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Abstract. The Learning Parity with Noise problerh®N) is appealing in cryptography as it is considered to
remain hard in the post-quantum world. It is also a good @atdifor lightweight devices due to its simplicity.
In this paper we provide a comprehensive analysis of theiegisPN solving algorithms, both for the general
case and for the sparse secret scenario. In practicé,tNebased cryptographic constructions use as a refer-
ence the security parameters proposed by Levieil and Folgutefor these parameters, there remains a gap
between the theoretical analysis and the practical corntjgsxf the algorithms we consider. The new theoreti-
cal analysis in this paper provides tighter bounds on theptexity of LPN solving algorithms and narrows this
gap between theory and practice. We show that for a sparset skeere is another algorithm that outperforms
BKW and its variants. Following from our results, we furthergmse practical parameters for different security
levels.

1 Introduction

The Learning Parity with Noise problerh®N) is a well-known problem studied in cryptography, coding
theory and machine learning. In th®N problem, one has access to queries of the forr), wherev

is a random vector and the inner product betweand a secret vectaris added to some noise to obtain
b. Given these queries, one has to recover the valse $d, the problem asks to recover a secret vector
sgiven access to noisy inner products of itself with randoictmes.

It is believed that PN is resistant to quantum computers so it is a good altern&tivke number-
theoretic problems (e.g. factorization and discrete litigaw) which can be solved easily with quantum
algorithms. Also, due to its simplicity, it is a nice candigléor lightweight devices. As applications where
LPN or LPN variants are deployed, we first have the HB family of autlatibn protocols: HB[[26],
HB* [27], HB™ ™ [11], HB¥ [20] andAUTH [30]. An LPN-based authentication scheme secure against
Man-in-the-Middle was presented in Crypto '13[34]. There also several encryption schemes based
on LPN: Alekhnovich [3] presents two public-key schemes that gpicone bit at a time. Later, Gilbert,
Robshaw and Seurin [20] introduce LPN-C, a public-key epitoyn scheme proved to dé&lD-CPA.
Two schemes that improve upon Alekhnovich’s scheme aredotred in[[15] and [14]. In PKC 2014,
Kiltz et al. [29] propose an alternative schemel[tal [15]. Dad &audenay[[17] introduce HELEN, an
LPN-based public-key scheme for which they propose concreageters for different security levels.
A PRNG based ohPN is presented iri |8] and [4].

The LPN problem can also be seen as a particular case diwte [37] problem where we work in
Z. While in the case of WE the reduction from hard lattice problems attests the hasi[@,10,36],
in the case of. PN there are no such results. The problem is believed to be martsalosely related to
the long-standing open problem of efficiently decoding mandinear codes.

In the current literature, there are few references wheonites to the analysis @PN. The most well-
known algorithm iSBKW [9]. When introducing thédB™ protocol [27], which relies on the hardness of
LPN, the authors propose parameters for different levels afriig@ccording to th&8KW performance.
These parameters are shown later to be weaker than tholjhf]3Fossorier et al. [19] provide a new
variant that brings an improvement over tBEW algorithm. Levieil and Fouqué [32] also present the
BKW algorithm and introduce two improvements over it. For ttegorithm based on the fast Walsh-
Hadamard transform, they provide the level of security el by different instances @PN. This
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analysis is referenced by most of the papers that make udeedfPN problem. While they offer a
theoretical analysis and propose secure parameters feratit levels of security, the authors do not
discuss how their theoretical bounds compare to practssallts. As we will see, there is a gap between
theory and practice. In the domain of machine learning[32Jlalso cryptanalyse thePN problem. The
best algorithm for solvind. PN was presented at Asiacrypt 2014 ]23]. This new varianBI§fV uses
covering codes as a novelty.

While these algorithms solve the general case when we hauedam secret, in the literature there
is no analysis and implementation done for an algorithmiafiga@onceived for the sparse secret case,
i.e. the secret has a small Hamming weight.

The BKW algorithm can also be adapted to solve t¢E problem in exponential time. Implemen-
tation results and improvements of it were presentedliifI8]1 In terms of variants of PN, we have
Ring-LPN [24] and SubspackPN [30]. As an application for Rindg-PN we have the Lapin authentica-
tion protocol [24] and its cryptanalysis inl[6)22].

Motivation & Contribution. Our paper comes to address exactly the aforementioned apbétems.
First, we present the current existihN solving algorithms in a unified framework. For these algo-
rithms, we provide experimental results and give a bettortical analysis that brings an improvement
over the work of Levieil and Fouque [B2]. Furthermore, we liempent and analyse three new algorithms
for the case where the secret is sparse. Our results shofottasparse secret tiEKW family of al-
gorithms is outperformed by an algorithm that uses Gausdiarination. Our motivation is to provide
a theoretical analysis that matches the experimentaltsegdithough this does not prove thaPN is
hard, it gives tighter bounds for the parameters used byftireraentioned cryptographic schemes. It
can also be used to have a tighter complexity analysis ofitthgas related td_PN solving. Our results
were actually used in [23] and also fO/NVE solving in [16].

Organization. In Sectior 2 we introduce the definition bPN and present the maitPN solving algo-
rithms. We also present the main ideas of how the analysiscaaducted in[[32]. We introduce novel
theoretical analyses and show what improvements we briggatior 8. Besides analysing the current
existing algorithms, we propose three new algorithms aradyaa their performance in Sectibh 4. In
Sectior[ b, we provide the experimental results for the d@lyms described in Sectidd 3[& 4. We com-
pare the theory with the practical results and show theriggd of our query complexity. We provide
a comparison between all these algorithms in Se¢flon 6 applope practical parameters for a 80 bit
security level.

Notations and PreliminariesLet (-,-) denote the inner producf; = {0,1} and® denote the bitwise

XOR. For a domainD, we denote by & 9 the fact tha is drawn uniformly at random frornD. We
use small letters for vectors and capital letters for megridVe denote the Hamming weight of a vector
v by HW(v).

2 LPN

In this section we introduce tHéPN problem and the algorithms that solve it. For ease of unaledstg,
we present th&é PN solving algorithms in a unified framework.

2.1 ThelLPN Problem

Intuitively, theLPN problem asks to recover a secret ve@given access to noisy inner products of itself
and random vectors. More formally, we present below the ifieinof the LPN problem. We maintain
as much as possible the notations from [32].



Definition 1 (LPN oracle). Let s& 75, letT €]0, 3] be a constant noise parameter and let Bee the
Bernoulli distribution with parameter. Denote by A the distribution defined as

{(vb) |v& ZK b= (v,s) & d,d + Ber} € ZK'.
AnLPN oracle Lf'\' is an oracle which outputs independent random samples dtapto A;.

Definition 2 (SearchLPN problem). Given access to anPN oracleﬂéf”, find the vector s. We denote
by LPNk theLPN instance where the secret has size k and the noise paramsatdret K < k. We say
that an algorithm#/ (n,t,m,6,k’)-solvesthe search.PNy; problem if

PUMAT (1% = 51...5¢ | s 7K > 6,
and M runs in time t, uses memory m and asks at most n queries frohPtii@racle.

Note that we consider here the problem of recovering theKisits of the secret. We will show in
Sectior[B that for all the algorithms we consider, the coseobvering the full secretis dominated by
the cost of recovering the firkt bits of s.

An equivalent way to formulate the searcRNy problem is as follows: given access to a random
matrix A € ZQX" and a column vectds overZ,, such thatAs® d = b, find the vectors. Here the matrix
A corresponds to the matrix that has the vectom its rows,s is the secret vector of sizeandb
corresponds to the column vector that contains the noisgriproducts. The column vectdris of size
n and contains the corresponding noise bits.

One may observe that with= 0, the problem is solved in polynomial time through Gaussiamni-
nation givemn = ©(k) queries. The problem becomes hard once noise is added taregroduct. The
value oft can be either independent or dependent of the Vallsually the value of is constant and
independent from the value &f A case where is taken as a function & occurs in the construction of
the encryption schemes|[3]14]. Intuitively, a larger vadfie means more noise and makes the problem
of searchLPN harder. The value of the noise parameter is a trade-off Betwree hardness of tHéPNy ;
and the practical impact on the applications that rely os phoblem.

TheLPN problem has also a decisional form. TdecisionalLPNy ; asks to distinguish between the
uniform distribution oveZ&"* and the distributiords;. A similar definition for an algorithm that solves
decisionalLPN can be adopted as above. L%, ; denote an oracle that outputs random vectors of size
k+ 1. We say that an algorithi/ (n,t, m, 8)-solvesthe decisional PN ; problem if

| PAMAET (1) = 1) — P U (1) = 1] [> ©

and runs in timet, uses memoryn and needs at mostqueries.
Search and decisionaPN are polynomially equivalent. The following lemma exprestds result.

Lemma 1 ([2818]).If there is an algorithm that (n,t,m, 6)-solves the decision&lPNy ¢, then one can
build an algorithma/” that (r,t’, ', &', k)-solves the searchPNy ; problem, where = O(n-6-2logk),
t' = O(t-k-8~2logk), m = O(m-6~2logk)) and &' = .

We do not go into details as this is outside the scope of thiepalVe only analyse the solving
algorithms for searchPN. From now on we will refer to it simply alsPN.

2.2 LPN Solving Algorithms

In the current literature there are several algorithms teestihe LPN problem. The first that appeared,
and the most well known, iBKW [9]. This algorithm recovers the secrebf an LPNy instance in
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sub-exponential %‘ﬁ) time complexity by requiring a sub-exponential numb@?@) of queries from
the ﬂléf'\' oracle. Levieil and Fouqué [32] propose two new improvemmeniiich are called.F1 and
LF2. Fossorier et. al [19] also introduce a new algorithm, whigh denoteFMICM, that brings an
improvement oveBKW. The best algorithm to solMePN was recently presented at Asiacrypt 2014 [23].
It can be seen as a variantldf1 where covering codes are introduced as a hew method to imphev
overall algorithm. All these algorithms still require a setkponential number of queries and have a
sub-exponential time complexity.

Using BKW as a black-box, LyubashevsKy [33] introduces a "pre-prsiogs phase and solves an

LPN instance withk!*" queries and with a time complexity of gesios) The queries given t8KW

have a worse bias af = % — % (%) nlegk Thus, this variant requires a polynomial number of queries

but has a worse time complexity. Given omy= ©(k) queries, the best algorithms run in exponential
time 2K [35[38].

An easy to solve instance &PN was introduced by Arora and Ge [5]. They show that inkhweise
version where thé&-tuples of the noise bits can be expressed as the solutiopalyaomial (e.g. there
are no 5 consecutive errors in the sequence of queries) robem can be solved in polynomial time.
What makes the problem easy is the fact that an adversaryeisastructure the noise.

In this paper we are interested in tB&KW algorithm and its improvements presented by Leviell
and Fouque [32] and by Guo et al. [23]. The common structuial dhese algorithms is the following:
given n queries from theq;fN oracle, the algorithm tries to reduce the problem of findingearet
s of k bits to one where the secrsthas onlyk’ bits, with k' < k. This is done by applying several
reductiontechniques. We call this phase tregluction phaseAfterwards, during theolving phaseave
can apply asolvingalgorithm that recovers the secgatWe then update the queries with the recovered
bits and restart to fully recover For the ease of understanding, we describe all the afort@mned LPN
solving algorithms in this setting where we separate therélgns in two phases. We emphasize the
main differences between the algorithms and discuss whigihavements they bring.

First, we assume th&t= a-b. Thus, we can visualise thebit length vectory asa blocks ofb bits.
We defined = 1— 21.

BKW* Algorithm The BKW* algorithm as described ih [32] works in two phases:

Reduction phaseGiven n queries from theLPN oracle, we group them in equivalence classes. Two
queries are in the same equivalence class if they have the galwe on a set; of b bit positions.
Theseb positions are chosen arbitrarily. There are at m8stith equivalence classes. Once this sepa-
ration is done, we perform the following steps for each egjaivce class: pick one query at random, the
representative vector, and xor it to the rest of the queria® the same equivalence class. Discard the
representative vector. This will give vectors with all bétst to 0 on thosé positions. These steps are
also illustrated in Algorithni]1 (stefi$ $-110). We are leftiwétt leasin — 2° queries where the secret is
reduced tk — b effective bits (others being multiplied by 0 in all queries)

We can repeat the reduction technigue 1 times on other disjoint position seis, . ..,q,_1 and end
up with at leash — (a— 1)2° queries where the secret is reducedt to(a— 1)b = b bits. The bias of the
new queries i$2" ", as shown by the following Lemma with = 221,

Lemma 2 ([32L9]).If (v1,b1),...,(vw,bw) are the results of w queries fror ", then the probability
that:

(Vi®Ve®...BVy,S) =b1d...dby

is equal tolt%",

It is easy so see that the complexity of performing this ssep(kan).



Algorithm 1 BKW* Algorithm by [32]

Input: a setv of n queries(vi,b;) € {0,1}*" from theLPN oracle, values, b such thak = ab
Output: valuessy, ..., S

3: Partition the position$1,...,k} \ {1,...,b} into disjointg; U...Uqgs_1 with g; of sizeb
4: fori=1toa—1do > Reduction phase
5 PartitionV =V U...UVy s.t. vectors irVj have the the same bit values gn
6:  foreachV;
7 Choose a randorfv*,b*) € V; as a representative vector
8 Replace eaclv,b) by (v,b) ® (v*,b*), (v,b) € V;j for (v,b) # (v*,b*)
9 Discard(v*,b*) fromV;
10 V=ViU...UVp
11: Discard fronV all queries(v,b) such thaHW (v) # 1
12: PartitionV =V U... UV, s.t. vectors ifVj have a bit 1 on positiof
13: foreach positioni > Solving phase
14: 5 = majority(b), for all (v,b) €V,
15: return sg,...,S

After a— 1 iterations, we are left with at least- (a— 1)2° queries, and a secret of sizeléffective
bits at positions 1..,b. The goal is to keep only those queries that have Hamminghweige (step 11
of Algorithm ). Givenn — (a— 1)2° queries, onlyn’ = %gl)zb will have s single non-zero bit on a
given position and O for the rest bf- 1 positions. These queries represent the input to the gpphiase.
The bias does not change since we do not alter the originalesud he complexity for performing this
step forn — (a— 1)2° queries isO(b(n — (a— 1)2°)) as the algorithm just checks if the queries have
Hamming weight 1.

Remark 1.Given that we have performed the xor between pairs of quesiemote that the noise bits
are no longer independent. In the analysi8&iW", this was overlooked by Levieil and Fouq@[ﬂZ].
The originalBKW [9] algorithm overcomes this problem in the following manreach query that has
Hamming weight 1 is obtained with a fresh set of queries. G&2° queries the algorithm runs the
xoring process and is left wittP&ectors. From these’2jueries, with a probability of & % there is one
with Hamming weight 1 on a given positianin order to obtain more such queries the algorithm repeats
this process with fresh queries. This means that for gugskinit of the secret, the original algorithm

requirem=a-2°- ﬁ -1’ queries, where' denotes the number of queries needed for the solving phase.

This is larger tham = 2°n’ + (a— 1)2° which is the number of queries given by Levieil and Foudug.[32
We implemented and ruBKW* as described in Algorithral 1 and we discovered that this degecy
does not affect the performance of the algorithm. I.e., tivalver of queries computed by the theory that
ignores the dependency of the error bits matches the pahctisults. We need = n' + (a— 1)2° (and
notn= 2°n’ 4 (a— 1)2°) queries in order to recover one block of the secret. Therétieal and practical
results are presented in Sectidn 5. Given our practicalrerpats, we keep the “heuristic” assumption
of independence and the algorithm as described ih [32] wivielcalledBKW*. Thus, we assume from
now on the independence of the noise bits and the indepeadsdmice queries.

Another discussion on the independence of the noise bitegepted in[18]. There we can see what
is the probability to have a collision, i.e. two queries thlare an error bit, among the queries formed
during the xoring steps.

We can repeat the algorithentimes, with the same queries, to recover all kiats. The total time
complexity for the reduction phase @ ka’n) as we perform the steps described abatienes (instead
of O(kan) as given in[[32]). However, by making the selectionacdindb adaptive withab near to the

1 Definition 2 of [32] assumes independence of samples but Latwof [32] shows the reduction without proving indepen-
dence.



remaining number of bits to recover, we can show that the eataplexity is dominated by the one of
recovering the first block. So, we can typically concent@iethe algorithm to recover a single block.
We provide a more complete analysis in Secfibn 3.

Solving phase.The BKW solving method recovers the 1-bit secret by applying theonitgjrule. The

queries from the reduction phase are of the ftbfjm: s @di, dj — Ber(lfazafl)/2 ands being tha'" bit

of the secres. Given that the probability for the noise bit to be set to 1nmber than%, in more than
half of the cases, these queries will §eThus, we decide that the value gfis given by the majority
rule (step$_112-14 of Algorithiinl 1). By applying the Chernafilinds [12], we find how many queries are
needed such that the probability of guessing incorrectéylmhof the secret is bounded by some constant
g, withO<e< 1.

The time complexity of performing the majority rule is liméa the number of queries.

Complexity analysisWith their analysis, Levieil and Fougue [32] obtain the daling result:

Theorem 1 (Th. 1 from [32]). For k = a- b, the BKW* algorithm heuristically (n= 20- In(4k) - 2°
52+ (a—1)2t = O(kan),m = kn,6 = 1 b)-solves tha PN problent]

In Section[B we will see that our theoretical analysis, whigh believe to be more intuitive and
simpler, gives tighter bounds for the number of queries.

LF1 Algorithm During the solving phase, tHeKW algorithm recovers the value of the secret bit by
bit. Given that we are interested only in queries with Hangnireight 1, many queries are discarded at
the end of the reduction phase. As first noted_id [32], thislmaimmproved by using a Walsh-Hadamard
transform instead of the majority rule. This improvemenB&W is denoted in[[32] by F1. Again, we
present the algorithm in pseudo-code in Algorifiim 2. ABKW*, we can concentrate on the complexity
to recover the first block.

Reduction phaseThe reduction phase fdrF1 follows the same steps as BKW* in obtaining new
queries as2 1 xors of initial queries in order to reduce the secret to bizt this step, the algorithm does
not discard queries anymore but proceeds directly withahergy phase (see stejp 3110 of Algorithin 2).
We now haveY = n— (a— 1)2° queries after this phase.

Solving phaseThe solving phase consists in applying a Walsh-Hadamangdfwem in order to recover
b bits of the secret at once (stéps3[11-13 in Algoritim 2). Wereanver theb-bit secret by computing the
Walsh transform of the functiofi(x) = ; 1\4:X(—1)bf. The Walsh transform i§(v) = 5, (—1)"*f(x) =
Sx(—D)V*3i Ly (D% = Fi(—~)MVE = ¥ — 2HW(AV + ). Forv = s, we havef(s) = ' — 2.
HW(d'), whered’ represents the noise vector after the reduction phase. W #rat most of the noise
bits are set to 0. Sot( s) is large and we suppose it is the largest value in the tablé. dhus, we
have to look at the maximum value of the Walsh transform ireotd recover the value &f A naive
implementation of a Walsh transform would give a complegitp? since we apply it on a space of size
2°. Since we apply a fast Walsh-Hadamard transform, we getadmplexity ofb2° [13].

Complexity analysisThe following theorem states the complexityldf1:

Theorem 2 (Th. 2 from [32]). For k=a-b and a> 1, the LF1 algorithm heuristically (n= (8b+
2005 2 + (a— 1)2,t = O(kan+b2°), m = kn+b2?,6 = 1 b)-solves the. PN problen(d

2 The term(a— 1)2b is not included in Theorem 1 from [32]. This factor represethie number of queries lost during the
reduction phase and it is the dominant one for all the algorit excepBKW*.

3 The termb2P in the time complexity is missing i [32]. While in genekainis the dominant term, in the special case where
a=1 (thus we apply no reduction step) a complexity@kan) would be wrong since, in this case, we apply the Walsh
transform on the whole secret and the té@t dominates the final complexity.



Algorithm 2 LF1 Algorithm

1: Input: a setV of nqueries(vi, b;) € {0, 1} from theLPN oracle, values, b such thak = ab

2: Output: valuessy, ..., s

3: Partition the position$1,...,k}\ {1,...,b} into disjointg; U...Ugs_1 with g; of sizeb

4: fori=1toa—1do > Reduction phase
5: PartitionV =V; U...UVy s.t. vectors iV have the the same bit values qn

6: foreachV;

7 Choose a randorfv*,b*) € V; as a representative vector

8: Replace eaclv,b) by (v,b) @ (v*,b%), (v,b) € Vj for (v,b) # (v*,b*)

9: Discard(v*,b*) fromV;

10:  V=V,U...UVx
11: £(X) = T pjev vy_p—x(—1)P > Solving phase
12: f(v) = Tx(=1)V*f(x) > Walsh transform off (x)

13: (s,...,S) = arg max(f(v))
14: return sq,...,%

The analysis is similar to the one done BKW*, except that we now work with blocks of the secret
sand not bits. Thus, we bound b the probability thatf(s') > f(s), wheres' is any of the 2 —1
values different frons. As for BKW*, we will provide a more intuitive and tighter analysis 1df1 in
Sectior 3.R.

BKW* vs.LF1. We can see that comparedB&W*, LF1 brings a significant improvement in the number
of queries needed. As expected, the factbdiappeared as we did not discard any query at the end of
the reduction phase. There is an increase in the time and nigaromplexity because of the fast Walsh-
Hadamard transform, but these terms are not the dominast one

LF2 Algorithm LF2 is a heuristic algorithm, also introduced in [32], that agplthe same Walsh-
Hadamard transform dsF1, but has a different reduction phase. We provide the pseualdotor LF2
below.

Algorithm 3 LF2 Algorithm

1: Input: a setV of nqueries(vi, b;) € {0, 1} from theLPN oracle, values, b such thak = ab
: Output: valuessy, ..., s

N

. Partition the position$l,... .k} \ {1,...,b} into disjointgy U...Uq,_1 with g; of sizeb
. fori=1toa—1do > Reduction phase
PartitionV =V; U...UVy s.t. vectors iV have the the same bit values qn
foreachV;

Vi=0

foreach pair (v,b), (V1) € V;, (v, b) # (V1)

Vi =V/u(vaVv,bal)

100 V=V{U...UV

©o Nk

11 F(%) = Supjev vy p=x(—1)" > Solving phase
12: f(v) = T (=1)V*f(x) > compute the Walsh transform 6fx)
13: (sq,...,%) = arg max(f(v))

14: return sq,...,%

Reduction phaseSimilarly to BKW* andLF1, then queries are grouped into equivalence classes. Two
queries are in the same equivalence class if they have the galme on a window ob bits. In each
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equivalence class we perform the xor of all the pairs fromh ¢hess. Thus, we do not choose any repre-
sentative vector that is discarded afterwards. Given thaniequivalence class there an® queries,
we expect to haveb;{”/zzb) queries at the end of the xor-ing. One interesting case iswlwof the form
n= 3-2° as with this reduction phase we expect to preserve the nuoflmpreries since(g) = 3. For
anyn > 3-2° the number of queries will grow exponentially and will alsifect the time and memory
complexity.

Solving phaseThis works like inLF1.

In a scenario where the attacker has access to a restriatéolenwf queries, this heuristic algorithm
helps in increasing the number of queries. Witf2, the attacker might produce enough queries to
recover the secret valige

FMICM Algorithm Another algorithm by Fossorier et dl. [19] uses ideas frost ¢arrelation attacks
to solve theLPN problem. While there is an improvement compared with B&N* algorithm, this
algorithm does not perform better theR1 andLF2. Given that it does not bring better results, we just
present the main steps of the algorithm.

As the previous algorithms, it can be split into two phaseduction and solving phase. The reduction
phase first decimates the number of queries and keeps osly theries that have 0 bits on a window of
a given size. Then, it performs xors of several queries et further reduce the size of the secret. The
algorithm that is used for this step is similar to the one twatstructs parity checks of a given weight in
correlation attacks. The solving phase makes use of th&\falsth-Hadamard transform to recover part
of the secret. By iteration the whole secret is recovered.

Covering Codes Algorithm The new algorithm[[23] that was presented at Asiacrypt’ broduces

a new type of reduction. There is a difference betwéen [28]what was presented at the Asiacrypt
conference (mostly due to our results). We concentrate dief€3] and in the next section we present
the suggestions we provided to the authors.

Reduction phaseThe first step of this algorithm is to transform thEN instance where the secrgt
is randomly chosen to an instance where the secret has nownawledistribution. This method was
described in [[31)4].

Given n queries from theLPN oracle: (v1,b1), (v2,b2),...,(Vn,bn), selectk linearly independent
vectorsvi,, ..., V; . Construct thé x k target matriXM that has on its columns the aforementioned vectors,
ie.M =V . V] Compute(M")!the inverse oMT, whereMT is the transpose dfl. We can
rewrite thek queries corresponding to the selected vectordMas+ d’, whered’ is the k-bit vector
d = (di,,di,,...,di ). We denotdy = MTs+d’. For anyvj that is not used in matrik! do the following
computation:

\Tj(MT)‘lb’ +bj = <\Tj(MT)‘1,d’> +d;.
From the initial set of queries, we have obtained a new setevtie secret value @'. This can be
seen as a reduction to a sparse secret. The complexity dfahisform isO(k® +nk?) by the schoolbook

matrix inversion algorithm. This can be improved as follovigr a fixed s, one can split the matrix
M1

(M tina= ['—;1 parts M2 of srows. By pre-computingyM; for all v e {0,1}°, the operation of
Ma

performingvj(MT)~1 takesO(ka). The pre-computation take3(2°%) and is negligible if the memory

required by theBKW reduction is bigger. With this pre-computation the comjtieis O(nka).
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Afterwards the algorithm follows the usu8KW reduction steps where the size of the secret is
reduced tdk’ by the xoring operation. Again the vectorlobits is seen as being split into blocks of size
b. TheBKW reduction is applied times. Thus, we hav = k—tb.

The secres of k' bits is split into 2 parts: one part denotsdof k” bits and the other part, denoted
sy, of K — K’ bits. The next step in the reduction is to guess valus,dfy making an assumption on
its Hamming weightHW(s,) < wp. The remaining queries are of the fo(m,b; = (vi,s) @ d;), where
Vi,$ € {0,1}" andd; € Ber, . Thus, the problem is reduced to a secret’obits.

2
At this moment, the algorithm approximates theectors to the nearest codewaydn a [k”, ¢]-code
wherek” is the size and is the dimension. By observing thgtcan be written ag; = g/G, whereG is
the generating matrix of the code, we can write the equaiiotige form

bi = (Vi,) B di = (gG, %) & (Vi — 6. %) &0 = (¢, 5) B

with s, = G, andd] = (vi — gi,%) & di, whereg;, s, have lengtlY. If the code has optimal covering
radiusd, v; — g; is a random vector of weight bounded Bywhile s, is a vector of some small weight
bounded byc, with some probability. Soyv; — g;,s) is biased and we can tredftin place ofd;.

In [23], the authors approximate the bias(gf— gj,s;) to & = (1—2%)‘:, as if all bits were inde-
pendent. As discussed in the next section, this approxamasifar from good.

No queries are lost during this covering code operation awd the secret is reduced taoits. We
now haven’ = n—k—t2° queries after this phase.

Solving phase.The solving phase of this algorithm follows the same stefdsFasi.e. it employs a fast
Walsh-Hadamard transform. One should notice that the raplphase recoversrelations between the
bits of the secret and not actuabits of the secret.

Complexity analysis.Recall that in the algorithm two assumptions are made ragguttie Hamming
weight of the secret: thab has a Hamming weight smaller tharand thats; has a Hamming weight
smaller tharwp. This holds with probability Rig, k' —K”) - Pr(c,k”) where

Pr(w,m) = ii}(l —7)™if (T) :

The total complexity is given by the complexity of one it@watto which we add the number of times
we have to repeat the iteration. We state below the resurt J&3]:

Theorem 3 (Th 1. from [23]).

Let n be the number of samples required aral b, wo,c,l,k',k” be the algorithm parameters. For
the LPNy ; instance, the number of bit operations required for a susitesun of the new attack is equal
to

Csparse reduction 1 Cbkw reduction 1 Cguess + Ccovering code 1 CWalsh transform

¢ = Pr(wo, k' — k") Pr(c,k") ’

where

— Csparse reduction = NKa is the cost of reducing thé’N instance to a sparse secret

— Chokw reduction = (K+ 1)tn is the cost of th&KW reduction steps

— Cguess =N 3% (”j"”)i is the cost of guessing k k” bits and = n— k—t2P represents the number
of queries at the end of the reduction phase

— Ceovering code = (K" —£)(2r/ +2%) is the cost of the covering code reduction ahéragain the number
of queries

— Cwalsh transform = £2¢ z}N:OO (w_iw) is the cost of applying the fast Walsh-Hadamard transfomefery
guess of k— k” bits



under the condition that & t2° > —-i—;, whered =12t andd = (1~ 29)% and d is the smallest
integer, s.ty® o (¢) > 2.

The conditionn — t2° > ﬁ proposed in[[23] imposes a lower bound on the number of gaierie
needed in the solving phase for the fast Walsh-Hadamardftnam. In our analysis, we will see that this
is underestimated: the Chernoff bounds dictate a largebeuiwf queries.

3 Tighter Theoretical Analysis

In this section we present a different theoretical analfreim the one of Levieil and Fouque [32] for
the solving phases of thePN solving algorithms. A complete comparison is given in Seudfi. Our
analysis gives tighter bounds and aims at closing the gapeeet theory and practice. For the new
algorithm from [23], we present the main points that we fotmbe incomplete.

We first show how the cost of solving one block of the secretidates the total cost of recovering
s. The main intuition is that after recovering a first blockkbfsecret bits, we can apply a simple back
substitution mechanism and consider solvingPaly_i ; problem. The same strategy is applied by [2]
when solving WE. Note that this is simply a generalisation of the classicgs&un elimination procedure
for solving linear systems, where we work over blocks of.bits

Specifically, letk; = k andk = ki_1 — k{_; for i > 1. Now, suppose we were able(ta,t;, m,6;,k/)-
solve arLPN ; instance (meaning we recover a block of dizigom the secret of sizle with probability
6;, in timet; and with memorym;,). One can see that fé¢, 1 < ki we need less queries to solve the new
instance (the number of queries is dependent on theksizeand on the noise level). With a smaller
secret, the time complexity will decrease. Having a shageret and less queries, the memory needed
is also smaller. Then, we cgm,t,m,6,k)-solve the problenmiLPN- (i.e recovers completely), with
n=maxng,ny,...),0 =01+06+...,t =t +Kjn1 +to +k;ny... (the terms/n; are due to query updates
by back substitution) anth = max(my, M, ...). Finally, by takingg; = 3~', we obtaing < % and thus
recover the full secreg with probability over 50%.

Itis easily verified that for all the algorithms we considee haven = n;, m=m, andt is dominated
by t;. We provide an example on a concréfeN instance in AppendikxB.

For all the solving algorithms presented in this section s&uene that' queries remain after the
reduction phase and that the biag'isFor the solving techniques that recover the secret blgekkHbck,
we assume the block size to kie

3.1 BKW™ Algorithm

Given anLPN instance, th&KW* solving method recovers the 1 bit secret by applying the ritgjaule.
Recall that the queries are of the fob= s © dj, dj +- Ber _&)/2. The majority of these queries will
most likely beb’j =g. Itis intuitive to see that the majority rule fails when mdhan half of the noise bits
are 1 for a given bit. Any wrong guess of a bit gives a wrong ealfithek-bit secrets. In order to bound
the probability of such a scenario, we use the Hoeffding deu@5] with X; = e; (See AppendiX_A).
We have Pix; = 1] = 158, ForX = 3 ; X;, we haveE(X) = 222" and we apply Theorefi 12 with

t=23 a;=0andB; =1 and we obtain

n/ &2
Princorrect guess on 5] = Pr [X > 5] <e "t

As discussed in Remalk 1, the assumption of independeneiisstic.
Using the above results for every bit. 1, b, we can bound by a consta@itthe probability that we
guess incorrectly a block af with 0 < 6 < 1. Using the union bound, we get thiat= 26"2In(g). Given

thatn/ = %}Mj and thaty = &, we obtain the following result.
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Theorem 4. Fork < a-b, theBKW* algorithm heuristically (n= 2°+15-2" In(g) +(a—1)2°t = O(kan),
m= kn, 6, b)-solves th&.PN problem.

We note that we obtained the above result using the uniondddne could make use of the inde-
pendence of the noise bits and obtaig 207152 In < ) + (a—1)2°, but this would bring a very
small improvement.

In terms of query complexity, we compare our theoreticaliitesvith the ones froni[32] in Tablg 1
and TabléR. We provide the Ig@) values fork varying from 32 to 100 and we take different Bernoulli
noise parameters that vary fron0Q to Q4. Overall, our theoretical results bring an improvemend of
factor 10 over the results of [32].

_ 1
1-2-1/k

K T k
T 32 48 64 80 100
32 48 64 80 100
0.01 1456 1660 1968 2259 2564
0.01 1097 1282 1593 1866 2174
0.10 1975 2387 2795 3200 3706

0.10 1584 2001 2412 2820 3328

0.20 2350 2861 3469 3864 4370
0.20 1971 2485 3097 3483 3990

0.25 2560 3072 3679 4185 4790

0.25 2181 2695 3307 3814 4411
0.40 3189 4Q00 4737 5243 5948

0.40 2824 3638 4364 4871 5578 Table 3 BRWF e~ th
Table 1:BKW™* query complexity - our theory frime[BZj query complexity - theory

In Section[5.11 we show that Theorémh 4 gives results that ane alese to the ones we measure
experimentally.

We note that ouBKW* algorithm, for which we have stated the above theorem, allthe steps
from Algorithm[d fork = a-b. Fork < a- b the algorithm is a bit different. In this case we have 1
blocks of sizeb and an incomplete block of size smaller tHanDuring the reduction phase, we first
partition the incomplete block and then appé/ 2) reduction steps for the complete blocks. We finally
haveb bits to recover. Other than this small change, the algorithimains the same.

If the term 2152 In( b) dominatesn, the next iteration can use decreased by 1 leading to a

newn ~ 2°+15-2 lIn( ~) which is roughly the square root of the previausSo, the complexity of
recovering this block is clearly dominated by the cost ofoxering the previous block. If the term
(a—1)2° is dominating, we can decrealséy one in the next block and reach the same conclusion.

3.2 LF1 Algorithm

For the LF1 algorithm, the secret is recovered by choosing the highastevof a Walsh-Hadamard
transform. Recall that the Walsh transformfis’) = ' — 2HW(A'v +b'). Forv = s, we obtain that the
Walsh transform has the valfés) = n’ — 2HW(d'). We haveE (f(s)) =n'd.

The failure probability fol.F1 is bounded by the probability that there is another veetgrs such
that HW(A'v +b') < HW(A's+b'). Recall thatA's+ b’ = d’. We definex = s+ v so thatA'v+b' =
A'x+d’. We obtain that the failure probability is bounded By times the probability thalH\W (A'x +
d’) < HW(d'), for a fixedk'-bit non-zero vectox. As A’ is uniformly distributed, independent from
d’, andx is fixed and non-zero&A’x+ d’ is uniformly distributed, so we can rewrite the inequality a
HW(y) < HW(d'), for a randony.
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To bound the failure probability, we again use the Hoeffdimgguality [25]. LetXy, Xo, ..., Xy be
random independent variables with=y; — dj, Pr(X; € [-1,1]) = 1. We haveE(y; — dj) = %/. We can
taket = E[X] = &I in TheoreniIR and obtain:

/

3

/52
Princorrect guess on one block] < 2¢ Pr[ (yj—di) < O] <2Xe 5

1

J

Again we can bound the probability of incorrectly guessing block ofsby 6. With n' = (In )6’ 2,
the probability of failure is smaller tha The total number of queries will be=n' + (a— 1)2b we
haved = &' andk = b. Similar toBKW, we obtain the following theorem:

Theorem 5. For k < a- b, theLF1 algorithm heuristically (n=8In(3)3%' + (a— 1)2°,t = O(kan+
b2P), m = kn+ b2°, 8, b)-solves thé. PN problem.

By comparing the terni8b+200)3 2" in Theoreni2 with our value of 8(%)6‘23, one might check
that our term is roughly a factor 2 smaller than that of [32]dcactical values o& andb. For example,
for aLPN76g0.01 instance (witha =11, b = 70), our analysis require$®queries for the solving phase
while the Levieil and Fouque analysis requiré8 Gueries.

3.3 LF2algorithm

Having the new bounds fdrF1, we can state a similar result faF2. Recall that whem = 3- 20 LF2
preserves the number of queries during the reduction pRas&. 2° > ' we have that:

Theorem 6. For k< a-b and n=3-2° > 8In(% 252", the LF2 algorithm heuristically (n=3-2°,t =
O(kan+b2°), m= kn-+b2° 8, b)-solves the PN problem.

One can observe that we may allow foto be smaller than 2°. Given that the solving phase may
require less than 3°, we could start with less queries, decrease the number afeguduring the
reduction and end up with the exact number of queries neextétld solving phase.

3.4 Covering Codes Algorithm

Recall that the algorithm first reduces the size of the saort bits by runningBKW reduction steps.
Then it approximates the vector to the nearest codewaydin a[k”, ¢]-code withG as generator matrix.
The noisy inner products can be rewritten as

bi = (g/G,%) @ (Vi — 0,%) ©d = (¢,G ) @ d = (¢,s) & d,

whereg = g G, s, = G's; andd! = (g — Vi, S) @ dh.

Given that the code has a covering radiusl@nd that the Hamming weight s is smaller thare,
the bias of(gi — vi,s) is computed a§' = (1 2k,,) in [23], wherek” is the size ofs,. We stress that
this approximation is far from good.

Indeed, with the[3,1, 3] repetition code given as an example [in![23], the xor of twarhits is
unbiased. Even worse: the xor of the three bits has a nedatise So, when using the code obtained by
25 concatenations of this repetition code and 6, with some probability of 36% we have at least two
error bits falling in the same concatenation and the biasasm#tkis approach fail.

We can do the same computation with the concatenation ofZ8@2] Golay codes wittt = 15, as
suggested i [23]. With probability.P1%, the bias is zero or negative so the algorithm fails. \&ttme
probability 83%, the bias is too low.

12



In any case, we cannot take the error bits as independent WWbeode has optimal covering radius,
we can actually find an explicit formula for the bias(@f— g;, ;) assuming thas, has weight:

S(k%,d) iggodd <T) Sk’ ~c,d~i)

whereS(k”,d) is the number ok”-bit strings with weight at mosd.
To solveLPNs120.125, [23] proposes the following parameters

Pr(vi — gi,S2) = 1|HW(s;) = ] =

t=6 a=9 b=63 (=64 K' =124 wy=2 c=16

and obtainn = 2663 and a complexity of 292, With these parameters, [23] approximated the bias to
(1-28)° = 27591 (with d = 14). With our exact formula, the bias should rather be of%. So,n
should be multiplied by 82 (the square of the ratio).

Also, we stress that all this assumes the construction ofle with optimal radius coverage. One ex-
ample is the Golay codes. But this code can be used only fok Ff\Winstances. If we use concatenations
of repetition codes, given as an examplé_in [23], the forn‘mﬂahe bias changes. Givértoncatenations
of the [ki, 1] repetition code, withky + ...+ k, =K', k ~ z " and 1< i < ¢, we would have to split the
secrets, in chunks ok, ..., k; bits. We takes; + . .. + ¢, = c whereg; is the weight of; on theit" chunk.

In this case the bias for each repetition code is

1
6|:l—2 Iadl
Xs(ki7di)j<dhzjodd<l>8(k| ¢ )

whered, = {—'j.

The final bias i =9 - - - &,.

We empha3|ze that the valuerfs underestimated i [23]. Indeed, with= bias~2, the probability
that arg maXf =5, is too low i |n LF1. To have a constant probability of succ@€s®ur analysis says
that we should multlply1 by 8In( 5 ). ForLPNs120.125 and6 = é this is 363.

When presenting their algorithm at Asiacrypt’'14, the authaf [23] updated their computation by
using our suggested formulas for the bias and the numberarfegu In order to obtain a complexity
smaller than &, they further improved their algorithm by the following @psation: instead of assuming
that the secred, has a Hamming weight smaller or equattahe algorithm takes now into account all the
Hamming weights that would give a good bias for the coveriodecreduction. I.e., the algorithm takes
into account all the Hamming weightsfor which & > €., wheree,; is a preset bias. The probability of
a good secret changes from(&K”) to P{HW) that we define below. They further adapted the algorithm
by using thel F2 reduction steps. Recall that far= 3- 2P, the number of queries are preserved during
the reduction phase. With these changes they propose tbeifoy parameters fotPNs120 125

t=5 b=62 /=60 K'=180 wp=2 g =2 118

Usmg two[90,30] codes, they obtain that= 2536 — 3. 2" queries are needed, the memory used is of
= 2726 pits and the time complexity i8* = 27°7. Thus, this algorithm gives better performance than
LF2 and shows that thisPN instance does not offer a security of 80
With all the above observations we update the Theddem 3.

Theorem 7. The covering code (& 8In(% )W +120 C*,m=kn+2¥~{ 4 ¢2! 8, ¢)-solves the.PN
problemﬁ whered = 1— 2t andd > & is the bias introduced by the covering code reduction that is

4 For the computation afi the authors of [23] use the term 41) instead of 8I|(1%). If we use our formula, we obtain that
we need more than-2P queries and obtain a complexity oi%8.
5 This n corresponds to covering code reduction usirigl. For LF2 reduction steps we need to hawe= 3- D 4k>

2 1
8|n(@)?‘g
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lower bounded by a preset bias. The code chosen for the ogveodde reduction step can be expressed
as the concatenation of one or more linear codes. The tiilneoBplexity can be expressed as

C* — Csparse reduction + Cbkw reduction + Cguess + Ccovering code T CWalsh transform
Pr(wo, k' — k") Pr(HW) ’

where

— Csparse reduction = NKa is the cost of reducing thé’N instance to a sparse secret

— Cow reduction = (K+ 1)tn is the cost of th&KW reduction steps

— Cguess =N 1% (”j"”)i is the cost of guessing k k” bits and = n— k—t2P represents the number
of queries at the end of the reduction phase

— Ceovering code = (K" —£)(2r' +2%) is the cost of the covering code reduction ahéragain the number
of queries

— Cuwalsh transform = £2° }N:OO (”jw) is the cost of applying the fast Walsh-Hadamard transfomefery
guess of k— k” bits

— PI(HW) = 5, (1—1)¥ %1% (&) where ¢ is chosen such that the bid which depends on @nd
the covering radius d of the chosen code, is larger than

4 Other LPN Solving Algorithms

Most LPN-based encryption schemes usas a function ok, e.g.T = %( [314]. The bigger the value
of k, the lower the level of noise. Fér= 768, we hava ~ 0.036. For such a value we say that the noise
is sparse. Given that thet®N instances are used in practice, we consider how we can oohsther
algorithms that take advantage of this extra information.

The first two algorithms presented in this section bring néegas for the solving phase. The third
one provides a method to recover the whole secret and doegeadtany reduction phase.

We maintain the notations used in the previous sectibgueries remain after the reduction phase,
the bias i¥’ and the block size ik'.

For these solving algorithms, we assume that the secreaisespEven if the secret is not sparse, we
can just assume that the noise is sparse. We can transfacNaimstance to an instance bPN where
the secret is actually a vector of noise bits by the methosgmted in[[311]. The details of this transform
were given in Section 2.2 for the covering codes algorithm.

We denote by the sparseness of the secret, i.dsPf 1] = % for any 1<i < k. We say that the
secret ish-sparse. Given the transformation explained above, weata@i\t= d.

The assumption we make is that the Hamming weight oktHst length secresis in a given range.
On average we have thBitW(s) = K'(152), so an appropriate range 6,k (:52) + 9 k’] , Whereag is
constant. We denoﬂé(%) by Epw and %\/W by dev. Thus, we are searching in the ran@eEnw +
dev]. We can bound the probability that the secret has a Hammiigjiveutside the range by using the
Hoeffding bound|[25].

Let X1,Xo,..., Xk be independent random variables that correspond to thetdaits, i.e. PiX; =
1] = L2 and PtX; € [0,1]) = 1. We haveE (X) = 152K Using Theorerfi 12, we get that

N

_ / 5
P{HW(s) not in range] = Pr [HW(S) - %k’ >0 kZ] <e 7.

If we want to bound byg/2 the probability thaHW(s) is not in the correct range for one block, we
obtain thato = ,/2In(3).
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4.1 Exhaustive search on sparse secret

We haveS = ZEH"V*de"( ) vectorsv with Hamming weight in our range. One first idea would be to
perform an exhaustive search on the sparse secret. We dbisotdgorithm bySearch;. For every such
valuev, we computeHW(Av + b). In order to compute the Hamming weight we have to compute the
multiplication betweer\ and allv which have the Hamming weight in the correct range. This ajan
would takeO(Srk’) time but we can saveld factor by the following observation done [r [7]: computing
Av, with HW(v) =i means xoring columns ofA. If we have the values div for all v whereHW(v) =

then we can computav’ for HW (V') =i + 1 by adding one extra column to the previous results.

We use here a similar reasoning done for the Walsh-Hadamemgform. Wherv = s, the value of
HW/(As+ b) is equal toHW(d) and we assume that this is the smallest value as we have misee no
bits set on 0 than 1. Thus, going through all possible val@iesamd keeping the minimum will give us
the value of the secret. The time complexitySehrch; is the complexity of computing the Hamming
weight, i.e.O(SH).

BesidesSearch;, which requires a matrix multiplication for each trial, wis@discovered that a
Walsh transform can be used for a sparse secret. We calligjoistam Search,. The advantage is that a
Walsh transform is faster than a naive exhaustive searcthasdmproves the time complexity. We thus
compute the fast Walsh-Hadamard transform and search tkienua of f only for thoseSvalues with
Hamming weight in the correct range. Given that we apply astWatkansform we get that the complexity
of this solving algorithm iso(k’z"/). So, it is more interesting theearch; whenSr > k'2¢.

For both algorithms the failure probability is given by tliesario where there exists another sparse
valuev # ssuch thaHW(Av + b) < HW(As+ b). As we search throug8possible values for the secret

we obtain that
&2
Prfincorrect guess on one block] < Se” i

The above probability accounts for only one block of the secfhus we can say that with =
\/2In(3) andn = 8(In )52+ (a— 1)2, the probability of failure is smaller theh

Another failure scenario, that we take into account into anelysis, occurs when the secret has a
Hamming weight outside our range.

Complexity analysisTakingn=n'+ (a—1)2°, K = b, & = 5" andA = 3, we obtain the following
theorems foearch; andSearchs:

Theorem 8. Let S= 379" (%) where By = b(132) anddev = 9v/b and let i = 8In(2—)6 2 For

)
k <a-b and a secret s that iA-sparse, theéearch; algorithm heuristically (n= 8In( 5)6 % 4 (a—
1)2°,t = O(kan+n'S),m= kn+ b(EHWZdeV) ,0,b)-solves thé.PN problem.

Theorem 9. Let S= zEHW+deV( ) where Byw = b(32) anddev = Zv/b. For k< a-b and a secret s
that isA-sparse, th&earch, algorithm heuristically (n=8In(%)5~2" + (a— 1)2°,t = O(kan+b2°), m=
kn, B, b)-solves the.PN problem.

Here, we take the probability, that any of the two failurerso@s to happen, to be eaéfi2. A
search for the optimal values such that their surfi,ibrings a very little improvement to our results.
Takingk’ = b, we stress thabis much smaller than thé2= 2 term that is used fokF1. For example,
for k= 768,a= 11,b = 70 andt = 0.05, we have thaS= 233 which is smaller than 2= 27° and we
getn’ = 25733 andn = 27334 (compared tav = 2832 andn = 2337 for LF1). We thus expect to require
less queries for exhaustive search compardd-io As the asymptotic time complexity 8karch; is the
same ad.F1 and the number of queries is smaller, we expect to see tigaldpprithm runs faster than
LF1.
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4.2 Meet in the middle on sparse secret (MITM)

Given thatAs+d = b, we splitsinto s; ands, and rewrite the equation @gs; +d = AxS, + b. With this
split, we try to construct a meet-in-the-middle attack byking for A,s, + b close toA;s;. The secres
has sizek’ and we split it intos; of sizek; ands, of sizek, such thak; + k, = k'. We consider that both

s ands, are sparse. Thus the Hamming weighisofies in the range{O,ki(%) + %'\/E} . We denote
ki(%) + %'\/E by maxpw (ki). In order to bound the probability that both estimates areeco we use

the same bound shown in Sectldn 4 and obtaindhat |/2In(3).

For our MITM attack we have a pre-computation phase. We coenpnd storéd;s; for all §; =
z,max”w (ko) ( 1) possible values fos;. We do the same fa, i.e computeds, + bfor all S, = 35" (k2) ("f)
vectorss,. The pre-computation phase tak& + S)n’ steps in total. Afterwards we pidkbit positions

and hope that the noiskhas only values of 0 on these positions. If this is true, therrould build a mask
pthat has Hamming weiglgtsuch thatd A= 0. The probability for this to happendég—g)‘E —e iy,
We build our meet-in-the-middle attack by constructing shhi@ble where we store, for afl values,
Axs; + b at positionh((Axs, + b) A p). We haveS, vectorss,, so we expect to havg,2 ¢ vectors on
each position of the hash table. For §ll values ofs;, we check for collisions, i.eh((A1s) A W) =
h((A2s2 + b) A ). If this happens, we check &;s; xored withAzs, + b gives a vectod with a small
Hamming weight. Remember that with the pre-computed valesan computel with only one xor
operation. If the resulting vector has a Hamming weight inrange, then we believe we have found the
corrects; ands;, values and we can recover the valuesaBiven thatA;s; + Axs, +d = b, we expect to
have(Azs; + b) A= A1 A ponly whend A = 0. The conditiord A p= 0 holds with a probability of
(1+75’)E so we have to repeat our algoritr(rﬂ%)E times in order to be sure that our condition is fulfilled.
As for exhaustive search, we have two scenarios that cosldtra a failure. One scenario is when
s or s, have a Hamming weight outside the range. The second one hs&pgen there is another vector
v # ssuch thaHW(Ajv; + Apvo +b) <HW (As: +Axs, + b) and(Agvi + Axvz + b) A= 0. This occurs
/52

with probability smaller thaISlSQe*%

Complexity analysisThe time complexity of constructing the MITM attack(8 +S)n' + ((S1+S)& +
$$2%) - (%)% We include here the cost of the pre-computation phase anddiual MITM cost.
We obtain that the time complexity 8((S;+S) + (S1 + )& (t5)* + S1SN (115)%)- Taking again
nN=n—(a—1)2°, K =b,& =& ", A= 5, we obtain the following result for MITM.

Theorem 10. Letrd = 8In(28182)6*23.TakeI1and ks values such that 5 k; +kp. Let § = z,max“w (kJ)
where maxpw (kj) = kj (2 %\/kﬁJ for j € {1,2}. For k< a-b and a secret s that iA-sparse,
the MITM algorithm heurlstlcally (n= 8In(%SlSz)6*2a +(@a—-1)2°%t = o(kan+ (S, + ) + (S +
S)E( 1+ S (1 = D), m=kn+ S+ (S, + S), 8, b)-solves thé. PN problem.

1+626 1

4.3 Gaussian Elimination

In the case of a sparse noise, one may try to recover the sdgretsing Gaussian elimination. It is well
known thatLPN with noise 0, i.et = 0, is an easy problem. If we are giv&tk) queries for which the
noise is 0, one can just run Gaussian elimination an@d(k¥) recover the secret For aLPN ; instance,
the event of having no noise ferqueries happens with a probabilipyoneise = (1 — 1) .

We design the following algorithm for solvingPN: first, we have no reduction phase. For e&ch
new queries, we assume that the noise is 0. We recovettmough Gaussian elimination. We must test
if this value is the correct secret by computing the Hammimggiwt of A'v + b/, whereA' is the matrix
that containgY fresh queries and’ is the vector containing the corresponding noisy inner petsl
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We expect to have a Hamming weight in the rar[@él;zé)n’ + 0@], whereo is a constant. From the
previous results we know that for a correct secret we have

N

PIHW(A's+b) not in range] < e Z .
If we want to bound by /2 the probability that the Hamming weight of the noise is ndhie correct
range, for the correct secret, we obtain that /2In(%).

For av # s, we use the Hoeffding inequality to bound ti#tV(A'v +b') is in the correct range. Let
Xi,..., Xy be the random variables that correspon&ite- (vi,v) @ b;j. Let X = X3 + ...+ Xy. We have
E(X) = Z. Using the Hoeffding inequality, we take= %' — g*2Y and obtain

Prifailure] = 2XPHHW/(A'V +b')] in correct range]
= 2PX —E(X) < —t]
2( an’ 70\/W)2 Vi —o)2
< ke TE T ke T
If we bound this probability of failure b¥/2 we obtain that we need at least= (MZIn% +

0)252 queries besides thethat are used for the Gaussian elimination.
As aforementioned, with a probability @cneise = (1—1)¥, the Gaussian elimination will give the
correct secret. Thus, we have to repeat our algoriﬁlczﬁiq; times.

Complexity analysisThe computation of the Hamming weight has a cosp@f'k?). Given that we run
the Gaussian elimination and the verification sﬁeé— times, we obtain the following theorem for this
algorithm:

2
Theorem 11. Letrl = <\/2In % + \/2In(§)> &2 and let ¢ be a constant. The Gaussian elimination

algorithm (n= ﬁ +n+ct=0 <%) ,m=k?+n'k,8,k)-solves th&.PN problerrﬁ
Remark 2.Notice that this algorithm recovers the whole secret at @mckthe only assumption we make

is that the noise is sparse. We don't need to run the transfaoh that we have a sparse secret and there
are no queries lost during the reduction phase.

Remark 3.In the extreme case whe(é& — 1)k > 0 the Gaussian elimination algorithm can just assume
thatk queries have noise 0 and retrieve the seswithout verifying that this is the correct secret.

5 Tightness of Our Query Complexity

In this section we compare the theoretical analysis withleémgntation results of all thePN solving
algorithms described in Sections & 4.

We implemented thé&8KW, LF1 and LF2 algorithms as they are presented [in![32] and in pseu-
docode in Algorithm§&]{i3. The implementation was done in Gidntel Xeon 3.33Ghz CPU. We used
a custom bit library to store and handle bit vectors. Usirgg@penMP Iibra@, we have also paral-
lelized certain crucial parts of the algorithms. The xag-in the reduction phases as well as the ma-
jority phases for instance, are easily distributed ontotiplel threads to speed up the computation.
Furthermore, we implemented the exhaustive search and Miilgdrithms described in Sectidd 4.

6 Given that we receive uniformly distributed vectors frone ttPN oracles, we expect to neeth 2 vectorsv to haven
linearly independent ones. We express this by the use ofathatantc.
7Rt t p: /7 opennp. or g/ Wp
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The various matrix operations performed for the spdrB&l solving algorithms are done with the
MA4RI Ilbrary|§ Regarding the memory model used, we implemented the oreiloied in [32] in
order to accommodate thHe-2 algorithm. The source code of our implementation can be doain
http://Tasec.epfl.ch/Tpn/Tpn source code. zip.

We ran all the algorithms for differetPN instances where the size of the secret varies from 32 to
100 bits and the Bernoulli parametetakes different values from.QL to Q4. A value oft = 0.1 for a
smallk as the one we are able to test means that very few, if noneeafubries have the noise bits set
on 1. For this sparse case, an exhaustive search is the bptiiaizgy. Alsost = 0.4 might seem also
as an extreme case. Still, we provide the query complexityhfese extreme cases to fully observe the
behaviour of thd.PN solving algorithms.

For eachLPN instance, we try to find the theoretical number of oracle igserequired to get a
50% probability of recovering the full secret while optiimig the time complexity. This means that in
half of our instances we recover the secret correctly. Inather of the cases it may happen that one
or more bits are guessed wrong. We thus téke % as the probability of failure for the first block.
We choosea andb that would minimize the time complexity and we apply thisitsipl our theoretical
bounds in order to compute the theoretical number of inifiedries. We apply the same split in practice
and try to minimize the number of initial queries such thatmaintain a 50% probability of success.
We thus experimented with different values for the origimamber of oracle samples, and ran multiple
instances of the algorithms to approximate the successpilialp. One can observe that in our practical
and theoretical results tleeb parameters are the same and the comparison is consistemeM/émited
by the power of our experimental environment and thus we wet@ble to provide results for instances
that require more thar?2 queries.

5.1 BKW*

The implementation results f8@8KW* are presented in Tablé 3. Each entry in the table is of the form
log,(n)(a), wheren is the number of oracle queries that were required to obt&i@%a success rate for
the full recovery of the secret. Paramedigs the algorithm parameter denoting the number of blocls int
which the vectors were split. We take= (Lﬂ. By maintaining the value dd, we can easily compute the
number of queries and the time & memory complexity. In Téableedpresent the theoretical results for
BKW* obtained by using Theoref 4. We can see that our theoretichpeactical results are within a
factor of at most 2.

k k

' 32 48 64 80 100 ' 32 48 64 80 100
0.01 1040(5) 11.85(6) 1501(6) 17.68(7) 20.78(7) 0.01 1097(5) 12.82(6) 15.93(6) 18.66(7) 21.74(7)
0.10 1432(4) 19.99(4) 23.13(4) 27.30(4) 0.10 1584(4) 20.01(4) 24.12(4) 2820(4) 33.28(4)
0.20 1864(3) 2384(3) 0.20 1971(3) 24.853) 30.97(3) 34.83(4) 39.90(4)
0.25 2193(2) 2595(3) 0.25 2181(2) 26.95(3) 33.07(3) 3814(3) 44.11(4)
0.40 2725(2) 0.40 2824(2) 36.38(2) 43.64(3) 4871(3) 5578(3)
Table 3:BKW* query complexity - practice Table 4:BKW* query complexity - theory

8Ihttp: /1 miri. sagemat h. or g/
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If we take the example dfPN1o00.01, We need 278 queries and our theoretical analysis gives a
value of 2147, These two values are very close compared with the valuegbeeby [32], 2564, which
is a factor 10 larger. We emphasize again that for both theryhend the practice we use the split that
optimizes the time complexity and from this optimal split derive the number of queries.

Remark 4.For theBKW™ algorithm we tried to optimize the average final bias of therigs, i.e. obtain-
ing a better value thad®" . Recall that at the beginning of the reduction phase, werdhgequeries in
equivalence classes and then choose a representative thattis xored with the rest of queries from the
same class. One variation of this reduction operation wbaltb change several times the representative
vector. The incentive for doing so is the following: one eg@ntative vector that has error vector set on
1 affects the bia® of all queries, while by choosing several representativaors this situation may be
improved; more than half of them will have error bit on 0. Weplemented this new approach but we
found that it does not bring any significant improvement. #heo change that was tested was about the
majority rule applied during the solving phase. Querieshaworst case bias o’ (See Lemmal2),
but some have a larger bias. So, we could apply a weightedrityajole. This would decrease the num-
ber of queries needed for the solving phase. Unfortunatelymplemented the idea and discovered that
the complexity advantage is very small.

5.2 LF1

Below we present the experimental and theoretical resoittthe LF1 algorithm. As a first observation
we can see that, for all instances, this algorithm is a clpimization over the origindBKW* algorithm.

As before, each entry is of the form Ig@)(a), wheren anda are selected to obtain a 50% success rate
for the full recovery of the secret ard= [X].

k k
' 32 48 64 80 100 ' 32 48 64 80 100
0.01 732(6) 1012(6) 1158(7) 13.32(8) 14.99(8) 0.01 889(6) 1053(6) 12.77(7) 14.17(8) 16.13(8)
0.10 1020(4) 1320(4) 1552(5) 17.98(5) 21.38(5) 0.10 1138(4) 1387(4) 17.04(5) 1856(5) 22.05(5)
0.20 1153(3) 1557(3) 18.03(4) 2104(4) 2518(4) 0.20 1301(3) 17.06(3) 19.05(4) 2177(4) 26.59(4)
0.25 1269(3) 16.20(3) 20.70(4) 22.24(4) 2593(4) 0.25 1442(3) 17.25(3) 22.65(4) 23.39(4) 26.72(4)
0.40 1561(2) 19.74(2) 23.97(3) 0.40 1695(2) 24.01(2) 2583(3) 28.30(3) 3500(3)
Table 5:LF1 query complexity - practice Table 6:LF1 query complexity - theory

Table[® shows our theoretical results fd1 using Theorerl5. When we compare the experimental
and the practical results fafF1 (See Tablg€ls and Tallé 6) we can see that the gap between tioéia is
factor up to 3.

Remark 5.0ne may observe a larger difference for thi&N4g 04 instancen = 21974 (practice) vsn =
22401 (theory). For this case, the implementation requites 21974 initial queries compared with the
theory that requires = 22491 queries. Here we haw@= 2 andb = 24 and the ternja— 1)2° dominates
the query complexity. The discrepancy comes from the waase analysis of the reduction phase where
we say that at each reduction step we discardjZeries. With this reasoning, we predict to losé 2
queries. If we analyse more closely, we discover that dgtiralthe average-case we discard onRy- 2

[1— (1— 2—%)”] queries (this is the number of expected non-empty equigaletasses). Thus, with only
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21974 initial queries, we run the reduction phase and discafd2queries, instead of?2. We are left
with 21445 queries which are sufficient for the solving phase. We no& for largeLPN instances,
this difference between worst-case and average-casesanédy the number of deleted queries during
reduction rounds becomes negligible.

Remark 6.Recall that inLF1, like in all LPN solving algorithms, we perform the reduction phase by
splitting the queries inta blocks of sizéb. When this split is not possible, we consider that we leavel
blocks of sizeb and a last block shorter of sibéwith b’ < b. By LF1* we denote the samePN solving
algorithm that makes use of the Walsh transform but wheresplieof the blocks is done different. We
allow now to have a last block larger than the rest. The gaithis strategy may be the following: given
that we recover a larger block of the key, we run our solvinggehfewer times. Although the complexity
of the transform is bigger as we work with a bigger block, théuction phase has to be applied fewer
times. From our experiments we discover there seems to béfacedce between the performance of
the two algorithms.

5.3 LF2

We tested thé& F2 heuristic on the same instances asB&tW* andLF1. The results are summarized in
Table7. To illustrate the performance of the heuristic, meoentrate on a particular instant®N10q0.1
with a=5,b = 20. As derived in[[3R], thé&.F1 algorithm for this parameter set should require less than
(8-b+200)-5 % ~ 21877 queries for a solving phase af@— 1) -2° + (8-b+200) -5 2" ~ 22213 queries
overall to achieve a success probability of 50%. Using oeotétical analysis, thieF1 algorithm for this
parameter set requires to have @n2°)5 2 + (a— 1)2° ~ 22205 queries overall and'22° queries for
the solving phase. Our experimental resultsf6i were a bit lower than our theoretical one$%¥
oracle samples were sufficient. If we use the heuristic starting with 3220 ~ 22158 samples, we get
about the same amount of vectors for the solving phase. $nctige there are no queries lost during
reduction. We thus have much more queries than should actelrequired for a successful solving
phase and correctly solve the problem with success pratyatiibse to 100%. So we can try to start with
less. By starting off with 2°6° queries and thus loosing some queries in each reductiormlyeumalso
solved theLPN problem in slightly over 50% of the cases. The gain in totargjuicomplexity forLF2 is
thus noticeable but not extremely important.

As another example, consider the parameteksef768 1 = 0.05 proposed at the end 6f [32]. The
values fora,b which minimize the query complexity a@= 9,b =86 (@-b = 774> k). Solving the
problem withLF1 should thus require abouf?vectors for the solving phase an&dracle samples
overall. UsingLF2, as 3 2° ~ 287 oracle samples would be sufficient, we obtain a reduction ftagt@r
~ 4.

Even thoughLF2 introduces linear dependencies between queries, thisvd@aeem to have any
noticeable impact on the success probability in recovetiegsecret value.

Remark 7.A general observation for all these three algorithms, shalsm by our results, is that the bias
has a big impact on the number of queries and the complexityalRthat the bias has valdé@ " at the
end of the reduction phase. We can see from our tables th&ivilee the value oft, i.e. larger value of
0= 1- 21, the highera can be chosen to solve th®N instance. Also, for a constamnt the higher the
size of the secret, i.e. the lower the noise, the higheain be chosen.

Remark 8.The LF2 algorithm is a variation ofEF1 that offers a different heuristic technique to decrease
the number of initial queries. The same trick could be use®#W*, exhaustive search and MITM.
While the same analysis can be applied for exhaustive seardfMITM as forLF2, BKW* is a
special case. We denote BKW? this variation ofBKW where we use the reduction phase frof®.
Recall that forBKW* we need to have = 2°+15-2"In(8) + (a— 1)2° queries and here the dominant
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Table 7:LF2 query complexity - practice

term is 27152 In(8). Thus, we need to start with-2° + ¢, wheree > 0 and increase such that at the
end of the last iteration of the reduction we get the requinechber of queries. This improves the initial
number of queries and we have a gain of facdor the time complexity. For ahPNygg 1 instance,
our implementation oBKW? requiresn = 21382 — 3.54. 212 initial queries and increases it, during
the reduction phase, up td*?1, the amount of queries needed for the solving phase. Thes ib
an improvement from 2° (See Tabl¢13) to 282 and the time complexity is better. While this is an
improvement oveBKW*, it still performs worse thahF1 andLF2.

5.4 Exhaustive search

Recall that for exhaustive search we have two variants. &beltis forSearch; are displayed in Tablg 8
and TabléP. FoSearch; we observe that the gap between theory and practice is ofa femaller than
4. In terms of number of querieSearch; brings a small improvement comparedLiel. We will see in
the next section the complete comparison between all thienmgnted algorithms. The sarte— 1)2°
dominant term causes the bigger difference for the instalnlef4g0.4 andLPNg4 0 25.

k k
' 32 48 64 80 100 ' 32 48 64 80 100
001 516(1) 570(1) 6.12(1) 13258) 14.93(8) 001 516(1) 570(1) 6.12(1) 14.05(8) 16.06(8)
0.10 1015(4) 1315(4) 16.44(4) 17.93(5) 21.34(5) 0.10 1133(4) 1384(4) 17.61(4) 1850(5) 2204(5)
0.20 1151(3) 1554(3) 17.99(4) 2102(4) 25.15(4) 0.20 1301(3) 17.06(3) 18.99(4) 2176(4) 26.59(4)
0.25 1266(3) 16.18(3) 19.88(3) 0.25 1442(3) 17.25(3) 23.01(3) 28.00(3) 26.71(4)
0.40 1561(2) 19.74(2) 040 1698(2) 24.01(2) 2587(3) 2831(3) 35.00(3)

Table 8:Search; query complexity - practice Table 9:Search; query complexity - theory

The results foSearch, are displayed in Table 10 and Tablg 11.

We notice that for botBearch; andSearch; the instancesPNz20.01, LPN4go 01 andLPNgg 01 have
the number of queries very low. This is due to the following@ivation: fom < 68 linearly independent
gueries and = 0.01 we have that the noise bits are all 0 with a probabilitydartpan 50%. Thus, for
k < 64 we hope that the-+ c queries we receive from the oracle have all the noise set whéxec is a
constant. Withk noiseless, linearly independent queries we can just recwith Gaussian elimination.
This is an application of Remalik 3.
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32 48 64 80 100 32 48 64 80 100
0.01 516(1) 570(1) 6.12(1) 13258) 14.93(8) 001 516(1) 570(1) 6.12(1) 14.058) 16.06(8)
0.10 1015(4) 13.15(4) 15.36(5) 17.93(5) 21.34(5) 0.10 1133(4) 1384(4) 16.89(5) 1850(5) 22.04(5)
0.20 1151(3) 1554(3) 17.99(4) 2102(4) 2515(4) 0.20 1301(3) 17.06(3) 18.99(4) 21.76(4) 26.59(4)
0.25 1266(3) 16.18(3) 20.63(4) 0.25 1442(3) 17.25(3) 22.63(4) 23.38(4) 26.71(4)
0.40 1561(2) 19.74(2) 0.40 1698(2) 24.01(2) 2587(3) 28.31(3) 3500(3)
Table 10:Search, query complexity - practice Table 11:Search, query complexity - theory
55 MITM

In the case of MITM, the experimental and theoretical resate illustrated in Table"12 and Tablg 13.
There is a very small difference between MITM and exhausteéarch algorithms for a sparse secret: in
practice, MITM requires just couple of tens queries lesa §wrch; andSearch, for the same andb

parameters.

k k
' 32 48 64 80 100 ' 32 48 64 80 100
0.01 516(1) 570(1) 6.12(1) 13258) 14.93(8) 0.01 516(1) 570(1) 6.12(1) 14.10(8) 16.10(8)
0.10 1013(4) 13154) 16.47(4) 0.10 1137(4) 1387(4) 17.61(4) 2159(4) 22.05(5)
0.20 1149(3) 1554(3) 0.20 1302(3) 17.06(3) 23.00(3) 28.00(3) 26.59(4)
0.25 1289(2) 0.25 1603(2) 17.26(3) 23.01(3) 28.00(3) 35.00(3)
0.40 0.40 1698(2) 24.01(2) 25.87(3) 28.31(3) 35.00(3)
Table 12: MITM query complexity - practice Table 13: MITM query complexity - theory

5.6 Gaussian Elimination

As aforementioned, in the Gaussian elimination the onlymgtion we need is to have a noise sparse.
We don't run any reduction technique and the noise is notefte As the algorithm depends on the
probability to have a 0 noise ok linearly independent vectors, the complexity decays vergkdy
once we are outside the sparse noise scenario. We presewtthel theoretical results obtained for this

algorithm.
In the next section we will show the effectiveness of thisgaridea in the sparse case scenario and

compare it to the othdrPN solving algorithms.

Again for LPN320.01, LPN4go.01 andLPNega .01 we apply Remark]3.

5.7 Covering Codes

The covering code requires the existence of a code with thimalpcoverage. For each instance one has
to find an optimal code that minimizes the query and time cexifyl. Unlike the previous algorithms,
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k

32 48 64 80 100
001 516 570 612 843 889
0.10 1004 1291 1573 1848 2184
0.20 1531 2104 2660 3208 3884
0.25 1828 2551 3256 3952 4815
0.40 2858 4096 5317 6528 8034

Table 14: Gaussian elimination query complexity - theory

this algorithm cannot be truly automatized. In practice weld test only the cases that were suggested
in [23]. Thus, we are not able to compare the theoretical aactigal values. Nevertheless, we will give
theoretical values for different practical parameterdmrnext section.

6 Complexity Analysis of theLPN Solving Algorithms

We have compared our theoretical bounds with our practesdlts and we saw that there is a small
difference between the two. Our theoretical analysis algesgighter bounds compared with the results
from [32]. We now extend our theoretical results and comphesasymptotic performance of all the
LPN algorithms for practical parameters used by ltR-based constructions. We consider the family
of LPNK%k instances proposed i0l[3)14]. Although the covering codeectbe automatized, as for

each instance we have to try different codes with differegssand dimensions, we provide results also
for this algorithm. When dealing with the covering code retthn, we always assume the existence of
an ideal code and compute the bias introduced by this stepddM®t consider here concatenation of
ideal codes and we will see that we obtain a worse result ®LENs120 105 instance, although the
difference is small. We also stick with tH&KW reduction steps and don't use thE2 reduction. As
aforementioned, th&F2 reduction brings a small improvement to the final complexitlyis does not
affect the comparison between all theN solving algorithms.

We analyse the time complexity of each algorithm, by whichmesan the number of bit operations
the algorithm performs while solving drPN problem. For each algorithm, we consider valueg far
which the parameter®, b) minimising the time complexity are such that a-b. For theLF2 algorithm,
we select the initial number of queries such that we are lgft at least’ = 8In(3- 2*’)63*2a queries after
the reduction phase. Recall that Byarch; we denote the standard exhaustive search algorithm and
Search, is making use of a Walsh-Hadamard transform. The resultdlas&ated in Figuréil. We recall
the time complexity and the initial number of queries forteatgorithm in Tabl€ 15, wherSrepresents
the number of sparse secrets w8k 2°. For MITM, the valuesS; (resp.$,) represent the number of
possible values for the first (resp. second) half of the satre 8(In(65,S;))d 2" represents the number
of queries left after the reduction phase &nepresents the Hamming weight of the mask used. Recall
that® is 1.

We can bound the logarithmic complexity of all these aldpons byﬁ +¢1 and log (k) +vk+co.

The lower bound is given by the asymptotic complexity of theu&sian elimination that can be expressed

_ 1
as logk+ vk whent = N

The complexity ofBKW can be written as mja.ap(poly - 2° - 6*261) and for the other algorithms

the formula is mip_ap(poly - (22 + 32")), wherepoly denotes a polynomial factor. By searching for the

optimala, b values, fora> 1, we finda~ log, Kk ___andb= g and obtain that2dominatesS Z'. For

(logzk)2In 3

k
0=1— %( we obtain the complexitpoly - 2°2® , For the case wher@= 1, we have that the complexity
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of BKW is poly - 2, while for LF1, LF2, Search, we havepoly +k2K. A more special analysis needs to be
done for theSearch; andMIT M: here we have that the complexitypsly - S andpoly - §, respectively,
where we defin& to be #{v €{0,1}% | HW(v) <r}. We need to bound the value &f By induction we

can show thag < K- . K. Forrfv\/R we have that ~ (1+ 9 )\/Randr’z(%Jrz;\‘ﬁ)\/R We obtain

that the complexity for both algorithms sly - 2vklogok+O(VE) wherey is a constant. This is not better
k
than 2°%2® for k < 200000, but asymptotically this gives a better complexity.

We see that in some cases increasing the valuk ofly result in a decrease in time complex-
ity. The reason for this is that we are consideritigN instances where the noise parametdakes
value %( Thus, ask grows, the noise is reduced, which leads to an interestadetoff between the
complexity of the solving phase and the complexity of theuntidn phase of the various algorithms.
This behaviour does not seem to occur for Bi&W algorithm. In this case, the query complexity
n= 21— %()*Zaln(Zk) + (a—1)2" is largely dominated by the first term, which grows exponen-
tially not only in terms of the noise parameter, but also imie of the block sizé.

Remark 9 I(F1 vs. Search;). As shown in Figuré]l, the overall complexity of th€&1 and Search;
algorithms is quasi identical. From Theorelms 5land 9, we ckethat for the same parametéasb), the
Search, algorithm should perform better as long @s: 2°-1. This is indeed the case for the instances
we consider here, although the difference in complexityissenely small.

We can see clearly that for théN, 1 1 family of instances, the Gaussian elimination outperfoaths
the other algorithms fok > 500. For an;k <1000, theLPN, 3 does not offer an 80 bit security. This
requirement is achieved fér= 1090.

Selecting secure parametertVe remind that for each algorithm we considered, our amnalyside use
of a heuristic assumption of query and noise independerieeratiuction. In order to propose security
parameters, we simply consider the algorithm which perfobest under this assumption.
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LPN algorithm Query complexity) Time complexityf)

BKW 2152 InB)+(@a-12>  kan

LF1 8In(%)5 2 +(a—1)2" kan-+ b2b

Search; 8In(%)5 % +(a—1)2° kan+8In(%)3-2's
LF2 3.2°>8In(%)5 = kan-+ b2

Searchy 8In(%)5 % +(a—1)2° kan+ b2P

kan+ comp + compmitm
MITM 8IN(351%)5 % +(a—1)2°  wherecomp = (S; +S)n’ and
COMPmitm = (Sl-i-Sz)E(l o) T SiSn (l 1)t

o ,/2|n2k“ 0)252 | ot o125
Gaussian elimination (1— T [F=o (y2in % w):é L
whereo = /2In(3 1-7

Table 15: Query & Time compIeX|ty fdrPN solving algorithms for recovering the firstits

By taking all the eight algorithms described in this artidlableg 18-23 display the logarithmic time
complexity for variousLPN parameters. For instance, thE2 algorithm requires & steps to solve a
LPN3840.25 instance.

We recall here the result frorh [23]: an instarldeNs320 125 offers a security of 79. We obtain a
value of 82. The difference comes mainly from the usé &2 reduction in[[23] and from a search of
optimal concatenation of linear codes.

When comparing all the algorithms, we have to keep in minttttreGaussian elimination recovers
the whole secret, while for the rest of the algorithms we gha complexity to recover a block of the
secret. Still, this does not affect our comparison as we paveen in Sectionl3 that the complexity of
recovering the first block dominates the total complexity.

We highlight with red the best values obtained for differeRN instances. We observe the following
behaviour: for a sparse case scenario,t.€.0.05 ort = %fk < 0.05, the Gaussian elimination offers
the best performance and kdrom our tables offers a 80 bit security. Once we are outdigesparse
case scenario, we have thdt2 and the covering code algorithms are the best ones. Theisgwarde
proves to be better tharF2 for a level of noise of A25. While the performance of the covering code
reduction highly depends on the sparseness of the ridi@ehas a more general reduction phase and is
more efficient for noise parameters o8 and 4. Also for at > 0.5 the covering code is better than
the Gaussian elimination.

Thus, for different scenarios, there are different al¢ponis that prove to be efficient. This comparison
clearly shows that for the family of instancletBNk;k neither tha(BKW, nor its variants are the best ones.

One should use the Gaussian elimination algorithm.

As we have shown, there still remains a small gap betweerhdwdtical and practical results for
the algorithms we analysed. It thus seems reasonable t@ts&fety margin when selecting parameters
to achieve a certain level of security.
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K K
256 384 448 512 576 640 768 1280 256 384 448 512 576 640 768 1280
%( 69 88 97 106 114 123 140 198

1
Uk 50 63 71 79 8 88 102 145
0.05 67 88 98 109 118 127 145 216 0.05 50 62 71 79 87 95 102 159
0125 79 105 116 128 138 149 170 253 0125 56 73 78 88 98 107 125 176

0.25 93 123 137 150 163 175 201 295 0.25 64 84 89 100 110 121 142 199

0.4 115 147 163 180 196 212 244 347 04 76 94 103 116 129 142 168 229
Table 16: Security of PN against thé8KW al- Table 17: Security of PN against theLF1 al-
gorithm gorithm

. k . k

256 384 448 512 576 640 768 1280 256 384 448 512 576 640 768 1280

% 49 61 69 78 85 86 100 143 ﬁ 56 69 77 80 87 95 108 154
005 49 61 69 78 8 94 100 158 005 51 69 78 84 89 95 111 162
0125 55 73 77 87 97 106 124 175 0125 64 82 91 100 110 121 140 199
025 64 84 88 99 109 121142 198 025 82 110 122 134 145 155 179 263

04 76 94 103 116 129 141 168 229 04 109 141 157 173 189 205 236 337
Table 18: Security of PN against the_F2 al- Table 19: Security oE PN against theéearch;
gorithm algorithm

Based on this analysis, we could recommend il instanced.PNs120 25, LPNg4g0.125, LPN12000.05

or LPN _ 1 to achieve 80 bit security for different noise levels. Weentitat the valué.PNvgg0.05
1280 e 8

that Levieil and Fouque suggest as a secure instance to wusghaoffers only 66 bit security and thus
is not recommended.

7 Conclusion

In this article we have analysed and presented the exikfigalgorithms in a unified framework. We
introduced a new theoretical analysis and this has imprdvedounds of Levieil and Fouque [32]. In
order to give a complete analysis for thBN solving algorithms, we also presented three algorithms
that use the advantage that the secret is sparse. We analgseithe latest algorithm presented at Asi-
acrypt'14. While the covering code and thE2 algorithms perform best in the general case where the
Bernoulli noise parameter is constant, the Gaussian dditioim shows that for the sparse case scenario
the length of the secret should be bigger than 1100 bits., Al®oshow that some values proposed by
Leviel and Fouque are insecure in the sparse case scenario.
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Hoeffding’s Bounds

Theorem 12. [25] Let X1, Xy, ..., X, be n independent variables. We are given tRgX; € [a;,[3i]] =1
for 1 <i <n.We define %= X; + ...+ X, and EX] is the expected value of X. We have that

22

PriX —E[X] > 1] < e ib-ar

and

22

PIX —E[X] < —t] <e fhafi-a?

forany t> 0.

28



B LF1 - full recovery of the secret

We provide here an example of thé1 algorithm, for theLPNs120 125 instance, where we recover the
full secret. We provide the values af b, n and time complexity to show that indeed the number of
queries for the first iteration, dominates the number of igseneeded later on. Also, this shows that the
time complexity of recovering the first block dominates toaktime complexity. FOLPNs120.125, We
obtain the following values:

o

log,n log,t
74 7659 8843

63 6568 7729
54 6152 7291
54 5632 6728
45 4732 5802
37 3937 4980
31 3498 4514
31 3300 4266
25 2702 3636
20 2256 3156
16 2101 2967
16 1772 2579
12 1489 2251
12 1330 2019
11 1138 1736
2 6 926 1410
17 1 5 830 1169
Table 24: Full secret recovery for the instahd®Ns120.125
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The way one can interpret this table is the followingdi1 recovers first 74 bits by taking = 7
and requiring 2°°° queries. The total complexity of this step, i.e. the redurgtisolving and updating
operation, is of 343 bit operations. NextLF1 solvesLPN43g0.125 and continues this process until it
recovers the whole secret.

We can easily see that indeed the number of queries and tleectomplexity of the first block
dominate the other values.
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