lattice reduction running
times from Section 3.2. In Table 2 we list estimates for how long it would take lattice reduction
algorithms to achieve our target δ0 for f(ε) = 1, i.e. ε ≈ 1/23.

model block size k log clock cycles

rule of thumb k
log k

= 4n log q

log2 (1
α)

O (k)

simp. rule of thumb 4n log q

log2 (1
α)

O
(

4n log q

log2 (1
α)

)
Lindner & Peikert ? 7.2n log q

log2 (1
α)
− 78.9

delta-squared model ? 0.144n2 log2 q

log4 (1
α)

+ 4.1

q = nc, α = n1/2−c

rule of thumb k
log k

= 4cn logn

((c− 1
2) logn)2

O (n)

simp. rule of thumb 4cn logn

((c− 1
2) logn)2

O
(

4cn logn

((c− 1
2) logn)2

)
Lindner & Peikert ? 7.2cn logn

((c− 1
2) logn)2

− 78.9

delta-squared model ? 0.144c2n2 log2 n

((c− 1
2) logn)4

+ 4.1

Table 2. Time complexity for distinguishing Ls,χ from random with advantage ε ≈ 1/23 based on lattice
reduction estimates from the literature.

Considering the right-most column of Table 2 it is clear that both the Lindner-Peikert model as
well as the simplified lattice rule of thumb would predict a subexponential running time for solving
LWE with SIS. Since this is considered not to be the case, we may discount these approximations
as too optimistic.

As pointed out in Section 4.1 above, the strategy as discussed so far is not optimal. Given access
to sufficiently many samples m it is usually beneficial to run lattice reduction for a smaller target
success probability ε′ and to repeat this process about 1/(ε′)2 times to boost the overall success
probability to a success probability close to 1.

21

Example 2. Setting n = 256, q = 65537 and σ = αq/
√

2π ≈ 25.53 following [Reg09] and picking
ε = 0.1 we get a target δ0 = 1.0040513 by Lemma 7 and thus m = 838. Computing the expected
number of clock cycles, we end up with the following estimates.

model block size k log clock cycles

enum 391 270
sieve 391 182

In contrast, picking ε′ such that 1/(ε′)2 multiplied by the solving time is minimised we get:

model log(ε′) δ0 block size k log clock cycles

enum -21 1.005232 267 204
sieve -11 1.004801 304 164

5.4 Decoding Approach

This approach solves LWE by solving the BDD problem (cf. [LP11]). The most basic way of
solving a BDD instance is using Babai’s Nearest Plane algorithm [Bab85]. This approach can be
summarised as follows: let there be m samples of an LWE instance parametrised by n, α, q so we
have a set of samples (A, c). Perform lattice reduction on the lattice L(AT) to obtain a new basis
B for this lattice, where the quality of this basis is characterised as usual by the root-Hermite
factor δ0. Babai’s Nearest Plane algorithm works by recursively computing the closest vector on
the sublattice spanned by subsets of the Gram-Schmidt vectors b∗i .

This recovers the vector s with probability

m−1∏
i=0

erf

(
‖b∗i ‖

√
π

2αq

)
under the assumption that sampling from the discrete Gaussian is approximately the same as
sampling from a continuous Gaussian [LP11].

The probability the nearest planes algorithm finds the vector s is given by the probability that
the error vector e lies in the parallelepiped s +P(B∗). So, it can be seen that in this approach the
success probability is determined by the quality of the lattice reduction.

Lindner and Peikert Nearest Planes. Lindner and Peikert [LP11] suggest an alteration of
Babai’s algorithm, designed to widen the fundamental parallelepiped in the direction of b∗i by a
factor of some di ∈ Z>0, thereby increasing the chance of e falling inside it. This will find multiple
solutions, which can be searched through exhaustively to find the correct solution.

This modifies the success probability to

m−1∏
i=0

erf

(
di · ‖b∗i ‖

√
π

2αq

)
. (2)

There is no obvious way to analytically determine the optimal di to achieve a desired success
probability. However, Lindner and Peikert suggest a simple heuristic method in which di are chosen

22

to maximise min1≤i≤m (di · ‖b∗i ‖). This can be shown to return optimal values if we restrict our di
to powers of 2 only. Since erf(2x)

erf(x) > erf(2y)
erf(y) for all 0 < x < y, clearly the optimal value is obtained

by doubling di whenever di · ‖bi‖ is minimal. Therefore, maximising the minimum of the values
di · ‖bi‖ is optimal for di powers of 2.

Given m,n, α and q as above, let tNP (δ0, ε) = tnode ·
∏m−1
i=0 di such that Equation (2) is at least ε

where tnode is the number of clock cycles it takes to visit one node. Then the time for a decoding
approach to achieve a success probability ε could be determined as

tdec(ε) = min
δ0
{tBKZ(δ0) + tNP (δ0, ε)} .

Hence, on the one hand, with a more reduced a basis, the values of di can be smaller, so the Nearest
Planes algorithm requires less time. On the other hand, the lattice reduction takes significantly
more time for smaller approximation factors.

We note that in [LP11, Figure 4] it appears as though this quantity has not been optimised. The
authors find values for δ0 for which the time of a decoding approach is less than an equivalent
distinguishing approach (cf. Section 5.3), but these values are not necessarily optimal, i.e. the
lattice reduction step and the decoding step are not always balanced.

We note that we may opt to run the algorithm many times with a lower advantage. This typically
reduces the overall complexity.

Solving BDD by Enumeration: an Update (Liu, Nguyen). Liu and Nguyen [LN13] note
that the Lindner Peikert algorithm (as well as Babai’s) can be viewed as a form of pruned enu-
meration, but with a different rule to Gama, Nguyen and Regev’s pruned enumeration [GNR10].
Namely, let v be a node and t be a target vector. GNR pruning keeps nodes with bounded projec-
tions whereas the Lindner Peikert algorithm keeps nodes with bounded coordinates, in particular

|ζi(v − t)| ≤ di||b∗i ||/2 where ζi(x) =
〈x,b∗i 〉
||b∗i ||

. Liu and Nguyen note that this can be generalised to

arbitrary bounds on coordinates, |ζi(v−t)| ≤ Ri for some parameters Ri not necessarily dependent
on the ||b∗i ||s.

Due to these similarities between the Lindner Peikert method and pruning techniques, Liu and
Nguyen implement a variant of the Lindner Peikert algorithm in the context of pruning algorithms,
using arbitrary Ri. They also randomise the input basis, allowing them to repeat the algorithm
multiple times, which has the result of increasing both the runtime and success probability linearly.
Since we assume access to as many samples as required, we do not rely on rerandomisation when
estimating complexity. These two factors result in more flexibility in tuning the parameters, and
improved results for solving BDD.

However, instead of using the enumeration framework as simply a method to improve the algorithm
of Lindner and Peikert, Liu and Nguyen go on to directly apply pruned enumeration to solve BDD.
This follows the earlier work of Gama, Nguyen and Regev [GNR10], and uses linear pruning in
which the bounds Rk =

√
k/mRm are used. Over the same parameters used in [LP11], this linear

pruning is shown to improve on both the original Nearest Planes algorithm and the improved
variant.

Runtime Analysis. In any lattice decoding approach, the runtime is determined by balancing
the lattice reduction step against the final step which enumerates possible solutions and outputs
an answer with a certain probability.

For Babai’s algorithm, the runtime is determined by calculating the Gram-Schmidt orthogonalisa-
tion — which can be done with floating point arithmetic in O

(
n3
)
. If using either of the extensions

23

to Babai’s algorithm this is still a component, but the main factor determining the runtime is the
number of points which are calculated.

Similarly, if using a form of enumeration, we are mostly interested in how many points are enu-
merated. Therefore, to calculate the runtime of the BDD approach, we simplify the various enu-
meration algorithms to two expressions: the time it takes to enumerate one point; and the success
probability for a certain number of enumerations.

For example, Lindner and Peikert estimate that running Babai’s algorithm once takes tnode =
2−16 · 2.33 · 109 ≈ 215.1 clock cycles, whereas [GNR10] achieve 0.94 · 107 nodes per second which is
approximately 2−23 seconds per enumeration. In our estimator (cf. Section 7) we assume tnode =
215.1.

Calculating the success probability is harder. For Nearest Planes, we can use Equation 2, but we
still need to determine the optimal values for di for which we do not know a closed formula. In
practice, though, we can follow Lindner and Peikert’s strategy of increasing di one by one. For
enumeration and pruning, we need to use the method as used in [LN13], which experimentally
calculates the success probability by sampling.

The most significant factor affecting the success probability is the quality of the reduced basis which
is provided (i.e. what value δ0 is achieved). For example, Babai’s algorithm without a preceding
lattice reduction only gives solutions up to an exponential factor. In a sense, the methods proposed
here for performing a decoding approach can be seen as a way to halt the lattice reduction when
it is possible to obtain a solution with a reasonable success probability, and optionally repeating
to increase the probability of solving the problem. The overall runtime is then calculated by
estimating the optimal time to halt the reduction and attempt to solve.

Example 3. For n = 192, q = 4093, αq = 8.87 [LP11] report 274 seconds when running the attack
232 times with advantage 2−32 and δ0 = 1.0083 whereas the randomised NP used by Liu and
Nguyen is able to perform the decoding approach using a lattice reduction with δ0 = 1.0077 and
ε = 2−12. This lattice reduction takes 265.6 seconds in the Lindner & Peikert model for lattice
reduction. Our estimator suggests ε = 2−15 and δ0 = 1.0077566 which implies a lattice reduction
cost of 266.48 seconds also in the Lindner & Peikert model (for compatibility).

We note that these improvements depend on balancing many parameters in an optimal way.
Calculating the success probability can only be done numerically, and optimising parameters
requires many computations. Our estimator (cf. Section 7) does not provide a routine for estimating
the cost using [LN13] but we restrict out attention to [LP11] which gives comparable results and
is easier to estimate.

5.5 Reducing BDD to uSVP

Albrecht, Fitzpatrick and Göpfert [AFG14] consider the complexity of solving LWE by reducing
BDD to uSVP (unique Shortest Vector Problem). Formally, the γ-uSVP problem is as follows:
given a lattice L such that λ2(L) > γλ1(L), find a shortest nonzero vector in L.

To reduce BDD to uSVP Kannan’s embedding technique [Kan87] is used. The idea is to embed
L(A) = {Au | u ∈ Znq }, the lattice generated by the columns of the LWE instance (and our
usual lattice for consideration when are solving with the BDD strategy), into a higher-dimensional
lattice L(B) with γ-uSVP structure. That is, B is constructed as

B =

(
Ã 0
c t

)
,

24

where Ã is a basis for the q-ary lattice spanned by the columns of A.

Let y ∈ L, for some lattice L, be the closest lattice point to some point x, i.e. the point minimising
‖x− y‖. We can then define the distance from x to the lattice L, dist(x, L), as this length. If the

embedding factor t = dist(c, L(A)) < λ1(L(A)))
2γ then L(B) contains a γ-unique shortest vector,

c′ = (e,−t) [LM09], from which we can take the first m components to recover e, hence solving
the BDD instance.

To solve a γ-uSVP instance, we may reduce the problem to κ-HSVP (Hermite Shortest Vector
Problem). Let γ = κ2. Lovasz [Lov86] showed that any algorithm which can solve κ-HSVP, such
as a lattice reduction algorithm, can be used linearly many times to solve approximate SVP with
approximation factor κ2. Intuitively, a lattice with uSVP structure has one direction in which its
shortest vector is somewhat shorter than all other directions. A sufficiently precise lattice reduction
algorithm (for example) can produce a vector so short it must be in this special direction. More
precisely, a solution to κ2-approximate SVP would be a vector v such that ‖v‖ ≤ κ2λ1(L). On
the other hand, any vector w which is not the shortest (and independent of the shortest vector)
satisfies ‖w‖ ≥ λ2(L) > κ2λ1(L). So, we must have v is a multiple of a shortest vector, and hence
we have solved κ2-uSVP. Ling et al. [LLLS11] show that whenever κ >

√
N , for N the dimension

of the lattice, this result can be improved. They show any algorithm solving κ-HSVP can be used
to solve γ-uSVP, where γ ≈

√
Nκ.

The above are theoretical results. In practice, an algorithm solving HSVP will solve uSVP instances
where the gap is λ2(L) > τδm0 λ1(L) with some probability depending on τ [GN08]. The value τ is
taken to be a constant, which is experimentally derived in [GN08] and which depends on both the
nature of the lattices considered, the lattice reduction algorithm used and the target success rate.

To estimate the time complexity of this approach we firstly must establish m and τ , which depend
on how we choose the embedding factor t. We may have t = ‖e‖ or t < ‖e‖.

Suppose firstly that t = ‖e‖. We will need the following lemma from [AFG14].2

Lemma 8 (Lemma 2 in [AFG14]). Let A ∈ Zn×mq , let αq > 0 and let ε′ > 1. Let e ∈ Zmq such
that each component is drawn from χ and considered mod q. Assuming the Gaussian heuristic for

L(A), i.e. λ1(L(A)) ≥
√

m
2πevol (L)

1/m
, and that the rows of A are linearly independent over Zq,

we can create an embedding lattice with λ2/λ1-gap greater than

min{q, q1− n
m

√
m
2πe}

ε′s
√
m√
π

with probability greater than 1−
(
ε′ · exp

(
1−ε′2

2

))m
.

Hence, setting t = ‖e‖, B is a basis of a lattice whose gap is determined by Lemma 8. Using
Lemma 8 and under the assumption q1−

n
m

√
m
2πe < q, we require a gap of size approximately

λ2
λ1

=
q1−

n
m

√
1
2e

ε′αq

and so we require a δ0 determined by q1−
n
m

√
1
2e ≥ τδ

m
0 ε′αq. The determination of τ is discussed

at length in [AFG14] but we have that τ ≤ 0.4 (depending on the algorithm) for a success

2 To avoid notational conflict we refer to their constant c > 1 as a constant ε′ > 1 and we replace their s
for the width parameter of the Gaussian with our αq.

25

probability of 0.1 based on the experimental results in [AFG14,GN08]. We stress that no data is
publicly available on τ for smaller success probabilities. In [AFG14] it is shown that for a fixed

δ0 the optimal subdimension is m =
√

n log q
log δ0

as in Section 3.3. We may use this to determine δ0

using the expression above (where for simplicity we assume equality).

Lemma 9. Given an LWE instance characterised by n, α, q. Any lattice reduction algorithm
achieving log root-Hermite factor

log δ0 =
log2

(
ε′τα
√

2e
)

4n log q

solves LWE with success probability greater than

ετ ·
(

1−
(
ε′ · exp

(
1− ε′2

2

))m)
for some ε′ > 1 and some fixed τ ≤ 1, and 0 < ετ < 1 as a function of τ .

Proof. From the above discussion, and assuming for simplicity an equality, we require a δ0 deter-
mined by the following equation:

q

1− n√
n log q
log δ0

√
1

2e
= ε′τ αq δ

√
n log q
log δ0

0

Rearranging, we obtain

1− n√
n log q
log δ0

 log q + log

√
1

2e
= log (ε′ταq) +

√
n log q

log δ0
log δ0

√

n log q
log δ0

− n√
n log q
log δ0

 log q −

√
n log q

log δ0
log δ0 = log (ε′ταq)− log

√
1

2e
√

n log q
log δ0

− n√
n log q
log δ0

 log q −

√
n log q

log δ0
log δ0 = log

(
ε′ταq

√
2e
)

√
n log q

log δ0
log
(
ε′τα
√

2e
)

= 2n log q

n log q

log δ0
log2

(
ε′τα
√

2e
)

= 4n2(log q)2

log2
(
ε′τα
√

2e
)

4n log q
= log δ0.

Finally, the success probability is computed as the probability the gap is as required in Lemma 8
multiplied by the success probability of our algorithm ετ . ut

26

Corollary 7. Given an LWE instance characterised by n, q = nc, αq =
√
n. Any lattice reduction

algorithm achieving log root-Hermite factor

log δ0 =

(
(c− 1/2) log n− log

(
ε′τ
√

2e
))2

4cn log n

solves LWE with success probability greater than

ετ ·
(

1−
(
ε′ · exp

(
1− ε′2

2

))m)
for some ε′ ≈ 1 and some fixed τ ≤ 1 and 0 < ετ < 1 as a function of τ .

Comparing Corollary 7 with Corollary 6 we find that solving LWE via BDD by reducing to
uSVP is more efficient than solving LWE via one call to an algorithm solving SIS whenever
log(1/(τ

√
2e)) > log(f(ε)) under the condition that ε ≈ ετ so that the success probabilities are

equal in both cases.

However, using Kannan’s embedding is not necessarily more efficient than the decoding approach
discussed in Section 5.4, as the following example highlights.

Example 4. Letting n = 256, q = 65537 and σ = αq/
√

2π ≈ 25.53 following [Reg09] and choosing
t = 1, τ ′ = 0.310 and ε′ = 1.01 we get a target δ0 = 1.004634 by Lemma 9 and thus m = 784.
According to [AFG14] we have ετ = 0.1. Our estimator predicts block size k = 321 and 2205 clock
cycles for performing this lattice reduction. In contrast, performing the decoding approach from
Section 5.4 is predicted to cost 2172 clock cycles overall to perform lattice reduction which achieves
root-Hermite factor δ0 = 1.005198 and to run the final decoding stage.

Finally, suppose t < ‖e‖. In this case no efficient method for determining λ2

λ1
is known. The

assumption in [AFG14] which attempts to overcome this is that the same size of gap is required
as it is in the case that t = ‖e‖. A modified value for τ , denoted τ ′ is introduced which relates to
the gap from the case t = e when actually computing with t = 1. Setting t = 1 is typically more
efficient than t = ‖e‖ and we have τ ′ ≈ 0.3, see [AFG14] for details.

5.6 Arora-Ge and Gröbner Bases

Arora and Ge proposed an alternative approach to solving Search-LWE by setting up a system of
noise-free non-linear polynomials of which the secret s is a root [AG11]. This approach solves for
s directly.

In particular, [AG11] offers an algorithm for solving Search-LWE in time 2Õ(n2ξ), where ξ is a
constant such that αq = nξ. The algorithm proceeds by assuming that the error always falls in
the range [−t, t] for some t ∈ Z such that d = 2t + 1 < q. This follows from the chance of falling
outside this interval dropping exponentially fast (cf. Lemma 4).

Polynomials are constructed from the observation that the error, when falling in this range, is
always a root of the polynomial P (x) = x

∏t
i=1(x + i)(x − i). Then, we know the secret s is a

root of P (a ·x− c) constructed from LWE samples. In the Arora-Ge algorithm the system of non-
linear equations constructed this way is solved by replacing each monomial with a new variable
and solving the resulting linear system. However, this means that we need O

(
n2t+1

)
samples. As

we increase the number of samples, we increase the probability that the error falls outside of the
interval [−t, t]. We then have to increase the range, leading to a larger degree, which requires even
more samples. Balancing these two requirements of keeping the degree low and acquiring enough
samples, the overall complexity is given by the following result.

27

Theorem 5 (Theorem 5 in [ACFP14]). Let n, q, σ = α q be parameters of an LWE instance,
and as before let ω denote the linear algebra constant. Let DAG = 8σ2 log n + 1. If DAG ∈ o(n)
then the Arora-Ge algorithm solves Search-LWE in time complexity

O
(

2
ω·DAG log n

DAG · σ q log q
)

= O
(

2 8ω σ2 logn(logn−log(8σ2 logn)) · poly(n)
)

and memory complexity

O
(

2
2·DAG log n

DAG · σ q log q
)

= O
(

2 16σ2 logn(logn−log(8σ2 logn)) · poly(n)
)
.

If n ∈ o(DAG) then the Arora-Ge algorithm solves Search-LWE in time complexity

O
(

2ω n log
DAG
n · σ q log q

)
= O

(
2ω n log(8σ2 logn)−ωn logn · poly(n)

)
and memory complexity

O
(

2 2n log
DAG
n · σ q log q

)
= O

(
2 2n log(8σ2 logn)−2n logn · poly(n)

)
.

Remark 7. Specialising to σ =
√
n the complexity is O

(
2(2+ε)ωn log logn

)
. In this case, the Arora-

Ge algorithm is asymptotically slower than the BKW algorithm and lattice reduction if sieving is
used to implement the SVP oracle, but asymptotically faster than lattice reduction if enumeration
is used to implement the SVP oracle.

This can be improved by using Gröbner basis techniques [ACFP14]. In particular, to solve via
linearisation as in [AG11], we require O

(
nd
)

equations, but Gröbner basis algorithms will work
when fewer equations than this are available at the cost of a more expensive solving step. In

particular, the complexity of computing a Gröbner basis is O
(
mDreg

(
n+Dreg

Dreg

)ω)
, where Dreg is

the degree of regularity of the ideal I spanned by the polynomials. The degree Dreg is the index of
the first non-positive coefficient of the Hilbert series expansion of the ideal I. In general, it is hard
to compute the Hilbert series, but for semi-regular sequences, it has an easy form. A semi-regular
sequence of m polynomials of degree d in n variables is a sequences with the following Hilbert
series:

HI(z) :=
(1− zd)m

(1− z)n
.

It is assumed that random systems behave like semi-regular sequences. A justification as to why
this is a reasonable assumption is given in [ACFP14]. Thus, assuming our non-linear equations
behave like random equations of the same degree, we can estimate the cost of solving LWE by
expanding this power series until the first non-positive coefficient. In particular, assuming αq =

√
n

we get:

Theorem 6 ([ACFP14]). Let (ai, bi) for i ≥ 1 be elements of Znq ×Zq sampled according to Ls,χ

with αq =
√
n. There is an algorithm recovering the secret with time complexity O

(
22.35ωn+1.13n

)
,

memory complexity O
(
25.85n

)
and sample complexity m = exp(π4 · n).

Hence, for αq =
√
n applying Gröbner basis algorithms is in the same complexity class as the

BKW algorithm or lattice reduction when sieving implements the SVP oracle, albeit with a larger
leading constant in the exponent.

Remark 8. The complexity depends on αq, which corresponds to the degree, and n, which cor-
responds to the number of variables. Adjusting q while keeping αq the same will not affect the
runtime.

28

6 Small Secret Variants

In several applications based on LWE, the secret s is not chosen uniformly at random from Zq but
instead chosen from a different distribution where all the components s(i) are “small”, e.g. they
are chosen from {0, 1} or {−1, 0, 1}. In this section we consider the complexity of solving LWE in
this special case. We characterise an instance by n, α, q, ψ where ψ is the distribution of s(i).

We note that there is a gap between security reductions and the best known algorithms for solving
LWE with binary secrets. On the one hand, theoretical results show that for an LWE instance
with a binary secret to be as hard as general LWE in dimension n a dimension of n log q is
sufficient [BLP+13,MP13]. On the other hand, the best known algorithms for solving LWE with a
binary secret from [BG14] manages to solve LWE instances with a binary secret and in dimension
n log log n in about the same complexity as it would take to solve a standard LWE instance
in dimension n. Hence, based on the currently best known attacks we would conclude that we
only need to increase the dimension to n log log n instead of n log q. Hence, there is room for
improvement either for algorithms or for security reductions.

6.1 Exhaustive Search

In Section 5.1 above we saw that exhaustive search can be solved by checking all the vectors within
a sphere of radius tαq, for some small parameter t = ω(

√
log n), which is essentially the size of

the secret. Even without explicitly knowing ψ, we can restrict our search to the support of ψ, for
example {−1, 0, 1}. We can simply check all possible s with s(i) chosen from this set. Then by the

same argument as in Theorem 1, exhaustive search will take time m·3n ·(2n) = 2n log 3+logn+1+logm

if s(i) ∈ {−1, 0, 1}.

As observed in [BG14] we can also combine exhaustive search with other algorithms to improve
the complexity by guessing, say, g components of the secret and then running our algorithm on the
reduced small secret LWE instance of dimension n−g. With this strategy any algorithm discussed
below can be turned into an algorithm which has at most the cost of exhaustive search.

MITM By exactly the same argument as in Theorem 2, whatever time we would expect it to
take to solve exhaustive search (which depends on ψ), we may achieve essentially the same speed
up as we would do applying a Meet-in-the-Middle strategy to a general LWE instance. So, if the
components s(i) are selected from {−1, 0, 1} then an MITM strategy will take time O

(
3n/2

)
and

require poly(n) · 3n/2 memory.

6.2 Modulus Switching for Lattice Reduction

For an LWE instance parametrised by n, α, q and with a small secret, we may apply modulus
switching and consider the instance mod p where p < q. This allows for a larger δ0 than would be
required for an instance parametrised by the same n, α, q and with a secret where s(i) is chosen at
random from Zq. After modulus switching, the transformed instance has an error which is slightly
larger and its distribution is no longer exactly a discrete Gaussian. Nonetheless, heuristically,
algorithms which solve LWE still solve these LWE-like problem instances and so we assume that
after modulus switching, we have an LWE instance characterised by n,

√
2α and p. So, when we

have a small secret we may obtain a speed up by modulus switching before performing lattice
reduction (for example, as described in Sections 5.3, 5.4 and 5.5).

29

As an example we consider distinguishing LWE by lattice reduction as in Section 5.3. As with a
general secret, we assume the size of the small vector we aim to output is ‖v‖ = 1√

2α
f(ε).

Lemma 10. Let a small secret LWE instance be characterised by n, α, q and s(i) ←$ ψ. Then the
log root-Hermite factor log δ0 required to distinguish by lattice reduction is

log δ0 =

(
log
(√

2α 1
f(ε)

))2
4n log p

for p such that ∥∥∥∥〈pq · a −
⌊
p

q
· a
⌉
, s

〉∥∥∥∥ ≈ p

q
· ‖e‖ .

Proof. Using Lemma 2, modulus switch and transform the LWE instance (a, c) ∈ Znq × Zq into

an LWE instance in Znp × Zp. Now the instance is parametrised by n, p,
√

2α and by the same

argument as in Lemma 7 we require δ0 = 2
(log(

√
2α 1
f(ε)))

2

4n log p . ut

Corollary 8. Let a small secret LWE instance be characterised by n, α, q and ψ, suppose αq =
√
n

and q = nc and ψ is such that the standard deviation of the elements in the secret s is σs. Then
the log root-Hermite factor log δ0 that is required is

log δ0 =

(
log
(√

2
f(ε)n

1
2−c
))2

4n
(

log
(√

π√
6
σs

)
+ c log n

)

Proof. From Lemma 2 we have p = σs
α

√
2πn
12 = σs

√
2
√
π
√
n√

12α
=
√
π√
6
σsn

c.

By Lemma 10 we have

log δ0 =

(
log
(√

2α 1
f(ε)

))2
4n log p

=

(
log
(√

2α 1
f(ε)

))2
4n log

(√
π√
6
σsnc

)
=

(
log
(√

2
f(ε)n

1
2−c
))2

4n
(

log
(√

π√
6
σs

)
+ c log n

)

ut

Example 5. Setting n = 256, q = 65537 and σ = αq/
√

2π ≈ 25.53 following [Reg09] and ψ =
U (Z2) we have σs = 0.5. Modulus switching reduces the size of the modulus to p = 5928. Picking
ε = 0.1 we get a target δ0 = 1.0046578 by Lemma 7 and thus m = 781. Computing the expected
number of clock cycles according to the various models available to us, we end up with the following
estimates:

model block size k log clock cycles

enum 318 209
sieve 318 154

30

6.3 Bai and Galbraith’s Embedding

Bai and Galbraith [BG14] show that for binary secret (that is, s(i) ← {0, 1} or s(i) ← {−1, 0, 1}) we
may embed our LWE lattice into a different lattice with uSVP structure than the one considered
in Section 5.5. Let m′ = m + n. The lattice is then L = {v ∈ Zm′ |A′v ≡ 0 mod q} where
A′ = (A|Im). This method is more efficient than the usual Kannan embedding lattice as discussed
in Section 5.5.

The target short vector is now (s||e) (as opposed to e as in the Kannan embedding case) which
contains among its components those of s. Bai and Galbraith observe that this enables us to take
advantage of the smallness of s [BG14]. In particular, it is its smallness compared with the size of
the error which is exploited. That is, where we have ‖s‖ � ‖e‖, we may rescale the lattice into
which the instance is embedded, increasing its volume. This increases the δ0 which is required to
solve the instance. In the case s(i) ← {−1, 0, 1}, after an appropriate rescaling, the volume of the
lattice is increased by σn, where σ = αq√

2π
is approximately the standard deviation of the error.

In the case s(i) ← {0, 1} the volume is increased by (2σ)n because we can scale by 2σ and then
rebalance. We note that (in the terminology of Section 5.5) Bai and Galbraith use t = 1 rather
than t = ‖e‖. In our lemma below, we adapted their theorem to t = ‖e‖. In our experiments we
then use τ ′ to estimate the cost of lattice reduction for t = 1.

Lemma 11. Let a small secret LWE instance be characterised by n, α, q, let s(i) ←$ {a, . . . , b},
let ξ = 2/(b − a) and let σ = αq√

2π
. Any lattice reduction algorithm achieving log root-Hermite

factor:

log δ =
(log(q/σ)− log(2τ

√
πe))

2 · log(q/σ)

n(2 log(q/σ)− log ξ)2

solves LWE by reducing BDD to uSVP for some fixed τ ≤ 1 if we have that (qm(ξσ)n)
1/(m+n)

√
m+n
2πe ≤

q where m = m′ − n =
√

n(log q−log σ)
log δ − n.

Proof. We observe that scaling and rebalancing for a secret sampled from the interval [a, . . . , b]
increases the volume by a factor of (ξσ)n. Hence, by [BG14, Section 6.2] and the assumption that

(qm(ξσ)n)
1/(m+n)

√
m+n
2πe ≤ q we have a gap of roughly λ2

λ1
=

(qm(ξσ)n)1/(m+n)
√

m+n
2πe√

2m+n·σ .

Following the notation of [BG14], let m′ = m + n. By the same argument as the discussion in
Section 5.5 we have λ2

λ1
≥ τδm′ . Again for simplicity we assume equality. By [BG14, Lemma 1] the

optimal value of m′ is m′ =
√

n(log q−log σ)
log δ . Therefore we have:

(
qm
′−n (ξσ)

n
)(1

m′)

√
4πe σ

= τ δm
′

Taking logarithms and rearranging we get:(
1− n

m′

)
log q +

n

m′
log(ξσ) = m′ log δ + log σ + log

(
τ
√

4πe
)

Solving for log δ0:

log δ0 =
m′
(
log(q/σ)− log

(
τ
√

4πe
))

+ n log(ξ)− n log (q/σ)

m′2

31

Substituting m′ =
√

n(log q−log σ)
log δ :

log δ0 =

√
n(log q−log σ)

log δ

(
log(q/σ)− log

(
τ
√

4πe
))

+ n log(ξ)− n log (q/σ)√
n(log q−log σ)

log δ

2

1 =

√
n(log q−log σ)

log δ

(
log(q/σ)− log

(
τ
√

4πe
))

+ n log(ξ)− n log (q/σ)

n log(q/σ)

Solving for
√

n(log q−log σ)
log δ :√

n(log q − log σ)

log δ
=

2n log (q/σ)− n log(ξ)

log (q/σ)− log
(
τ
√

4πe
)

Finally, solving for log δ0:

log δ =

(
log (q/σ)− log

(
τ
√

4πe
))2 · log(q/σ)

n (2 log (q/σ)− log ξ)
2

ut

Remark 9. Specialising Lemma 11 to s(i) ←$ {−1, 0, 1} and hence ξ = 1 gives

log δ =

(
logατ

√
2e
)2

4n
(

log q − log αq√
2π

) .
Bai and Galbraith also observe that, perhaps counterintuitively, modulus switching does not im-
prove their algorithm. This is because modulus switching results in a smaller rescaling factor and
hence leaves a smaller gap.

6.4 Small Secret BKW

In this section we consider the small secret variant of BKW described in [AFFP14]. In this work
ψ is not specified but it is assumed that the s(i) are chosen from {−1, 0, 1} or {0, 1}. The authors
employ their own variant of BKW to achieve a complexity reduction for solving BKW with small
secret. Their technique is lazy modulus switching, a variant of modulus switching. To maximise
complexity improvements, the authors only modulus switch when necessary, and employ techniques
such as searching for collisions mod p but remaining in Zq when doing arithmetic on the rows.

Theorem 7 ([AFFP14]). Let n ≥ 1 be the dimension of the LWE secret vector, q be a modulus,
b ∈ Z with 1 ≤ b ≤ n and σs the standard deviation of the secret vector components. Let also σr
be the variance of random elements in Zr. Define a = dn/be and pick a pair (p,m∗) such that

b σ2
r σ

2
s

∑a−1
i=0 v(i) ≤ 2aσ. Then Bs,χ(b, a− 1, p) will return (ã0, c̃0), . . . , (ãm−1, c̃m−1) where c̃i has

standard deviation ≤
√

2a+1σ. Furthermore this costs pb

2

(
a(a−1)

2 (n+ 1)
)

+ (m+m∗)na additions

in Zq and apb

2 +m+m∗ calls to Ls,χ.

In particular, for a typical choice of parameters: q ≈ nc for some small c ≥ 1, a = log n, b = n
logn ,

recall that standard BKW has complexity O
(
2cn · n log2 n

)
. Here the complexity of solving is

32

O
(

2n(c+ log d
logn) · n log2 n

)
, using naive modulus switching. Using lazy modulus switching (Corollary

3 of [AFFP14]), the complexity of solving is O

(
2
n

(
c+

log d− 1
2

log logn

logn

)
· n log2 n

)
, where in both

cases 0 < d ≤ 1 is a constant.

6.5 Arora-Ge and Gröbner Bases

We may exploit small secrets when reducing LWE to solving a non-linear system of equations
as in Section 5.6. To encode that our secret is small, we add low-degree equations of the form∏s−1
i=0 x− ji where s is the cardinality of the support for ψ and ji are the elements of the support.

We may then expand the Hilbert series to establish the expected degree of semi-regularity.

7 Examples

In this section we use our estimator to estimate the cost of running the algorithms discussed
in Sections 5 and 6 for parameter sets from the literature. Our estimator is available at https:

//bitbucket.org/malb/lwe-estimator. We consider the following parameter sets.

Regev
These are Regev’s example choices for parameters from [Reg09]. We use [AFC+13] to pick
q ≈ n2 and α = 1/(

√
2πn log2

2 n).
LindnerPeikert

We use [AFC+13] to select parameters as suggested in [LP11] given n.
FHE

Given n and the multiplicative depth L we set q = 216.5·L+5.4 · 82L−3 · nLand α = 3.2
√

2π/q
inspired by parameters suggested in [GHS12c]. We always assume s(i) ←$ {0, 1}, which means
our secret is a bit bigger than in [GHS12c] where the secret has Hamming weight λ/2 regardless
of dimension.

In our tables “MitM” refers to the Meet-in-the-Middle algorithm given in Section 5.1, “BKW”
to the BKW algorithm discussed in Section 5.2, “SIS” to the algorithm discussed in Section 5.3,
“DEC” to the algorithm discussed in Section 5.4, “Kannan” to the algorithm discussed in Sec-
tion 5.5, “Bai-Gal” to the algorithm discussed in Section 6.3 and “Arora-GB” to applying Gröbner
basis algorithms as discussed in Section 5.6. In those tables concerning small secret variants, the
same labels refer to the small secret variants of the respective algorithms.

The columns “bop” refer to estimated bit operations which we identify with CPU clock cycles.
This identification slightly favours lattice reduction algorithms compared to other algorithms,
because CPUs do more than one operation per bit per clock cycle. The columns “mem” refer
to storage requirements of elements in Zq. The columns “Ls,χ” refers to the number of calls to
the LWE oracle. The columns “bkz2” resp. “sieve” refer to BKZ 2.0 estimates based on the row
“enum” resp. “sieve” in Table 1. We use the “bkz2” estimates to optimise parameters for lattice-
based algorithms. The column “enum” gives the number of enumerations in the decoding stage
of “DEC”. The column “g” is the number of components that are guessed before running the
respective algorithms as discussed in Section 6.1 (this only applies to small secret instances). All
columns list the logarithm to base two of their respective values.

In all cases, costs are overall, i.e. we give an estimate for the overall cost of solving, including
repeated trials and repeated guesses. If “–” is given instead of a number, it means our estimator

33

https://bitbucket.org/malb/lwe-estimator
https://bitbucket.org/malb/lwe-estimator

did not return a value or was not run because it does not cover this particular case. This can
happen when estimates only exist for special cases such as when applying Gröbner bases. We
always use τ ′ = 0.3 when considering Kannan embedding or the embedding by Bai and Galbraith.
For each choice of parameter set and for each n, we highlight the entry giving the runtime of the
algorithm which runs fastest in that case.

BKW SIS DEC Kannan

n bop mem Ls,χ bkz2 sieve Ls,χ bop enum Ls,χ bkz2 sieve Ls,χ

64 57 50 45 34 50 12 34 18 10 35 50 13
128 101 93 87 75 86 27 65 49 11 63 73 14
256 189 181 174 205 171 52 168 152 45 207 153 15
512 366 358 350 566 339 81 453 437 46 665 335 16
1024 721 712 703 1478 732 206 1203 1187 111 1962 747 17

Table 3. Regev

BKW SIS DEC Kannan Arora-GB

n bop mem Ls,χ bkz2 sieve Ls,χ bop enum Ls,χ bkz2 sieve Ls,χ bop mem Ls,χ

64 54 47 42 34 49 12 34 18 10 35 50 13 289 286 92
128 89 82 76 70 81 22 60 44 11 57 69 14 505 501 389
256 160 151 146 179 156 47 146 130 44 181 140 15 — — —
512 289 281 273 476 308 86 376 361 45 579 303 16 — — —
1024 548 541 532 1190 636 201 954 938 110 1643 652 17 — — —

Table 4. LindnerPeikert

MitM BKW SIS DEC Kannan Bai-Gal

n bopmemLs,χbopmemLs,χbkz2sieveLs,χ g bopenumLs,χ g bkz2sieveLs,χ g bkz2sieveLs,χ g

64 43 32 6 46 39 34 34 49 11 0 34 18 10 0 35 50 13 0 34 49 11 0
128 76 64 7 76 68 62 63 76 22 0 54 39 11 0 51 70 14 0 37 52 12 0
256 141 128 8 138 130 123 162 146 46 3 135 119 44 0 155 146 55 40 76 83 13 0
512 270 256 9 249 239 233 403 368 248 200345 329 45 0 397 384 287 272 239 168 14 0
1024527 512 10 481 473 464 900 862 738 688838 822 525 480 895 870 759 744 700 519 287 272

Table 5. Regev with s(i) ←$ {0, 1}

8 Discussion

The problems of giving the concrete hardness of the Learning with Errors problem are manifold.

No closed formulas. For most algorithms, there is no sufficiently precise closed formula which
expresses the running time in terms of the parameters specifying the problem (e.g. n, q, α),
mainly due to a lack of a closed formula for lattice reduction as a function of δ0. This makes direct
comparisons difficult. This problem is addressed by the Sage module, enabling us to estimate
running times of the various algorithms for particular parameter choices.

The results of applying this Sage module broadly agree with the literature. For example, by our
estimates the parameter choices made in [GHS12c] are too conservative, as first observed by van

34

MitM BKW SIS DEC Kannan Bai-Gal

n bopmemLs,χbopmemLs,χbkz2sieveLs,χ g bopenumLs,χ g bkz2sieveLs,χ g bkz2sieveLs,χ g

64 42 32 6 46 39 34 34 49 11 0 34 18 10 0 35 50 13 0 34 49 11 0
128 75 64 7 75 68 62 75 85 26 0 60 44 19 0 62 73 14 0 37 52 12 0
256 141 128 8 136 129 122 191 185 97 60 157 141 44 0 181 184 110 96 90 91 13 0
512 270 256 9 255 248 240 450 449 369 336413 397 237 192 439 441 366 352 307 233 78 64
1024527 512 10 506 464 489 952 946 857 824913 897 733 688 942 942 862 848 788 687 510 496

Table 6. LindnerPeikert with s(i) ←$ {0, 1}

MitM BKW SIS DEC Kannan Bai-Gal

n bop memLs,χ bop memLs,χbkz2sieveLs,χ g bopenumLs,χ g bkz2sieveLs,χ g bkz2sieveLs,χ g

64 45 32 6 53 42 37 31 46 9 0 32 16 10 0 34 49 13 0 34 49 11 0
128 78 64 7 86 74 68 34 49 10 0 36 20 11 0 37 52 14 0 37 52 12 0
256 143 128 8 148 136 129 37 52 11 0 39 23 12 0 40 56 15 0 40 55 13 0
512 272 256 9 272 260 252 40 55 12 0 42 26 13 0 44 59 16 0 43 58 14 0
1024 529 512 10 520 507 498 69 79 13 0 66 50 14 0 67 78 17 0 59 78 15 0
204810421024 11 10151003 993 214 162 20 0 200 184 15 0 205 156 18 0 173 141 16 0

Table 7. FHE with L = 2 with s(i) ←$ {0, 1}

de Pol and Smart [vdPS13], even in light of specialised algorithms exploiting the presence of a
small secret (cf. Section 6.3). This is because their parameters were chosen assuming Lindner and
Peikert’s estimate for the runtime of BKZ, which we rule out from among the choices of estimates
because it implies a subexponential algorithm for solving LWE.

No single best algorithm. Our results indicate that there is not one algorithm which always out-
performs all others on the parameter sets we tested, and so we cannot recommend to consider one
particular algorithm to achieve security level λ. Which algorithm performs best depends on the
concrete parameters considered. For small n, DEC may be favourable (see e.g. Table 4). For large
n, BKW may be fastest when considering public-key encryption (see e.g. Table 3) but not when
considering homomorphic encryption schemes which require large q (cf. Tables 7 and 8).

We note that while the Arora-Ge algorithm and its Gröbner basis variants always perform much
worse than other algorithms in our tests, it is shown in [ACFP14] that this family of algorithms
outperforms other families when considering a particular variant of LWE, i.e. UniformNoise-LWE
instances.

Finally, we note that all families of algorithms discussed in this work permit parallelisation. For
BKW we can distribute (partial) elimination tables across computing units and for the Arora-GB
algorithm we can rely on parallelised linear algebra routines. Lattice reduction, too, can be easily
distributed for the instances considered in this work, as we are running in the low advantage regime,
i.e. we are computing many independent lattice reductions on fresh or re-randomised inputs.

Time-memory trade-offs. According to our estimates of running BKZ, using sieving as the SVP
oracle is faster than enumeration for large n. While this is to be expected given that sieving is
asymptotically faster than enumeration, it might be surprising to see the crossover already for
dimension n = 256 in some cases. It is important to note, however, that sieving would require
an amount of memory so substantial that, for most parameters we consider, it is not clear that
sieving is worth considering even where it is faster “on paper”. A completely analogous statement
can be made when considering the BKW algorithm or the Arora-Ge and its Gröbner basis variant.
Indeed, all algorithms which achieve a time complexity of 2O(n) also require memory of the order

35

MitM BKW SIS DEC Kannan Bai-Gal

n bop mem Ls,χbop mem Ls,χbkz2 sieve Ls,χg bop enum Ls,χ g bkz2 sieveLs,χg bkz2sieveLs,χ g

512 274 256 9 287 270 262 40 55 12 0 43 28 13 0 43 58 15 0 43 58 14 0
1024 531 512 10 540 523 514 43 58 13 0 46 30 14 0 47 62 16 0 46 62 15 0
2048 1044 1024 11 — — — 46 61 14 0 50 35 15 0 50 65 17 0 50 65 16 0
4096 2069 2048 12 — — — 49 64 15 0 52 36 16 0 53 68 18 0 53 68 17 0
8192 4118 4096 13 — — — 105 106 16 0 113 98 17 0 107 108 19 0 104 106 18 0
163848215 8192 14 — — — 328 213 17 0 332 316 18 0 326 214 20 0 315 210 19 0

Table 8. FHE with L = 10 with s(i) ←$ {0, 1}

of 2O(n). An interesting open question is hence if an algorithm exists which solves LWE in 2O(n)

operations but requiring only poly(n) memory.

Incomplete data. For, say, the decoding approach we are able to trade running time for success
probability. On the other hand, we do not know how to do this when using Kannan embedding. As
highlighted in Section 5.5, for a success probability of 0.1 we have that τ ′ ≈ 0.3 is a fair estimate
based on experiments in the literature, but no data is publicly available from which to estimate τ ′

for smaller success probabilities. While the decoding approach seems to outperform the application
of Kannan embedding as highlighted in Example 4, by a similar argument, it is to be expected
that the algorithm of Bai and Galbraith could be shown to produce better results if such data was
available.

This is just one area in which more data is required. Our estimator is built from the curves fitted to
the data from the literature given in Table 1 and as such more experimental data on the runtime of
enumeration and sieving would allow to refine these estimates. To reiterate, the analysis on which
the estimator is based is sound given the current state of the art, but intrinsically depends on
the formulae for sieving and enumeration, and so refinements in this area will refine our estimator
accordingly. As lattice reduction is a central step in many of the algorithms, this is of particular
importance.

Acknowledgements. Albrecht was supported by EPSRC grant EP/L018543/1 “Multilinear Maps
in Cryptography”. Player was supported by an ACE-CSR PhD grant. Scott was supported by
EPSRC grant EP/K035584/1. We thank Steven Galbraith and Paul Kirchner for pointing out
mistakes in an earlier version of this work.

36

References

ACF+15. Martin R. Albrecht, Carlos Cid, Jean-Charles Faugère, Robert Fitzpatrick, and Ludovic Per-
ret. On the complexity of the BKW algorithm on LWE. Designs, Codes and Cryptography,
74:325–354, 2015.

ACFP14. Martin R. Albrecht, Carlos Cid, Jean-Charles Faugère, and Ludovic Perret. Algebraic algo-
rithms for LWE. Cryptology ePrint Archive, Report 2014/1018, 2014. http://eprint.iacr.
org/2014/1018.

ACPS09. Benny Applebaum, David Cash, Chris Peikert, and Amit Sahai. Fast cryptographic primitives
and circular-secure encryption based on hard learning problems. In Halevi [Hal09], pages 595–
618.

ACPS14. Martin Albrecht, David Cadé, Xavier Pujol, and Damien Stehlé. fplll, development version.
Available at https://github.com/dstehle/fplll, 2014.

ADRS14. Divesh Aggarwal, Daniel Dadush, Oded Regev, and Noah Stephens-Davidowitz. Solving the
shortest vector problem in 2n time via discrete gaussian sampling. CoRR, abs/1412.7994,
2014.

AFC+13. Martin R. Albrecht, Robert Fitzpatrick, Daniel Cabracas, Florian Göpfert, and Michael
Schneider. A generator for LWE and Ring-LWE instances, 2013. available at http:

//www.iacr.org/news/files/2013-04-29lwe-generator.pdf.
AFFP14. Martin R. Albrecht, Jean-Charles Faugère, Robert Fitzpatrick, and Ludovic Perret. Lazy

modulus switching for the BKW algorithm on LWE. In Hugo Krawczyk, editor, PKC 2014,
volume 8383 of LNCS, pages 429–445. Springer, March 2014.

AFG14. Martin R. Albrecht, Robert Fitzpatrick, and Florian Göpfert. On the efficacy of solving LWE
by reduction to unique-SVP. In Hyang-Sook Lee and Dong-Guk Han, editors, ICISC 13,
volume 8565 of LNCS, pages 293–310. Springer, November 2014.

AG11. Sanjeev Arora and Rong Ge. New algorithms for learning in presence of errors. In Luca Aceto,
Monika Henzinger, and Jiri Sgall, editors, ICALP 2011, Part I, volume 6755 of LNCS, pages
403–415. Springer, July 2011.

Ajt96. Miklós Ajtai. Generating hard instances of lattice problems (extended abstract). In 28th
ACM STOC, pages 99–108. ACM Press, May 1996.

Alb13. Martin Albrecht. BKW-LWE, 2013. https://bitbucket.org/malb/bkw-lwe/.
Bab85. László Babai. On Lovász’ lattice reduction and the nearest lattice point problem (shortened

version). In Kurt Mehlhorn, editor, STACS ’86, volume 82 of Lecture Notes in Computer
Science, pages 13–20. Springer, 1985.

BBD09. Daniel J. Bernstein, Johannes Buchmann, and Erik Dahmen, editors. Post-Quantum Cryp-
tography. Springer, 2009.

BCS97. Peter Bürgisser, Michael Clausen, and Mohammad Amin Shokrollahi. Algebraic Complexity
Theory, volume 315 of Grundlehren der mathematischen Wissenschaften. Springer, 1997.

BG14. Shi Bai and Steven D. Galbraith. Lattice decoding attacks on binary LWE. In Willy Susilo
and Yi Mu, editors, ACISP 14, volume 8544 of LNCS, pages 322–337. Springer, July 2014.

BGV12. Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully homomorphic
encryption without bootstrapping. In Shafi Goldwasser, editor, ITCS 2012, pages 309–325.
ACM, January 2012.

BKW03. Avrim Blum, Adam Kalai, and Hal Wasserman. Noise-tolerant learning, the parity problem,
and the statistical query model. Journal of the ACM, 50(4):506–519, July 2003.

BLP+13. Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien Stehlé. Classical
hardness of learning with errors. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum,
editors, 45th ACM STOC, pages 575–584. ACM Press, June 2013.

BV11. Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption from
(standard) LWE. In Rafail Ostrovsky, editor, 52nd FOCS, pages 97–106. IEEE Computer
Society Press, October 2011.

Che52. Herman Chernoff. A measure of asymptotic efficiency for tests of a hypothesis based on the
sum of observations. The Annals of Mathematical Statistics, pages 493–507, 1952.

Che13. Yuanmi Chen. Réduction de réseau et sécurité concrète du chiffrement complètement homo-
morphe. PhD thesis, Paris 7, 2013.

CHKP12. David Cash, Dennis Hofheinz, Eike Kiltz, and Chris Peikert. Bonsai trees, or how to delegate
a lattice basis. Journal of Cryptology, 25(4):601–639, October 2012.

CN11. Yuanmi Chen and Phong Q. Nguyen. BKZ 2.0: Better lattice security estimates. In Dong Hoon
Lee and Xiaoyun Wang, editors, ASIACRYPT 2011, volume 7073 of LNCS, pages 1–20.
Springer, December 2011.

37

http://eprint.iacr.org/2014/1018
http://eprint.iacr.org/2014/1018
https://github.com/dstehle/fplll
http://www.iacr.org/news/files/2013-04-29lwe-generator.pdf
http://www.iacr.org/news/files/2013-04-29lwe-generator.pdf
https://bitbucket.org/malb/bkw-lwe/

CN12. Yuanmi Chen and Phong Q. Nguyen. BKZ 2.0: Better lattice security estimates (full version).
http://www.di.ens.fr/~ychen/research/Full_BKZ.pdf, 2012.

CPS13. David Cadé, Xavier Pujol, and Damien Stehlé. fpLLL 4.0.4, 2013. http://perso.ens-lyon.
fr/damien.stehle/fplll/.

DB13. Léo Ducas-Binda. Signatures Fondées sur les Réseaux Euclidiens: Attaques, Analyses et Op-
timisations. PhD thesis, École Normale Supérieure Paris, 2013. http://cseweb.ucsd.edu/

~lducas/Thesis/index.html.

DTV15. Alexandre Duc, Florian Tramèr, and Serge Vaudenay. Better algorithms for LWE and LWR.
Cryptology ePrint Archive, Report 2015/056, 2015. http://eprint.iacr.org/2015/056.

Gen09. Craig Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford University,
2009. crypto.stanford.edu/craig.

GGH13. Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps from ideal lattices.
In Thomas Johansson and Phong Q. Nguyen, editors, EUROCRYPT 2013, volume 7881 of
LNCS, pages 1–17. Springer, May 2013.

GGH14. Craig Gentry, Sergey Gorbunov, and Shai Halevi. Graph-induced multilinear maps from
lattices. Cryptology ePrint Archive, Report 2014/645, 2014. http://eprint.iacr.org/2014/
645.

GHS12a. Craig Gentry, Shai Halevi, and Nigel P. Smart. Fully homomorphic encryption with polylog
overhead. In David Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012, volume
7237 of LNCS, pages 465–482. Springer, April 2012.

GHS12b. Craig Gentry, Shai Halevi, and Nigel P. Smart. Homomorphic evaluation of the AES circuit.
In Reihaneh Safavi-Naini and Ran Canetti, editors, CRYPTO 2012, volume 7417 of LNCS,
pages 850–867. Springer, August 2012.

GHS12c. Craig Gentry, Shai Halevi, and Nigel P. Smart. Homomorphic evaluation of the AES circuit.
Cryptology ePrint Archive, Report 2012/099, 2012. http://eprint.iacr.org/2012/099.

Gil10. Henri Gilbert, editor. EUROCRYPT 2010, volume 6110 of LNCS. Springer, May 2010.

GKPV10. Shafi Goldwasser, Yael Tauman Kalai, Chris Peikert, and Vinod Vaikuntanathan. Robustness
of the learning with errors assumption. In Andrew Chi-Chih Yao, editor, ICS, pages 230–240.
Tsinghua University Press, 2010.

GN08. Nicolas Gama and Phong Q. Nguyen. Predicting lattice reduction. In Nigel P. Smart, editor,
EUROCRYPT 2008, volume 4965 of LNCS, pages 31–51. Springer, April 2008.

GNR10. Nicolas Gama, Phong Q. Nguyen, and Oded Regev. Lattice enumeration using extreme
pruning. In Gilbert [Gil10], pages 257–278.

GPV08. Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices and new
cryptographic constructions. In Richard E. Ladner and Cynthia Dwork, editors, 40th ACM
STOC, pages 197–206. ACM Press, May 2008.

Hal09. Shai Halevi, editor. CRYPTO 2009, volume 5677 of LNCS. Springer, August 2009.

HJP14. William Hart, Fredrik Johansson, and Sebastian Pancratz. FLINT: Fast Library for Number
Theory, 2014. Version 2.4.4, http://flintlib.org.

HPS11a. Guillaume Hanrot, Xavier Pujol, and Damien Stehlé. Analyzing blockwise lattice algorithms
using dynamical systems. In Phillip Rogaway, editor, CRYPTO 2011, volume 6841 of LNCS,
pages 447–464. Springer, August 2011.

HPS11b. Guillaume Hanrot, Xavier Pujol, and Damien Stehlé. Algorithms for the shortest and closest
lattice vector problems. In Coding and Cryptology, volume 6639 of Lecture Notes in Computer
Science, pages 159–190. Springer, 2011.

JOP+ . Eric Jones, Travis Oliphant, Pearu Peterson, et al. SciPy: Open source scientific tools for
Python, 2001–. [Online; accessed 2015-09-02].

Jou09. Antoine Joux. Algorithmic Cryptanalysis. Chapman & Hall/CRC, 1st edition, 2009.

Kan87. Ravi Kannan. Minkowski’s convex body theorem and integer programming. Math. Oper.
Res., 12(3):415–440, August 1987.

KMR+94. Michael J. Kearns, Yishay Mansour, Dana Ron, Ronitt Rubinfeld, Robert E. Schapire, and
Linda Sellie. On the learnability of discrete distributions. In 26th ACM STOC, pages 273–282.
ACM Press, May 1994.

Laa14. Thijs Laarhoven. Sieving for shortest vectors in lattices using angular locality-sensitive hash-
ing. Cryptology ePrint Archive, Report 2014/744, 2014. http://eprint.iacr.org/2014/744.

LdW15. Thijs Laarhoven and Benne de Weger. Faster sieving for shortest lattice vectors using
spherical locality-sensitive hashing. Cryptology ePrint Archive, Report 2015/211, 2015.
http://eprint.iacr.org/2015/211.

38

http://www.di.ens.fr/~ychen/research/Full_BKZ.pdf
http://perso.ens-lyon.fr/damien.stehle/fplll/
http://perso.ens-lyon.fr/damien.stehle/fplll/
http://cseweb.ucsd.edu/~lducas/Thesis/index.html
http://cseweb.ucsd.edu/~lducas/Thesis/index.html
http://eprint.iacr.org/2015/056
crypto.stanford.edu/craig
http://eprint.iacr.org/2014/645
http://eprint.iacr.org/2014/645
http://eprint.iacr.org/2012/099
http://flintlib.org
http://eprint.iacr.org/2014/744
http://eprint.iacr.org/2015/211

LLL82. A.K. Lenstra, Jr. Lenstra, H.W., and L. Lovász. Factoring polynomials with rational coeffi-
cients. Mathematische Annalen, 261(4):515–534, 1982.

LLLS11. Cong Ling, Shuiyin Liu, Laura Luzzi, and Damien Stehlé. Decoding by embedding: Cor-
rect decoding radius and DMT optimality. In Alexander Kuleshov, Vladimir Blinovsky, and
Anthony Ephremides, editors, 2011 IEEE International Symposium on Information Theory
Proceedings, ISIT 2011, St. Petersburg, Russia, July 31 - August 5, 2011, pages 1106–1110.
IEEE, 2011.

LM09. Vadim Lyubashevsky and Daniele Micciancio. On bounded distance decoding, unique shortest
vectors, and the minimum distance problem. In Halevi [Hal09], pages 577–594.

LN13. Mingjie Liu and Phong Q. Nguyen. Solving BDD by enumeration: An update. In Ed Dawson,
editor, CT-RSA 2013, volume 7779 of LNCS, pages 293–309. Springer, February / March
2013.

LN14. Tancrède Lepoint and Michael Naehrig. A comparison of the homomorphic encryption schemes
FV and YASHE. In David Pointcheval and Damien Vergnaud, editors, AFRICACRYPT 14,
volume 8469 of LNCS, pages 318–335. Springer, May 2014.

Lov86. László Lovász. An algorithmic theory of numbers, graphs and convexity. CBMS-NSF regional
conference series in applied mathematics. Philadelphia, Pa. Society for Industrial and Applied
Mathematics, 1986.

LP11. Richard Lindner and Chris Peikert. Better key sizes (and attacks) for LWE-based encryption.
In Aggelos Kiayias, editor, CT-RSA 2011, volume 6558 of LNCS, pages 319–339. Springer,
February 2011.

MGH80. J. J. Moré, B. S. Garbow, and K. E. Hillstrom. User Guide for MINPACK-1. ANL-80-74,
Argonne National Laboratory, 1980.

MP13. Daniele Micciancio and Chris Peikert. Hardness of SIS and LWE with small parameters. In
Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, Part I, volume 8042 of LNCS, pages
21–39. Springer, August 2013.

MR09. Daniele Micciancio and Oded Regev. Lattice-based cryptography. In Bernstein et al. [BBD09],
pages 147–191.

MW15. Daniele Micciancio and Michael Walter. Fast lattice point enumeration with minimal over-
head. In Piotr Indyk, editor, 26th SODA, pages 276–294. ACM-SIAM, January 2015.

Ngu10. Phong Q. Nguyen. Hermite’s constant and lattice algorithms. In Nguyen and Vallée [NV10],
pages 19–69.

Ngu11. Phong Q. Nguyen. Lattice reduction algorithms: Theory and practice (invited talk). In
Kenneth G. Paterson, editor, EUROCRYPT 2011, volume 6632 of LNCS, pages 2–6. Springer,
May 2011.

NS05. Phong Q. Nguyen and Damien Stehlé. Floating-point LLL revisited. In Ronald Cramer,
editor, EUROCRYPT 2005, volume 3494 of LNCS, pages 215–233. Springer, May 2005.

NV10. Phong Q. Nguyen and Brigitte Vallée, editors. The LLL Algorithm - Survey and Applications.
Information Security and Cryptography. Springer, 2010.

Pei09. Chris Peikert. Public-key cryptosystems from the worst-case shortest vector problem: ex-
tended abstract. In Michael Mitzenmacher, editor, 41st ACM STOC, pages 333–342. ACM
Press, May / June 2009.

Per14. Clèment Pernet. High performance and reliable algebraic computing. Symbolic Computation.
Université Joseph Fourier, Grenoble 1, ¡tel-01094212¿, 2014.

PVW08. Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for efficient and
composable oblivious transfer. In David Wagner, editor, CRYPTO 2008, volume 5157 of
LNCS, pages 554–571. Springer, August 2008.

PW11. Chris Peikert and Brent Waters. Lossy trapdoor functions and their applications. SIAM J.
Comput., 40(6):1803–1844, 2011.

Reg05. Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In
Harold N. Gabow and Ronald Fagin, editors, 37th ACM STOC, pages 84–93. ACM Press,
May 2005.

Reg09. Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. Journal
of the ACM, 56(6):34:1–34:40, September 2009.

Reg10. Oded Regev. The learning with errors problem (invited survey). In IEEE Conference on
Computational Complexity, pages 191–204. IEEE Computer Society, 2010.

S+14. William Stein et al. Sage Mathematics Software Version 6.3. The Sage Development Team,
2014. http://www.sagemath.org.

39

http://www.sagemath.org

Sch03. Claus Peter Schnorr. Lattice reduction by random sampling and birthday methods. In STACS,
volume 2607 of Lecture Notes in Computer Science, pages 145–156. Springer, 2003.

SE94. Claus Peter Schnorr and M. Euchner. Lattice basis reduction: Improved practical algorithms
and solving subset sum problems. Math. Program., 66:181–199, 1994.

Sho. V. Shoup. Number Theory Library 5.5.2 (NTL) for C++. http://www.shoup.net/ntl/.
Ste13. Damien Stehlé. An overview of lattice reduction algorithms. Invited talk at ICISC, 2013.
vDGHV10. Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. Fully homomorphic

encryption over the integers. In Gilbert [Gil10], pages 24–43.
vdPS13. Joop van de Pol and Nigel P. Smart. Estimating key sizes for high dimensional lattice-based

systems. In Martijn Stam, editor, 14th IMA International Conference on Cryptography and
Coding, volume 8308 of LNCS, pages 290–303. Springer, December 2013.

Wal14. Michael Walter. Lattice point enumeration on block reduced bases. Cryptology ePrint Archive,
Report 2014/948, 2014. http://eprint.iacr.org/2014/948.

40

http://www.shoup.net/ntl/
http://eprint.iacr.org/2014/948

	On the concrete hardness of Learning with Errors
	Introduction
	Notation & Tools
	Lattice Reduction Algorithms
	LLL
	BKZ
	Choosing m

	Strategies
	Short Integer Solutions (SIS)
	Bounded Distance Decoding (BDD)
	Solving for s

	Algorithms
	Exhaustive Search
	BKW
	Using Lattice Reduction To Distinguish
	Decoding Approach
	Reducing BDD to uSVP
	Arora-Ge and Gröbner Bases

	Small Secret Variants
	Exhaustive Search
	Modulus Switching for Lattice Reduction
	Bai and Galbraith's Embedding
	Small Secret BKW
	Arora-Ge and Gröbner Bases

	Examples
	Discussion

