
Universally Verifiable Multiparty Computation
from Threshold Homomorphic Cryptosystems

Berry Schoenmakers and Meilof Veeningen, Eindhoven University of
Technology

{berry@win.,m.veeningen@}tue.nl

Abstract. Multiparty computation can be used for privacy-friendly out-
sourcing of computations on private inputs of multiple parties. A com-
putation is outsourced to several computation parties; if not too many
are corrupted (e.g., no more than half), then they cannot determine the
inputs or produce an incorrect output. However, in many cases, these
guarantees are not enough: we need correctness even if all computation
parties may be corrupted; and we need that correctness can be verified
even by parties that did not participate in the computation. Protocols
satisfying these additional properties are called “universally verifiable”.
In this paper, we propose a new security model for universally verifi-
able multiparty computation, and we present a practical construction,
based on a threshold homomorphic cryptosystem. We also develop a
multiparty protocol for jointly producing non-interactive zero-knowledge
proofs, which may be of independent interest.

Keywords: multiparty computation, verifiability, Fiat-Shamir heuris-
tic, threshold homomorphic cryptosystem

1 Introduction

Multiparty computation (MPC) provides techniques for privacy-friendly out-
sourcing of computations. Intuitively, MPC aims to provide a cryptographic
“black box” which receives private inputs from multiple “input parties”; performs
a computation on these inputs; and provides the result to a “result party” (an
input party, a particular third party, or the public). This black box is imple-
mented by distributing the computation between multiple “computation par-
ties”, with privacy and correctness being guaranteed in case of passive corrup-
tions (e.g., [BCD+09]), active corruption of a minority of computation par-
ties (e.g., [CDN01]), or active corruption of all-but-one computation parties
(e.g., [DPSZ12]).

However, multiparty computation typically does not provide any guarantees
in case all computation parties are corrupted. That is, the result party has to
trust that at least some of the computation parties did their job, and has no
way of independently verifying the result. In particular, the result party has no
way of proving to an external party that his computation result is indeed correct.
Universally verifiable multiparty computation addresses these issues by requiring

that the correctness of the result can be verified by any party, even if all compu-
tation parties are corrupt [dH12]; it was originally introduced in the context of
e-voting [CF85,SK95], but is also relevant for other applications of MPC where
external parties rely on the results of a computation [BCD+09,dHSCodA14].

Unfortunately, the state-of-the-art on universally verifiable MPC is unsatis-
factory. The concept of universally verifiable MPC was first proposed in [dH12],
where it was also suggested that it can be achieved for MPC based on thresh-
old homomorphic cryptosystems. However, [dH12] does not provide a rigorous
security model for universal verifiability or analysis of the proposed construc-
tion; and the construction has some technical disadvantages (e.g., a proof size
depending on the number of computation parties). The scheme recently pro-
posed in [BDO14] solves part of the problem. Their protocols provide “public
auditability”, meaning that anybody can verify the result of a computation, but
only if that result is public. In particular, it is not possible for a result party to
prove just that an encryption of the result is correct, which is important if this
result is to be used in a later protocol without being revealed.

In this paper, we propose a new security model for universally verifiable mul-
tiparty computation, and a practical construction achieving it. As in [dH12],
we adapt the well-known actively secure MPC protocols based on threshold
homomorphic cryptosystems from [CDN01,DN03]. Essentially, these protocols
perform computations on encrypted values; security against active adversaries
is achieved by letting parties prove correctness of their actions using interactive
zero-knowledge proofs. Such interactive proofs only convince parties present at
the computation; but making them non-interactive makes them convincing also
to external parties. Concretely, the result of a computation is a set of encryp-
tions of the inputs, intermediate values, and outputs of the computation, along
with non-interactive zero-knowledge proofs of their correctness. We improve on
[dH12] by providing a security model for universal verifiability (in the random
oracle model), and security proofs for our protocols; by eliminating the need for
trapdoor commitments; and by making the proof size independent of the number
of parties performing the computation. We achieve the latter using a new “mul-
tiparty” variant of the Fiat-Shamir heuristic that homomorphically combines
contributions from the different parties, which may be of independent interest.

As such, universally verifiable MPC provides a practical alternative to recent
(single-party) techniques for verifiable outsourcing. Specifically, many papers
on verifiable computation focus on efficient verification, but do not cover pri-
vacy [PHGR13,WB13]. Those works that do provide privacy, achieve this by
combining costly primitives, e.g., fully homomorphic encryption with verifiable
computation [FGP14]; or functional encryption with garbled circuits [GKP+13].
A recent work [ACG+14] also considers the possibility of achieving verifiable
computation with privacy by distributing the computation; but it does not guar-
antee correctness if all computation parties are corrupted, nor does it allow third
parties to be convinced of this fact. In contrast, our methods guarantee correct-
ness even if all computation parties are corrupted, and even convince other par-
ties than the input party. In particular, any third party can be convinced, and
the computation may involve the inputs of multiple mutually distrusting input

a ∈R S Sample a uniformly at random from S
recv(P), send(v,P) Send/receive v to/from P over secure channel
bcast(v) Exchange v over broadcast channel
party P do S Let party P perform S; other parties do nothing
foreach party i ∈ Q do S Let parties i ∈ Q perform S in parallel
H : {0, 1}∗ → {0, 1}2l Cryptographic hash function (l security parameter)
F ⊂ I ∪ P ∪ {R,V} Global variable: set of parties found to misbehave
paillierdecode(x) Threshold Paillier decoding (p. 6):

((x− 1)÷N)(4∆2)−1 mod N
fsverΣ(v, a, c, r, aux) Verification of Fiat-Shamir Σ-proof (p. 7):

H(v||a||aux) = c ∧Σ.ver(v, a, c, r)

Fig. 1. Notation in algorithms, protocols, and interactive Turing machines

parties. Moreover, in contrast to the above works, our methods rely on basic
cryptographic primitives such as Σ-protocols and the threshold homomorphic
Paillier cryptosystem, readily available nowadays in cryptographic libraries like
SCAPI [EFLL12].

Outline First, we briefly recap the CDN scheme for secure computation in the
presence of active adversaries from [CDN01,DN03], instantiated using Paillier
encryption (Section 2). Then, we show how the proofs in this protocol can be
made non-interactive using the Fiat-Shamir heuristic and our new multiparty
variant (Section 3). Finally, we propose a security model for universally verifiable
MPC, and show that CDN with non-interactive proofs is universally verifiable
(Section 4). We conclude in Section 5. We list potentially non-obvious notation
in our pseudocode in Figure 1.

2 Secure Computation from Threshold Cryptography

We review the “CDN protocol” [CDN01] for secure computation in the presence
of active adversaries based on a threshold homomorphic cryptosystem. The pro-
tocol involves m input parties i ∈ I, n computation parties i ∈ P, and a result
party R. The aim of the protocol is to compute a function f(x1, . . . , xm) (seen
as an arithmetic circuit) on private inputs xi of the input parties, such that the
result party obtains the result.

2.1 Computation using a Threshold Homomorphic Cryptosystem

The protocol uses a (t, n)-threshold homomorphic cryptosystem, with t = dn/2e.
In such a cryptosystem, anybody can encrypt a plaintext using the public key;
add two ciphertexts to obtain a (uniquely determined) encryption of the sum
of the corresponding plaintexts; and multiply a ciphertext by a constant to ob-
tain a (uniquely determined) encryption of the product of the plaintext with
the constant. Decryption is only possible if at least t out of the n decryption
keys are known. A well-known homomorphic cryptosystem is the Paillier cryp-
tosystem [Pai99]: here, the public key is an RSA modulus N = pq; a ∈ ZN

is encrypted with randomness r ∈ Z∗N as (1 + N)arN ; and the product of two
ciphertexts is an encryption of the sum of the two corresponding plaintexts. (In
this paper, we suppress moduli for readability.) A threshold variant of this cryp-
tosystem was presented in [DJ01]. The (threshold) decryption procedure is a bit
involved; we postpone its discussion until Section 2.2. The CDN protocol can
also be instantiated with other cryptosystems; but in this paper, we will focus
on the Paillier instantiation.

Computation of f(x1, . . . , xm) is performed in three phases: the input phase,
the computation phase, and the output phase. In the input phase, each input
party encrypts its input xi, and broadcasts the encryption Xi. In the computa-
tion phase, the function f is evaluated gate-by-gate. Addition and subtraction are
performed using the homomorphic property of the encryption scheme. For mul-
tiplication1 of X and Y , each computation party i ∈ P chooses a random value
di, and broadcasts encryptions Di of di and Ei of di ·y. The computation parties
then compute X ·D1 · · ·Dn, and threshold decrypt it to learn x+ d1 + . . .+ dn.
Observe that this allows them to compute an encryption of (x+d1+ . . .+dn) ·y,
and hence, using the Ei, also an encryption of x ·y. Finally, in the output phase,
when the result of the computation has been computed as encryption X of x, the
result party obtains x by broadcasting random encryption D of d and obtaining
a threshold decryption x− d of X ·D−1.

Active security is achieved by letting the parties prove correctness of all in-
formation they exchange. Namely, the input parties prove knowledge of their
inputs Xi (this prevents parties from choosing inputs depending on other in-
puts). The computation parties prove knowledge of Di, and prove that Ei is
indeed a correct multiplication of Di and Y ; and they prove the correctness of
their contributions to the threshold decryption of X · D1 · · ·Dn and X · D−1.
Finally, the result party proves knowledge of D. We now discuss these proofs of
correctness and their influence on the security of the overall protocol.

2.2 Proving Correctness of Results

The techniques in the CDN protocol for proving correctness are based on Σ-
protocols. Recall that a Σ-protocol for a binary relation R is a three-move pro-
tocol in which a potentially malicious prover convinces a honest verifier that he
knows a witness w for statement v such that (v, w) ∈ R. First, the prover sends
an announcement (computed using algorithm Σ.ann) to the verifier; the verifier
responds with a uniformly random challenge; and the prover sends his response
(computed using algorithm Σ.res), which the verifier verifies (using predicate
Σ.ver). Σ-protocols satisfy the following properties:

Definition 1. Let R ⊂ V ×W be a binary relation and LR = {v ∈ V | ∃w ∈
W : (v, w) ∈ R} its language. Let Σ be a collection of PPT algorithms Σ.ann,
Σ.res, Σ.sim, Σ.ext, and polynomial time predicate Σ.ver. Let C be a finite set
called the challenge space. Then Σ is a Σ-protocol for relation R if:

1 Here, we use the optimised multiplication protocol from [DN03].

Σ-Protocol 1 ΣPK: Proof of plaintext knowledge
[Relation] R = {(X, (x, r)) | X = (1 +N)xrN}
[Announcement] Σ.ann(X, (x, r)) :=

a ∈R ZN ;u ∈R Z∗N ;B := (1 +N)auN ; return (B, (a, u))
[Response] Σ.res(X, (x, r), B, (a, u), c) :=

t := b(a+ cx)/Nc ; d := a+ cx; e := urc(1 +N)t; return (d, e)
[Simulator] Σ.sim(X, c) :=

d ∈R ZN ; e ∈R Z∗N ;B := (1 +N)deNX−c; return (B, c, (d, e))
[Extractor] Σ.ext(X,B, c, c′, (d, e), (d′, e′)) :=

β,m :=
〈
values such that β(c− c′)−mN = 1

〉
return ((d− d′)β, (e/e′)βX−m)

[Verification] Σ.ver(X,B, c, (d, e)) := (1 +N)deN
?
= BXc

Completeness If (a, s) ← Σ.ann(v, w), c ∈ C, and r ← Σ.res(v, w, a, s, c),
then Σ.ver(v, a, c, r).

Special soundness If v ∈ V , c 6= c′, Σ.ver(v, a, c, r), and Σ.ver(v, a, c′, r′),
then w ← Σ.ext(v, a, c, c′, r, r′) satisfies (v, w) ∈ R.

Special honest-verifier zero-knowledge If v ∈ LR, c ∈ C, then (a, r) ←
Σ.sim(v, c) has the same probability distribution as (a, r) obtained by (a, s)←
Σ.ann(v, w), r ← Σ.res(v, w, a, s, c). If v /∈ LR, then (a, r) ← Σ.sim(v, c)
satisfies Σ.ver(v, a, c, r).

Non-Triviality If (a, r) ← Σ.sim(v, c), (a′, r′) ← Σ.sim(v, c) then with over-
whelming probability a 6= a′.

Completeness states that a protocol between a honest prover and verifier
succeeds; special soundness states that there exists an extractor Σ.ext that can
extract a witness from two conversations with the same announcement; and spe-
cial honest-verifier zero-knowledge states that there exists a simulator Σ.sim that
can generate transcripts with the same distribution as full protocol runs with-
out knowing the witness. Non-triviality essentially states that announcements
are random from an exponential space; it is not a standard requirement of Σ-
protocols, but most protocols satisfy it; and the Fiat-Shamir heuristic requires
it [AABN08].

The CDN protocol uses a sub-protocol in which multiple parties simulta-
neously provide proofs based on the same challenge, called the “multiparty Σ-
protocol”. Namely, suppose each party from a set P wants to prove knowledge of
a witness for a statement vi ∈ LR with some Σ-protocol. To achieve this, each
party in P broadcasts a commitment to its announcement; then, the computa-
tion parties jointly generate a challenge; and finally, all parties in P broadcast
their response to this challenge, along with an opening of their commitment.
The multiparty Σ-protocol is used as a building block in the CDN protocol
by constructing a simulator that provides proofs on behalf of honest parties
without knowing their witnesses (“zero knowledge”), and extracts witnesses from
corrupted parties that give correct proofs (“soundness”).

The CDN protocol uses three Σ-protocols: ΣPK proving plaintext knowledge,
ΣCM proving correct multiplication, and ΣCD proving correct decryption. The

first two are due to [CDN01] (which also proves that they are Σ-protocols).
ΣPK (Σ-Protocol 1) proves knowledge of x, r such that X = (1+N)xrN is an
encryption of x with randomness r. ΣCM (Σ-Protocol 2 in Appendix A) proves
knowledge of (y, r, s) for (X,Y, Z) such that Y = (1+N)yrN is an encryption
of y with randomness r and Z = XysN is an encryption of the product of the
plaintexts of X and Y randomised with s.

The proof of correct decryption is due to [Jur03]. In the threshold vari-
ant of Paillier encryption due to Damgård and Jurik [DJ01,Jur03], safe primes
p = 2p′ + 1, q = 2q′ + 1 are used for the RSA modulus N = pq. Key gen-
eration involves generating a secret value d such that, given c′ = c4∆

2d, any-
body can compute the plaintext of c by “decoding” c′ as paillierdecode(c′) :=
((c′ − 1) ÷ N)(4∆2)−1 mod N . Here, ∆ = n! and ÷ denotes division as inte-
gers (using N |c′ − 1). The value d is then (t, n) Shamir-shared modulo Np′q′
between the computation parties as shares si. Threshold decryption is done by
letting t parties each compute ci = c2∆si ; the value c4∆

2d is obtained by apply-
ing Shamir reconstruction “in the exponent”. Correct decryption is proved with
respect to a public set of verification values. Namely, the public key includes
values v, v0 = v∆

2d, and vi = v∆si for all computation parties i ∈ P. Par-
ties prove correctness of their decryption shares ci of c by proving knowledge of
∆si = logc4(c

2
i) = logv(vi) for (c, ci, v, vi) using Σ-protocol ΣCD (Σ-protocol 3

in Appendix A). (In the same way, the value v0 can be used to prove correctness
of c′ with respect to c using a single instance of ΣCD.)

2.3 Security of the CDN Protocol

In [CDN01], it is shown that the CDN protocol implements secure function
evaluation in Canetti’s non-concurrent model [Can98] if only a minority of com-
putation parties are corrupted. Essentially, this means that in this case, the
computation succeeds; the result is correct; and the honest parties’ inputs re-
main private. This conclusion is true assuming honest set-up and security of the
Paillier encryption scheme and the trapdoor commitment scheme used. If a ma-
jority of computation parties is corrupted, then because threshold dn/2e is used
for the threshold cryptosystem, privacy is broken. As noted [ST06,IPS09], this
can be remedied by raising the threshold, but in that case, the corrupted parties
can make the computation break down at any point by refusing to cooperate. In
Section 4.1, we present a variant of this model in which we prove the security of
our protocols (using random oracles but no trapdoor commitments).

3 Multiparty Non-Interactive Proofs

In this section, we show how to produce non-interactive zero-knowledge proofs in
a multiparty way. At several points in the above CDN protocol, all parties from
a set P prove knowledge of witnesses for certain statements; the computation
parties are convinced that those parties that succeed, do indeed know a witness.
In CDN, these proofs are interactive; but for universal verifiability, we need non-
interactive proofs that convince any third party. The traditional method to make

Protocol 1 FΣ: The Fiat-Shamir Heuristic
1. // pre: Σ is a Σ-protocol, P is a set of non-failed parties (P ∩ F = ∅);
2. // vP = {vi}i∈P are statements; wP = {wi}i∈P are witnesses
3. // such that (vi, wi) in the language of Σ for all i ∈ P
4. // post: for all i ∈ P \ F , πi is Fiat-Shamir PoK of witness for vi
5. // invariant: F ⊂ C: set of failed parties only includes corrupted parties
6. {πi}i∈P\F ← FΣ(Σ,P, vP , wP) :=
7. foreach party i ∈ P do
8. (ai, si) := Σ.ann(vi, wi); ci := H(vi||ai||i); ri := Σ.res(vi, wi, ai, si, ci)
9. bcast((ai, ci, ri))

10. F := F ∪ {i ∈ P | ¬fsverΣ(vi, ai, ci, ri, i)}
11. return {(ai, ci, ri)}i∈P\F

proofs non-interactive is the Fiat-Shamir heuristic; in Section 3.1, we outline it,
and show that it is problematic in a multiparty setting. In Section 3.2, we present
a new, “multiparty” Fiat-Shamir heuristic that works in our setting, and has
the advantage of achieving smaller proofs by “homomorphically combining” the
proofs of individual parties. In the remainder, C ⊂ I ∪ P ∪ {R,V} denotes the
set of corrupted parties; and F denotes the set of parties who failed to provide
a correct proof when needed; this only happens for corrupted parties, so F ⊂ C.

Our results are in the random oracle model [BR93,Wee09], an idealised model
of hash functions. In this model, evaluations of the hash function H are modelled
as queries to a “random oracle” O that evaluates a perfectly random function.
When simulating an adversary, a simulator can intercept these oracle queries
and answer them at will, as long as the answers look random to the adversary.
Security in the random oracle model does not generally imply security in the
standard model [GK03], but it is often used because it typically gives simple,
efficient protocols, and its use does not seem to lead to security problems in
practice [Wee09]. See Appendix B for a detailed discription of our use of ran-
dom oracles; and Section 5 for a discussion of the real-world implications of the
particular flavour of random oracles we use.

3.1 The Fiat-Shamir Heuristic and Witness-Extended Emulation

The obvious way of making the proofs in the CDN protocol non-interactive, is
to apply the Fiat-Shamir heuristic to all individual Σ-protocols. That is, party
i ∈ P proves knowledge of a witness for statement v by generating announce-
ment a using Σ.ver; setting challenge c = H(v||a||i)2; and computing response
r with Σ.ver; a verifier accepts those proofs (a, c, r) for which fsverΣ(v, a, c, r, i)
holds, where fsverΣ(v, a, c, r, aux) is defined as H(v||a||aux) = c∧Σ.ver(v, a, c, r)
(Protocol 1).
2 Including the prover’s identity prevents corrupted parties from replaying proofs by
honest parties. Technically, if corrupted parties could replay honestly generated
proofs, then the soundness property below would be broken because witnesses for
these proofs cannot be extracted by rewinding the adversary to the point of the
oracle query and reprogramming the random oracle.

Recall that security proofs require a simulator that simulates proofs of hon-
est parties (zero-knowledge) and extracts witnesses of corrupted parties (sound-
ness). In the random oracle model, Fiat-Shamir proofs for honest parties can
be simulated by simulating a Σ-protocol transcript (a, c, r) and programming
the random oracle so that H(v||a||i) = c. Witnesses of corrupted parties can be
extracted by rewinding the adversary to the point where it made an oracle query
for v||a||i and supplying a different value; but, as we show in Appendix B, this
extraction can make the simulator very inefficient. In fact, if Fiat-Shamir proofs
take place in R different rounds, then extracting witnesses may increase the run-
ning time of the simulator by a factor O(R!). The reason is that the oracle query
for a proof in one round may have in fact already been made in a previous round,
in which case rewinding the adversary to extract one witness requires recursively
extracting witnesses for all intermediate rounds. Hence, we can essentially only
use the Fiat-Shamir heuristic in a constant number of rounds.

Moreover, in the CDN protocol, applying the Fiat-Shamir heuristic to each
individual proof has the disadvantage that the verifier needs to check a num-
ber of proofs that depends linearly on the number of computation parties. In
particular, for each multiplication gate, the verifier needs to check n proofs of
correct multiplication and t proofs of correct decryption. Next, we show that we
can avoid both the technical problems with witness extended emulation and the
dependence on the number of computation parties by letting the computation
parties collaboratively produce “combined proofs”. (As discussed in Appendix B,
there are other ways of just solving the technical problems with witness extended
emulation, but they are not easier than the method we propose.)

3.2 Combined Proofs with the Multiparty Fiat-Shamir Heuristic

The crucial observation that allows parties to produce non-interactive zero-
knowledge proofs collaboratively (e.g., [Des93,KMR12]) is that, for many Σ-
protocols, transcripts of proofs with the same challenge can be “homomorphically
combined”. For instance, consider the classical Σ-protocol for proving knowledge
of a discrete logarithm due to Schnorr [Sch89]. Suppose we have two Schnorr
transcripts proving knowledge of x1 = logg h1, x2 = logg h2, i.e., two tuples
(a1, c, r1) and (a2, c, r2) such that gr1 = a1(h1)

c and gr2 = a2(h2)
c. Then

gr1+r2 = (a1a2)(h1h2)
c, so (a1a2, e, r1 + r2) is a Schnorr transcript proving

knowledge of discrete logarithm x1 + x2 = logg(h1h2). For our purposes, we de-
mand that such homomorphisms satisfy two properties. First, when transcripts
of at least dn/2e parties are combined, the result is a valid transcript (the re-
quirement of having at least dn/2e transcripts is needed for decryption proofs
to ensure that there are enough decryption shares). Second, when fewer than
dn/2e parties are corrupted, the combination of different honest announcements
with the same corrupted announcements is likely to lead to a different combined
announcement. This helps to eliminate the rewinding problems for Fiat-Shamir
discussed above.

Definition 2. Let Σ be a Σ-protocol for relation R ⊂ V ×W . Let Φ be a collec-
tion of partial functions Φ.stmt, Φ.ann, and Φ.resp. We call Φ a homomorphism
of Σ if:

Protocol 2 MΣ: The Multi-Party Fiat-Shamir Heuristic
1. // pre: Σ is a Σ-protocol with homomorphism Φ, P is a set of non-failed
2. // parties (P ∩ F = ∅), vP = {vi}i∈P statements w/ witnesses wP = {wi}i∈P
3. // post: if |P \ F | ≥ dn/2e, then vP\F is the combined statement
4. // Φ.stmt({vi}i∈P\F), and πP\F is a corresponding Fiat-Shamir proof
5. // invariant: F ⊂ C: set of failed parties only includes corrupted parties
6. (vP\F , πP\F)← MΣ(Σ,Φ, P, vP , wP , aux) :=
7. repeat
8. foreach party i ∈ P \ F do
9. (ai, si) := Σ.ann(vi, wi);hi := H(ai||i); bcast(hi)

10. foreach party i ∈ P \ F do bcast(ai)
11. F ′ := F ;F := F ∪ {i ∈ P \ F | hi 6= H(ai||i)}
12. if F = F ′ then // all parties left provided correct hashes
13. c := H(Φ.stmt({vi}i∈P\F)||Φ.ann({ai}i∈P\F)||aux)
14. foreach party i ∈ P \ F do ri := Σ.res(vi, wi, ai, si, c); bcast(ri)
15. F := F ∪ {i ∈ P \ F | ¬Σ.ver(vi, ai, c, ri)}
16. if F = F ′ then // all parties left provided correct responses
17. return (Φ.stmt({vi}i∈P\F),
18. (Φ.ann({ai}i∈P\F), c, Φ.resp({ri}i∈P\F)))
19. until |P \ F | < dn/2e // until not enough parties left
20. return (⊥,⊥)

Combination Let c be a challenge; I a set of parties such that |I| ≥ dn/2e; and
{(vi, ai, ri)}i∈I a collection of statements, announcements, and responses. If
Φ.stmt({vi}i∈I) is defined and for all i, Σ.ver(vi, ai, c, ri) holds, then also
Σ.ver(Φ.stmt({vi}i∈I), Φ.ann({ai}i∈I), c, Φ.resp({ri}i∈I)).

Randomness Let c be a challenge; C ⊂ I sets of parties such that |C| <
dn/2e ≤ |I|; {vi}i∈I statements s.t. Φ.stmt({vi}i∈I) is defined; and {ai}i∈I∩C
announcements. If (ai,_), (a′i,_)← Σ.sim(vi, c) ∀i ∈ I \C, then with over-
whelming probability, Φ.ann({ai}i∈I) 6= Φ.ann({ai}i∈I∩C ∪ {a′i}i∈I\C).

Given a Σ-protocol with homomorphism Φ, parties holding witnesses {wi} for
statements {vi} can together generate a Fiat-Shamir proof (a,H(v||a||aux), r) of
knowledge of a witness for the “combined statement” v = Φ.stmt({vi}). Namely,
the parties each provide announcement ai for their own witness; compute a =
Φ.ann({ai}) andH(v||a||aux); and provide responses ri. Taking r = Φ.resp({ri}),
the combination property from the above definition guarantees that we indeed
get a validating proof. However, we cannot simply let the parties broadcast their
announcements in turn, because to prove security in that case, the simulator
needs to provide the announcements for the honest parties without knowing the
announcements of the corrupted parties, hence without being able to program
the random oracle on the combined announcement. We solve this by starting
with a round in which each party commits to its announcement (the same trick
was used in a different setting in [NKDM03])3.

3 As in [NKDM03], it may be possible to remove the additional round under the
non-standard known-target discrete log problem.

The multiparty Fiat-Shamir heuristic (Protocol 2) let parties collaboratively
produce Fiat-Shamir proofs based on the above ideas. Apart from the above
procedure (lines 8, 9, 10, 13, and 14), the protocol also contains error handling.
Namely, we throw out parties that provide incorrect hashes to their announce-
ments (line 11) or incorrect responses (line 15). If we have correct responses
for all correctly hashed announcements, then we apply the homomorphism (line
17–18); otherwise, we try again with the remaining parties. If the number of
parties drops below dn/2e, the homomorphism can no longer be applied, so we
return with an error (line 20). Note that, as in the normal Fiat-Shamir heuristic,
the announcements do not need to be stored if they can be computed from the
challenge and response (as will be the case for the Σ-protocols we consider).

In the CDN protocol, the multiparty Fiat-Shamir heuristic allows us to obtain
a proof that multiplication was done correctly that is independent of the number
of computation parties. Recall that, for multiplication of encryptions X of x and
Y of y, each computation party provides encryptions Di of di and Ei of di · y,
and proves that Ei encrypts the product of the plaintexts of Y and Di; and
each computation party provides decryption share Si of encryption XD1 · · ·Dn,
and proves it correct. As we show in Section A, the multiplication proofs can
be combined with homomorphism ΦCM into one proof that

∏
Ei encrypts the

product of the plaintexts of Y and
∏
Di; and the decryption proofs can be

combined with homomorphism ΦCD into one proof that a combination S0 of the
decryption shares is correct. In the CDN protocol, the individual Di, Ei, and
Si are not relevant, so also the combined values convince a verifier of correct
multiplication.

Concerning security, recall that we need a simulator that simulates proofs
of honest parties without their witnesses (zero-knowledge) and extracts the wit-
nesses of corrupted parties (soundness). In Appendix C, we present such a simu-
lator. Essentially, it “guesses” the announcements of the corrupted parties based
on the provided hashes; then simulates the Σ-protocol for the honest parties; and
programs the random oracle on the combined announcement. It obtains witnesses
for the corrupted parties by rewinding to just before the honest parties provide
their announcements: this way, the corrupted parties are forced to use the an-
nouncements that they provided the hashes of (hence special soundness can be
invoked), whereas the honest parties can provide new simulated announcements
by reprogramming the random oracle. The simulator requires that fewer than
dn/2e provers are corrupted so that we can use the randomness property of
the Σ-protocol homomorphism (Definition 2). (When more than dn/2e provers
are corrupted, we use an alternative proof strategy that uses witness-extended
emulation instead of this simulator.)

4 Universally Verifiable MPC

In the previous section, we have shown how to produce non-interactive zero-
knowledge proofs in a multiparty way. We now use this observation to obtain uni-
versally verifiable MPC. We first define security for universally verifiable MPC;
and then obtain universally verifiable MPC by adapting the CDN protocol.

ITM 1 TVSFE: trusted party for verifiable secure function evaluation
1. // compute f on {xi}i∈I for R with corrupted parties C; V learns encryption
2. TVSFE(C, (N, v, v0, {vi}i∈P)) :=
3. // input phase
4. forall i ∈ I \ C do xi := recv(Ii) // honest inputs
5. if |P ∩ C| ≥ dn/2e then send({xi}i∈I\C ,S) // send to corrupted majority
6. {xi}i∈I∩C := recv(S) // corrupted inputs
7. // computation phase
8. r := f(x1, . . . , xm)
9. // output phase

10. if R /∈ C then // honest R: adversary learns encryption, may block result
11. s ∈R Z∗N ; R := (1 +N)rsN ; send(R,S)
12. if |P ∩ C| ≥ dn/2e and recv(S) = ⊥ then r := ⊥; s := ⊥; R := ⊥
13. send((r, s),R)
14. else // corrupted R: adversary learns output, may block result to V
15. send(r,S); s := recv(S)
16. if s = ⊥ then R := ⊥ else R := (1 +N)rsN

17. // proof phase
18. if V /∈ C then send(R,V)

4.1 Security Model for Verifiable MPC

Our security model is an adaptation of the model of [Can98,CDN01] to the
setting of universal verifiability in the random oracle model. We first explain
the general execution model, which is as in [Can98,CDN01] but with a random
oracle added; we then explain how to model verifiability in this execution model
as the behaviour of the ideal-world trusted party. The general execution model
compares protocol executions in the real and ideal world.

In the real world, a protocol π between m input parties i ∈ I, n computation
parties i ∈ P, a result party R and a verifier V is executed on an open broadcast
network with rushing in the presence of an active static adversary A corrupting
parties C ⊂ I ∪ P ∪ {R,V}. The protocol execution starts by incorruptibly
setting up the Paillier threshold cryptosystem, i.e., generating public key pk =
(N, v, v0, {vi}i∈P) with RSA modulus N and verification values v, v0, vi, and
secret key shares {si}i∈P (see Section 2.2). Each input party i ∈ I gets input
(pk, xi); each computation party i ∈ P gets input (pk, si); and the result party
R gets input pk. The adversary gets the inputs (pk, {xi}i∈I∩C , {si}i∈P∩C) of
the corrupted parties, and has an auxiliary input a. During the protocol, parties
can query the random oracle; the oracle answers new queries randomly, and
repeated queries consistently. At the end of the protocol, each honest party
outputs a value according to the protocol; the corrupted parties output ⊥; and
the adversary outputs a value at will. Define EXECπ,A(k, (x1, . . . , xm), C, a) to
be the random variable, given security parameter k, consisting of the outputs
of all parties (including the adversary) and the set O of oracle queries and
responses.

The ideal-world execution similarly involves m input parties i ∈ I, n compu-
tation parties i ∈ P, result party R, verifier V, and an adversary S corrupting

parties C ⊂ I ∪ P ∪ {R,V}; but now, there is also an incorruptible trusted
party T . As before, the execution starts by setting up the keys (pk, {si}i∈P)
of the Paillier cryptosystem. The input parties receive xi as input; the trusted
party receives a list C of corrupted parties and the public key pk. Then, it runs
the code TVSFE shown in ITM 1, which we explain later. The adversary gets
inputs (pk, C, {xi}i∈I∩C , {si}i∈P∩C), and outputs a value at will. In this model,
there is no random oracle; instead, the adversary chooses the set O of oracle
queries and responses (typically, those used to simulate a real-world adversary).
As in the real-world case, define IDEALTSFE,S(k, (x1, . . . , xm), C, a) as the ran-
dom variable, given security parameter k, consisting of all parties’ outputs and
O.

Definition 3. Protocol π implements verifiable secure function evaluation in
the random oracle model if, for every real-world adversary A, there exists an
ideal-world adversary SA such that, for all inputs x1, . . . , xm; all sets of cor-
rupted parties C; and all auxiliary input a: EXECπ,A(k, (x1, . . . , xm), C, a) and
IDEALTVSFE,SA(k, (x1, . . . , xm), C, a) are computationally indistinguishable in se-
curity parameter k.

We remark that, while security in non-random-oracle secure function evalua-
tion [Can98,CDN01] is preserved under (subroutine) composition, this is not the
case for our random oracle variant. The reason is that our model and protocols
assume that the random oracle is not used outside of the protocol. Using the
random oracle model with dependent auxiliary input [Unr07,Wee09] might be
enough to obtain a composition property; but adaptations are needed to make
our protocol provably secure in that model. See Section 5 for a discussion.

We now discuss the trusted party TVSFE for verifiable secure function eval-
uation. Whenever the computation succeeds, TVSFE guarantees that the results
are correct. Namely, TVSFE sends the result r of the computation and random-
ness s to R (line 11), and it sends encryption (1 + N)rsN of the result with
randomness s to V (line 18); if the computation failed, R gets (⊥,⊥) and V
gets ⊥.4 Whether TVSFE guarantees privacy (i.e., only R can learn the result)
and robustness (i.e., the computation does not fail) depends on which parties
are corrupted. Privacy and robustness with respect to R are guaranteed as long
as only a minority of computation parties are corrupted. If not, then in line 5,
TVSFE sends the honest parties’ inputs to the adversary; and in line 12, it gives
the adversary the option to block the computation by sending ⊥. For robustness
with respect to V, moreover, the result party needs to be honest. If not, then in
line 16, TVSFE gives the adversary the option to block V’s result by sending ⊥; in
4 Although we only guarantee computational indistinguishability and the verifier does
not know what value is encrypted, this definition does guarantee that V receives
the correct result. This is because the ideal-world output of the protocol execution
contains R’s r and s and V’s (1 +N)rsN , so a distinguisher between the ideal and
real world can check correctness of V’s result. (If s were not in R’s result, this would
not be the case, and correctness of V’s result would not be guaranteed.) Also, note
that although privacy depends on the security of the encrytion scheme, correctness
does not rely on any knowledge assumption.

any case, it can choose the randomness. (Note that these thresholds are specific
to CDN’s “honest majority” setting; e.g., other protocols may satisfy privacy if
all computation parties except one are corrupted.)

Note that this model does not cover the “universality” aspect of universally
verifiable MPC. This is because the security model for secure function evalu-
ation only covers the input/output behaviour of protocols, not the fact that
“the verifier can be anybody”. Hence, we design universally verifiable protocols
by proving that they are verifiable, and then arguing based on the characteris-
tics of the protocol (e.g., the verifier does not have any secret values) that this
verifiability is “universal”.

4.2 Universally Verifiable CDN

We now present the UVCDN protocol (Protocol 3) for universally verifiable
secure function evaluation.

First, a full run of the CDN protocol (Section 2.1) is performed, with all
proofs made non-interactive (lines 5–36). As discussed, we can use the normal
Fiat-Shamir (FS) heuristic in only a constant number of rounds; and we can
use the multiparty FS heuristic only when it gives a “combined statement” that
makes sense. This leads to the following choices. During the input phase of the
protocol, the input parties provide their inputs with a proof of knowledge using
the normal FS heuristic (lines 6–8). During the computation phase, the function
is evaluated gate-by-gate; for multiplication gates, the multiplication protocol
from [DN03] is used, with proofs of correct multiplication and decryption using
the multiparty FS heuristic (lines 15–26). During the output phase, the result
party obtains the result by broadcasting an encryption of a random d and proving
knowledge using the normal FS heuristic (lines 29–30); the computation parties
decrypt the result plus d, proving correctness using the multiparty FS heuristic
(lines 34–35). From this, the result party learns result r (line 36); and it knows the
intermediate values from the protocol and the proofs showing they are correct.

Finally, during the proof phase, the result party sends these intermediate
values and proofs to the verifier (line 40). The verifier runs procedure vercomp
(Algorithm 1) to verify the correctness of the computation. The inputs to this
verification procedure are the public key of the Paillier cryptosystem; the en-
crypted inputs {Xi}i∈I by the input parties; and the proof π by the result party
(which consists of proofs for each multiplication gate, and the two proofs from
the output phase of the protocol). The verifier checks the proofs for each mul-
tiplication gate from the computation phase (lines 6–14); and the proofs from
the output phase (lines 16–20), finally obtaining an encryption of the result (line
21). While not specified in vercomp, the verifier does also verify the proofs from
the input phase: namely, in lines 6–8 of UVCDN, the verifier receives encrypted
inputs and verifies their proofs to determine the encrypted inputs {Xi}i∈I of
the computation.

Apart from checking the inputs during the input phase, the verifier does not
need to be present for the remainder of the computation until receiving π from
R. This is what makes verification “universal”: in practice, we envision that a
trusted party publicly announces the Paillier public keys, and the input parties

Protocol 3 UVCDN: universally verifiable CDN
1. // pre: pk/{si}i∈P threshold Paillier public/secret keys, {xi}i∈I function input
2. // post: output R according to ideal functionality ITM 1
3. R← UVCDN(pk = (N, v, v0, {vi}i∈P), {si}i∈P , {xi}i∈I) :=
4. // input phase
5. F := ∅
6. foreach party i ∈ I do ri ∈R Z∗N ;Xi = (1 +N)xirNi ; bcast(Xi)
7. {πPKi}i∈I\F := FΣ(ΣPK, I, {Xi}i∈I , {(xi, ri)}i∈I)
8. foreach i ∈ I ∩ F do Xi := 1
9. // computation phase

10. foreach gate do
11. if 〈constant gate c with value v〉 then Xc := (1 +N)v

12. if 〈addition gate c with inputs a, b〉 then Xc := XaXb

13. if 〈subtraction gate c with inputs a, b〉 then Xc := XaX
−1
b

14. if 〈multiplication gate c with inputs a, b〉 then // [DN03] multiplication
15. foreach party i ∈ P \ F do
16. di ∈R ZN ; ri, ti ∈R Z∗N ;Di := (1 +N)dirNi ;Ei := (Xb)

ditNi
17. bcast(Di, Ei)
18. ((_, Dc, Ec), πCMc) :=
19. MΣ(ΣCM, ΦCM,P \ F, {(Xb, Di, Ei)}i∈P\F , {(di, ri, ti)}i∈P\F)
20. if |P \ F | < dn/2e then break
21. Sc := Xa ·Dc
22. foreach party i ∈ P \ F do Si := (Sc)

2∆si ; bcast(Si)
23. ((_, S0,c,_,_), πCDc) :=
24. MΣ(ΣCD, ΦCD,P \ F, {(Sc, Si, v, vi)}i∈P\F , {∆si}i∈P\F)
25. if |P \ F | < dn/2e then break
26. s := paillierdecode(S0,c);Xc := (Xb)

s · E−1
c

27. // output phase
28. if |P \ F | ≥ dn/2e then
29. party R do d ∈R ZN ; s ∈R Z∗N ;D := (1 +N)dsN ; bcast(D)
30. πPKd := FΣ(ΣPK, {R}, {D}, {(d, s)})
31. if R /∈ F then
32. Y := Xoutgate ·D−1

33. foreach party i ∈ P \ F do Yi := Y 2∆si ; bcast(Yi)
34. ((_, Y0,_,_), πCD, y) :=
35. MΣ(ΣCD, ΦCD,P \ F, {(Y, Yi, v, vi)}i∈P\F , {∆si}i∈P\F , D)
36. party R do y := paillierdecode(Y0); r := y + d
37. // proof phase
38. party R do
39. if |P \ F | ≥ dn/2e // computation, delivery succeeded
40. send(({(Dc, Ec, ΠCMc, S0,c, ΠCDc)}c∈gates, (D,πPKd, Y0, πCDy)),V)
41. return (r, s)
42. else // computation failed
43. send(⊥,V); return(⊥,⊥)
44. party V do π := recv(R); return vercomp(pk, {Xi}i∈I , π)
45. foreach party i ∈ I ∪ P do return ⊥

Algorithm 1 vercomp: verifier’s gate-by-gate verification of the computation
1. // pre: pk public key, {Xi}i∈I encryptions, ({Πmuli}, Πresult) tuple
2. // post: if ({Πmuli}, Πresult) proves correctness of Y , Xo = Y ; otherwise, Xo = ⊥
3. Xo ← vercomp(pk = (N, v, v0, {vi}i∈P), {Xi}i∈I , ({Πmuli}, Πresult)) :=
4. // verification of input phase: see lines 6–8 of UVCDN
5. // verification of computation phase
6. foreach gate do
7. if 〈constant gate c with value v〉 then Xc := (1 +N)v

8. if 〈addition gate c with inputs a, b〉 then Xc := XaXb

9. if 〈subtraction gate c with inputs a, b〉 then Xc := XaX
−1
b

10. if 〈multiplication gate c with inputs a, b〉 then
11. (D,E, (a, c, r), S0, (a

′, c′, r′)) := Πmulc; S := Xa ·D−1

12. if ¬fsverΣCM((Xb, D,E), a, c, r) then return ⊥
13. if ¬fsverΣCD((S, S0, v, v0), a

′, c′, r′) then return ⊥
14. s := paillierdecode(S0);Xc := (Xb)

sE−1

15. // verification of output phase
16. (D, (aout, cout, rout), Y0, (adec, cdec, rdec)) := Πresult

17. if ¬fsverΣPK(D, aout, cout, rout,R) then return ⊥
18. Y := Xoutgate ·D−1

19. if ¬fsverΣCD((Y, Y0, v, v0), adec, cdec, rdec, D) then return ⊥
20. y := paillierdecode(Y0)
21. return (1 +N)yD // encryption of y + d = r

publicly announce their encrypted inputs with associated proofs: then, anybody
can use the verification procedure to verify if a given proof π is correct with
respect to these inputs. In Appendix D, we prove that:

Theorem 1. Protocol UVCDN implements verifiable secure function evaluation
in the random oracle model.

The proof uses two simulators: one for a honest majority of computation
parties; one for a corrupted majority. The former simulator extends the one
from [CDN01], obtaining privacy with a reduction to semantic security of the
threshold Paillier cryptosystem. The latter does not guarantee privacy, and so
can simulate the adversary by running the real protocol, ensuring correctness by
witness-extended emulation.

5 Concluding Remarks

Our security model is specific to the CDN setting in two respects. First, we
explicitly model that the verifier receives a Paillier encryption of the result (as
opposed to another kind of encryption or commitment). We chose this formula-
tion for concreteness; but our model generalises easily to other representations
of the result. Second, it is specific to the setting where a minority of parties may
be actively corrupted; but it is possible to change the model to other corruption
models. For instance, it is possible to model the setting from [BDO14] where

privacy is guaranteed when there is at least one honest computation party (and
our protocols can be adapted to that setting). The combination of passively se-
cure multiparty computation with universal verifiability is another interesting
possible adaptation.

Our protocols are secure in the random oracle model “without dependent
auxiliary input” [Wee09]. This means our security proofs assume that the ran-
dom oracle has not been used before the protocol starts. Moreover, our simulator
can only simulate logarithmically many sequential runs of our protocol due to
technical limits of witness-extended emulation. These technical issues reflect the
real-life problem that a verifier cannot see if a set of computation parties have
just performed a computation, or they have simply replayed an earlier computa-
tion transcript. As discussed in [Unr07], both problems can be solved in practice
by instantiating the random oracle with a keyed hash function, with every com-
putation using a fresh random key. Note that all existing constructions require
the random oracle model; achieving universally verifiable (or publicly auditable)
multiparty computation in the standard model is open.

Several interesting variants of our protocol are possible. First, it is easy to
achieve publicly auditable multiparty computation [BDO14] by performing a
public decryption of the result rather than a private decryption for the result
party. Another variant is basic outsourcing of computation, in which the result
party does not need to be present at the time of the computation, but afterwards
gets a transcript from which it can derive the computation result. Finally, it is
possible to achieve universal verifiability using other threshold cryptosystems
than Paillier. In particular, while the threshold ElGamal cryptosystem is much
more efficient than threshold Paillier, it cannot be used directly with our pro-
tocols because it does not have a general decryption operation; but universally
verifiable multiparty using ElGamal should still be possible by instead adapting
the “conditional gate” variant of the CDN protocol from [ST04].

References

AABN08. M. Abdalla, J. H. An, M. Bellare, and C. Namprempre. From Iden-
tification to Signatures Via the Fiat-Shamir Transform: Necessary and
Sufficient Conditions for Security and Forward-Security. IEEE Transac-
tions on Information Theory, 54(8):3631–3646, 2008.

ACG+14. P. Ananth, N. Chandran, V. Goyal, B. Kanukurthi, and R. Ostrovsky.
Achieving Privacy in Verifiable Computation with Multiple Servers -
Without FHE and without Pre-processing. In Public-Key Cryptography
- PKC 2014 - 17th International Conference on Practice and Theory in
Public-Key Cryptography, Buenos Aires, Argentina, March 26-28, 2014.
Proceedings, volume 8383 of Lecture Notes in Computer Science, pages
149–166. Springer, 2014.

BCD+09. P. Bogetoft, D. L. Christensen, I. Damgård, M. Geisler, T. P. Jakobsen,
M. Krøigaard, J. D. Nielsen, J. B. Nielsen, K. Nielsen, J. Pagter, M. I.
Schwartzbach, and T. Toft. Secure Multiparty Computation Goes Live.
In Proceedings of FC ’09, volume 5628 of Lecture Notes in Computer
Science, pages 325–343. Springer, 2009.

BDO14. C. Baum, I. Damgård, and C. Orlandi. Publicly Auditable Secure Multi-
Party Computation. In Proceedings of SCN ’14, volume 8642 of Lecture
Notes in Computer Science, pages 175–196. Springer, 2014.

BR93. M. Bellare and P. Rogaway. Random Oracles are Practical: A Paradigm
for Designing Efficient Protocols. In Proceedings of CCS ’93, pages 62–
73. ACM, 1993.

Can98. R. Canetti. Security and Composition of Multi-party Cryptographic
Protocols. Journal of Cryptology, 13:2000, 1998.

CDN01. R. Cramer, I. Damgård, and J. Nielsen. Multiparty Computation from
Threshold Homomorphic Encryption. In Proceedings of EUROCRYPT
’01, volume 2045 of Lecture Notes in Computer Science, pages 280–300.
Springer, 2001.

CF85. J. Cohen and M. Fischer. A Robust and Verifiable Cryptographically
Secure Election Scheme. In Proceedings of FOCS ’85, pages 372–382.
IEEE, 1985.

Des93. Y. Desmedt. Threshold cryptosystems. In Proceedings of AUSCRYPT
’92, volume 718 of Lecture Notes in Computer Science, pages 1–14.
Springer, 1993.

dH12. S. de Hoogh. Design of large scale applications of secure multiparty com-
putation: secure linear programming. PhD thesis, Eindhoven University
of Technology, 2012.

dHSCodA14. S. de Hoogh, B. Schoenmakers, P. Chen, and H. op den Akker. Practical
Secure Decision Tree Learning in a Teletreatment Application. In Pro-
ceedings of FC ’14, volume 8437 of Lecture Notes in Computer Science,
pages 179–194. Springer, 2014.

DJ01. I. Damgård and M. Jurik. A Generalisation, a Simplification and Some
Applications of Paillier’s Probabilistic Public-Key System. In Proceed-
ings of PKC ’01, volume 1992 of Lecture Notes in Computer Science,
pages 119–136. Springer, 2001.

DN03. I. Damgård and J. B. Nielsen. Universally Composable Efficient Multi-
party Computation from Threshold Homomorphic Encryption. In Pro-
ceedings of CRYPTO ’03, volume 2729 of Lecture Notes in Computer
Science, pages 247–264. Springer, 2003.

DPSZ12. I. Damgård, V. Pastro, N. Smart, and S. Zakarias. Multiparty Com-
putation from Somewhat Homomorphic Encryption. In Proceedings of
CRYPTO ’12, volume 7417 of Lecture Notes in Computer Science, pages
643–662. Springer, 2012.

EFLL12. Y. Ejgenberg, M. Farbstein, M. Levy, and Y. Lindell. SCAPI: The Se-
cure Computation Application Programming Interface. IACR Cryptol-
ogy ePrint Archive, 2012:629, 2012.

FGP14. D. Fiore, R. Gennaro, and V. Pastro. Efficiently Verifiable Computation
on Encrypted Data. In Proceedings of CCS ’14, pages 844–855. ACM,
2014.

GK03. S. Goldwasser and Y. T. Kalai. On the (In)security of the Fiat-Shamir
Paradigm. In Proceedings of FOCS ’03, pages 102–113. IEEE Computer
Society, 2003.

GKP+13. S. Goldwasser, Y. T. Kalai, R. A. Popa, V. Vaikuntanathan, and N. Zel-
dovich. Reusable garbled circuits and succinct functional encryption. In
Proceedings of STOC ’13, pages 555–564. ACM, 2013.

Gro04. J. Groth. Evaluating Security of Voting Schemes in the Universal Com-
posability Framework. In Proceedings of ACNS ’04, volume 3089 of
Lecture Notes in Computer Science, pages 46–60. Springer, 2004.

IPS09. Y. Ishai, M. Prabhakaran, and A. Sahai. Secure Arithmetic Computation
with No Honest Majority. In Proceedings of TCC ’09, volume 5444 of
Lecture Notes in Computer Science, pages 294–314. Springer, 2009.

Jur03. M. J. Jurik. Extensions to the Paillier Cryptosystem with Applications
to Cryptological Protocols. PhD thesis, University of Aarhus, 2003.

KMR12. M. Keller, G. L. Mikkelsen, and A. Rupp. Efficient Threshold Zero-
Knowledge with Applications to User-Centric Protocols. In Proceedings
of ICITS 2012, volume 7412 of Lecture Notes in Computer Science, pages
147–166. Springer, 2012.

NKDM03. A. Nicolosi, M. N. Krohn, Y. Dodis, and D. Mazières. Proactive Two-
Party Signatures for User Authentication. In Proceedings of NDSS 2003.
The Internet Society, 2003.

Pai99. P. Paillier. Public-Key Cryptosystems Based on Composite Degree
Residuosity Classes. In Proceedings of EUROCRYPT ’99, volume 1592
of Lecture Notes in Computer Science, pages 223–238. Springer, 1999.

PHGR13. B. Parno, J. Howell, C. Gentry, and M. Raykova. Pinocchio: Nearly
Practical Verifiable Computation. In Proceedings of S&P 2013, pages
238–252. IEEE, 2013.

Sch89. C. Schnorr. Efficient Identification and Signatures for Smart Cards. In
Proceedings of CRYPTO ’89, volume 435 of Lecture Notes in Computer
Science, pages 239–252. Springer, 1989.

SK95. K. Sako and J. Kilian. Receipt-Free Mix-Type Voting Scheme—A Prac-
tical Solution to the Implementation of a Voting Booth. In Proceedings
of EUROCRYPT ’95, volume 921 of Lecture Notes in Computer Science,
pages 393–403. Springer, 1995.

ST04. B. Schoenmakers and P. Tuyls. Practical Two-Party Computation Based
on the Conditional Gate. In Proceedings of ASIACRYPT ’04, volume
3329 of Lecture Notes in Computer Science, pages 119–136. Springer,
2004.

ST06. B. Schoenmakers and P. Tuyls. Efficient Binary Conversion for Paillier
Encrypted Values. In Proceedings of EUROCRYPT ’06, volume 4004 of
Lecture Notes in Computer Science, pages 522–537. Springer, 2006.

Unr07. D. Unruh. Random Oracles and Auxiliary Input. In Proceedings of
CRYPTO ’07, volume 4622 of Lecture Notes in Computer Science, pages
205–223. Springer, 2007.

WB13. M. Walfish and A. J. Blumberg. Verifying computations without reexe-
cuting them: from theoretical possibility to near-practicality. Electronic
Colloquium on Computational Complexity, 20:165, 2013.

Wee09. H. Wee. Zero Knowledge in the Random Oracle Model, Revisited. In
Proceedings of ASIACRYPT ’09, volume 5912 of Lecture Notes in Com-
puter Science, pages 417–434. Springer, 2009.

A Σ-Protocols for Multiplication and Decryption and
Homomorphisms

A Σ-protocol proving correct multiplication due to [CDN01] is shown in Σ-
protocol 2; a Σ-protocol proving correct decryption due to [Jur03] is shown in
Σ-protocol 3.

We now exhibit homomorphisms for the Σ-protocols used in this paper. For
the proof of plaintext knowledge ΣPK (Σ-protocol 1), we combine proofs of

Σ-Protocol 2 ΣCM: Proof of correct multiplication
[Relation]

R = {((X,Y, Z), (y, r, s)) | Y = (1 +N)yrN ∧ Z = XysN}
[Announcement] Σ.ann((X,Y, Z), (y, r, s)) :=

a ∈R ZN ;u, v ∈R Z∗N ;A := XavN ;B := (1 +N)auN ; return ((A,B), (a, u, v))
[Response] Σ.res((X,Y, Z), (y, r, s), (A,B), (a, u, v), c) :=

t := b(a+ cy)/Nc ; d := a+ cy; e := urc(1 +N)t; f := vXtsc

return (d, e, f)
[Simulator] Σ.sim((X,Y, Z), c) :=

d ∈R ZN ; e, f ∈R Z∗N ;A := XdfNZ−c;B := (1 +N)deNY −c

return ((A,B), c, (d, e, f))
[Extractor] Σ.ext((X,Y, Z), (A,B), c, c′, (d, e, f), (d′, e′, f ′)) :=

β,m :=
〈
values such that β(c− c′)−mN = 1

〉
return ((d− d′)β, (e/e′)βY −m, (f/f ′)βZ−m)

[Verification]

Σ.ver((X,Y, Z), (A,B), c, (d, e, f)) := (1 +N)deN
?
= BY c ∧XdfN

?
= AZc

Σ-Protocol 3 ΣCD: Proof of correct decryption
[Relation]

R = {((d, di, v, vi),∆si) | d2i = d4∆si ∧ vi = v∆si}
[Announcement] Σ.ann((d, di, v, vi),∆si) := // k = log2N ; k2 stat. sec. param

u ∈R [0, 22k+2k2]; a := d4u; b := vu; return ((a, b), r)
[Response] Σ.res((d, di, v, vi),∆si, (a, b), u, c) :=

r := u+ c∆si; return r
[Simulator] Σ.sim((d, di, v, vi), c) :=

z ∈R [0, 22k+2k2]; return((d4z(di)−2c, vz(vi)
−e), c, z)

[Extractor] Σ.ext((d, di, v, vi), (a, b), c, c′, r, r′) :=
return (r − r′)/(c− c′)

[Verification] Σ.ver((d, di, v, vi), (a, b), c, r) := d4r
?
= a(di)

2c ∧ vr ?
= b(vi)

c

knowledge of the plaintexts xi of {Xi} into a proof of knowledge of the plaintext∑
xi of

∏
Xi. Namely, let Φ.stmt({Xi}i∈I) =

∏
i∈I Xi and Φ.ann({Bi}i∈I) =∏

i∈I Bi. We would like to take (d, e) = Φ.resp({(di, ei)}i∈I) = (
∑
i∈I di,

∏
i∈I ei),

but because
∑
i∈I di is computed modulo N , we need to add a correction factor

(1 + N)k (k =
⌊
(
∑
i∈I di)/N

⌋
) to e, i.e., e = (

∏
i∈I ei)(1 + N)k. This homo-

morphism is defined for any collection of statements from V ; it is easy to check
the combination and randomness properties. (This homomorphism is not used
in our protocols, but we give it for completeness.)

The proof of correct multiplication ΣCM (Σ-protocol 2) has a homomor-
phism similar to that of the proof of knowledge. It is defined on statements
{(X,Yi, Zi)}i∈I which share encryption X, and it proves that the multiplication
under encryption of X with

∏
Yi is equal to

∏
Zi. Formally, we let:

Φ.stmt({(X,Yi, Zi)}i∈I) =

(
X,
∏
i∈I

Yi,
∏
i∈I

Zi

)
;

Φ.ann({Ai, Bi}i∈I) =

(∏
i∈I

Ai,
∏
i∈I

Bi

)
;

Φ.resp({(di, ei, fi)}i∈I) =

(∑
i∈I

di,

(∏
i∈I

ei

)
(1 +N)k,

(∏
i∈I

fi

)
Y k

)
,

with k =
⌊
(
∑
i∈I di)/N

⌋
.

Finally, proofs of correct decryption ΣCD (Σ-protocol 3) can be combined
into a proof of decryption with respect to an overall verification value. Let
I ≥ dn/2e be sufficiently many parties to decrypt a ciphertext, let {λi}i∈I be
Lagrange interpolation coefficients for these parties5, and let si be their shares of
the decryption key d =

∑
i∈I ∆λisi. Recall that decryption works by letting each

party i ∈ I provide decryption share ci = c2∆si ; computing c′ =
∏
i∈I c

2∆λi
i ; and

from this determining the plaintext as paillierdecode(c′). Parties prove correctness
of their decryption shares ci by proving that logc4 c

2
i = logv vi, where v, vi are

publicly known verification values such that vi = v∆si . Now, if logc4 c2i = logv vi
for all i, then

logc4 c
′ = logc4

∏
i∈I

c2∆λii = logv
∏
i∈I

v∆λii = logv
∏
i∈I

(v∆si)∆λi = logv v
∆2d.

Hence, decryption proofs for shares ci with respect to verification values vi can
be combined into a decryption proof for c′ with respect to verification value
v0 := v∆

2d. Formally, we let

Φ.stmt({(d, di, v, vi)}i∈I =

(
d,
∏
i∈I

c∆λii , v,
∏
i∈I

v∆λii

)
;

Φ.ann({(ai, bi)}i∈I) =

(∏
i∈I

a∆λii ,
∏
i∈I

b∆λii

)
;

Φ.resp({ri}i∈I) =
∑

∆λiri.

For the combination property of Definition 2, note that we really need I ≥ dn/2e
in order to apply Lagrange interpolation. For the randomness property, note that
if |C| < dn/2e, then at least one party in I /∈ C has a non-zero interpolation
coefficient, hence the contribution of this party to the announcement ensures
that the two combined announcements are different.

B Simulation-Based Security in the Random Oracle
Model

We prove our protocols secure using the simulation paradigm in the random
oracle model [BR93,Wee09]. In the random oracle model, evaluations of hash
5 Note that λi are not always integral; but we will always use ∆λi, which are integral.

function H : {0, 1}∗ → {0, 1}2l are modelled as queries to a “random oracle” O
that evaluates a perfectly random function. When simulating an adversary that
operates in the random oracle model, the simulator also simulates the random
oracle with respect to the adversary. In particular, it can choose how to respond
to the adversary’s queries (but, to achieve security, it should provide random
values so that the adversary cannot distinguish between the real world and the
simulation based on the output of the random oracle).

More precisely, we work in the explicitly programmable random oracle model
without dependent auxiliary input [Wee09]. The random oracle is seen as a par-
tial function that initially has an empty codomain (i.e., it is “without dependent
auxiliary input”). In a real-world execution in this model, both the honest parties
and the adversary use the random oracle for hash function evaluations. Namely,
when a party calls the oracle on a value v ∈ dom(O), it receives O(v); otherwise,
a fresh random value is generated andO is updated accordingly. At the end of the
execution, O contains all pairs of oracle queries made during the execution and
their responses. In an ideal-world execution, the simulator can directly modify
the preimage/image pairs in O; the simulated adversary only has oracle access
to O as in the real-world execution. Again, at the end of the simulation, O con-
tains all values on which the oracle has been set. Computational (or statistical)
indistinguishability between real and simulated executions is defined [Wee09] by
stating that no PPT (or unbounded) algorithm can distinguish them, where the
distinguisher has oracle access to O. We prove slightly stronger versions of in-
distinguishability; namely, instead of giving the distinguisher oracle access to O,
we simply supply it with the full list O. We can then simply use the normal,
non-oracle, definitions for indistinguishability; this is clearly at least as strong.

Our proofs rely on the absence of dependent auxiliary input. When a party
presents a non-interactive proof of knowledge, we perform rewinding to find the
witness to that proof; but if oracle queries before the protocol execution are
allowed, then a party may replay a proof that was performed before the protocol
execution, making rewinding impossible. As noted in [Unr07], this suggests that
the random oracle in our protocols should be instantiated with a keyed hash
function, where every protocol instance uses a different key. See Section 5 for a
discussion.

Figure 2 lists the notation we use when presenting simulators in the random
oracle model. We use global variables A and O to denote the current state of
the adversary and the random oracle. An invocation of A with oracle access to
O is denoted v := AO(w); afterwards, both O and A are updated to reflect the
respective new states.

B.1 The Fiat-Shamir Heuristic and Witness-Extended Emulation

When the Fiat-Shamir heuristic (Protocol 1) is used, in some situations a simu-
lator can extract witnesses from proofs by corrupted parties. Namely, in [Gro04],
Groth showed that, by simulating an adversary using witness-extended emula-
tion, a simulator can obtain witnesses for all proofs that the adversary produces.
Specifically, Groth proved the following:

dom(O), codom(O), rng(O) Domain/codomain/range of random oracle O,
seen as partial function

fail Terminate simulation, returning special error value
A,O Global variable: simulated attacker/random oracle
v := AO(w) Exchange values v, w with A having oracle access to O

Fig. 2. Notation and conventions for simulation-based security in the Random Oracle
Model

Theorem 2 ([Gro04]). Let (A′,O′,x,p) ← AO(z) be an adversary A inter-
acting with random oracle O that, on some polynomial-length input z, outputs a
list x of statements, and a list p of corresponding validating Fiat-Shamir proofs.
Then there exists a PPT emulator (A′,O′,x,p,w)← EOA (z) such that the part
(A′,O′,x,p) of the output of EA is perfectly indistinguishable from the output
of A, and w are witnesses corresponding to the statements x.

Essentially, the witness-extended emulator EA simulates the adversary A,
keeping track of all oracle queries it makes. For each valid proof that A produces,
it rewinds A to the point of the oracle query used to obtain the challenge, and
keeps on reprogramming the random oracle until A again produces a correct
proof with a new challenge. It finally extracts the witness using the special
soundness property of the Σ-protocol.

However, a major limitation of the technique of [Gro04] is that it only con-
siders a single invocation of the adversary. On the other hand, the CDN protocol
consists of different rounds in which the adversary is invoked with inputs from
the honest parties. Now, if the adversary provides a proof in its rth invocation, it
may have already queried the random oracle for the announcement of that proof
in an earlier invocation s < r. Then, to extract the witness for the proof from
invocation r, we need to simulate the adversary from invocation s. This means
that we also need to re-compute the messages from the honest party to the ad-
versary for all rounds between s and r. However, computing these messages in
general requires witnesses for the proofs of the adversary between rounds s and
r. Hence, to extract the witnesses for the rth invocation, we need to recursively
extract witnesses for all rounds between s and r, which in turn may also require
recursive rewinding. Hence, if Fiat-Shamir proofs take place in R invocations of
the adversary, then witness-extended emulation may increase the running time
of a simulator by a factor O(R!). Because we need simulators to be PPT, R!
should be polynomial in the security parameter, so we can use the Fiat-Shamir
heuristic, but only in essentially a constant number of rounds (as in our UVCDN
protocol, where we only use the normal Fiat-Shamir heuristic at the beginning
and the end of the protocol).

Our multiparty Fiat-Shamir heuristic (Section 3.2) addresses the above limi-
tations while also combining proofs of individual parties into one single proof for
a combined statement. If this combination is not desired, then each party can
simply hash the concatenation of all parties’ announcements instead of taking
combinations Φ.stmt({vi}i∈P\F), Φ.ann({ai}i∈P\F . Note that also in this case,
the extra round in which parties commit to their announcements is still needed.

Without this round, the adversary could choose its announcement after the hon-
est parties chose theirs, and hence, the simulator would not know on which
preimage to program the random oracle when simulating the honest parties’
proofs. In the non-combination case, the parties could alternatively broadcast
their announcements; and then use a hash of the concatenation of the announce-
ments and some fresh randomness. This way, the simulator can simulate the
honest parties’ proofs because the adversary cannot predict the preimage before
seeing the proof; while the adversary cannot make oracle queries for its own
proofs too early because it needs to wait for the honest parties’ announcements.
Another way of addressing the limitations in the non-combination case would
be to add the full previous communication transcript to the hash (or, in any
case, some recent messages that contain sufficient entropy by honest parties):
this way, rewinding is guaranteed to be to a recent moment in the protocol.

C Simulator of the Multiparty Fiat-Shamir Heuristic

Our simulator SMΣ of the multiparty Fiat-Shamir heuristic is shown in Algo-
rithm 2. We now explain the general idea, deferring the discussion of exceptional
cases to the security proof.

As long as flag stage2 is not set, the simulator behaves like the protocol. First,
the parties exchange hashed commitments (line 10–12). Namely, the simulator
generates random hash values for the honest parties (line 10), and receives hash
values for the corrupted parties (line 11). Note that the adversary can later open
these values only if they come from the random oracle, hence the simulator knows
the adversary’s pre-images ai (line 12). Next, the parties open their commitments
(lines 16–26). The simulator generates a random challenge c (line 16); simulates
the Σ-protocol for the honest parties (line 18); and programs the random oracle
so that the announcements of the honest parties hash to the values hi supplied
earlier (lines 19–20). If possible, the simulator combines the announcements ai
of the honest and corrupted parties, and programs the random oracle to return
c on the result (lines 21–24). The simulator then the receives announcements a′i
for the corrupted parties (line 25); and checks if they are correct (line 26); if so,
it exchanges responses to the challenge (line 29). If all parties provided correct
responses, then the protocol terminates: in this case, the simulator stores the
state at this point for returning it when the simulation ends, and sets flag stage2
(line 33). Otherwise, the simulator continues repeats the above process with the
parties that have not misbehaved so far (line 40).

When flag stage2 is set, the simulator has simulated one successful run of the
multiparty Fiat-Shamir heuristic for which it will now extract witnesses. Note
that variables Astart, Ostart, and F ′ contain the state of the protocol at the point
when the adversary has supplied hash values hi for which the simulator knows
the pre-images ai, and a challenge c′ with correct responses {r′i}i∈(P\F ′)∩C . To
extract witnesses for the parties in (P \ F ′)∩C, the simulator keeps re-winding
to state (Astart,Ostart, F

′) (line 15), and repeats the above simulation procedure
(lines 16–30), until the adversary has again produced correct responses for the
same parties (line 31). In this case, it has responses from the adversary for the

Algorithm 2 SMΣ : simulator for Multiparty Fiat-Shamir Heuristic
1. // pre: Σ: Σ-protocol with homomorphism. Φ; P : non-failed parties (P ∩ F = ∅);
2. // vP = {vi}i∈P : statements
3. // post: if |P \ F | ≥ dn/2e, then vP\F is the statement Φ.stmt({vi}i∈P\F), πP\F
4. // is corresponding FS proof, and ∀i ∈ (P \ F) ∩ C, wi is a witness for vi
5. // invariant: F ⊂ C: set of failed parties only includes corrupted parties
6. (vP\F , πP\F , w(P\F)∩C)← SMΣ(Σ,Φ, P, vP , aux = ”) :=
7. stage2 := ⊥
8. repeat // line 7 of MΣ
9. if stage2 = ⊥ then // stage 1 of simulation: simulate protocol w.r.t. A

10. foreach i ∈ P \ C do hi ∈R codom(O)
11. (A,O, {hi}i∈(P\F)∩C) := AO({hi}i∈P\C) // line 8 of MΣ
12. foreach i ∈ (P \ F) ∩ C do ai := (x if ∃!x : (x||i, hi) ∈ O else ⊥)
13. Astart := A;Ostart := O
14. else // stage 2: extract witnesses from Astart

15. A := Astart;O := Ostart;F := F ′

16. c ∈R codom(O)
17. foreach i ∈ P \ C do
18. (ai, ri) := Σ.sim(vi, c)
19. if ai||i ∈ dom(O) then fail
20. O := O ∪ {(ai||i, hi)}
21. if ∀i ∈ (P \ F) ∩ C : ai 6= ⊥ then // know combined ann.: program oracle
22. a := Φ.stmt({vi}i∈P\F)||Φ.ann({ai}i∈P\F)||aux // line 12 of MΣ
23. if a ∈ dom(O) then fail
24. O := O ∪ {(a, c)}
25. {a′i}i∈(P\F)∩C) := AO({ai}i∈P\C) // line 9 of MΣ
26. F ′ := F ;F := F ∪ {i ∈ (P \ F) ∩ C | (a′i||i, hi) /∈ O} // line 10 of MΣ
27. if F = F ′ then // line 11 of MΣ
28. if ∃i ∈ (P \ F) ∩ C : ai = ⊥ ∨ ai 6= a′i then fail

29. {ri}i∈(P\F)∩C := AO({ri}i∈P\C) // line 13 of MΣ
30. F := F ∪ {i ∈ P \ F | ¬Σ.ver(vi, ai, c, ri)} // line 14 of MΣ
31. if F = F ′ then // line 15 of MΣ
32. if stage2 = ⊥ then // end of stage 1: save adversary state
33. Aret := A;Oret := O; c′ := c; {r′i}i∈(P\F)∩C := {ri}i∈(P\F)∩C
34. πret := (Φ.ann({ai}i∈P\F), c, Φ.resp({ri}i∈P\F)); stage2 := >
35. else
36. if c = c′ then fail
37. foreach i ∈ (P \ F) ∩ C do wi := Σ.ext(vi, ai, c, c

′, ri, r
′
i)

38. A := Aret;O := Oret

39. return (Φ.stmt({vi}i∈P\F), πret, {wi}i∈(P\F)∩C) // line 16 of MΣ
40. until stage2 = ⊥ ∧ |P \ F | < dn/2e // line 17 of MΣ
41. return (⊥,⊥, ∅) // line 18 of MΣ

same announcement with different challenges, from which it can extract wit-
nesses using the special soundness property of the Σ-protocol (line 37). Finally,
the simulator returns the adversary state after the first successful protocol run,

along with the proof and the witnesses for the contributing corrupted parties
(line 39).

We now prove that simulator SMΣ satisfies soundness and zero-knowledge.
The statement of our lemma is analogous to the statement from [CDN01], with
two technical differences. First, we do not use trapdoor commitments, in effect
replacing them by the random oracle. Second, we do not guarantee perfect indis-
tinguishability because our simulator may occasionally fail. We get the following:

Lemma 1. Assume that fewer than dn/2e parties are corrupted. Define real-
world executions of MΣ and ideal-world executions of SMΣ as follows:

– Let (A′,O′, F ′, vP\F ′ , πP\F ′) ← execMΣ(A,O, F,Σ, Φ, P, vP , wP , aux) de-
note a run of the MΣ protocol (Protocol 2) with initial adversary state A,
random oracle O, set F of failed parties, parameters (Σ,Φ, P, vP , wP , aux),
final states A′,O′, F , and return values vP\F , πP\F .

– Let (A′,O′, F ′, vP\F ′ , πP\F ′ , w(P\F)∩C)← simSMΣ (A,O, F,Σ, Φ, P, vP , aux)
denote a run of the SMΣ simulator with initial adversary state A, random
oracle state O, and set F of failed parties, and parameters (Σ,Φ, P, vP , aux);
and final states A′,O′, F ′ and return values vP\F ′ , πP\F ′ , w(P\F ′)∩C .

Then SMΣ is a PPT algorithm satisfying the following two properties:

Soundness Except with negligible probability, w(P\F ′)∩C = {wi}i∈(P\F ′)∩C are
valid witnesses for the statements vi of the corrupted parties in P that pro-
duced verifying proofs.

Zero-Knowledge The part (A′,O′, F ′, vP\F ′ , πP\F ′) of the output of simSMΣ
is statistically indistinguishable from the output of execMΣ.

Proof. We need to show that SMΣ is PPT, and that it satisfies soundness and
zero-knowledge.

First, we show that the simulator only fails with negligible probability: It fails
in line 19 if the random oracle has already been programmed on a simulated
announcement. This happens with negligible probability because of the non-
triviality property of the Σ-protocol. It fails in line 23 if the random oracle has
already been programmed on a homomorphically combined announcement. This
happens with negligible probability because of the randomness property of the
homomorphism Φ. It fails in line 28 if the adversary manages to supply a pre-
image a′i different from the one calculated in line 12. Then the adversary has
found a collision or it has found a pre-image of hi without getting hi from the
oracle, which happens with negligible probability. Finally, it fails in line 36 if the
simulator has twice generated the same challenge randomly in the codomain of
the random oracle. But this codomain is {0, 1}2l with l a security parameter, so
also this happens with negligible probability.

For soundness: the adversary returns values wi = Σ.ext(vi, ai, c, c
′, ri, r

′
i) for

which we know that Σ.ver(vi, ai, c, ri) and Σ.ver(vi, ai, c′, r′i) hold (by line 30),
and c 6= c′ (by line 36). Hence, the wi are valid witnesses by the special soundness
property of the Σ-protocol.

For zero-knowledge, note that the part (A′,O′, F ′, vP\F ′ , πP\F ′) returned by
the simulated execution is determined while stage2 = ⊥. Namely, one checks

that A′ and O′ are Aret and Oret as set in line 33; F ′ is the value F when line
33 was executed; vP\F ′ depends only on that value F ′; and πP\F ′ is set in line
34. But observe that, while stage2 = ⊥, the simulator behaves like the original
protocol with respect to the adversary, except in three ways. The first is that the
protocol may fail, but as shown, this happens only with negligible probability
so it does not affect statistical indistinguishability. The second is that, in line
26 of the simulator, we check if (a′i||i, hi) ∈ O instead of querying the random
oracle. In the protocol, it might be that a′i||i was not queried before, but when
queried, the random oracle happens to return hi. Again, this happens with only
negligible probability. Finally, all proofs of the honest parties are simulated. The
special honest-verifier zero-knowledge property of the Σ-protocol now implies
that (A′,O′, F ′, vP\F ′ , πP\F ′) is identically distributed in the real and simulated
protocol run.

Finally, we need to show that the simulator runs in PPT. For this, let us
analyse how often the main repeat . . .until loop (lines 8–40) is executed. If
stage2 = ⊥ at the beginning of the loop, then either |P \ F | becomes strictly
smaller, or stage2 is set to >. Hence, the time spent while stage2 = ⊥ is certainly
polynomial. Now, consider the loop execution in which stage2 is set to >, i.e., in
which all provers provide correct announcements and responses for the first time.
Let ε be the a priori probability, from line 16 of SMΣ , that all provers indeed
provide correct announcements and responses. Then with probability ε, line 32 is
reached; and afterwards, the loop is executed from the same state (line 15) until
we again get correct announcements and proofs, which takes an expected 1/ε
number of tries. Hence, the loop is executed with stage2 = > with probability
ε for an expected 1/ε number of times, hence it contributes polynomially to the
running time. This completes the proof. ut

Note that the above proof relies on the fact that communication happens
on a broadcast channel. Namely, in this case, all honest parties simulate their
Σ-protocol based on the same challenge. However, we remark that the simulator
could also be made to work in a non-broadcast setting. In this case, in line 12, it
determines announcements of the corrupted parties with respect to each honest
party; and based on that, decides for how many different challenges to simulate
the honest parties’ Σ-protocols.

D Security of the UVCDN Protocol: Proof of Theorem 1

To prove security of the UVCDN protocol, we need to build a simulator for
every adversary A. Because the honest majority and corrupted majority cases
are very different, we define two simulators: simulator Shonest

UVCDN (ITM 2) for the
honest majority case; and simulator Scorrupt

UVCDN (ITM 3) for the corrupted majority
case. Below, we present the simulators and prove that they correctly simulate
the protocol in their respective cases. Theorem 1 follows directly from Lemmas 2
and 3 below.

ITM 2 Shonest
UVCDN: Simulator for Universally Verifiable CDN (honest majority)

1. // pre: pk public key; C (|C| < dn/2e) corrupted parties with secret keys
2. // {si}i∈P∩C , inputs {xi}i∈I∩C
3. // post: attacker simulated, values provided to T to mimic real execution outputs
4. (r,O)← Shonest

UVCDN,A(pk=(N, v, v0, {vi}i∈P), C, {xi}i∈I∩C , {si}i∈P∩C , a) :=
5. F := ∅ // parties that have misbehaved
6. // input phase: input parties provide inputs and prove knowledge of them
7. foreach i ∈ I \ C do xi := 0; ri ∈R Z∗N ;Xi := (1 +N)xirNi

8. {Xi}i∈I∩C := AO({Xi}i∈I\C)
9. (_, {(xi,_)}i∈(I\F)∩C) := SFΣ(ΣPK, I, {Xi}i∈I)

10. foreach i ∈ I ∩ F do xi := 0; Xi := 1
11. send({xi}i∈I∩C , T)
12. // computation phase: go through the circuit gate-by-gate
13. foreach gate do
14. if 〈constant gate c with value v〉 then xc := v; Xc := (1 +N)v

15. if 〈addition gate c with inputs a, b〉 then xc := xa + xb;Xc := XaXb

16. if 〈subtraction gate c with inputs a, b〉 then xc := xa − xb;Xc := XaX
−1
b

17. if 〈multiplication gate c with inputs a, b〉 then // [DN03] multiplication
18. foreach i ∈ P \ C do
19. di ∈R ZN ; ri, ti ∈R Z∗N ; Di := (1 +N)dirNi ;Ei := (Xb)

ditNi
20. xc := xaxb;m ∈R P \ C;Dm := DmX

−1
a ;Em := Em(1 +N)−xc

21. {(Di, Ei)}i∈(P\F)∩C := AO({(Di, Ei)}i∈P\C)
22. ((_, Dc, Ec), πCMc, {(di,_,_)}i∈(P\F)∩C) :=
23. SMΣ(ΣCM, ΦCM,P \ F, {(Xb, Di, Ei)}i∈P\F)
24. Sc := Xa ·Dc; {Si}i∈P\C :=

〈
decr. shares s.t. Sc decrypts to Σi∈P\F di

〉
25. {Si}i∈(P\F)∩C := AO({Si}i∈P\C)
26. ((_, S0,c,_,_), πCDc,_) := SMΣ(ΣCD, ΦCD,P \ F, {(Sc, Si, v, vi)}i∈P\F)
27. Xc := (Xb)

Σi∈P\F diE−1
c

28. // output phase: decrypt result for result party
29. if R /∈ C then X := recv(T); y ∈R ZN ;D := (1 +N)−yX;AO(D)

30. if R ∈ C then r := recv(T);D := AO()
31. (πPKd, {(di,_)}i∈{R}∩C) := SFΣ(ΣPK, {R}, {D})
32. if R /∈ F then
33. if R ∈ C then y := r − dR
34. Y := Xoutgate ·D−1; {Yi}i∈P\C := 〈decr. shares s.t. Y decrypts to y〉
35. {Yi}i∈(P\F)∩C := AO({Yi}i∈P\C)
36. ((_, Y0,_,_), πCDy,_) := SMΣ(ΣCD, ΦCD,P \ F, {(Y, Yi, v, vi)}i∈P\F , D)
37. π := ({(Dc, Ec, πCMc, S0,c, πCDc)}c∈gates, (D,πPKd, Y0, πCDy))
38. // proof phase: if computation succeeded, provide proof to verifier
39. if R ∈ C then // result party corrupted: tell T whether to provide proof to V
40. if V /∈ C then π := AO()
41. if vercomp(pk, {Xi}i∈I , π) then send(s, T) else send(⊥, T)
42. else if V ∈ C then AO(π) // verifier corrupted: expects to receive proof
43. return (AO(),O) // return adv.-chosen output and simulated random oracle

D.1 The Honest Majority Case

If fewer than dn/2e parties are corrupted, then we guarantee privacy like the
original CDN protocol. Our simulator Shonest

UVCDN (ITM 2) for this case is an adap-
tation of CDN simulator from [CDN01]. Until line 27 of the simulator, it follows
the CDN simulator except in two ways: it simulates the optimised [DN03] multi-
plication protocol, and it simulates non-interactive proofs rather than interactive
proofs.

First, lines 18–27 of Shonest
UVCDN simulate the multiplication protocol from [DN03].

Analogously to Theorem 3 of [CDN01], lines 18–27 simulate multiplication given
encryptions Xa, Xb of the values to be multiplied, and plaintext xc of the result6.
This simulation is constructed to be statistically indistinguishable from the mul-
tiplication protocol itself (lines 15–26 of UVCDN). The simulator generate values
di, ri, ti, Di, Ei on behalf of the honest parties as in the protocol (lines 18–19); but
then multiplies one of the resulting (Di, Ei) by X−1a and (1+N)−xc , respectively
(line 20). This way, the simulator knows that Sc = Xa · Dc = Xa ·

∏
i∈P\F Di

computed in line 24 encrypts
∑
i∈P\F di. It simulates the proofs of correct mul-

tiplication of the (Di, Ei) (line 22-23); and computes Sc as in the protocol (line
24). Finally, it simulates decryption of Sc to

∑
i∈P\F di (lines 25–26), and com-

putes Xc as in the protocol (line 27). One checks that this is indeed a statistically
indistinguishable simulation.

Second, Shonest
UVCDN simulates the (multiparty) Fiat-Shamir proofs in a statisti-

cally indistinguishable way, while also giving witnesses for the corrupted parties.
Recall from Section 3.1 that we can simulate the Fiat-Shamir heuristic provided
that R! is polynomial, where R is the number of rounds in which Fiat-Shamir
proofs take place. In our case, R = 2 so simulation is possible. Slightly abusing
notation, we denote the simulation of the Fiat-Shamir heuristic (which implicitly
includes recursive calls to the simulator) as (πP\F , w(P\F)∩C)← SFΣ(Σ,P, vP).
For the multiparty Fiat-Shamir heuristic, we use simulator SMΣ (Algorithm 2)
whose correctness we have proven in Appendix C.

Our simulation of the output and proof phases (line 28–43 of the simulator)
differs from the simulation in [CDN01]. Namely, in our case, simulation of the
output phase results in an encryption of the actual result of the computation
(obtained from the trusted party), whereas the CDN simulator works with a
simulated encryption until the end. Indeed, if the result party is honest, our
simulator receives an encryption X of the actual result (line 29). Recall that the
verifier sets the encrypted computation result to (1+N)yD with D provided by
the result party, so we simulate D from the result party as D = (1 + N)−yX
to ensure that the verifier’s output will be X. If the result party is corrupted,
the simulator receives D from the adversary. To ensure that (1 +N)yD indeed
encrypts the result of the computation, the simulator extracts plaintext dR of D
(line 31), and threshold decrypts Xoutgate ·D−1 to y = r − dR (line 33). Apart

6 Technically, the multiplication simulator of [CDN01] uses an encryption of the result
that it determined at the start of the CDN simulation, whereas we in effect determine
this encryption during the gate-by-gate evaluation of the circuits. These two methods
are clearly equivalent.

from this, the output phase is as in [CDN01]. Finally, in the proof phase, the
simulator provides an honest proof to a corrupted verifier; or receives the proof
of a corrupted result party for an honest verifier. In the latter case, if the verifier
receives a correct proof, then the randomness used will be sR (as we will show
later), so the simulator provides this randomness to the trusted party.

Lemma 2. For all inputs x1, . . . , xm, C, a with |P ∩ C| < dn/2e, Shonest
UVCDN,A is

PPT, and

EXECUVCDN,A(k, (x1, . . . , xm), C, a) and IDEALf,SUVCDN,A(k, (x1, . . . , xm), C, a)

are computationally indistinguishable in security parameter k.

Proof. We remark that Shonest
UVCDN is clearly PPT since it only calls PPT subrou-

tines.
For computation indistinguishability, we extend the proof for the CDN proto-

col from [CDN01]. In this proof, an algorithm YADA(B, k, (x1, . . . , xm), C, a) is
defined that, depending on an encrypted bit B = (1+N)brN , simulates either an
execution of the protocol with the real inputs (if B encrypts 1); or an execution
with zero inputs for the honest parties (ifB encrypts 0). It is shown that the b = 0
case is statistically indistinguishable to IDEALf,SA(k, (x1, . . . , xm), C, a) and the
b = 1 case is statistically indistinguishable to EXECCDN,A(k, (x1, . . . , xm), C, a).
Moreover, the b = 0 and b = 1 cases are computationally indistinguishable by
semantic security of the Paillier threshold cryptosystem (otherwise, the distin-
guisher between the two cases can distinguish random encryptions of 0 and 1).

To prove computational indistinguishability for the UVCDN protocol, we
need to modify the algorithm YADA(B, k, (x1, . . . , xm), C, a) to take into ac-
count the changed output of the result party and the additional output of the
verifier. Namely, for honest R, YADA outputs the result of the (real) computa-
tion and randomness s for encryption D from line 29 of the protocol; for honest
V, YADA outputs the return value of vercomp. Statistical indistinguishability
of the b = 1 case to EXECUVCDN,A and computational indistinguishability of
the b = 0 and b = 1 cases are proven analogously to [CDN01]. For statistical
indistinguishability of the b = 0 case to IDEALf,SUVCDN,A , the output of V in
case of a corrupted R is problematic: in YADA it returns the output of vercomp,
but in IDEALf,SUVCDN,A , it outputs (1 +N)rsN with s the randomness of D in
line 29 of UVCDN. These values coincide if R provides the same Y0 and D to V
that it computed with the computation parties during the protocol; but R could
of course present a Y0 or D with a valid proof to V, in which case the output of
V in the two distributions is different.

However, this latter possibility can only happen with negligible probability.
For suppose that it happens with non-negligible probability. Because Y0 and D
are both input to the proof of correct decryption (D being the auxiliary input),R
needs to provide a valid proof of correct decryption apart from the one produced
in lines 34–35 of UVCDN. But from this proof, witness ∆2d can be extracted
by witness-extended emulation. From this, we can build a distinguisher that,
given an encryption B, runs YADA(rN , k, (x1, . . . , xm), C, a) (r random), and,

whenever it gets witness ∆2d, outputs the decryption of B. By the above discus-
sion, this distinguisher succeeds with non-negligible probability, contradicting
semantic security of the Paillier threshold cryptosystem. So, IDEALf,SUVCDN,A

and YADA with b = 0 are in fact statistically indistinguishable, as we needed to
show. This completes the proof. ut

D.2 The Corrupted Majority Case

If at least dn/2e parties are corrupted, then the simulator has to simulate an
adversary that can decrypt all values that it sees. In this case, Scorrupt

UVCDN (ITM 3)
performs a run of the actual protocol with respect to the adversary. It can do
this, because it gets the inputs of the honest parties from TVSFE (line 5); and
it can compute their shares of the decryption key by Lagrange interpolation
from the shares of the corrupted parties (line 5)7. Again, the simulation differs
depending on whether or not R is corrupted.

The easiest case is if R and V are both corrupted (lines 33–36). In this case,
no honest parties produce output, so we just need to ensure that the adversarial
state at the end of the simulation is indistinguishable from a real execution. For
this, we simply execute the real protocol with the given adversary, and return
the resulting state. We also need to supply some values to the trusted party;
but in this case, it is not important what values we send, because they do not
influence the result of any honest party (lines 36).

If R is corrupted but V is not, then the simulator needs to ensure that the
honest verifier that it simulates either outputs a real encryption of the result
(for which we need to supply the randomness to T), or ⊥. As mentioned, the
simulator can simply run the full protocol with respect to A. Running the pro-
tocol with A is an algorithm, of which witness-extended emulation (Theorem 2)
guarantees an emulator that returns witnesses for all provided proofs. The sim-
ulator runs this emulator (lines 25–29). The emulator extracts witnesses for all
returned proofs; so in particular, unless it fails (which happens with negligible
probability by Theorem 2), all proofs are for statements that are really in their
respective languages. Moreover, we let the emulator return the inputs of all in-
put parties, and the randomness for the encryption returned by vercomp; the
simulator sends these values to T as appropriate.

IfR is not corrupted, then the simulator runs the protocol with the adversary,
until it reaches the output phase. Again, witness-extended emulation provides
the simulator with the inputs of the corrupted parties; and it ensures that all
proofs that the adversary provides are for statements that are in their respective
languages. If the computation fails, the simulator sends ⊥ to the trusted party
(line 22). Now, for the output and proof phases, the simulator obtains encryption
X of the output from the trusted party (line 13). If the computation does not
fail, then it needs to make sure that the verifier outputs X. Analogously to the
simulator in the honest case, Scorrupt

UVCDN chooses D = (1+N)−yX so that, indeed,

7 Actually, the simulator can only determine ∆si because it cannot divide by ∆ under
unknown modulus pp′qq′; but one observes that the UVCDN protocol always uses
si in combination with ∆, so knowing ∆si is sufficient.

ITM 3 Scorrupt
UVCDN: Simulator for Universally Verifiable CDN (corrupted majority)

1. // pre: pk public key; C (|C| ≥ dn/2e) corrupted parties with secret keys
2. // {si}i∈P∩C , inputs {xi}i∈I∩C
3. // post: attacker simulated, values provided to T to mimic real execution outputs
4. (r,O)← Scorrupt

UVCDN,A(pk=(N, v, v0, {vi}i∈P), C, {xi}i∈I∩C , {si}i∈P∩C , a) :=
5. {xi}i∈I\C := recv(T); {∆si}i∈P\C := 〈Lagrange interpolation from {si}i∈P∩C〉
6. if R /∈ C then // result party honest: receive output encryption from T
7. 〈run UVCDN(pk, {si}i∈P , {xi}i∈I}) line 1–26 with adversary
8. A(pk, {si}i∈P∩C , {xi}i∈I∩C , a) using witness-extended emulation; let x′i
9. be the extracted inputs by parties in I \ F ; let A, O be the state of the

10. adversary and random oracle at this point〉
11. forall i ∈ I ∩ F do x′i := 0
12. send({x′i}i∈I∩C , T)
13. X := recv(T)
14. if |P \ F | ≥ dn/2e then
15. y ∈R ZN ;D := (1 +N)−yX;AO(D)
16. (πPKd,_) := SFΣ(ΣPK, {R}, {D})
17. Y := Xoutgate ·D−1

18. foreach i ∈ P \ C do Yi := Y 2∆si

19. {Yi}i∈(P\F)∩C := AO({Yi}i∈P\C)
20. ((_, Y0,_,_), πCDy,_) := SMΣ(ΣCD, ΦCD,P \ F, {(Y, Yi, v, vi)}i∈P\F , D)
21. π := ({(Dc, Ec, πCMc, S0,c, πCDc)}c∈gates, (D,πPKd, Y0, πCDy))
22. if |P \ F | < dn/2e then send(⊥, T) else send(>, T)
23. if V ∈ C then AO(π)
24. else if V /∈ C then // result party corrupted: check encryption verifier gets
25. 〈run UVCDN(pk, {si}i∈P , {xi}i∈I}) with adversary A(pk, {si}i∈P∩C ,
26. {xi}i∈I∩C , a) using witness-extended emulation; let x′i be the extracted
27. inputs by parties in I \ F ; let s be ⊥ if the verifier returns ⊥, or otherwise
28. the extracted randomness from line 17 of vercomp; let A, O be the state
29. of the adversary and random oracle after the execution〉
30. forall i ∈ I ∩ F do x′i := 0
31. send({x′i}i∈I∩C , T); recv(T); send(s, T)
32. else // result party and verifier corrupted: no honest party outputs anything
33. 〈run UVCDN(pk, {si}i∈P , {xi}i∈I}) with adversary
34. A(pk, {si}i∈P∩C , {xi}i∈I∩C , a) giving A,O〉
35. forall i ∈ I ∩ C do x′i := 0
36. send({x′i}i∈I∩C , T); recv(T); send(⊥, T)
37. return (AO(),O) // return adv.-chosen output and simulated random oracle

the output (1 +N)yD corresponds to X; and simulates the proofs of plaintext
knowledge and correct decryption (lines 15-21).

We achieve statistical indistinguishability (computational indistinguishabil-
ity would be sufficient):

Lemma 3. For all inputs x1, . . . , xm, C, a with |P ∩ C| > dn/2e, Scorrupt
UVCDN,A is

PPT, and

EXECUVCDN,A(k, (x1, . . . , xm), C, a) and IDEALf,SUVCDN,A(k, (x1, . . . , xm), C, a)

are statistically indistinguishable in security parameter k.

Proof. We remark that Scorrupt
UVCDN is clearly PPT since it only calls PPT subrou-

tines.
Statistical indistinguishability is clear in case the result party is corrupted.

Namely, the final adversarial state in the simulator is obtained by witness-
extended emulation from the state of the adversary interacting with the true
protocol. Hence, by Theorem 2, it is statistically indistinguishable from the ad-
versarial state in the true protocol. Moreover, in both cases, a honest verifier
outputs (1 + N)rsN for D = (1 + N)∗sN from line 21 of vercomp, or ⊥ if the
computation failed.

Now, consider the case when the result party is honest. Then lines 1–26 of
the protocol are executed in both the real-world and the ideal-world execution.
Afterwards, instead of running the output phase of the actual protocol using
a random encryption D, the simulator receives a random encryption X of the
result from T , and runs the output phase on (1 + N)−yX for random y. The
other difference is that proofs are simulated rather than executed. However,
(1 +N)−yX is identically distributed to D and simulation of proofs is statisti-
cally indistinguishable, so the adversarial state is statistically indistinguishable.
Moreover, both in the real world and in the ideal world, the result party outputs
(r, s) such that X = (1 +N)rsN and the verifier outputs X. Hence, the overall
outputs are statistically indistinguishable. This concludes the proof. ut

	Universally Verifiable Multiparty Computationfrom Threshold Homomorphic Cryptosystems

