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Abstract. The Learning Parity with Noise problem (LPN) is appealing in cryptography as it is considered to
remain hard in the post-quantum world. It is also a good candidate for lightweight devices due to its simplicity.
In this paper we provide a comprehensive analysis of the existing LPN solving algorithms, both for the general
case and for the sparse secret scenario. In practice, theLPN-based cryptographic constructions use as a refer-
ence the security parameters proposed by Levieil and Fouque. But, for these parameters, there remains a gap
between the theoretical analysis and the practical complexities of the algorithms we consider. The new theoreti-
cal analysis in this paper provides tighter bounds on the complexity of LPN solving algorithms and narrows this
gap between theory and practice. We show that for a sparse secret there is another algorithm that outperforms
BKW and its variants. Following from our results, we further propose practical parameters for different security
levels.

1 Introduction

The Learning Parity with Noise problem (LPN) is a well-known problem studied in cryptography, coding
theory and machine learning. In theLPN problem, one has access to queries of the form(v,b), wherev
is a random vector and the inner product betweenv and a secret vectors is added to some noise to obtain
b. Given these queries, one has to recover the value ofs. So, the problem asks to recover a secret vector
sgiven access to noisy inner products of itself with random vectors.

It is believed thatLPN is resistant to quantum computers so it is a good alternativeto the number-
theoretic problems (e.g. factorization and discrete logarithm) which can be solved easily with quantum
algorithms. Also, due to its simplicity, it is a nice candidate for lightweight devices. As applications where
LPN or LPN variants are deployed, we first have the HB family of authentication protocols: HB [26],
HB+ [27], HB++ [11], HB# [20] andAUTH [30]. An LPN-based authentication scheme secure against
Man-in-the-Middle was presented in Crypto ’13 [34]. There are also several encryption schemes based
onLPN: Alekhnovich [3] presents two public-key schemes that encrypt one bit at a time. Later, Gilbert,
Robshaw and Seurin [20] introduce LPN-C, a public-key encryption scheme proved to beIND-CPA.
Two schemes that improve upon Alekhnovich’s scheme are introduced in [15] and [14]. In PKC 2014,
Kiltz et al. [29] propose an alternative scheme to [15]. Duc and Vaudenay [17] introduce HELEN, an
LPN-based public-key scheme for which they propose concrete parameters for different security levels.
A PRNG based onLPN is presented in [8] and [4].

TheLPN problem can also be seen as a particular case of theLWE [37] problem where we work in
Z2. While in the case ofLWE the reduction from hard lattice problems attests the hardness [37,10,36],
in the case ofLPN there are no such results. The problem is believed to be hard and is closely related to
the long-standing open problem of efficiently decoding random linear codes.

In the current literature, there are few references when it comes to the analysis ofLPN. The most well-
known algorithm isBKW [9]. When introducing theHB+ protocol [27], which relies on the hardness of
LPN, the authors propose parameters for different levels of security according to theBKW performance.
These parameters are shown later to be weaker than thought [32,19]. Fossorier et al. [19] provide a new
variant that brings an improvement over theBKW algorithm. Levieil and Fouque [32] also present the
BKW algorithm and introduce two improvements over it. For theiralgorithm based on the fast Walsh-
Hadamard transform, they provide the level of security achieved by different instances ofLPN. This
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analysis is referenced by most of the papers that make use of the LPN problem. While they offer a
theoretical analysis and propose secure parameters for different levels of security, the authors do not
discuss how their theoretical bounds compare to practical results. As we will see, there is a gap between
theory and practice. In the domain of machine learning, [21,39] also cryptanalyse theLPN problem. The
best algorithm for solvingLPN was presented at Asiacrypt 2014 [23]. This new variant ofBKW uses
covering codes as a novelty.

While these algorithms solve the general case when we have a random secret, in the literature there
is no analysis and implementation done for an algorithm specially conceived for the sparse secret case,
i.e. the secret has a small Hamming weight.

TheBKW algorithm can also be adapted to solve theLWE problem in exponential time. Implemen-
tation results and improvements of it were presented in [2,1,16]. In terms of variants ofLPN, we have
Ring-LPN [24] and SubspaceLPN [30]. As an application for Ring-LPN we have the Lapin authentica-
tion protocol [24] and its cryptanalysis in [6,22].

Motivation & Contribution. Our paper comes to address exactly the aforementioned open problems.
First, we present the current existingLPN solving algorithms in a unified framework. For these algo-
rithms, we provide experimental results and give a better theoretical analysis that brings an improvement
over the work of Levieil and Fouque [32]. Furthermore, we implement and analyse three new algorithms
for the case where the secret is sparse. Our results show thatfor a sparse secret theBKW family of al-
gorithms is outperformed by an algorithm that uses Gaussianelimination. Our motivation is to provide
a theoretical analysis that matches the experimental results. Although this does not prove thatLPN is
hard, it gives tighter bounds for the parameters used by the aforementioned cryptographic schemes. It
can also be used to have a tighter complexity analysis of algorithms related toLPN solving. Our results
were actually used in [23] and also forLWE solving in [16].

Organization. In Section 2 we introduce the definition ofLPN and present the mainLPN solving algo-
rithms. We also present the main ideas of how the analysis wasconducted in [32]. We introduce novel
theoretical analyses and show what improvements we bring inSection 3. Besides analysing the current
existing algorithms, we propose three new algorithms and analyse their performance in Section 4. In
Section 5, we provide the experimental results for the algorithms described in Section 3 & 4. We com-
pare the theory with the practical results and show the tightness of our query complexity. We provide
a comparison between all these algorithms in Section 6 and propose practical parameters for a 80 bit
security level.

Notations and Preliminaries.Let 〈·, ·〉 denote the inner product,Z2 = {0,1} and⊕ denote the bitwise

XOR. For a domainD, we denote byx
U←−D the fact thatx is drawn uniformly at random fromD. We

use small letters for vectors and capital letters for matrices. We denote the Hamming weight of a vector
v by HW(v).

2 LPN

In this section we introduce theLPN problem and the algorithms that solve it. For ease of understanding,
we present theLPN solving algorithms in a unified framework.

2.1 TheLPN Problem

Intuitively, theLPN problem asks to recover a secret vectorsgiven access to noisy inner products of itself
and random vectors. More formally, we present below the definition of theLPN problem. We maintain
as much as possible the notations from [32].
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Definition 1 (LPN oracle). Let s
U←− Z

k
2, let τ ∈]0, 1

2[ be a constant noise parameter and let Berτ be the
Bernoulli distribution with parameterτ. Denote by As,τ the distribution defined as

{(v,b) | v U←− Z
k
2,b= 〈v,s〉⊕d,d← Berτ} ∈ Z

k+1
2 .

AnLPN oracleALPN
s,τ is an oracle which outputs independent random samples according to As,τ.

Definition 2 (SearchLPN problem). Given access to anLPN oracleALPN
s,τ , find the vector s. We denote

byLPNk,τ theLPN instance where the secret has size k and the noise parameter is τ. Let k′ ≤ k. We say
that an algorithmM (n, t,m,θ,k′)-solvesthe searchLPNk,τ problem if

Pr[M ALPN
s,τ (1k) = s1 . . .sk′ | s U←− Z

k
2]≥ θ,

andM runs in time t, uses memory m and asks at most n queries from theLPN oracle.

Note that we consider here the problem of recovering the firstk′ bits of the secret. We will show in
Section 3 that for all the algorithms we consider, the cost ofrecovering the full secrets is dominated by
the cost of recovering the firstk′ bits ofs.

An equivalent way to formulate the searchLPNk,τ problem is as follows: given access to a random
matrix A∈ Z

n×k
2 and a column vectorb overZ2, such thatAs⊕d = b, find the vectors. Here the matrix

A corresponds to the matrix that has the vectorsv on its rows,s is the secret vector of sizek and b
corresponds to the column vector that contains the noisy inner products. The column vectord is of size
n and contains the corresponding noise bits.

One may observe that withτ = 0, the problem is solved in polynomial time through Gaussianelimi-
nation givenn= Θ(k) queries. The problem becomes hard once noise is added to the inner product. The
value ofτ can be either independent or dependent of the valuek. Usually the value ofτ is constant and
independent from the value ofk. A case whereτ is taken as a function ofk occurs in the construction of
the encryption schemes [3,14]. Intuitively, a larger valueof τ means more noise and makes the problem
of searchLPN harder. The value of the noise parameter is a trade-off between the hardness of theLPNk,τ
and the practical impact on the applications that rely on this problem.

TheLPN problem has also a decisional form. ThedecisionalLPNk,τ asks to distinguish between the
uniform distribution overZk+1

2 and the distributionAs,τ. A similar definition for an algorithm that solves
decisionalLPN can be adopted as above. LetUk+1 denote an oracle that outputs random vectors of size
k+1. We say that an algorithmM (n, t,m,θ)-solvesthe decisionalLPNk,τ problem if

| Pr[M ALPN
s,τ (1k) = 1]−Pr[M Uk+1(1k) = 1] |≥ θ

andM runs in timet, uses memorym and needs at mostn queries.
Search and decisionalLPN are polynomially equivalent. The following lemma expresses this result.

Lemma 1 ([28,8]).If there is an algorithmM that(n, t,m,θ)-solves the decisionalLPNk,τ, then one can
build an algorithmM ′ that(n′, t ′,m′,θ′,k)-solves the searchLPNk,τ problem, where n′= O(n·θ−2 logk),
t ′ = O(t ·k ·θ−2 logk), m′ = O(m·θ−2 logk)) andθ′ = θ

4.

We do not go into details as this is outside the scope of this paper. We only analyse the solving
algorithms for searchLPN. From now on we will refer to it simply asLPN.

2.2 LPN Solving Algorithms

In the current literature there are several algorithms to solve theLPN problem. The first that appeared,
and the most well known, isBKW [9]. This algorithm recovers the secrets of an LPNk,τ instance in
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sub-exponential 2O( k
logk ) time complexity by requiring a sub-exponential number 2O( k

logk ) of queries from
the ALPN

s,τ oracle. Levieil and Fouque [32] propose two new improvements which are calledLF1 and
LF2. Fossorier et. al [19] also introduce a new algorithm, whichwe denoteFMICM, that brings an
improvement overBKW. The best algorithm to solveLPN was recently presented at Asiacrypt 2014 [23].
It can be seen as a variant ofLF1 where covering codes are introduced as a new method to improve the
overall algorithm. All these algorithms still require a sub-exponential number of queries and have a
sub-exponential time complexity.

UsingBKW as a black-box, Lyubashevsky [33] introduces a ”pre-processing” phase and solves an

LPNk,τ instance withk1+η queries and with a time complexity of 2O( k
loglogk ). The queries given toBKW

have a worse bias ofτ′ = 1
2− 1

2

(

1−2τ
4

)
2k

η logk . Thus, this variant requires a polynomial number of queries
but has a worse time complexity. Given onlyn = Θ(k) queries, the best algorithms run in exponential
time 2Θ(k) [35,38].

An easy to solve instance ofLPN was introduced by Arora and Ge [5]. They show that in thek-wise
version where thek-tuples of the noise bits can be expressed as the solution of apolynomial (e.g. there
are no 5 consecutive errors in the sequence of queries), the problem can be solved in polynomial time.
What makes the problem easy is the fact that an adversary is able to structure the noise.

In this paper we are interested in theBKW algorithm and its improvements presented by Levieil
and Fouque [32] and by Guo et al. [23]. The common structure ofall these algorithms is the following:
given n queries from theALPN

s,τ oracle, the algorithm tries to reduce the problem of finding asecret
s of k bits to one where the secrets′ has onlyk′ bits, with k′ < k. This is done by applying several
reductiontechniques. We call this phase thereduction phase. Afterwards, during thesolving phasewe
can apply asolvingalgorithm that recovers the secrets′. We then update the queries with the recovered
bits and restart to fully recovers. For the ease of understanding, we describe all the aforementionedLPN
solving algorithms in this setting where we separate the algorithms in two phases. We emphasize the
main differences between the algorithms and discuss which improvements they bring.

First, we assume thatk= a·b. Thus, we can visualise thek-bit length vectorsv asa blocks ofb bits.
We defineδ = 1−2τ.

BKW∗ Algorithm TheBKW∗ algorithm as described in [32] works in two phases:

Reduction phase.Given n queries from theLPN oracle, we group them in equivalence classes. Two
queries are in the same equivalence class if they have the same value on a setq1 of b bit positions.
Theseb positions are chosen arbitrarily. There are at most 2b such equivalence classes. Once this sepa-
ration is done, we perform the following steps for each equivalence class: pick one query at random, the
representative vector, and xor it to the rest of the queries from the same equivalence class. Discard the
representative vector. This will give vectors with all bitsset to 0 on thoseb positions. These steps are
also illustrated in Algorithm 1 (steps 5 - 10). We are left with at leastn−2b queries where the secret is
reduced tok−b effective bits (others being multiplied by 0 in all queries).

We can repeat the reduction techniquea−1 times on other disjoint position setsq2, . . . ,qa−1 and end
up with at leastn− (a−1)2b queries where the secret is reduced tok− (a−1)b= b bits. The bias of the
new queries isδ2a−1

, as shown by the following Lemma withw= 2a−1.

Lemma 2 ([32,9]).If (v1,b1), . . . ,(vw,bw) are the results of w queries fromALPN
s,p , then the probability

that:
〈v1⊕v2⊕ . . .⊕vw,s〉= b1⊕ . . .⊕bw

is equal to1+δw

2 .

It is easy so see that the complexity of performing this step is O(kan).
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Algorithm 1 BKW∗ Algorithm by [32]

1: Input : a setV of n queries(vi ,bi) ∈ {0,1}k+1 from theLPN oracle, valuesa, b such thatk= ab
2: Output : valuess1, . . . ,sb

3: Partition the positions{1, . . . ,k}\{1, . . . ,b} into disjointq1∪ . . .∪qa−1 with qi of sizeb
4: for i = 1 toa−1 do ⊲ Reduction phase
5: PartitionV =V1∪ . . .∪V2b s.t. vectors inVj have the the same bit values onqi

6: foreachVj
7: Choose a random(v∗,b∗) ∈Vj as a representative vector
8: Replace each(v,b) by (v,b)⊕ (v∗,b∗), (v,b) ∈Vj for (v,b) 6= (v∗,b∗)
9: Discard(v∗,b∗) from Vj

10: V =V1∪ . . .∪V2b

11: Discard fromV all queries(v,b) such thatHW(v) 6= 1
12: PartitionV =V1∪ . . .∪Vb s.t. vectors inVj have a bit 1 on positionj
13: foreach positioni ⊲ Solving phase
14: si =majority(b), for all (v,b) ∈Vi

15: return s1, . . . ,sb

After a−1 iterations, we are left with at leastn− (a−1)2b queries, and a secret of size ofb effective
bits at positions 1, . . . ,b. The goal is to keep only those queries that have Hamming weight one (step 11

of Algorithm 1). Givenn− (a− 1)2b queries, onlyn′ = n−(a−1)2b

2b will have s single non-zero bit on a
given position and 0 for the rest ofb−1 positions. These queries represent the input to the solving phase.
The bias does not change since we do not alter the original queries. The complexity for performing this
step forn− (a− 1)2b queries isO(b(n− (a− 1)2b)) as the algorithm just checks if the queries have
Hamming weight 1.

Remark 1.Given that we have performed the xor between pairs of queries, we note that the noise bits
are no longer independent. In the analysis ofBKW∗, this was overlooked by Levieil and Fouque [32].1

The originalBKW [9] algorithm overcomes this problem in the following manner: each query that has
Hamming weight 1 is obtained with a fresh set of queries. Given a2b queries the algorithm runs the
xoring process and is left with 2b vectors. From these 2b queries, with a probability of 1− 1

e, there is one
with Hamming weight 1 on a given positioni. In order to obtain more such queries the algorithm repeats
this process with fresh queries. This means that for guessing 1 bit of the secret, the original algorithm
requiresn= a·2b · 1

1−1/e ·n′ queries, wheren′ denotes the number of queries needed for the solving phase.

This is larger thann= 2bn′+(a−1)2b which is the number of queries given by Levieil and Fouque [32].
We implemented and runBKW∗ as described in Algorithm 1 and we discovered that this dependency
does not affect the performance of the algorithm. I.e., the number of queries computed by the theory that
ignores the dependency of the error bits matches the practical results. We needn= n′+(a−1)2b (and
notn= 2bn′+(a−1)2b) queries in order to recover one block of the secret. The theoretical and practical
results are presented in Section 5. Given our practical experiments, we keep the “heuristic” assumption
of independence and the algorithm as described in [32] whichwe calledBKW∗. Thus, we assume from
now on the independence of the noise bits and the independence of the queries.

Another discussion on the independence of the noise bits is presented in [18]. There we can see what
is the probability to have a collision, i.e. two queries thatshare an error bit, among the queries formed
during the xoring steps.

We can repeat the algorithma times, with the same queries, to recover all thek bits. The total time
complexity for the reduction phase isO(ka2n) as we perform the steps described abovea times (instead
of O(kan) as given in [32]). However, by making the selection ofa andb adaptive withab near to the

1 Definition 2 of [32] assumes independence of samples but Lemma 2 of [32] shows the reduction without proving indepen-
dence.
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remaining number of bits to recover, we can show that the total complexity is dominated by the one of
recovering the first block. So, we can typically concentrateon the algorithm to recover a single block.
We provide a more complete analysis in Section 3.

Solving phase.TheBKW solving method recovers the 1-bit secret by applying the majority rule. The
queries from the reduction phase are of the formb′j = si ⊕d′j , d′j ← Ber

(1−δ2a−1)/2 andsi being theith bit

of the secrets. Given that the probability for the noise bit to be set to 1 is smaller than1
2, in more than

half of the cases, these queries will besi . Thus, we decide that the value ofsi is given by the majority
rule (steps 12-14 of Algorithm 1). By applying the Chernoff bounds [12], we find how many queries are
needed such that the probability of guessing incorrectly one bit of the secret is bounded by some constant
ε, with 0< ε < 1.

The time complexity of performing the majority rule is linear in the number of queries.

Complexity analysis.With their analysis, Levieil and Fouque [32] obtain the following result:

Theorem 1 (Th. 1 from [32]). For k = a · b, theBKW∗ algorithm heuristically (n= 20· ln(4k) · 2b ·
δ−2a

+(a−1)2b, t = O(kan),m= kn,θ = 1
2,b)-solves theLPN problem.2

In Section 3 we will see that our theoretical analysis, whichwe believe to be more intuitive and
simpler, gives tighter bounds for the number of queries.

LF1 Algorithm During the solving phase, theBKW algorithm recovers the value of the secret bit by
bit. Given that we are interested only in queries with Hamming weight 1, many queries are discarded at
the end of the reduction phase. As first noted in [32], this canbe improved by using a Walsh-Hadamard
transform instead of the majority rule. This improvement ofBKW is denoted in [32] byLF1. Again, we
present the algorithm in pseudo-code in Algorithm 2. As inBKW∗, we can concentrate on the complexity
to recover the first block.

Reduction phase.The reduction phase forLF1 follows the same steps as inBKW∗ in obtaining new
queries as 2a−1 xors of initial queries in order to reduce the secret to sizeb. At this step, the algorithm does
not discard queries anymore but proceeds directly with the solving phase (see steps 3-10 of Algorithm 2).
We now haven′ = n− (a−1)2b queries after this phase.

Solving phase.The solving phase consists in applying a Walsh-Hadamard transform in order to recover
b bits of the secret at once (steps 11-13 in Algorithm 2). We canrecover theb-bit secret by computing the
Walsh transform of the functionf (x) = ∑i 1v′i=x(−1)b′i . The Walsh transform iŝf (ν) = ∑x(−1)ν·x f (x) =

∑x(−1)ν·x ∑i 1v′i=x(−1)b′i = ∑i(−1)(v
′
i ·ν)+b′i = n′ − 2HW(A′ν+ b′). For ν = s, we have f̂ (s) = n′− 2 ·

HW(d′), whered′ represents the noise vector after the reduction phase. We know that most of the noise
bits are set to 0. So,̂f (s) is large and we suppose it is the largest value in the table off̂ . Thus, we
have to look at the maximum value of the Walsh transform in order to recover the value ofs. A naive
implementation of a Walsh transform would give a complexityof 22b since we apply it on a space of size
2b. Since we apply a fast Walsh-Hadamard transform, we get a time complexity ofb2b [13].

Complexity analysis.The following theorem states the complexity ofLF1:

Theorem 2 (Th. 2 from [32]). For k = a · b and a> 1, the LF1 algorithm heuristically (n= (8b+
200)δ−2a

+(a−1)2b, t = O(kan+b2b),m= kn+b2b,θ = 1
2,b)-solves theLPN problem.3

2 The term(a−1)2b is not included in Theorem 1 from [32]. This factor represents the number of queries lost during the
reduction phase and it is the dominant one for all the algorithms exceptBKW∗.

3 The termb2b in the time complexity is missing in [32]. While in generalkan is the dominant term, in the special case where
a = 1 (thus we apply no reduction step) a complexity ofO(kan) would be wrong since, in this case, we apply the Walsh
transform on the whole secret and the termk2k dominates the final complexity.
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Algorithm 2 LF1 Algorithm

1: Input : a setV of n queries(vi ,bi) ∈ {0,1}k+1 from theLPN oracle, valuesa, b such thatk= ab
2: Output : valuess1, . . . ,sb

3: Partition the positions{1, . . . ,k}\{1, . . . ,b} into disjointq1∪ . . .∪qa−1 with qi of sizeb
4: for i = 1 toa−1 do ⊲ Reduction phase
5: PartitionV =V1∪ . . .∪V2b s.t. vectors inVj have the the same bit values onqi

6: foreachVj
7: Choose a random(v∗,b∗) ∈Vj as a representative vector
8: Replace each(v,b) by (v,b)⊕ (v∗,b∗), (v,b) ∈Vj for (v,b) 6= (v∗,b∗)
9: Discard(v∗,b∗) from Vj

10: V =V1∪ . . .∪V2b

11: f (x) = ∑(v,b)∈V 1v1,...,b=x(−1)bi ⊲ Solving phase

12: f̂ (ν) = ∑x(−1)ν·x f (x) ⊲ Walsh transform off (x)
13: (s1, . . . ,sb) = arg max( f̂ (ν))
14: return s1, . . . ,sb

The analysis is similar to the one done forBKW∗, except that we now work with blocks of the secret
s and not bits. Thus, we bound by12a the probability thatf̂ (s′) > f̂ (s), wheres′ is any of the 2b− 1
values different froms. As for BKW∗, we will provide a more intuitive and tighter analysis forLF1 in
Section 3.2.

BKW∗ vs.LF1. We can see that compared toBKW∗, LF1 brings a significant improvement in the number
of queries needed. As expected, the factor 2b disappeared as we did not discard any query at the end of
the reduction phase. There is an increase in the time and memory complexity because of the fast Walsh-
Hadamard transform, but these terms are not the dominant ones.

LF2 Algorithm LF2 is a heuristic algorithm, also introduced in [32], that applies the same Walsh-
Hadamard transform asLF1, but has a different reduction phase. We provide the pseudocode forLF2
below.

Algorithm 3 LF2 Algorithm

1: Input : a setV of n queries(vi ,bi) ∈ {0,1}k+1 from theLPN oracle, valuesa, b such thatk= ab
2: Output : valuess1, . . . ,sb

3: Partition the positions{1, . . . ,k}\{1, . . . ,b} into disjointq1∪ . . .∪qa−1 with qi of sizeb
4: for i = 1 toa−1 do ⊲ Reduction phase
5: PartitionV =V1∪ . . .∪V2b s.t. vectors inVj have the the same bit values onqi
6: foreachVj
7: V ′j = /0
8: foreach pair (v,b),(v′,b′) ∈Vj , (v,b) 6= (v′,b′)
9: V ′i =V ′i ∪ (v⊕v′,b⊕b′)

10: V =V ′1∪ . . .∪V ′2b

11: f (x) = ∑(v,b)∈V 1v1,...,b=x(−1)bi ⊲ Solving phase

12: f̂ (ν) = ∑x(−1)ν·x f (x) ⊲ compute the Walsh transform off (x)
13: (s1, . . . ,sb) = arg max( f̂ (ν))
14: return s1, . . . ,sb

Reduction phase.Similarly toBKW∗ andLF1, then queries are grouped into equivalence classes. Two
queries are in the same equivalence class if they have the same value on a window ofb bits. In each
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equivalence class we perform the xor of all the pairs from that class. Thus, we do not choose any repre-
sentative vector that is discarded afterwards. Given that in an equivalence class there aren/2b queries,

we expect to have 2b
(n/2b

2

)

queries at the end of the xor-ing. One interesting case is when n is of the form
n= 3 ·2b as with this reduction phase we expect to preserve the numberof queries since

(3
2

)

= 3. For
anyn> 3 ·2b, the number of queries will grow exponentially and will alsoaffect the time and memory
complexity.

Solving phase.This works like inLF1.
In a scenario where the attacker has access to a restricted number of queries, this heuristic algorithm

helps in increasing the number of queries. WithLF2, the attacker might produce enough queries to
recover the secret values.

FMICM Algorithm Another algorithm by Fossorier et al. [19] uses ideas from fast correlation attacks
to solve theLPN problem. While there is an improvement compared with theBKW∗ algorithm, this
algorithm does not perform better thanLF1 andLF2. Given that it does not bring better results, we just
present the main steps of the algorithm.

As the previous algorithms, it can be split into two phases: reduction and solving phase. The reduction
phase first decimates the number of queries and keeps only those queries that have 0 bits on a window of
a given size. Then, it performs xors of several queries in order to further reduce the size of the secret. The
algorithm that is used for this step is similar to the one thatconstructs parity checks of a given weight in
correlation attacks. The solving phase makes use of the fastWalsh-Hadamard transform to recover part
of the secret. By iteration the whole secret is recovered.

Covering Codes Algorithm The new algorithm [23] that was presented at Asiacrypt’14, introduces
a new type of reduction. There is a difference between [23] and what was presented at the Asiacrypt
conference (mostly due to our results). We concentrate hereon [23] and in the next section we present
the suggestions we provided to the authors.

Reduction phase.The first step of this algorithm is to transform theLPN instance where the secrets
is randomly chosen to an instance where the secret has now a Bernoulli distribution. This method was
described in [31,4].

Given n queries from theLPN oracle: (v̄1,b1), (v̄2,b2), . . . ,(v̄n,bn), selectk linearly independent
vectors ¯vi1, . . . , v̄ik. Construct thek×k target matrixM that has on its columns the aforementioned vectors,
i.e. M = [v̄T

i1v̄
T
i2 . . . v̄

T
ik]. Compute(MT)−1 the inverse ofMT , whereMT is the transpose ofM. We can

rewrite thek queries corresponding to the selected vectors asMTs+ d′, whered′ is the k-bit vector
d = (di1,di2, . . . ,dik). We denoteb′ = MTs+d′. For any ¯v j that is not used in matrixM do the following
computation:

v̄ j(M
T)−1b′+b j = 〈v̄ j(M

T)−1,d′〉+d j .

From the initial set of queries, we have obtained a new set where the secret value isd′. This can be
seen as a reduction to a sparse secret. The complexity of thistransform isO(k3+nk2) by the schoolbook
matrix inversion algorithm. This can be improved as follows: for a fixed s, one can split the matrix

(MT)−1 in a = ⌈k
s⌉ parts









M1

M2

. . .
Ma









of s rows. By pre-computing ¯vMi for all v̄ ∈ {0,1}s, the operation of

performing v̄ j(MT)−1 takesO(ka). The pre-computation takesO(2s) and is negligible if the memory
required by theBKW reduction is bigger. With this pre-computation the complexity is O(nka).
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Afterwards the algorithm follows the usualBKW reduction steps where the size of the secret is
reduced tok′ by the xoring operation. Again the vector ofk bits is seen as being split into blocks of size
b. TheBKW reduction is appliedt times. Thus, we havek′ = k− tb.

The secrets of k′ bits is split into 2 parts: one part denoteds1 of k′′ bits and the other part, denoted
s2, of k′− k′′ bits. The next step in the reduction is to guess value ofs2 by making an assumption on
its Hamming weight:HW(s2)≤ w0. The remaining queries are of the form(vi ,bi = 〈vi ,s2〉⊕di), where
vi ,s2 ∈ {0,1}k

′′
anddi ∈ Ber1−δ2t

2

. Thus, the problem is reduced to a secret ofk′′ bits.

At this moment, the algorithm approximates thevi vectors to the nearest codewordgi in a [k′′, ℓ]-code
wherek′′ is the size andℓ is the dimension. By observing thatgi can be written asgi = g′iG, whereG is
the generating matrix of the code, we can write the equationsin the form

bi = 〈vi ,s2〉⊕di = 〈g′iG,s2〉⊕ 〈vi−gi ,s2〉⊕di = 〈g′i ,s′2〉⊕d′i

with s′2 = Gs2 andd′i = 〈vi −gi ,s2〉⊕di , whereg′i ,s
′
2 have lengthℓ. If the code has optimal covering

radiusd, vi −gi is a random vector of weight bounded byd, while s2 is a vector of some small weight
bounded byc, with some probability. So,〈vi −gi,s′〉 is biased and we can treatd′i in place ofdi .

In [23], the authors approximate the bias of〈vi −gi ,s2〉 to δ′ =
(

1−2 d
k′′
)c

, as if all bits were inde-
pendent. As discussed in the next section, this approximation is far from good.

No queries are lost during this covering code operation and now the secret is reduced toℓ bits. We
now haven′ = n−k− t2b queries after this phase.

Solving phase.The solving phase of this algorithm follows the same steps asLF1, i.e. it employs a fast
Walsh-Hadamard transform. One should notice that the solving phase recoversℓ relations between the
bits of the secret and not actualℓ bits of the secret.

Complexity analysis.Recall that in the algorithm two assumptions are made regarding the Hamming
weight of the secret: thats2 has a Hamming weight smaller thanc and thats1 has a Hamming weight
smaller thanw0. This holds with probability Pr(w0,k′−k′′) ·Pr(c,k′′) where

Pr(w,m) =
w

∑
i=0

(1− τ)m−iτi
(

m
i

)

.

The total complexity is given by the complexity of one iteration to which we add the number of times
we have to repeat the iteration. We state below the result from [23]:

Theorem 3 (Th 1. from [23]).
Let n be the number of samples required and t,a,b,w0,c, l ,k′,k′′ be the algorithm parameters. For

theLPNk,τ instance, the number of bit operations required for a successful run of the new attack is equal
to

C∗ =
Csparse reduction +Cbkw reduction +Cguess +Ccovering code +CWalsh transform

Pr(w0,k′−k′′)Pr(c,k′′)
,

where

– Csparse reduction = nka is the cost of reducing theLPN instance to a sparse secret
– Cbkw reduction = (k+1)tn is the cost of theBKW reduction steps
– Cguess = n′∑w0

i=0

(k′−k′′

i

)

i is the cost of guessing k′−k′′ bits and n′ = n−k− t2b represents the number
of queries at the end of the reduction phase

– Ccovering code = (k′′−ℓ)(2n′+2ℓ) is the cost of the covering code reduction and n′ is again the number
of queries

– CWalsh transform = ℓ2ℓ ∑w0
i=0

(k′−k′′

i

)

is the cost of applying the fast Walsh-Hadamard transform for every
guess of k′−k′′ bits
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under the condition that n− t2b > 1
δ2t+1·δ′2

, whereδ = 1−2τ andδ′ =
(

1−2 d
k′′
)c

and d is the smallest

integer, s.t.∑d
i=0

(k′′

i

)

> 2k′′−ℓ.

The conditionn− t2b > 1
δ2t+1·δ′2

proposed in [23] imposes a lower bound on the number of queries
needed in the solving phase for the fast Walsh-Hadamard transform. In our analysis, we will see that this
is underestimated: the Chernoff bounds dictate a larger number of queries.

3 Tighter Theoretical Analysis

In this section we present a different theoretical analysisfrom the one of Levieil and Fouque [32] for
the solving phases of theLPN solving algorithms. A complete comparison is given in Section 5. Our
analysis gives tighter bounds and aims at closing the gap between theory and practice. For the new
algorithm from [23], we present the main points that we foundto be incomplete.

We first show how the cost of solving one block of the secret dominates the total cost of recovering
s. The main intuition is that after recovering a first block ofk′ secret bits, we can apply a simple back
substitution mechanism and consider solving aLPNk−k′,τ problem. The same strategy is applied by [2]
when solvingLWE. Note that this is simply a generalisation of the classic Gaussian elimination procedure
for solving linear systems, where we work over blocks of bits.

Specifically, letk1 = k andki = ki−1−k′i−1 for i > 1. Now, suppose we were able to(ni , ti ,mi ,θi ,k′i)-
solve anLPNki ,τ instance (meaning we recover a block of sizek′i from the secret of sizeki with probability
θi , in time ti and with memorymi). One can see that forki+1 < ki we need less queries to solve the new
instance (the number of queries is dependent on the sizeki+1 and on the noise level). With a smaller
secret, the time complexity will decrease. Having a shortersecret and less queries, the memory needed
is also smaller. Then, we can(n, t,m,θ,k)-solve the problemLPNk,τ (i.e recovers completely), with
n= max(n1,n2, . . .), θ = θ1+θ2+ . . ., t = t1+k′1n1+ t2+k′2n2 . . . (the termsk′ini are due to query updates
by back substitution) andm= max(m1,m2, . . .). Finally, by takingθi = 3−i, we obtainθ ≤ 1

2 and thus
recover the full secretswith probability over 50%.

It is easily verified that for all the algorithms we consider,we haven= n1, m=m1, andt is dominated
by t1. We provide an example on a concreteLPN instance in Appendix B.

For all the solving algorithms presented in this section we assume thatn′ queries remain after the
reduction phase and that the bias isδ′. For the solving techniques that recover the secret block-by-block,
we assume the block size to bek′.

3.1 BKW∗ Algorithm

Given anLPN instance, theBKW∗ solving method recovers the 1 bit secret by applying the majority rule.
Recall that the queries are of the formb′j = si ⊕d′j , d′j ← Ber(1−δ′)/2. The majority of these queries will
most likely beb′j = si . It is intuitive to see that the majority rule fails when morethan half of the noise bits
are 1 for a given bit. Any wrong guess of a bit gives a wrong value of thek-bit secrets. In order to bound
the probability of such a scenario, we use the Hoeffding bounds [25] with Xj = ej (See Appendix A).

We have Pr[Xj = 1] = 1−δ′
2 . For X = ∑n′

j=1Xj , we haveE(X) = (1−δ′)n′
2 and we apply Theorem 12 with

t = δn′
2 , α j = 0 andβ j = 1 and we obtain

Pr[incorrect guess on si ] = Pr

[

X ≥ n′

2

]

≤ e−
n′δ′2

2 .

As discussed in Remark 1, the assumption of independence is heuristic.
Using the above results for every bit 1, . . . ,b, we can bound by a constantθ, the probability that we

guess incorrectly a block ofs, with 0< θ < 1. Using the union bound, we get thatn′ = 2δ′−2 ln(b
θ). Given

thatn′ = n−(a−1)2b

2b and thatδ′ = δ2a−1
, we obtain the following result.
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Theorem 4. For k≤ a·b, theBKW∗ algorithm heuristically (n= 2b+1δ−2a
ln(b

θ)+(a−1)2b, t =O(kan),
m= kn,θ,b)-solves theLPN problem.

We note that we obtained the above result using the union bound. One could make use of the inde-

pendence of the noise bits and obtainn= 2b+1δ−2a
ln
(

1
1−2−1/k

)

+(a−1)2b, but this would bring a very

small improvement.
In terms of query complexity, we compare our theoretical results with the ones from [32] in Table 1

and Table 2. We provide the log2(n) values fork varying from 32 to 100 and we take different Bernoulli
noise parameters that vary from 0.01 to 0.4. Overall, our theoretical results bring an improvement ofa
factor 10 over the results of [32].

τ k

32 48 64 80 100

0.01 10.97 12.82 15.93 18.66 21.74

0.10 15.84 20.01 24.12 28.20 33.28

0.20 19.71 24.85 30.97 34.83 39.90

0.25 21.81 26.95 33.07 38.14 44.11

0.40 28.24 36.38 43.64 48.71 55.78

Table 1:BKW∗ query complexity - our theory

τ k

32 48 64 80 100

0.01 14.56 16.60 19.68 22.59 25.64

0.10 19.75 23.87 27.95 32.00 37.06

0.20 23.50 28.61 34.69 38.64 43.70

0.25 25.60 30.72 36.79 41.85 47.90

0.40 31.89 40.00 47.37 52.43 59.48

Table 2: BKW∗ query complexity - theory
from [32]

In Section 5.1 we show that Theorem 4 gives results that are very close to the ones we measure
experimentally.

We note that ourBKW∗ algorithm, for which we have stated the above theorem, follows the steps
from Algorithm 1 for k = a ·b. For k < a ·b the algorithm is a bit different. In this case we havea−1
blocks of sizeb and an incomplete block of size smaller thanb. During the reduction phase, we first
partition the incomplete block and then apply(a−2) reduction steps for the complete blocks. We finally
haveb bits to recover. Other than this small change, the algorithmremains the same.

If the term 2b+1δ−2a
ln( b

θi
) dominatesn, the next iteration can usea decreased by 1 leading to a

new n≈ 2b+1δ−2a−1
ln( b

θi+1
) which is roughly the square root of the previousn. So, the complexity of

recovering this block is clearly dominated by the cost of recovering the previous block. If the term
(a−1)2b is dominating, we can decreaseb by one in the next block and reach the same conclusion.

3.2 LF1 Algorithm

For theLF1 algorithm, the secret is recovered by choosing the highest value of a Walsh-Hadamard
transform. Recall that the Walsh transform isf̂ (ν) = n′−2HW(A′ν+b′). For ν = s, we obtain that the
Walsh transform has the valuêf (s) = n′−2HW(d′). We haveE( f̂ (s)) = n′δ′.

The failure probability forLF1 is bounded by the probability that there is another vectorν 6= s such
that HW(A′ν+ b′) ≤ HW(A′s+ b′). Recall thatA′s+ b′ = d′. We definex = s+ ν so thatA′ν+ b′ =
A′x+ d′. We obtain that the failure probability is bounded by 2k′ times the probability thatHW(A′x+
d′) ≤ HW(d′), for a fixedk′-bit non-zero vectorx. As A′ is uniformly distributed, independent from
d′, andx is fixed and non-zero,A′x+ d′ is uniformly distributed, so we can rewrite the inequality as
HW(y)≤ HW(d′), for a randomy.
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To bound the failure probability, we again use the Hoeffdinginequality [25]. LetX1,X2, . . . , Xn′ be
random independent variables withXj = y j −d′j , Pr(Xj ∈ [−1,1]) = 1. We haveE(y j −d′j) =

δ′
2 . We can

taket = E[X] = δ′n′
2 in Theorem 12 and obtain:

Pr[incorrect guess on one block]≤ 2k′ Pr

[

n′

∑
j=1

(y j −d′j)≤ 0

]

≤ 2k′e−
n′δ′2

8 .

Again we can bound the probability of incorrectly guessing one block ofsby θ. With n′= 8(ln 2k′

θ )δ′−2,
the probability of failure is smaller thanθ. The total number of queries will ben = n′+(a− 1)2b, we
haveδ′ = δ2a−1

andk′ = b. Similar toBKW, we obtain the following theorem:

Theorem 5. For k≤ a · b, theLF1 algorithm heuristically (n= 8ln(2b

θ )δ
−2a

+(a− 1)2b, t = O(kan+
b2b),m= kn+b2b,θ,b)-solves theLPN problem.

By comparing the term(8b+200)δ−2a
in Theorem 2 with our value of 8ln(2b

θ )δ
−2a

, one might check
that our term is roughly a factor 2 smaller than that of [32] for practical values ofa andb. For example,
for aLPN768,0.01 instance (witha= 11, b= 70), our analysis requires 268 queries for the solving phase
while the Levieil and Fouque analysis requires 269 queries.

3.3 LF2 algorithm

Having the new bounds forLF1, we can state a similar result forLF2. Recall that whenn= 3 ·2b, LF2
preserves the number of queries during the reduction phase.For 3·2b≥ n′ we have that:

Theorem 6. For k≤ a ·b and n= 3 ·2b ≥ 8ln(2b

θ )δ
−2a

, theLF2 algorithm heuristically (n= 3 ·2b, t =
O(kan+b2b),m= kn+b2b,θ,b)-solves theLPN problem.

One can observe that we may allow forn to be smaller than 3· 2b. Given that the solving phase may
require less than 3· 2b, we could start with less queries, decrease the number of queries during the
reduction and end up with the exact number of queries needed for the solving phase.

3.4 Covering Codes Algorithm

Recall that the algorithm first reduces the size of the secretto k′′ bits by runningBKW reduction steps.
Then it approximates thevi vector to the nearest codewordgi in a [k′′, ℓ]-code withG as generator matrix.
The noisy inner products can be rewritten as

bi = 〈g′iG,s2〉⊕ 〈vi−gi,s2〉⊕di = 〈g′i ,GTs2〉⊕d′i = 〈g′i ,s′2〉⊕d′i ,

wheregi = g′iG, s′2 = GTs2 andd′i = 〈gi −vi,s2〉⊕di.
Given that the code has a covering radius ofd and that the Hamming weight ofs2 is smaller thanc,

the bias of〈gi − vi ,s2〉 is computed asδ′ =
(

1−2 d
k′′
)c

in [23], wherek′′ is the size ofs2. We stress that
this approximation is far from good.

Indeed, with the[3,1,3] repetition code given as an example in [23], the xor of two error bits is
unbiased. Even worse: the xor of the three bits has a negativebias. So, when using the code obtained by
25 concatenations of this repetition code andc= 6, with some probability of 36% we have at least two
error bits falling in the same concatenation and the bias makes this approach fail.

We can do the same computation with the concatenation of five[23,12] Golay codes withc= 15, as
suggested in [23]. With probability 0.21%, the bias is zero or negative so the algorithm fails. Withsome
probability 8.3%, the bias is too low.

12



In any case, we cannot take the error bits as independent. When the code has optimal covering radius,
we can actually find an explicit formula for the bias of〈vi −gi,s2〉 assuming thats2 has weightc:

Pr[〈vi −gi,s2〉= 1|HW(s2) = c] =
1

S(k′′,d) ∑
i≤d,i odd

(c
i

)

S(k′′−c,d− i)

whereS(k′′,d) is the number ofk′′-bit strings with weight at mostd.
To solveLPN512,0.125, [23] proposes the following parameters

t = 6 a= 9 b= 63 ℓ= 64 k′′ = 124 w0 = 2 c= 16

and obtainn = 266.3 and a complexity of 279.92. With these parameters, [23] approximated the bias to
(

1−2 d
k′′
)c

= 2−5.91 (with d = 14). With our exact formula, the bias should rather be of 2−7.05. So,n
should be multiplied by 4.82 (the square of the ratio).

Also, we stress that all this assumes the construction of a code with optimal radius coverage. One ex-
ample is the Golay codes. But this code can be used only for fewLPN instances. If we use concatenations
of repetition codes, given as an example in [23], the formulafor the bias changes. Givenℓ concatenations
of the [ki ,1] repetition code, withk1+ . . .+ kℓ = k′′, ki ≈ k′′

ℓ and 1≤ i ≤ ℓ, we would have to split the
secrets2 in chunks ofk1, . . . ,kℓ bits. We takec1+ . . .+cℓ = c whereci is the weight ofs2 on theith chunk.
In this case the bias for each repetition code is

δi = 1−2× 1
S(ki ,di)

∑
j≤di , j odd

(

ci

j

)

S(ki −ci,di − j),

wheredi = ⌊ki
2 ⌋.

The final bias isδ′ = δ1 · · ·δℓ.
We emphasize that the value ofn is underestimated in [23]. Indeed, withn′ = bias−2, the probability

that argmax( f̂ (ν)) = s′2 is too low inLF1. To have a constant probability of successθ, our analysis says

that we should multiplyn′ by 8ln(2ℓ
θ ). ForLPN512,0.125 andθ = 1

3, this is 363.
When presenting their algorithm at Asiacrypt’14, the authors of [23] updated their computation by

using our suggested formulas for the bias and the number of queries. In order to obtain a complexity
smaller than 280, they further improved their algorithm by the following observation: instead of assuming
that the secrets2 has a Hamming weight smaller or equal toc, the algorithm takes now into account all the
Hamming weights that would give a good bias for the covering code reduction. I.e., the algorithm takes
into account all the Hamming weightsci for whichδ′> εset, whereεset is a preset bias. The probability of
a good secret changes from Pr(c,k′′) to Pr(HW) that we define below. They further adapted the algorithm
by using theLF2 reduction steps. Recall that forn= 3 ·2b, the number of queries are preserved during
the reduction phase. With these changes they propose the following parameters forLPN512,0.125:

t = 5 b= 62 ℓ= 60 k′′ = 180 w0 = 2 εset = 2−14.18

Using two[90,30] codes, they obtain thatn= 263.6 = 3 ·2b queries are needed, the memory used is of
m= 272.6 bits and the time complexity isC∗ = 279.7. Thus, this algorithm gives better performance than
LF2 and shows that thisLPN instance does not offer a security of 80 bits.4

With all the above observations we update the Theorem 3.

Theorem 7. The covering code (n= 8ln(2ℓ
θ )

1
δ2t ε2

set

+ t2b ,C∗,m= kn+2k′′−ℓ+ ℓ2ℓ,θ, ℓ)-solves theLPN

problem5, whereδ = 1−2τ andδ′ > εset is the bias introduced by the covering code reduction that is

4 For the computation ofn the authors of [23] use the term 4ln(2ℓ) instead of 8ln( 2ℓ
θ ). If we use our formula, we obtain that

we need more than 3·2b queries and obtain a complexity of 280.08.
5 This n corresponds to covering code reduction usingLF1. For LF2 reduction steps we need to haven = 3 · 2b + k ≥

8ln( 2ℓ
θ ) 1

δ2t ε2
set

.
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lower bounded by a preset bias. The code chosen for the covering code reduction step can be expressed
as the concatenation of one or more linear codes. The time C∗ complexity can be expressed as

C∗ =
Csparse reduction +Cbkw reduction +Cguess +Ccovering code +CWalsh transform

Pr(w0,k′−k′′)Pr(HW)
,

where

– Csparse reduction = nka is the cost of reducing theLPN instance to a sparse secret
– Cbkw reduction = (k+1)tn is the cost of theBKW reduction steps

– Cguess = n′∑w0
i=0

(k′−k′′

i

)

i is the cost of guessing k′−k′′ bits and n′ = n−k− t2b represents the number
of queries at the end of the reduction phase

– Ccovering code = (k′′−ℓ)(2n′+2ℓ) is the cost of the covering code reduction and n′ is again the number
of queries

– CWalsh transform = ℓ2ℓ ∑w0
i=0

(k′−k′′

i

)

is the cost of applying the fast Walsh-Hadamard transform for every
guess of k′−k′′ bits

– Pr(HW) = ∑ci
(1− τ)k′′−ci τci

(k′′

ci

)

where ci is chosen such that the biasδ′, which depends on ci and
the covering radius d of the chosen code, is larger thanεset

4 Other LPN Solving Algorithms

Most LPN-based encryption schemes useτ as a function ofk, e.g.τ = 1√
k

[3,14]. The bigger the value
of k, the lower the level of noise. Fork= 768, we haveτ≈ 0.036. For such a value we say that the noise
is sparse. Given that theseLPN instances are used in practice, we consider how we can construct other
algorithms that take advantage of this extra information.

The first two algorithms presented in this section bring new ideas for the solving phase. The third
one provides a method to recover the whole secret and does notneed any reduction phase.

We maintain the notations used in the previous section:n′ queries remain after the reduction phase,
the bias isδ′ and the block size isk′.

For these solving algorithms, we assume that the secret is sparse. Even if the secret is not sparse, we
can just assume that the noise is sparse. We can transform anLPN instance to an instance ofLPN where
the secret is actually a vector of noise bits by the method presented in [31]. The details of this transform
were given in Section 2.2 for the covering codes algorithm.

We denote by∆ the sparseness of the secret, i.e. Pr[si = 1] = 1−∆
2 for any 1≤ i ≤ k. We say that the

secret is∆-sparse. Given the transformation explained above, we can take∆ = δ.
The assumption we make is that the Hamming weight of thek′-bit length secrets is in a given range.

On average we have thatHW(s) = k′(1−∆
2 ), so an appropriate range is

[

0,k′(1−∆
2 )+ σ

2

√
k′
]

, whereσ is

constant. We denotek′(1−∆
2 ) by EHW and σ

2

√
k′ by dev. Thus, we are searching in the range[0,EHW +

dev]. We can bound the probability that the secret has a Hamming weight outside the range by using the
Hoeffding bound [25].

Let X1,X2, . . . ,Xk′ be independent random variables that correspond to the secret bits, i.e. Pr[Xi =
1] = 1−∆

2 and Pr(Xi ∈ [0,1]) = 1. We haveE(X) = 1−∆
2 k′. Using Theorem 12, we get that

Pr[HW(s) not in range] = Pr

[

HW(s)− (1−∆)
2

k′ ≥ σ
√

k′

4

]

≤ e−
σ2
2 .

If we want to bound byθ/2 the probability thatHW(s) is not in the correct range for one block, we

obtain thatσ =
√

2ln(2
θ).
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4.1 Exhaustive search on sparse secret

We haveS= ∑EHW+dev

i=0

(k′

i

)

vectorsν with Hamming weight in our range. One first idea would be to
perform an exhaustive search on the sparse secret. We denotethis algorithm bySearch1. For every such
valueν, we computeHW(Aν+ b). In order to compute the Hamming weight we have to compute the
multiplication betweenA and allν which have the Hamming weight in the correct range. This operation
would takeO(Sn′k′) time but we can save ak′ factor by the following observation done in [7]: computing
Aν, with HW(ν) = i means xoringi columns ofA. If we have the values ofAν for all ν whereHW(ν) = i
then we can computeAν′ for HW(ν′) = i +1 by adding one extra column to the previous results.

We use here a similar reasoning done for the Walsh-Hadamard transform. Whenν = s, the value of
HW(As+ b) is equal toHW(d) and we assume that this is the smallest value as we have more noise
bits set on 0 than 1. Thus, going through all possible values of ν and keeping the minimum will give us
the value of the secret. The time complexity ofSearch1 is the complexity of computing the Hamming
weight, i.e.O(Sn′).

BesidesSearch1, which requires a matrix multiplication for each trial, we also discovered that a
Walsh transform can be used for a sparse secret. We call this algorithm Search2. The advantage is that a
Walsh transform is faster than a naive exhaustive search andthus improves the time complexity. We thus
compute the fast Walsh-Hadamard transform and search the maximum of f̂ only for thoseSvalues with
Hamming weight in the correct range. Given that we apply a Walsh transform we get that the complexity
of this solving algorithm isO(k′2k′). So, it is more interesting thanSearch1 whenSn′ > k′2k′ .

For both algorithms the failure probability is given by the scenario where there exists another sparse
valueν 6= ssuch thatHW(Aν+b)≤HW(As+b). As we search throughSpossible values for the secret
we obtain that

Pr[incorrect guess on one block]≤ Se−
n′δ′2

8 .

The above probability accounts for only one block of the secret. Thus we can say that withσ =
√

2ln(2
θ) andn= 8(ln 2S

θ )δ
−2a

+(a−1)2b, the probability of failure is smaller thanθ.

Another failure scenario, that we take into account into ouranalysis, occurs when the secret has a
Hamming weight outside our range.

Complexity analysis.Taking n= n′+(a−1)2b, k′ = b, δ′ = δ2a−1
and∆ = δ, we obtain the following

theorems forSearch1 andSearch2:

Theorem 8. Let S= ∑EHW+dev

i=0

(b
i

)

where EHW = b(1−∆
2 ) anddev = σ

2

√
b and let n′ = 8ln(2S

θ )δ−2a
. For

k≤ a · b and a secret s that is∆-sparse, theSearch1 algorithm heuristically (n= 8ln(2S
θ )δ−2a

+(a−
1)2b, t = O(kan+n′S),m= kn+b

( b
EHW+dev

)

,θ,b)-solves theLPN problem.

Theorem 9. Let S= ∑EHW+dev

i=0

(b
i

)

where EHW = b(1−∆
2 ) and dev = σ

2

√
b. For k≤ a ·b and a secret s

that is∆-sparse, theSearch2 algorithm heuristically (n= 8ln(2S
θ )δ

−2a
+(a−1)2b, t =O(kan+b2b),m=

kn,θ,b)-solves theLPN problem.

Here, we take the probability, that any of the two failure scenarios to happen, to be eachθ/2. A
search for the optimal values such that their sum isθ, brings a very little improvement to our results.
Takingk′ = b, we stress thatS is much smaller than the 2k′ = 2b term that is used forLF1. For example,
for k = 768,a= 11, b= 70 andτ = 0.05, we have thatS≈ 233 which is smaller than 2b = 270 and we
getn′ = 267.33 andn= 273.34 (compared ton′ = 268.32 andn= 273.37 for LF1). We thus expect to require
less queries for exhaustive search compared toLF1. As the asymptotic time complexity ofSearch2 is the
same asLF1 and the number of queries is smaller, we expect to see that this algorithm runs faster than
LF1.
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4.2 Meet in the middle on sparse secret (MITM)

Given thatAs+d= b, we splits into s1 ands2 and rewrite the equation asA1s1+d= A2s2+b. With this
split, we try to construct a meet-in-the-middle attack by looking for A2s2+b close toA1s1. The secrets
has sizek′ and we split it intos1 of sizek1 ands2 of sizek2 such thatk1+k2 = k′. We consider that both

s1 ands2 are sparse. Thus the Hamming weight ofsi lies in the range
[

0,ki(
1−∆

2 )+ σ′
2

√
ki

]

. We denote

ki(
1−∆

2 )+ σ′
2

√
ki by maxHW(ki). In order to bound the probability that both estimates are correct we use

the same bound shown in Section 4 and obtain thatσ′ =
√

2ln(4
θ).

For our MITM attack we have a pre-computation phase. We compute and storeA1s1 for all S1 =

∑maxHW(k1)
i=0

(k1
i

)

possible values fors1. We do the same fors2, i.e computeA2s2+b for all S2 =∑maxHW(k2)
i=0

(k2
i

)

vectorss2. The pre-computation phase takes(S1+S2)n′ steps in total. Afterwards we pickξ bit positions
and hope that the noised has only values of 0 on these positions. If this is true, then we could build a mask

µ that has Hamming weightξ such thatd∧µ= 0. The probability for this to happen is(1+δ′
2 )ξ = e−ξ ln 2

1+δ′ .
We build our meet-in-the-middle attack by constructing a hash table where we store, for alls2 values,

A2s2 + b at positionh((A2s2 + b)∧µ). We haveS2 vectorss2, so we expect to haveS22−ξ vectors on
each position of the hash table. For allS1 values ofs1, we check for collisions, i.e.h((A1s1)∧ µ) =
h((A2s2 + b)∧µ). If this happens, we check ifA1s1 xored withA2s2 + b gives a vectord with a small
Hamming weight. Remember that with the pre-computed valueswe can computed with only one xor
operation. If the resulting vector has a Hamming weight in our range, then we believe we have found the
corrects1 ands2 values and we can recover the value ofs. Given thatA1s1+A2s2+d = b, we expect to
have(A2s2+b)∧µ= A1s1∧µ only whend∧µ= 0. The conditiond∧µ= 0 holds with a probability of
(1+δ′

2 )ξ so we have to repeat our algorithm( 2
1+δ′ )

ξ times in order to be sure that our condition is fulfilled.
As for exhaustive search, we have two scenarios that could result in a failure. One scenario is when

s1 or s2 have a Hamming weight outside the range. The second one happens when there is another vector
ν 6= ssuch thatHW(A1ν1+A2ν2+b)≤HW(A1s1+A2s2+b) and(A1ν1+A2ν2+b)∧µ= 0. This occurs

with probability smaller thanS1S2e−
n′δ′2

8 .

Complexity analysis.The time complexity of constructing the MITM attack is(S1+S2)n′+((S1+S2)ξ+
S1S22−ξn′) · ( 2

1+δ′ )
ξ. We include here the cost of the pre-computation phase and the actual MITM cost.

We obtain that the time complexity isO((S1+S2)n′+(S1+S2)ξ( 2
1+δ′ )

ξ +S1S2n′( 1
1+δ′ )

ξ). Taking again

n′ = n− (a−1)2b, k′ = b, δ′ = δ2a−1
, ∆ = δ, we obtain the following result for MITM.

Theorem 10. Let n′= 8ln(2
θS1S2)δ−2a

. Take k1 and k2 values such that b= k1+k2. Let Sj =∑
maxHW(kj )
i=0

(kj
i

)

wheremaxHW(k j) = k j(
1−∆

2 ) + σ′
2

√

k j for j ∈ {1,2}. For k ≤ a · b and a secret s that is∆-sparse,
the MITM algorithm heuristically (n= 8ln(2

θS1S2)δ−2a
+ (a− 1)2b, t = O(kan+ (S1 +S2)n′ + (S1 +

S2)ξ( 2
1+δ2a−1 )

ξ +S1S2n′( 1
1+δ2a−1 )

ξ),m= kn+S2+(S1+S2)n′,θ,b)-solves theLPN problem.

4.3 Gaussian Elimination

In the case of a sparse noise, one may try to recover the secretsby using Gaussian elimination. It is well
known thatLPN with noise 0, i.e.τ = 0, is an easy problem. If we are givenΘ(k) queries for which the
noise is 0, one can just run Gaussian elimination and inO(k3) recover the secrets. For aLPNk,τ instance,
the event of having no noise fork queries happens with a probabilitypnonoise = (1− τ)k.

We design the following algorithm for solvingLPN: first, we have no reduction phase. For eachk
new queries, we assume that the noise is 0. We recover anν through Gaussian elimination. We must test
if this value is the correct secret by computing the Hamming weight ofA′ν+b′, whereA′ is the matrix
that containsn′ fresh queries andb′ is the vector containing the corresponding noisy inner products.
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We expect to have a Hamming weight in the range[0,(1−δ
2 )n′+σ

√
n′
2 ], whereσ is a constant. From the

previous results we know that for a correct secret we have

Pr[HW(A′s+b′) not in range]≤ e−
σ2
2 .

If we want to bound byθ/2 the probability that the Hamming weight of the noise is not in the correct

range, for the correct secret, we obtain thatσ =
√

2ln(2
θ).

For aν 6= s, we use the Hoeffding inequality to bound thatHW(A′ν+b′) is in the correct range. Let
X1, . . . ,Xn′ be the random variables that correspond toXi = 〈vi ,ν〉⊕bi . Let X = X1+ . . .+Xn′ . We have

E(X) = n′
2 . Using the Hoeffding inequality, we taket = δn′

2 −σ
√

n′
2 and obtain

Pr[failure] = 2k Pr[HW(A′ν+b′)] in correct range]

= 2k Pr[X−E(X)≤−t]

≤ 2ke−
2( δn′

2 −σ
√

n′
2 )2

n′ = 2ke−
(δ
√

n′−σ)2
2

If we bound this probability of failure byθ/2 we obtain that we need at leastn′ = (
√

2ln 2k+1

θ +

σ)2δ−2 queries besides thek that are used for the Gaussian elimination.
As aforementioned, with a probability ofpnonoise = (1− τ)k, the Gaussian elimination will give the

correct secret. Thus, we have to repeat our algorithm1pnonoise
times.

Complexity analysis.The computation of the Hamming weight has a cost ofO(n′k2). Given that we run
the Gaussian elimination and the verification step1pnonoise

times, we obtain the following theorem for this
algorithm:

Theorem 11. Let n′ =

(

√

2ln 2k+1

θ +
√

2ln(2
θ)

)2

δ−2 and let c be a constant. The Gaussian elimination

algorithm (n= k+c
(1−τ)k +n′+c, t = O

(

n′k2+k3

(1−τ)k

)

,m= k2+n′k,θ,k)-solves theLPN problem.6

Remark 2.Notice that this algorithm recovers the whole secret at onceand the only assumption we make
is that the noise is sparse. We don’t need to run the transformsuch that we have a sparse secret and there
are no queries lost during the reduction phase.

Remark 3.In the extreme case where(1− τ)k > θ the Gaussian elimination algorithm can just assume
thatk queries have noise 0 and retrieve the secretswithout verifying that this is the correct secret.

5 Tightness of Our Query Complexity

In this section we compare the theoretical analysis with implementation results of all theLPN solving
algorithms described in Sections 3 & 4.

We implemented theBKW, LF1 and LF2 algorithms as they are presented in [32] and in pseu-
docode in Algorithms 1-3. The implementation was done in C ona Intel Xeon 3.33Ghz CPU. We used
a custom bit library to store and handle bit vectors. Using the OpenMP library7, we have also paral-
lelized certain crucial parts of the algorithms. The xor-ing in the reduction phases as well as the ma-
jority phases for instance, are easily distributed onto multiple threads to speed up the computation.
Furthermore, we implemented the exhaustive search and MITMalgorithms described in Section 4.

6 Given that we receive uniformly distributed vectors from the LPN oracles, we expect to needn+ 2 vectorsv to haven
linearly independent ones. We express this by the use of the constantc.

7 http://openmp.org/wp
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The various matrix operations performed for the sparseLPN solving algorithms are done with the
M4RI library 8. Regarding the memory model used, we implemented the one described in [32] in
order to accommodate theLF2 algorithm. The source code of our implementation can be found at
http://lasec.epfl.ch/lpn/lpn_source_code.zip.

We ran all the algorithms for differentLPN instances where the size of the secret varies from 32 to
100 bits and the Bernoulli parameterτ takes different values from 0.01 to 0.4. A value ofτ = 0.1 for a
smallk as the one we are able to test means that very few, if none, of the queries have the noise bits set
on 1. For this sparse case, an exhaustive search is the optimal strategy. Also,τ = 0.4 might seem also
as an extreme case. Still, we provide the query complexity for these extreme cases to fully observe the
behaviour of theLPN solving algorithms.

For eachLPN instance, we try to find the theoretical number of oracle queries required to get a
50% probability of recovering the full secret while optimizing the time complexity. This means that in
half of our instances we recover the secret correctly. In theother of the cases it may happen that one
or more bits are guessed wrong. We thus takeθ = 1

3 as the probability of failure for the first block.
We choosea andb that would minimize the time complexity and we apply this split in our theoretical
bounds in order to compute the theoretical number of initialqueries. We apply the same split in practice
and try to minimize the number of initial queries such that wemaintain a 50% probability of success.
We thus experimented with different values for the originalnumber of oracle samples, and ran multiple
instances of the algorithms to approximate the success probability. One can observe that in our practical
and theoretical results thea,b parameters are the same and the comparison is consistent. Wewere limited
by the power of our experimental environment and thus we werenot able to provide results for instances
that require more than 230 queries.

5.1 BKW∗

The implementation results forBKW∗ are presented in Table 3. Each entry in the table is of the form
log2(n)(a), wheren is the number of oracle queries that were required to obtain a50% success rate for
the full recovery of the secret. Parametera is the algorithm parameter denoting the number of blocks into
which the vectors were split. We takeb= ⌈ k

a⌉. By maintaining the value ofa, we can easily compute the
number of queries and the time & memory complexity. In Table 4we present the theoretical results for
BKW∗ obtained by using Theorem 4. We can see that our theoretical and practical results are within a
factor of at most 2.

τ k

32 48 64 80 100

0.01 10.40(5) 11.85(6) 15.01(6) 17.68(7) 20.78(7)

0.10 14.32(4) 19.99(4) 23.13(4) 27.30(4)

0.20 18.64(3) 23.84(3)

0.25 21.93(2) 25.95(3)

0.40 27.25(2)

Table 3:BKW∗ query complexity - practice

τ k

32 48 64 80 100

0.01 10.97(5) 12.82(6) 15.93(6) 18.66(7) 21.74(7)

0.10 15.84(4) 20.01(4) 24.12(4) 28.20(4) 33.28(4)

0.20 19.71(3) 24.85(3) 30.97(3) 34.83(4) 39.90(4)

0.25 21.81(2) 26.95(3) 33.07(3) 38.14(3) 44.11(4)

0.40 28.24(2) 36.38(2) 43.64(3) 48.71(3) 55.78(3)

Table 4:BKW∗ query complexity - theory

8 http://m4ri.sagemath.org/
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If we take the example ofLPN100,0.01, we need 220.78 queries and our theoretical analysis gives a
value of 221.47. These two values are very close compared with the value predicted by [32], 225.64, which
is a factor 10 larger. We emphasize again that for both the theory and the practice we use the split that
optimizes the time complexity and from this optimal split wederive the number of queries.

Remark 4.For theBKW∗ algorithm we tried to optimize the average final bias of the queries, i.e. obtain-
ing a better value thanδ2a−1

. Recall that at the beginning of the reduction phase, we order the queries in
equivalence classes and then choose a representative vector that is xored with the rest of queries from the
same class. One variation of this reduction operation wouldbe to change several times the representative
vector. The incentive for doing so is the following: one representative vector that has error vector set on
1 affects the biasδ of all queries, while by choosing several representative vectors this situation may be
improved; more than half of them will have error bit on 0. We implemented this new approach but we
found that it does not bring any significant improvement. Another change that was tested was about the
majority rule applied during the solving phase. Queries have a worst case bias ofδ2a−1

(See Lemma 2),
but some have a larger bias. So, we could apply a weighted majority rule. This would decrease the num-
ber of queries needed for the solving phase. Unfortunately we implemented the idea and discovered that
the complexity advantage is very small.

5.2 LF1

Below we present the experimental and theoretical results for theLF1 algorithm. As a first observation
we can see that, for all instances, this algorithm is a clear optimization over the originalBKW∗ algorithm.
As before, each entry is of the form log2(n)(a), wheren anda are selected to obtain a 50% success rate
for the full recovery of the secret andb= ⌈ k

a⌉.

τ k

32 48 64 80 100

0.01 7.32(6) 10.12(6) 11.58(7) 13.32(8) 14.99(8)

0.10 10.20(4) 13.20(4) 15.52(5) 17.98(5) 21.38(5)

0.20 11.53(3) 15.57(3) 18.03(4) 21.04(4) 25.18(4)

0.25 12.69(3) 16.20(3) 20.70(4) 22.24(4) 25.93(4)

0.40 15.61(2) 19.74(2) 23.97(3)

Table 5:LF1 query complexity - practice

τ k

32 48 64 80 100

0.01 8.89(6) 10.53(6) 12.77(7) 14.17(8) 16.13(8)

0.10 11.38(4) 13.87(4) 17.04(5) 18.56(5) 22.05(5)

0.20 13.01(3) 17.06(3) 19.05(4) 21.77(4) 26.59(4)

0.25 14.42(3) 17.25(3) 22.65(4) 23.39(4) 26.72(4)

0.40 16.95(2) 24.01(2) 25.83(3) 28.30(3) 35.00(3)

Table 6:LF1 query complexity - theory

Table 6 shows our theoretical results forLF1 using Theorem 5. When we compare the experimental
and the practical results forLF1 (See Table 5 and Table 6) we can see that the gap between them isof a
factor up to 3.

Remark 5.One may observe a larger difference for theLPN48,0.4 instance:n= 219.74 (practice) vs.n=
224.01 (theory). For this case, the implementation requiresn = 219.74 initial queries compared with the
theory that requiresn= 224.01 queries. Here we havea= 2 andb= 24 and the term(a−1)2b dominates
the query complexity. The discrepancy comes from the worst-case analysis of the reduction phase where
we say that at each reduction step we discard 2b queries. With this reasoning, we predict to lose 224

queries. If we analyse more closely, we discover that actually in the average-case we discard only 2b ·
[

1−
(

1− 1
2b

)n
]

queries (this is the number of expected non-empty equivalence classes). Thus, with only
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219.74 initial queries, we run the reduction phase and discard 219.70 queries, instead of 224. We are left
with 214.45, queries which are sufficient for the solving phase. We note that for largeLPN instances,
this difference between worst-case and average-case analysis for the number of deleted queries during
reduction rounds becomes negligible.

Remark 6.Recall that inLF1, like in all LPN solving algorithms, we perform the reduction phase by
splitting the queries intoa blocks of sizeb. When this split is not possible, we consider that we havea−1
blocks of sizeb and a last block shorter of sizeb′ with b′ < b. By LF1∗ we denote the sameLPN solving
algorithm that makes use of the Walsh transform but where thesplit of the blocks is done different. We
allow now to have a last block larger than the rest. The gain for this strategy may be the following: given
that we recover a larger block of the key, we run our solving phase fewer times. Although the complexity
of the transform is bigger as we work with a bigger block, the reduction phase has to be applied fewer
times. From our experiments we discover there seems to be no difference between the performance of
the two algorithms.

5.3 LF2

We tested theLF2 heuristic on the same instances as forBKW∗ andLF1. The results are summarized in
Table 7. To illustrate the performance of the heuristic, we concentrate on a particular instance,LPN100,0.1

with a= 5,b= 20. As derived in [32], theLF1 algorithm for this parameter set should require less than
(8·b+200) ·δ−2a ≈ 218.77 queries for a solving phase and(a−1) ·2b+(8·b+200) ·δ−2a ≈ 222.13 queries
overall to achieve a success probability of 50%. Using our theoretical analysis, theLF1 algorithm for this
parameter set requires to have 8ln(3·2b)δ−2a

+(a−1)2b ≈ 222.05 queries overall and 217.20 queries for
the solving phase. Our experimental results forLF1 were a bit lower than our theoretical ones: 221.38

oracle samples were sufficient. If we use theLF2 heuristic starting with 3·220≈ 221.58 samples, we get
about the same amount of vectors for the solving phase. In this case there are no queries lost during
reduction. We thus have much more queries than should actually be required for a successful solving
phase and correctly solve the problem with success probability close to 100%. So we can try to start with
less. By starting off with 220.65 queries and thus loosing some queries in each reduction round, we also
solved theLPN problem in slightly over 50% of the cases. The gain in total query complexity forLF2 is
thus noticeable but not extremely important.

As another example, consider the parameter setk = 768,τ = 0.05 proposed at the end of [32]. The
values fora,b which minimize the query complexity area = 9,b = 86 (a · b = 774> k). Solving the
problem withLF1 should thus require about 287 vectors for the solving phase and 289 oracle samples
overall. UsingLF2, as 3·2b ≈ 287 oracle samples would be sufficient, we obtain a reduction by afactor
≈ 4.

Even thoughLF2 introduces linear dependencies between queries, this doesn’t seem to have any
noticeable impact on the success probability in recoveringthe secret value.

Remark 7.A general observation for all these three algorithms, shownalso by our results, is that the bias
has a big impact on the number of queries and the complexity. Recall that the bias has valueδ2a−1

at the
end of the reduction phase. We can see from our tables that thelower the value ofτ, i.e. larger value of
δ = 1−2τ, the highera can be chosen to solve theLPN instance. Also, for a constantτ, the higher the
size of the secret, i.e. the lower the noise, the highera can be chosen.

Remark 8.TheLF2 algorithm is a variation ofLF1 that offers a different heuristic technique to decrease
the number of initial queries. The same trick could be used for BKW∗, exhaustive search and MITM.

While the same analysis can be applied for exhaustive searchand MITM as forLF2, BKW∗ is a
special case. We denote byBKW2 this variation ofBKW where we use the reduction phase fromLF2.
Recall that forBKW∗ we need to haven = 2b+1δ−2a

ln(b
θ)+ (a− 1)2b queries and here the dominant
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τ k

32 48 64 80 100

0.01 6.85(6) 9.09(6) 10.24(7) 12.41(8) 13.15(8)

0.10 9.30(4) 12.60(4) 15.12(5) 16.90(5) 20.65(5)

0.20 10.88(3) 15.40(3) 16.94(4) 20.47(4) 24.88(4)

0.25 12.34(3) 15.92(3) 20.61(4) 21.00(4) 25.40(4)

0.40 15.44(2) 19.74(2) 23.52(3)

Table 7:LF2 query complexity - practice

term is 2b+1δ−2a
ln(b

θ). Thus, we need to start with 3·2b + ε, whereε > 0 and increase such that at the
end of the last iteration of the reduction we get the requirednumber of queries. This improves the initial
number of queries and we have a gain of factora for the time complexity. For anLPN48,0.1 instance,
our implementation ofBKW2 requiresn = 213.82 = 3.54· 212 initial queries and increases it, during
the reduction phase, up to 219.51, the amount of queries needed for the solving phase. Thus, there is
an improvement from 219.99 (See Table 3) to 213.82 and the time complexity is better. While this is an
improvement overBKW∗, it still performs worse thanLF1 andLF2.

5.4 Exhaustive search

Recall that for exhaustive search we have two variants. The results forSearch1 are displayed in Table 8
and Table 9. ForSearch1 we observe that the gap between theory and practice is of a factor smaller than
4. In terms of number of queries,Search1 brings a small improvement compared toLF1. We will see in
the next section the complete comparison between all the implemented algorithms. The same(a−1)2b

dominant term causes the bigger difference for the instances LPN48,0.4 andLPN64,0.25.

τ k

32 48 64 80 100

0.01 5.16(1) 5.70(1) 6.12(1) 13.25(8) 14.93(8)

0.10 10.15(4) 13.15(4) 16.44(4) 17.93(5) 21.34(5)

0.20 11.51(3) 15.54(3) 17.99(4) 21.02(4) 25.15(4)

0.25 12.66(3) 16.18(3) 19.88(3)

0.40 15.61(2) 19.74(2)

Table 8:Search1 query complexity - practice

τ k

32 48 64 80 100

0.01 5.16(1) 5.70(1) 6.12(1) 14.05(8) 16.06(8)

0.10 11.33(4) 13.84(4) 17.61(4) 18.50(5) 22.04(5)

0.20 13.01(3) 17.06(3) 18.99(4) 21.76(4) 26.59(4)

0.25 14.42(3) 17.25(3) 23.01(3) 28.00(3) 26.71(4)

0.40 16.98(2) 24.01(2) 25.87(3) 28.31(3) 35.00(3)

Table 9:Search1 query complexity - theory

The results forSearch2 are displayed in Table 10 and Table 11.

We notice that for bothSearch1 andSearch2 the instancesLPN32,0.01, LPN48,0.01 andLPN68,0.01 have
the number of queries very low. This is due to the following observation: forn≤ 68 linearly independent
queries andτ = 0.01 we have that the noise bits are all 0 with a probability larger than 50%. Thus, for
k≤ 64 we hope that thek+c queries we receive from the oracle have all the noise set on 0,wherec is a
constant. Withk noiseless, linearly independent queries we can just recover swith Gaussian elimination.
This is an application of Remark 3.
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τ k

32 48 64 80 100

0.01 5.16(1) 5.70(1) 6.12(1) 13.25(8) 14.93(8)

0.10 10.15(4) 13.15(4) 15.36(5) 17.93(5) 21.34(5)

0.20 11.51(3) 15.54(3) 17.99(4) 21.02(4) 25.15(4)

0.25 12.66(3) 16.18(3) 20.63(4)

0.40 15.61(2) 19.74(2)

Table 10:Search2 query complexity - practice

τ k

32 48 64 80 100

0.01 5.16(1) 5.70(1) 6.12(1) 14.05(8) 16.06(8)

0.10 11.33(4) 13.84(4) 16.89(5) 18.50(5) 22.04(5)

0.20 13.01(3) 17.06(3) 18.99(4) 21.76(4) 26.59(4)

0.25 14.42(3) 17.25(3) 22.63(4) 23.38(4) 26.71(4)

0.40 16.98(2) 24.01(2) 25.87(3) 28.31(3) 35.00(3)

Table 11:Search2 query complexity - theory

5.5 MITM

In the case of MITM, the experimental and theoretical results are illustrated in Table 12 and Table 13.
There is a very small difference between MITM and exhaustivesearch algorithms for a sparse secret: in
practice, MITM requires just couple of tens queries less than Search1 andSearch2 for the samea andb
parameters.

τ k

32 48 64 80 100

0.01 5.16(1) 5.70(1) 6.12(1) 13.25(8) 14.93(8)

0.10 10.13(4) 13.15(4) 16.47(4)

0.20 11.49(3) 15.54(3)

0.25 12.89(2)

0.40

Table 12: MITM query complexity - practice

τ k

32 48 64 80 100

0.01 5.16(1) 5.70(1) 6.12(1) 14.10(8) 16.10(8)

0.10 11.37(4) 13.87(4) 17.61(4) 21.59(4) 22.05(5)

0.20 13.02(3) 17.06(3) 23.00(3) 28.00(3) 26.59(4)

0.25 16.03(2) 17.26(3) 23.01(3) 28.00(3) 35.00(3)

0.40 16.98(2) 24.01(2) 25.87(3) 28.31(3) 35.00(3)

Table 13: MITM query complexity - theory

5.6 Gaussian Elimination

As aforementioned, in the Gaussian elimination the only assumption we need is to have a noise sparse.
We don’t run any reduction technique and the noise is not affected. As the algorithm depends on the
probability to have a 0 noise onk linearly independent vectors, the complexity decays very quickly
once we are outside the sparse noise scenario. We present below the theoretical results obtained for this
algorithm.

In the next section we will show the effectiveness of this simple idea in the sparse case scenario and
compare it to the otherLPN solving algorithms.

Again forLPN32,0.01, LPN48,0.01 andLPN64,0.01 we apply Remark 3.

5.7 Covering Codes

The covering code requires the existence of a code with the optimal coverage. For each instance one has
to find an optimal code that minimizes the query and time complexity. Unlike the previous algorithms,
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τ k

32 48 64 80 100

0.01 5.16 5.70 6.12 8.43 8.89

0.10 10.04 12.91 15.73 18.48 21.84

0.20 15.31 21.04 26.60 32.08 38.84

0.25 18.28 25.51 32.56 39.52 48.15

0.40 28.58 40.96 53.17 65.28 80.34

Table 14: Gaussian elimination query complexity - theory

this algorithm cannot be truly automatized. In practice we could test only the cases that were suggested
in [23]. Thus, we are not able to compare the theoretical and practical values. Nevertheless, we will give
theoretical values for different practical parameters in the next section.

6 Complexity Analysis of theLPN Solving Algorithms

We have compared our theoretical bounds with our practical results and we saw that there is a small
difference between the two. Our theoretical analysis also gives tighter bounds compared with the results
from [32]. We now extend our theoretical results and comparethe asymptotic performance of all the
LPN algorithms for practical parameters used by theLPN-based constructions. We consider the family
of LPNk, 1√

k
instances proposed in [3,14]. Although the covering code cannot be automatized, as for

each instance we have to try different codes with different sizes and dimensions, we provide results also
for this algorithm. When dealing with the covering code reduction, we always assume the existence of
an ideal code and compute the bias introduced by this step. Wedo not consider here concatenation of
ideal codes and we will see that we obtain a worse result for the LPN512,0.125 instance, although the
difference is small. We also stick with theBKW reduction steps and don’t use theLF2 reduction. As
aforementioned, theLF2 reduction brings a small improvement to the final complexity. This does not
affect the comparison between all theLPN solving algorithms.

We analyse the time complexity of each algorithm, by which wemean the number of bit operations
the algorithm performs while solving anLPN problem. For each algorithm, we consider values ofk for
which the parameters(a,b) minimising the time complexity are such thatk= a·b. For theLF2 algorithm,
we select the initial number of queries such that we are left with at leastn′ = 8ln(3·2b)δ−2a

queries after
the reduction phase. Recall that bySearch1 we denote the standard exhaustive search algorithm and
Search2 is making use of a Walsh-Hadamard transform. The results areillustrated in Figure 1. We recall
the time complexity and the initial number of queries for each algorithm in Table 15, whereSrepresents
the number of sparse secrets withS< 2b. For MITM, the valuesS1 (resp.S2) represent the number of
possible values for the first (resp. second) half of the secret, n′ = 8(ln(6S1S2))δ−2a

represents the number
of queries left after the reduction phase andξ represents the Hamming weight of the mask used. Recall
thatθ is 1

3.

We can bound the logarithmic complexity of all these algorithms by k
log2(k)

+c1 and log2(k)+
√

k+c2.
The lower bound is given by the asymptotic complexity of the Gaussian elimination that can be expressed
as log2 k+

√
k whenτ = 1√

k
.

The complexity ofBKW can be written as mink=ab(poly · 2b · δ−2a
) and for the other algorithms

the formula is mink=ab(poly · (2b+δ−2a
)), wherepoly denotes a polynomial factor. By searching for the

optimala,b values, fora> 1, we finda∼ log2
k

(log2 k)2 ln 1
δ

andb= k
a and obtain that 2b dominatesδ−2a

. For

δ = 1− 2√
k

we obtain the complexitypoly ·2
k

log2(k) . For the case wherea= 1, we have that the complexity
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Fig. 1: Time Complexity ofLPN Algorithms on instancesLPNk, 1√
k

of BKW is poly ·2k, while forLF1,LF2,Search2 we havepoly+k2k. A more special analysis needs to be
done for theSearch1 andMITM: here we have that the complexity ispoly ·Sr andpoly ·S2

r ′ , respectively,
where we defineSr to be #{v∈ {0,1}k |HW(v)≤ r}. We need to bound the value ofSr . By induction we
can show thatSr ≤ k

k−r−1 · kr

r ! . Forτ≈ 1√
k
, we have thatr ≈ (1+ σ

2)
√

k andr ′ ≈ (1
2 +

σ
2
√

2
)
√

k. We obtain

that the complexity for both algorithms ispoly ·2γ
√

k log2 k+O(
√

k), whereγ is a constant. This is not better

than 2
k

log2(k) for k< 200000, but asymptotically this gives a better complexity.

We see that in some cases increasing the value ofk may result in a decrease in time complex-
ity. The reason for this is that we are consideringLPN instances where the noise parameterτ takes
value 1√

k
. Thus, ask grows, the noise is reduced, which leads to an interesting trade-off between the

complexity of the solving phase and the complexity of the reduction phase of the various algorithms.
This behaviour does not seem to occur for theBKW algorithm. In this case, the query complexity
n = 2b+1(1− 2√

k
)−2a

ln(2k)+ (a− 1)2b is largely dominated by the first term, which grows exponen-
tially not only in terms of the noise parameter, but also in terms of the block sizeb.

Remark 9 (LF1 vs. Search2). As shown in Figure 1, the overall complexity of theLF1 and Search2
algorithms is quasi identical. From Theorems 5 and 9, we deduce that for the same parameters(a,b), the
Search2 algorithm should perform better as long asS< 2b−1. This is indeed the case for the instances
we consider here, although the difference in complexity is extremely small.

We can see clearly that for theLPNk, 1√
k

family of instances, the Gaussian elimination outperformsall

the other algorithms fork> 500. For anyk < 1000, theLPNk, 1√
k

does not offer an 80 bit security. This

requirement is achieved fork= 1090.

Selecting secure parameters.We remind that for each algorithm we considered, our analysis made use
of a heuristic assumption of query and noise independence after reduction. In order to propose security
parameters, we simply consider the algorithm which performs best under this assumption.
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LPN algorithm Query complexity(n) Time complexity(t)

BKW 2b+1δ−2a
ln( b

θ )+(a−1)2b kan

LF1 8ln( 2b

θ )δ−2a
+(a−1)2b kan+b2b

Search1 8ln( 2S
θ )δ−2a

+(a−1)2b kan+8ln( 2S
θ )δ−2a

S

LF2 3·2b ≥ 8ln( 2b

θ )δ−2a
kan+b2b

Search2 8ln( 2S
θ )δ−2a

+(a−1)2b kan+b2b

MITM 8ln( 2
θ S1S2)δ−2a

+(a−1)2b
kan+comp+compmitm

wherecomp= (S1+S2)n′ and
compmitm = (S1+S2)ξ( 2

1+δ2a−1 )
ξ +S1S2n′( 1

1+δ2a−1 )
ξ

Gaussian elimination
k

(1−τ)k +(
√

2ln 2k+1

θ +σ)2δ−2
(

√

2ln 2k+1
θ +σ)2δ−2k2+k3

(1−τ)k
whereσ =

√

2ln( 2
θ )

Table 15: Query & Time complexity forLPN solving algorithms for recovering the firstb bits

By taking all the eight algorithms described in this article, Tables 16-23 display the logarithmic time
complexity for variousLPN parameters. For instance, theLF2 algorithm requires 284 steps to solve a
LPN384,0.25 instance.

We recall here the result from [23]: an instanceLPN512,0.125 offers a security of 79.7. We obtain a
value of 82. The difference comes mainly from the use ofLF2 reduction in [23] and from a search of
optimal concatenation of linear codes.

When comparing all the algorithms, we have to keep in mind that the Gaussian elimination recovers
the whole secret, while for the rest of the algorithms we givethe complexity to recover a block of the
secret. Still, this does not affect our comparison as we haveproven in Section 3 that the complexity of
recovering the first block dominates the total complexity.

We highlight with red the best values obtained for differentLPN instances. We observe the following
behaviour: for a sparse case scenario, i.e.τ = 0.05 or τ = 1√

k
< 0.05, the Gaussian elimination offers

the best performance and nok from our tables offers a 80 bit security. Once we are outside the sparse
case scenario, we have thatLF2 and the covering code algorithms are the best ones. The covering code
proves to be better thanLF2 for a level of noise of 0.125. While the performance of the covering code
reduction highly depends on the sparseness of the noise,LF2 has a more general reduction phase and is
more efficient for noise parameters of 0.25 and 0.4. Also for aτ > 0.5 the covering code is better than
the Gaussian elimination.

Thus, for different scenarios, there are different algorithms that prove to be efficient. This comparison
clearly shows that for the family of instancesLPNk, 1√

k
neither theBKW, nor its variants are the best ones.

One should use the Gaussian elimination algorithm.

As we have shown, there still remains a small gap between the theoretical and practical results for
the algorithms we analysed. It thus seems reasonable to takea safety margin when selecting parameters
to achieve a certain level of security.
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τ k

256 384 448 512 576 640 768 1280

1√
k

69 88 97 106 114 123 140 198

0.05 67 88 98 109 118 127 145 216

0.125 79 105 116 128 138 149 170 253

0.25 93 123 137 150 163 175 201 295

0.4 115 147 163 180 196 212 244 347

Table 16: Security ofLPN against theBKW al-
gorithm

τ k

256 384 448 512 576 640 768 1280

1√
k

50 63 71 79 85 88 102 145

0.05 50 62 71 79 87 95 102 159

0.125 56 73 78 88 98 107 125 176

0.25 64 84 89 100 110 121 142 199

0.4 76 94 103 116 129 142 168 229

Table 17: Security ofLPN against theLF1 al-
gorithm

τ k

256 384 448 512 576 640 768 1280

1√
k

49 61 69 78 85 86 100 143

0.05 49 61 69 78 86 94 100 158

0.125 55 73 77 87 97 106 124 175

0.25 64 84 88 99 109 121 142 198

0.4 76 94 103 116 129 141 168 229

Table 18: Security ofLPN against theLF2 al-
gorithm

τ k

256 384 448 512 576 640 768 1280

1√
k

56 69 77 80 87 95 108 154

0.05 51 69 78 84 89 95 111 162

0.125 64 82 91 100 110 121 140 199

0.25 82 110 122 134 145 155 179 263

0.4 109 141 157 173 189 205 236 337

Table 19: Security ofLPN against theSearch1
algorithm

Based on this analysis, we could recommend theLPN instancesLPN512,0.25,LPN640,0.125,LPN1200,0.05

or LPN1280, 1√
1280

to achieve 80 bit security for different noise levels. We note that the valueLPN768,0.05

that Levieil and Fouque suggest as a secure instance to use actually offers only 66 bit security and thus
is not recommended.

7 Conclusion

In this article we have analysed and presented the existingLPN algorithms in a unified framework. We
introduced a new theoretical analysis and this has improvedthe bounds of Levieil and Fouque [32]. In
order to give a complete analysis for theLPN solving algorithms, we also presented three algorithms
that use the advantage that the secret is sparse. We analysedalso the latest algorithm presented at Asi-
acrypt’14. While the covering code and theLF2 algorithms perform best in the general case where the
Bernoulli noise parameter is constant, the Gaussian elimination shows that for the sparse case scenario
the length of the secret should be bigger than 1100 bits. Also, we show that some values proposed by
Leviel and Fouque are insecure in the sparse case scenario.
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A Hoeffding’s Bounds

Theorem 12. [25] Let X1,X2, . . . ,Xn be n independent variables. We are given thatPr[Xi ∈ [αi ,βi ]] = 1
for 1≤ i ≤ n. We define X= X1+ . . .+Xn and E[X] is the expected value of X. We have that

Pr[X−E[X]≥ t]≤ e
− 2t2

∑n
i=1(βi−αi )

2

and

Pr[X−E[X]≤−t]≤ e
− 2t2

∑n
i=1(βi−αi )

2
,

for any t> 0.
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B LF1 - full recovery of the secret

We provide here an example of theLF1 algorithm, for theLPN512,0.125 instance, where we recover the
full secret. We provide the values ofa, b, n and time complexity to show that indeed the number of
queries for the first iteration, dominates the number of queries needed later on. Also, this shows that the
time complexity of recovering the first block dominates the total time complexity. ForLPN512,0.125, we
obtain the following values:

i a b log2 n log2 t

1 7 74 76.59 88.43

2 7 63 65.68 77.29

3 7 54 61.52 72.91

4 6 54 56.32 67.28

5 6 45 47.32 58.02

6 6 37 39.37 49.80

7 6 31 34.98 45.14

8 5 31 33.00 42.66

9 5 25 27.02 36.36

10 5 20 22.56 31.56

11 5 16 21.01 29.67

12 4 16 17.72 25.79

13 4 12 14.89 22.51

14 3 12 13.30 20.19

15 2 11 11.38 17.36

16 2 6 9.26 14.10

17 1 5 8.30 11.69

Table 24: Full secret recovery for the instanceLPN512,0.125

The way one can interpret this table is the following:LF1 recovers first 74 bits by takinga = 7
and requiring 276.59 queries. The total complexity of this step, i.e. the reduction, solving and updating
operation, is of 288.43 bit operations. Next,LF1 solvesLPN438,0.125 and continues this process until it
recovers the whole secret.

We can easily see that indeed the number of queries and the time complexity of the first block
dominate the other values.
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