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Abstract
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1 Introduction

The provable security approach, which has become a de facto standard in modern cryptography, allows us to
build cryptographic schemes with security guarantees. Many widely deployed protocols have been proven
secure under reasonable assumptions and the standards bodies, such as NIST, require proofs to accompany
new submissions. However, there is still a disconnect between theory and practice. Deployed schemes do
get compromised sometimes, despite the existence of proofs guaranteeing security. There is no contradiction
here. One of the reasons for this situation is as follows. Security proofs guarantee security only according
to the specified security definition, which in turn may not include some adversarial capabilities possible in
practice.

As one of the many examples of a kind consider SSH, one of the most widely used secure protocols.
Bellare et al. [4] have formally analysed variants of SSH’s Binary Packet Protocol (BPP) and showed that
these variants are secure under reasonable assumptions on the protocol’s building blocks. Yet a few years
later, Albrecht et al. [1] presented plaintext recovery attacks against these provably secure SSH BPP variants.
These attacks exploited the fact that encrypted data can be delivered to the receiver in a fragmented, byte-by-
byte manner, and that the attacker can observe the receiver’s behaviour at each point (in particular how long
it takes to reject certain carefully crafted faulty ciphertexts). On the other hand, formal security definitions,
including the one used to prove SSH secure, traditionally treat plaintexts and ciphertexts as atomic, meaning
that the entire ciphertext is offered for decryption and a plaintext (or error symbol) is instantly returned.

To bridge this gap between theory and practice and to have schemes with security guarantees that hold
not only on paper but also in reality, one has to design security definitions which are integrated better with
the environments in which the protocols are deployed. Paterson and Watson [16] recently took a first step in
this direction by showing that certain SSH BPP variants meet a newly introduced security notion that takes
the aforementioned attacks into account. However, their security notion is heavily intertwined with the SSH
BPP specification and too complex to be extended easily to apply to different schemes. We provide a more
detailed critique of this precursor [16] in Appendix A.

1.1 Overview of Contributions

In this work we seek to strike the right balance between two conflicting aims: keeping the generality and
simplicity of traditional security definitions for symmetric encryption; and developing a framework that can
be used to provide meaningful provable security analyses of practical schemes when deployed in environ-
ments that permit ciphertext fragmentation attacks.

To this end, we initiate a general study of security of symmetric encryption schemes against fragmen-
tation attacks, not only in terms of message privacy, but also in terms of length-hiding and prevention of
fragmentation-enabled Denial-of-Service (DoS) attack against the receiver. To the best of our knowledge,
the latter two goals for encryption, i.e. length-hiding (or, more precisely, hiding ciphertext boundaries in
a ciphertext stream) and DoS prevention have not been previously studied, partly because the correspond-
ing threats are not present if encryption is treated as being atomic. The adversarial capabilities we define
are general enough to model a wide class of fragmentation attacks, including but not limited to the ones
considered by Paterson and Watson [16].

We complement our new security definitions with efficient cryptographic constructions based on stan-
dard primitives meeting the new goals. While it may be relatively easy to achieve each security goal in-
dependently, it transpires that it is not straightforward to achieve two or three of the aforementioned goals
simultaneously and one of our schemes is the first to do so. For comparison, Albrecht et al. [1] already
observed that SSH variants fail to meet ciphertext boundary-hiding and DoS robustness under active attacks
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(the observation carries over to the scheme proved confidential against fragmentation attacks by Paterson
and Watson [16]).

Let us now describe our focus and results in a little more detail.

Data fragmentation. Data sent over networks is often fragmented, meaning that it is broken up into
smaller pieces, or packets. If the data is encrypted, the receiver first has to determine what constitutes a
complete ciphertext in order to decrypt it and obtain the underlying message. (Unless the protocol requires
on-the-fly decryption. This, however, is known to reduce security [14].) Reconstruction of the original
ciphertext by the receiver can be accomplished by various methods. For example, SSH uses a length field
that tells the receiver how many bytes are needed before the complete ciphertext has arrived; this length
field is encrypted, ostensibly to increase the security of the protocol against traffic analysis. As another
example, IPsec handles fragmentation of packets using fields in the IP header: the MF flag (indicating that
more fragments follow), the fragment offset field (used to reorder the fragments), and the identification field
(to identify which fragments belong to which packets).

During normal transmission, application-layer messages may be fragmented as required by the lower-
layer protocols and the specifics of the physical networks over which they are routed. In general this cannot
be known a priori and one needs to support arbitrary fragmentation patterns. Interestingly, the mechanisms
in place for supporting fragmentation may be subverted by an adversary to mount specialised attacks on
secure protocols. Most surprisingly, tampering with fragmentation can undermine message privacy, but it
can also result in Denial of Service and aid traffic analysis. We already mentioned an attack of this kind on
SSH [1]. Another example is an attack by Degabriele and Paterson [8] on the IPsec protocol. 1

Syntax for encryption supporting fragmentation. We start our analysis with defining encryption in the
presence of fragmentation. A symmetric encryption scheme supporting fragmentation is defined similarly
to a regular atomic (fragmentation devoid) encryption scheme, except the decryption algorithm is always
stateful, mainly to model decryption algorithms that may, for example, combine data coming from multiple
ciphertext fragments before outputting any plaintext. In addition to state, decryption takes input fragments,
one-by-one. Depending on the scheme, the minimal fragment length can be one bit, a byte or a block (of
some fixed length). The correctness requirement is defined more intricately than that for atomic encryption.
It requires that regardless of how one fragments the ciphertexts, upon decryption, the original messages are
returned, in correct order, with correct message boundaries indicated.

When considering ciphertext fragmentation, a stateful encryption scheme becomes a more natural choice.
Intuitively, the decryption algorithm will need to maintain some form of buffer in which it gathers cipher-
text fragments prior to decrypting the reconstructed ciphertext. Accordingly, in this work we will by default
consider encryption schemes that have a stateful decryption algorithm. If no further constraints are imposed,
we will generally simply refer to such schemes as stateful. In the atomic setting it is well known that stateful
schemes can meet stronger security notions than stateless ones. In particular stateful schemes can protect
against replay and reordering attacks [4]. To translate this distinction to our setting, we define a subclass
of schemes that have a ‘minimal’ state, serving as an analogue of stateless schemes in the atomic setting.
Namely, the decryption algorithm is still stateful, but the state is restricted to behave as a buffer and hence

1While similar security issues arise for IPsec, its details are much more intricate and so it does not serve as such a good
illustrative example as SSH. In particular, IPsec interacts heavily with IP (for the relevant cases it actually interacts with multiple
instances of IP) and the two have to be considered jointly as one protocol. Our treatment focuses primarily on higher-layer protocols
like SSH and TLS, but it applies just as well to the case of IPsec.
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only serves to support ciphertext fragmentation. We call such schemes stateless beyond buffering (SBB).
See Sections 3.1 and 3.2 for the definitions.

Message privacy in the presence of fragmentation. We observe that fragmentation becomes relevant
for security only in the case of chosen-ciphertext attacks (CCA). We extend the existing IND-CCA security
notion and its stateful variant IND-sfCCA [4] to the case of ciphertext fragmentation which we denote as
IND-sbbCFA and IND-sfCFA respectively.

Recall that for IND-sfCCA there is no restriction on the decryption queries, but if the adversary forwards
the challenge ciphertexts returned by the left-or-right encryption oracle to the decryption oracle in order, this
is considered in-sync, and the decryption output is suppressed. Otherwise, it is declared out-of-sync, and the
decryptions are returned to the adversary. This allows the adversary to advance the state of both encryption
and decryption algorithms to potentially favourable values. When dealing with fragments, the challenge is
to decide when to enter the out-of-sync state. We opted to delineate the mark where the queries become
out-of-sync to coincide with a ciphertext boundary rather than a fragment boundary. This conservative
choice results in a stronger security notion. We provide our IND-sfCFA definition and more discussion in
Section 4.1.

When considering a weaker privacy notion, one that does not protect against replay and reordering
attacks, more difficulties emerge. Specifically, parsing the fragment stream for challenge ciphertexts be-
comes particularly daunting. To enable effective parsing, we resort to certain properties of SBB schemes,
and accordingly our weaker privacy notion (IND-sbbCFA) is only meaningful for SBB schemes. A formal
definition and more discussion can be found in Section 4.2.

Ciphertext boundary hiding. It is conventional wisdom in cryptographic security definitions that an en-
cryption scheme is allowed to leak the length of the ciphertext; it is often regarded as inevitable. However,
real schemes do try to hide the lengths of encrypted messages, with a view to frustrating traffic analysis
based on these lengths. This is generally achieved in practice by two distinct mechanisms.

Firstly, an encryption scheme for which the ciphertext length does not deterministically depend on the
message length may be used (e.g. by using variable-length padding). The SSH Binary Packet Protocol and
the TLS Record Protocol both adopt this approach. This mechanism has recently received attention from
differing perspectives [15, 18]. Secondly, an encryption scheme may be designed in such a way that it is
hard to distinguish where the boundaries between ciphertexts lie in a stream of ciphertexts. TLS, with its
explicit length field in the header of each TLS Record Protocol message, does not achieve this. But SSH’s
Binary Packet Protocol (BPP) does attempt to achieve boundary hiding. This necessitated the introduction
of an encrypted length field in SSH, which is used by the receiver to determine how many bytes are required
before a complete ciphertext has arrived and a MAC on the plaintext can be checked. However, this design
decision, coupled with the use of CBC mode encryption, is precisely what enabled recent fragmentation
attacks against SSH [1]. Thus having boundary hiding as a security goal can act in opposition to achieving
other, more standard security goals.

In this work we focus on the second mechanism and the goal of ciphertext boundary hiding. We assume
that given a message, the resulting ciphertext length is uniquely determined. In Section 5, we formalize
the goal of boundary hiding for ciphertext streams. We give definitions for both the passive and the active
adversary cases, which we call BH-CPA, BH-sfCFA and BH-sbbCFA (the latter refers to the SBB setting).
The passive case is very common in the traffic analysis literature. Here the adversary merely monitors
encrypted traffic and tries to infer information from ciphertext lengths and other information such as network
packet timings, but without giving away its presence by actively modifying network traffic. By hiding the
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ciphertext boundaries, the adversary no longer has access to fine-grained ciphertext lengths (our solution of
course does not help to hide the total volume being sent). We also define boundary hiding in the active case
and find out that it is much more challenging to achieve.

Denial-of-Service. Next, we shift attention to preventing fragmentation-related Denial-of-Service (DoS)
attacks against the receiver. This is, to the best of our knowledge, the first formal treatment of DoS prevention
as a property of encryption. For an example of such an attack, consider the SSH-CTR scheme (see [16] for
a description) and the adversary who changes the length field that occupies the first 32 bits of plaintext by
bit flipping in the ciphertext. If the length is maliciously increased to a very large value (say, 232 − 1, the
maximum possible value for a 32-bit field), then the receiver will continue listening for ciphertext fragments
awaiting message completion, until 232 bytes of data have been received. Only then will SSH-CTR’s MAC
verification be conducted and the message rejected. The application (or user) receiving data from the SSH
connection experiences this as an SSH connection hang, a form of Denial-of-Service.

We provide security definitions for the stateful and SBB settings, DOS-sfCFA and DOS-sbbCFA resp.,
for DoS attacks in Section 6 that are sufficiently flexible to capture the SSH attack and others like it. Essen-
tially, we measure the attacker’s ability to create a sequence of ciphertext fragments for which the decryption
algorithm of a scheme does not output any message or failure symbol within a reasonable timeframe, mea-
sured in terms of the number of bits submitted to a decryption oracle by the adversary. Accordingly we
parametrise our security notions with an integer n indicating the maximum sequence of bits which do not
yield any output that a reasonable adversary may produce. The DoS mitigation techniques employed by
SSH and TLS require limiting the maximum supported message size to a comparable value in order to be
n-DOS-sfCFA secure. We manage to surpass this limitation.

Constructions and their security. So far, our emphasis has been on developing security models and
notions. However, as we proceed, we demonstrate how each of the security notions we introduce can be
met in practice by efficient schemes using only standard symmetric components. These constructions are
illustrative rather than definitive.

First we give a simple transformation that converts any secure atomic scheme into a secure scheme sup-
porting fragmentation. One of the challenges that has to be overcome is ensuring correct decryption of the
fragmented scheme. We solve this by applying instantaneously decodable postprocessing to the ciphertexts,
where in the simplest of cases this can be instantiated with a prefix-free encoding scheme. This allows the
decrypting algorithm to correctly parse a concatenation of ciphertexts into discrete ciphertexts which it can
then decrypt in an atomic fashion. In addition, allowing the instantaneously decodable postprocessing to
be keyed permits the ciphertext boundaries to be hidden from a passive adversary, i.e. it achieves BH-CPA
security. Achieving BH-sfCFA requires more work. We show that this can be done at the same time as
achieving DoS security we discuss next. In the SBB setting, however, we will only achieve BH-CPA se-
curity. This appears to be an inherent limitation of the SBB setting: in fact, in Section B, we show that
no practically relevant SBB scheme can simultaneously meet our BH-sbbCFA and DOS-sbbCFA security
notions.

Our idea for DoS prevention in the stateful setting is to break the ciphertexts into equal-sized segments
and authenticate each of them individually. In our construction, the sender and receiver keep a state which
contains a message and a segment number. The encryption algorithm MACs this state together with the
encryption of the segment, but the state does not have to be transmitted, as the receiver maintains it for
himself. Each segment is encoded using a bit flag to indicate the last segment in a message. The scheme
also achieves BH-sfCFA security.
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IND-sfCFA BH-CPA BH-sfCFA n-DOS-sfCFA
n < max

m∈M
(|m|)

SSH-CBC 7 3 7 7

SSH-CTR 3 3 7 7

IDP (Sec. 7.1) 3 3 7 7

IM (Sec. 7.2) 3 3 3 3

IND-sbbCFA BH-CPA BH-sbbCFA n-DOS-sbbCFA
n < max

m∈M
(|m|)

IM∗ (Sec. 7.3) 3 3 7 3

Table 1: Security comparison of encryption schemes supporting fragmentation.

In the SBB setting we also use the idea of authenticating the ciphertext segments. However, the solution
becomes more complex, as we cannot keep message and segment numbers as state and it is not efficient
to keep them as part of the segments. To prevent re-ordering attacks we need to authenticate the previous
segments as well. To improve efficiency we chain the tags instead, i.e. we compute tags over the concatena-
tion of the segment and the previous tag value. In contrast to the stateful case, the scheme is only BH-CPA
secure.

Table 1 summarizes the security properties achieved by our main constructions for the stateful and SBB
settings. For comparison we also cast prior work on the SSH-CBC and SSH-CTR schemes [4, 16] into our
framework. For construction definitions and further discussions, see the referenced sections. We note that
the scheme InterMAC is able to simultaneously achieve all three of our active security notions IND-sfCFA,
BH-sfCFA, and n-DOS-sfCFA without limiting the maximum message size.

1.2 Further Related Work

Our fragmented approach bears more than a passing resemblance to work on on-line encryption [2, 3, 6,
10, 11, 12, 14]. However, whereas the on-line setting concerns a single continuous message and ciphertext,
with each block of plaintext leading to a block of ciphertext being output during encryption (and vice-
versa during decryption), our setting concerns atomic encryption (reflecting how many secure protocols
operate) but allows fragmented decryption of ciphertexts. Moreover, we extensively treat the case of active
adversaries, a topic that has not achieved much attention in the on-line literature, and we consider more than
just confidentiality security notions. This said, our ultimate construction, InterMAC, can be seen as a kind
of online scheme with a large block size.
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1.3 Differences From the Proceedings Version

This is a revised and augmented version of a paper with the same title that appeared in the EUROCRYPT
2012 proceedings. We warn the reader that some of the naming and notation has been altered. In particular
the prefix-free postprocessing construction has been renamed to instantaneously decodable postprocess-
ing. The Indistinguishability and Boundary-Hiding security definitions are essentially unchanged, only the
presentation is different. The same holds for the InterMAC construction. On the other hand, the Denial-
of-Service security definition has been strengthened. Specifically, we previously required the adversary to
produce the winning sequence of ciphertext fragments (an n-bit long sequence of ciphertext fragments that
produce no output upon decryption, see Section 6) as soon as his decryption queries became out-of-sync.
We no longer make this restriction: we allow the winning fragment sequence to appear at any point after the
decryption queries become out-of-sync.

2 Notation

Unless otherwise stated, an algorithm may be randomised. An adversary is an algorithm. For any algorithm
A we use y ← A(x1, x2, . . . ) to denote executing A with fresh coins on inputs x1, x2, . . . and assigning its
output to y. If S is a set then |S| denotes its size, and y ←$ S denotes the process of selecting an element
from S uniformly at random and assigning it to y.

The set of all finite binary strings is denoted by {0, 1}∗. For any positive integer n and bit b, we denote
by bn the string of n consecutive b’s and {0, 1}n represents the set of all binary strings of length n. The
empty string is represented by ε. For any two strings w and z and positive integers i and j, w ‖ z denotes
their concatenation, w⊕ z denotes their bitwise XOR, w � z denotes the greatest common prefix of w and z,
w% z denotes the remainder string of w with respect to w � z (i.e. w = w � z ‖ w% z), and |w| denotes the
length of w. Accordingly, we can express that w is a prefix of z as w � z = w . A set S ⊂ {0, 1}∗ is called
prefix-free if for all distinctw, z ∈ S it holds thatw is not a prefix of z. Unless stated otherwise,w[i] denotes
the ith bit of w, and w[i, j] denotes the substring w[i] ‖ w[i+1] ‖ . . . ‖ w[j]. For any n ∈ N, and any vector
of strings w = [w1, w2, . . . , wn], we define the concatenation operator as ||(w) = w1 ‖ w2 ‖ . . . ‖ wn.
If j is a non-negative integer, then 〈j〉` denotes the unsigned `-bit binary representation of j. Accordingly
〈·〉−1 represents the inverse mapping which maps strings of any length to N. If w is an `-bit string and i is
an integer we use w + i as shorthand for 〈〈w〉−1 + i mod 2`〉`. Finally, a list L is a totally ordered set. We
use () to denote the empty list, and use Li to denote the ith element of the list.

3 Symmetric Encryption Supporting Fragmentation

3.1 Unified Syntax

Morphology. We extend the standard definition of symmetric encryption for the case of fragmented ci-
phertexts. For fragmentation to make sense, we will restrict our attention to ciphertexts that are strings, so
C = {0, 1}∗. We assume that the message space consists of strings, soM = {0, 1}∗. In addition we will
allow schemes to have multiple errors (cf. [5]). The move to fragmentation results in some complications.
For instance, a single ciphertext can be split up in multiple fragments (Fig. 1, requiring recombination of the
decryptions of the various fragments) or a single fragment can contain multiple ciphertexts (Fig. 2, where
one might like to decrypt to a list of messages).

Definition 3.1. [Symmetric encryption scheme supporting fragmentation]
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1 2 3 4 5

Figure 1: A single ciphertext c1 = (12) cut up in multiple fragments f1 = (1) and f2 = (2).

1 2 3 4 5

Figure 2: A single fragment f1 = (12345) spanning multiple ciphertexts c1 = (12) and c2 = (345).

A symmetric encryption scheme supporting fragmentation SE = (K, E ,D) with associated message
spaceM⊆ {0, 1}∗, ciphertext space C ⊆ {0, 1}∗ and error messages S⊥ is defined by three algorithms:

• The randomised key generation algorithm K returns a secret key K and initial states σ0 and %0.

• The randomised and stateful encryption algorithm

E : K ×M× Σ→ C × Σ

takes as input the secret key K ∈ K, a plaintext m ∈ M, and the current encryption state σ ∈
Σ, and returns a ciphertext in C together with an updated state. For any ` ∈ N and any m =
[m1, . . . ,m`] ∈ M`, we write (c, σ) ← EK(m, σ0) as shorthand for (c1, σ1) ← EK(m1, σ0),
(c2, σ2)← EK(m2, σ1), . . . (c`, σ`)← EK(m`, σ`−1) where c = [c1, . . . , c`] and σ = σ`.

• The deterministic and stateful decryption algorithm

D : K × {0, 1}∗ × Σ→ ({0, 1} ∪ {¶} ∪ S⊥)∗ × Σ

takes the secret key K, a ciphertext fragment f ∈ {0, 1}∗, and the current decryption state % to
return the corresponding plaintext fragment m ∈ ({0, 1} ∪ {¶} ∪ S⊥)∗ together with the updated
state %. For any ` ∈ N and any f = [f1, . . . , f`] ∈ ({0, 1}∗)`, we write (m, %) ← DK(f , %0)
as shorthand for (m1, %1) ← DK(f1, %0), (m2, %2) ← DK(f2, %1), . . . (m`, %`) ← DK(f`, %`−1),
where m = m1 ‖ . . . ‖ m` and % = %`.

This definition requires a little unpacking. Firstly, and in contrast to the usual definitions, our syntax de-
fines both encryption and decryption to be stateful algorithms. This does not result in any loss of generality:
both encryption and decryption can be made stateless by having K to always return the empty string for the
corresponding initial state, and let the algorithm ignore (i.e. never update) the state. We adopt this syntax
because supporting ciphertext fragmentation inherently requires the decryption algorithm to be stateful. We
will elaborate more on this later on in this section and in Section 3.2. Furthermore, our primary motivation
for studying ciphertext fragmentation are secure protocols such as TLS, SSH, IPsec, and DTLS. These pro-
tocols include mechanisms (other than for the purpose of supporting ciphertext fragmentation) that render
their decryption stateful, and generally support ciphersuites with stateful encryption algorithms.

Secondly, note that the decryption algorithm is assumed to be able to handle ciphertexts which decrypt
to multiple plaintext messages, or to a mixture of plaintexts and error symbols, or possibly to nothing at
all (perhaps because the input ciphertext is insufficient to enable decryption to yet output anything, giving
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Figure 3: Fragments f1 = (12) and f2 = (345) coincide exactly with the two ciphertexts c1 = (12) and
c2 = (345).

a significant difference from the atomic setting where decryption always outputs something). We use ¶ 6∈
{0, 1} ∪ S⊥ to denote the end of plaintext messages, enabling an application making use of the decryption
algorithm to parse the output uniquely into a sequence of elements of {0, 1}∗ and errors from S⊥. Our
introduction of an explicit symbol ¶ to help delineate messages during decryption seems novel. This is not
because our solution is in any way innovative, but rather because the problem does not arise in earlier works.

Thirdly, note that, when failing, the decryption algorithm can output one of possibly many error mes-
sages from the set S⊥. This reflects the fact that real schemes may fail in more than one way, with the
different failure modes being visible to both legitimate users and adversaries. Boldyreva et al. [5] provide a
more in-depth examination of dealing with multiple error messages in the context of symmetric encryption.

While we enforce that from a decryption of a sequence of ciphertext fragments, the corresponding
message boundaries are easy to distinguish, we make no such requirement for ciphertexts. Indeed, given a
sequence of ciphertext fragments, it will not be a priori clear what the constituent ciphertexts are (and in fact,
in Section 5, we want to model schemes which hide these boundaries as a security goal). Looking ahead, the
absence of clear ciphertext boundaries (in a sequence of fragments) will cause challenging parsing problems
for our CCA definitions: in order to ‘forbid’ decryption of the challenge ciphertext, a prerequisite is that this
challenge ciphertext can be located accurately in the sequence of ciphertext fragments!

For simplicity’s sake we did not to incorporate the nonce-based approach from [17] in our syntax, yet it
should be possible to extend most of our work to that setting.

Correctness. If a single message is encrypted and the corresponding ciphertext is subsequently decrypted,
we expect that the message is returned. When multiple messages are encrypted and the fragments correspond
exactly to the ciphertext (Fig. 3), again we expect to retrieve the original messages.

However, we expect something stronger, namely that regardless of how we fragment the ciphertext(s),
the original message(s) are returned. For instance in the situation depicted in Fig. 1 two ciphertexts c1 =
(12) and c2 = (345) are produced by the encryption oracle, and the adversary subsequently submits frag-
ments f1 = (1) and f2 = (2) to its decryption oracle. We require that after reception of the second fragment
(or earlier), the ciphertext c1 gets decrypted (formalised by the correct message being output). Similarly,
in Fig. 2, after reception of the single fragment spanning two ciphertexts, we expect both messages to be
returned (with correct message boundaries indicated).

Finally, we require correct decryption, even when an extra string is added to the original (string of)
ciphertexts. This forces correct decryption once a complete valid ciphertext has been received, even if it is
followed by an invalid ciphertext fragment. For instance, in the situation depicted in Fig. 5 two ciphertexts
c1 = (12) and c2 = (345) are produced by the encryption oracle, the adversary subsequently submits
fragments f1 = (1) and f2 = (234′5′) to its decryption oracle, and we still want to see the first ciphertext
decrypted properly.

With this intuition in mind, we are almost ready to give our definition of correctness for a symmetric
encryption scheme supporting fragmentation. We first define a map ¶ : ({0, 1}∗ ∪ S⊥)∗ → ({0, 1}∪ {¶}∪
S⊥)∗ by ¶(m1, . . . ,m`) = m1 ‖ ¶ ‖ . . .¶ ‖ m` ‖ ¶. Note that ¶ is injective but not surjective.
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1 2 3 4 5

Figure 4: Correct decryption for overly long fragments: Given valid ciphertexts c1 = (12) and c2 = (345)
and fragment f1 = (123), what should the decryption of f1 be?

1 2 3 4′ 5′

Figure 5: Two consecutive fragments f1 = (1) and f2 = (234′5′). The second fragment completes the first
ciphertext c1 = (12), so we expect that to be decrypted at this point, even though ciphertext c2 = (345) in
the second fragment has been modified to produce a possibly invalid ciphertext.

Definition 3.2. [Correctness Requirement] For all (K,σ0, %0) that can be output by K and for all m ∈M∗
and f ∈ ({0, 1}∗)∗, it holds (with probability 1) that if (c, σ) ← EK(m, σ0) and ||(c) prefixes ||(f), and if
(m′, %)← DK(f , %0) then m′ is prefixed by ¶(m).

Alternatives. Our choice for correctness (Definition 3.2) might seem natural, but it is not the only way
to define it. Certainly, if a single, honestly generated ciphertext is cut up into multiple fragments, then
decrypting all those fragments ought to result in the original message. This extends to a situation where (the
concatenation of) multiple ciphertexts is split up into fragments in such a way that every ciphertext boundary
coincides with a fragment boundary (this implies that every fragment is a substring of a single ciphertext).
However, when allowing a single fragment to extend over multiple ciphertexts (see Fig. 4 for an example),
it is not immediately clear what ‘correct’ entails. Let us briefly consider three possible interpretations.

Fault: The ciphertext is deemed invalid, and ⊥ is returned.

Flush: The message is returned, and any surplus ciphertext is ignored.

Buffer: The message is returned, and any surplus ciphertext is considered as starting a new ciphertext
(buffering).

We have opted for a strict version of the final interpretation in our correctness definition, which intu-
itively requires some sort of buffering to take place in the decryption algorithm. Thus our choice of definition
for correctness inherently requires any scheme that supports fragmentation to have a stateful decryption al-
gorithm. SSH is a prime example of a stateful scheme that buffers (although it keeps more state than just
the buffer). Next we classify two different degrees of statefulness that a scheme may have.

3.2 Degrees of Statefulness

Protocols like TLS, SSH, IPsec, and DTLS, use authenticated sequence numbers during decryption to detect
replays and reorderings of ciphertexts. Additionally, in SSH and TLS when certain errors are detected during
decryption the secure session is torn down and the session keys are destroyed. This can be modelled by
maintaining a flag as part of the decryption state, setting the flag once a first error is encountered, and always
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outputting a failure symbol once the flag is set. When appropriately incorporated in (atomic) symmetric
encryption schemes, these stateful techniques permit the scheme to meet stronger security notions such as
the INT-sfCTXT and IND-sfCCA notions of [4]. When considering ciphertext fragmentation, in light of
our correctness requirement, some form of buffering is generally required on the decryption side. Albeit
intended for a different purpose, such a buffer is technically a state that is maintained by the decryption
algorithm across calls. Thus all schemes that we will consider will be stateful, and as a special case we will
consider schemes that employ only a ‘minimal’ form of state necessary to support fragmentation. For each
notion of security we will first present a ‘strong’ variant following similar ideas to the security notions in
[4]. These notions will generally be met only by schemes which maintain a non-minimal state. Then we
will present weakened variants of these notions which can be met by schemes within the special subclass
having minimal state.

Stateful schemes. This includes all schemes supporting ciphertext fragmentation, and no restriction is
imposed on the nature of the state that is maintained by the decryption algorithm. The encryption algorithm
may or may not be stateful. This covers most practical encryption schemes, which, in the non-fragmented
scenario, would normally be considered stateful. For instance, this can be used to model the situation where
encryption and decryption are both based on a counter that increases depending on the number of messages
or ciphertexts processed.

Stateless Beyond Buffering (SBB) schemes. This is a subclass of the above category, which is intuitively
an extension of standard (atomic), stateless encryption schemes that makes handling fragmented ciphertexts
possible. Namely, we specify three properties which intuitively capture the behaviour of a buffer, and
require that the decryption state satisfy these properties. Our formulation allows us to identify states that
essentially act as buffers, without imposing any restrictions on the state’s internals or format. Again the
encryption algorithm may or may not be stateful. This is in line with [4] where the statefulness of a scheme
is determined solely by the statefulness of the decryption algorithm. More formally, we have:

Definition 3.3. [Stateless Beyond Buffering (SBB)] A symmetric encryption scheme supporting fragmenta-
tion is called stateless beyond buffering if it is correct (Definition 3.2) and satisfies the following additional
conditions

1. The initial decryption state is empty, that is for all (K,σ0, %0) that can be output by K, %0 = ε; for
simplicity’s sake, we will often simply write (K,σ)← K for SBB schemes.

2. The decryption state is empty after decryption of each ciphertext obtained from encryption, i.e. for
all K that can be output by K, for all σ ∈ Σ, for all m ∈ M, it holds (with probability 1) that if
(c, σ)← EK(m,σ) and if (m′, %)← DK(c, ε), then % = ε.

3. The scheme satisfies literal decryption: for all K ∈ K and for all f = (f1, . . . , f`), when f ′ = f1 ‖
. . . ‖ f`, then DK(f , ε) = DK(f ′, ε).

The first condition is straightforward and its purpose is to ensure that the decryption algorithm is not
initialised with any state information. The second condition says that for legitimately generated ciphertexts,
the decryption state is flushed when the end of a ciphertext is detected. Put differently, this condition
ensures that no state information is maintained across ciphertexts, i.e. the decryption of one ciphertext
does not depend on previous ciphertexts. However this ‘stateless’ behaviour is only guaranteed as long
as the ciphertexts are generated by the encryption algorithm. In particular for an adversarially-generated
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sequence of ciphertext fragments, depending on the scheme at hand, a number of outcomes are possible.
After a few ciphertext fragments the decryption algorithm may detect the end of a ciphertext and return ¶,
possibly following⊥∈ S⊥ if the ciphertext was deemed invalid, or after some plaintext if the ciphertext was
understood to be valid. Alternatively the decryption may never recover, in the sense that it will never return
¶ but possibly it may return a sequence of outputs in ({0, 1} ∪ S⊥)∗. From the second property it follows
that state can only be maintained across fragments belonging to the same ciphertext. The literal decryption
property then says that the decryption state will not (or does not need to) keep track of how the ciphertext
was fragmented, since it will not affect the output of the decryption algorithm.

4 Message Privacy of Schemes Supporting Fragmentation

4.1 The Stateful Notion

When considering the security of a scheme supporting fragmentation, the first thing to note is that frag-
mentation matters only in the CCA setting: if there is no decryption oracle, then whether decryption is
fragmented or atomic is immaterial to the security of the scheme. In the context of fragmentation, we will
replace the usual notion of chosen-ciphertext attacks by chosen-fragment attacks (CFA). Our first notion,
IND-sfCFA is tailored for stateful schemes and it is inspired by Bellare et al.’s notion of IND-sfCCA (for
atomic schemes) [4]. Recall that for IND-sfCCA, an adversary has unlimited access to the decryption oracle;
there are no ‘prohibited’ queries. Instead, to avoid trivial attacks (by the adversary simply relaying its chal-
lenge ciphertext for decryption) a syncing mechanism is used. Initially the decryption oracle is in-sync and
its output (to the adversary) will be suppressed. Only when the adversary causes the decryption oracle to
be out-of-sync (by deviating from the ciphertext stream output by the encryption oracle) will the purported
plaintexts (or error messages) be returned.

For atomic schemes, this is relatively straightforward to define, but for schemes supporting fragmenta-
tion, some ambiguity arises. Consider again the scenario sketched in Fig. 5. The first fragment is in-sync
and any plaintext output corresponding to it will be suppressed. In the second fragment a deviation from the
challenge ciphertext stream occurs. However, part of the fragment is still in-sync and certainly outputting
the full decryption would—mindful of the correctness requirement—reveal (part of) the plaintext (12). We
will need to formalise this by officially declaring part of the fragment in-sync, and part of it out-of-sync.
The ambiguity arises with regards to the boundary we should use: is sync lost already at ‘3’ (being the first
symbol of a ciphertext that is not completed properly) or only at ‘4’ (being the first symbol of the fragment
that actually deviates)?

In our definition of IND-sfCFA (Definition 4.1) we opted for the strongest interpretation, namely where
synchronisation is lost at the ciphertext boundary. Since this results in synchronization potentially being lost
earlier, the decryption oracle consequently suppresses less of its output, making it the stronger option.

Definition 4.1. [IND-sfCFA] Let SE = (K, E ,D) be an encryption scheme supporting fragmentation. For
an adversaryA and a bit b, define experiment Expind-sfcfa-b

SE (A) as depicted in Fig. 6. The experiment starts
by calling K to generate a key K and initialise the states. The adversary A is given access to a left-or-right
encryption oracle LoR(·) and a stateful decryption oracle sfDec(·). The stateful decryption oracle can be
queried on any sequence of ciphertext fragments, but as long as the decryption queries are in sync the output
will be artificially suppressed.

The adversary’s goal is to output a bit b′ as its guess of the challenge bit b, and the experiment returns b′
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Expind-sfcfa-b
SE (A)

(K,σ, %)← K
i← 0, j ← 0, sync← 1
C ← ε, F ← ε,M ← ε
C← (), M← ()

b′ ← ALoR(·),sfDec(·)

return b′

LoR((m0,m1))

if |m0| 6= |m1| then return  
(c, σ)← EK(mb, σ)
i← i+ 1, Ci ← c, Mi ← mb

return c

sfDec(f)

(m, %)← DK(f, %)
F ← F ‖ f , M ←M ‖ m
if sync = 1 then

while C � F = C and j < i
j ← j + 1
C ← C ‖ Cj

if F � C = F then m← ε
else

sync← 0
m′ ← ¶(M1, . . . , Mj−1)
m←M %m′

return m

Figure 6: Experiment to define IND-sfCFA security.

as well. The corresponding advantage of an adversary A is given by:

Advind-sfcfa
SE (A) = Pr

[
Expind-sfcfa-1

SE (A) = 1
]
− Pr

[
Expind-sfcfa-0

SE (A) = 1
]
.

The scheme SE is said to be IND-sfCFA secure, if for every adversary A with reasonable resources its
advantage Advind-sfcfa

SE (A) is small.

A few words of explanation about the workings of sfDec(·) are in order. Recall that C � F denotes the
greatest common prefix of C and F . Thus the test condition C � F = C checks whether C is a prefix of
F . The while loop starts by gathering the sequence of complete ciphertexts that have been relayed from
the left-or-right oracle to the decryption oracle, concatenates them into one string, appends the subsequent
ciphertext output by LoR(·) (if this exists), and stores the output in C. Then if F (the concatenation of all
ciphertext fragments submitted for decryption) is a prefix of C, the queries are deemed to be in sync and
the output is suppressed. Otherwise the sync flag is set to 0 and the output string corresponding to the first
out-of-sync ciphertext and onwards is returned.

4.2 A Notion for SBB Schemes

Similarly to the stateful notions from [4], Definition 4.1 protects against attacks which replay and reorder
ciphertexts. In order for a scheme to protect against such attacks it needs to maintain a decryption state across
ciphertexts. Hence IND-sfCFA is ‘too strong’ for SBB schemes, as the second requirement of Definition 3.3
explicitly rules out the ability to maintain states across ciphertexts. Accordingly for SBB schemes we
propose an analogous but weaker notion of confidentiality which does not capture replay and reordering of
ciphertexts. In this setting detecting prohibited queries, which would lead to trivial win conditions, becomes
challenging. In fact we resort to specific properties of SBB schemes in this definition, specifically literal
decryption and the property that no state is maintained across ciphertexts. Inside the decryption oracle
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Expind-sbbcfa-b
SE (A)

(K,σ, %)← K
i← 0, F ← ε, C← ()

b′ ← ALoR(·),Dec(·)

return b′

LoR((m0,m1))

if |m0| 6= |m1| then return  
(c, σ)← EK(mb, σ)
i← i+ 1, Ci ← c
return c

Dec(f)

M ← ε, prefix← 0
len← |f |
for k = 1 to len

(m, %)← DK(f [k], %)
m′ ← m′ ‖ m
F ← F ‖ f [k]
if % = ε and m′[|m′|] = ¶ then

if F ∈ C then m′ ← ε
M ←M ‖ m′
F ← ε,m′ ← ε

for all c ∈ C

if F � c = F then prefix← 1
if prefix = 0 then

M ←M ‖ m′,m′ ← ε
return M

Figure 7: Experiment to define IND-sbbCFA security.

we exploit the literal decryption property to decrypt ciphertext fragments incrementally, i.e. bit by bit.
Then we can detect ciphertext boundaries by looking for a condition where the last output symbol is ¶ and
the decryption state is empty. Since Definition 4.2 makes use of properties specific to SBB schemes, it
only guarantees a meaningful notion of security for this subclass of schemes, and not schemes supporting
fragmentation in general.

Definition 4.2. [IND-sbbCFA] Let SE = (K, E ,D) be an encryption scheme supporting fragmentation
that is stateless-beyond-buffering. For an adversary A and a bit b, define experiment Expind-sbbcfa-b

SE (A)
as depicted in Fig. 7. The experiment starts by calling K to generate a key K and initialise the states.
The adversary A is then given access to a left-or-right encryption oracle LoR(·) and a decryption oracle
Dec(·). The decryption oracle can be queried on any sequence of ciphertext fragments, except that the output
corresponding to a ciphertext previously output by the left-or-right oracle will be artificially suppressed.

The adversary’s goal is to output a bit b′ as its guess of the challenge bit b, and the experiment returns b′

as well. The corresponding advantage of an adversary A is given by:

Advind-sbbcfa
SE (A) = Pr

[
Expind-sbbcfa-1

SE (A) = 1
]
− Pr

[
Expind-sbbcfa-0

SE (A) = 1
]
.

The scheme SE is said to be IND-sbbCFA secure, if for every adversary A with reasonable resources its
advantage Advind-sbbcfa

SE (A) is small.

Note thatM now represents the string that is returned by the decryption oracle in response to the queried
fragment f ; accordingly this is always reset at the beginning. The variable F accumulates bits corresponding
to a single ciphertext, and is kept to monitor whether this ciphertext was previously output by the encryption
oracle. The contents of F are maintained across calls to the decryption oracle, and are only reset when a
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ciphertext boundary is encountered. Similarly, m′ accumulates the plaintext bits corresponding to a single
message. If after processing f , F does not yet contain a complete ciphertext, but it contains a prefix of a
ciphertext that was previously output by the encryption oracle, the corresponding plaintext is not output but
is stored in m′ instead.

5 Boundary Hiding

It is conventional wisdom that an encryption scheme cannot hide entirely the message length from an ad-
versary. In practice however, the message length can convey information about the nature of the message.
For instance the IPsec attacks from [7, 8] identify ICMP error messages from their length and use this to
recover the full plaintext of encrypted messages. As another example, traffic analysis has been used to
derive approximate transcripts of encrypted Voice over IP (VoIP) conversations [19]. Traffic analysis is a
real concern, and in practice heuristic countermeasures are commonly employed to mitigate such attacks.
Practical protocols like TLS, SSH, and IPsec use variable-length padding, while IPsec additionally provides
the ability to insert dummy messages/packets. A recent study by Dyer et al. [9] shows that none of the afore-
mentioned countermeasures, together with others that have been proposed in the literature, are effective in
preventing HTTP fingerprinting. However their attacks do not rely solely on ciphertext lengths.

The ability to fragment ciphertexts without affecting correct decryption may be exploited as an alterna-
tive (heuristic) means to frustrate traffic analysis. Ciphertext lengths may no longer be evident from a stream
of randomly-fragmented ciphertexts flowing across a channel. However this requires the encryption scheme
to not reveal ciphertext boundaries. We therefore formalise the goal of hiding ciphertext boundaries within
a concatenation of ciphertexts as an intermediate security goal towards this heuristic strategy and preventing
traffic analysis in general.

We give definitions for both the passive and the active adversary cases. The passive case is the one that
is commonly assumed in the traffic analysis literature [9, 19]. Here the adversary merely monitors encrypted
traffic and tries to infer information from ciphertext lengths and other information such as network packet
timings, but without risking of giving away its presence by actively modifying network traffic. If ciphertext
boundaries are not discernible to the adversary, then it can no longer determine individual ciphertext lengths,
except of course, for the total volume being sent. As we will see, achieving security in the passive case is
relatively straightforward. Much more challenging is achieving security in the active case. For example, it
was already pointed out by Albrecht et al. [1] that SSH, while attempting to hide ciphertext boundaries, fails
to do so against active, fragmented attacks (there is a simple bit-flipping attack which works irrespective of
whether CBC or CTR mode encryption is used in the SSH construction).

5.1 Security Definitions

Definition 5.1. [BH-CPA and BH-sfCFA] Let SE = (K, E ,D) be an encryption scheme supporting frag-
mentation. For an adversary A and a bit b, define experiments Expbh-cpa-b

SE (A) and Expbh-sfcfa-b
SE (A) as

shown in Figure 8. Both experiments start by calling K to generate a key K and initialise the states. The
adversary A is given access to a special left-or-right encryption oracle LoR(·): on input two vectors of mes-
sages, either the left or the right result is returned, but with the caveat that the concatenation of ciphertexts
is returned only if it has the same length in both worlds (but note that we do not insist that the two vectors
of messages contain the same number of components). In the latter experiment the adversary is additionally
given a stateful decryption oracle sfDec(·) identical to that used in the IND-sfCFA experiment. The adver-
sary can query this oracle on any sequence of ciphertext fragments, but as long as the decryption queries are
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Expbh-cpa-b
SE (A) Expbh-sfcfa-b

SE (A)

(K,σ, %)← K
i← 0, j ← 0, sync← 1
C ← ε, F ← ε,M ← ε
C← (), M← ()

b′ ← ALoR(·) b′ ← ALoR(·),sfDec(·)

return b′

LoR((m0,m1))

σ0 ← σ, σ1 ← σ
(c0, σ0)← EK(m0, σ0)
(c1, σ1)← EK(m1, σ1)
c0 ← ||(c0), c1 ← ||(c1)
if |c0| 6= |c1| then return  
σ ← σb
for k = 1 to k = |cb|

i← i+ 1
Ci ← cb(k), Mi ←mb(k)

return cb

sfDec(f)

(m, %)← DK(f, %)
F ← F ‖ f , M ←M ‖ m
if sync = 1 then

while C � F = C and j < i
j ← j + 1
C ← C ‖ Cj

if F � C = F then m← ε
else

sync← 0
m′ ← ¶(M1, . . . , Mj−1)
m←M %m′

return m

Figure 8: Experiments to define BH-CPA and BH-sfCFA security. For BH-CPA the boxed code is excluded,
whereas for BH-sfCFA the boxed code replaces the code adjacent to it.

in sync the output is artificially suppressed.
In both experiments, the adversary’s goal is to output a bit b′ as its guess of the challenge bit b, and the

experiment returns b′ as well. The corresponding advantages of an adversary A are given by:

Advbh-cpa
SE (A) = Pr

[
Expbh-cpa-1

SE (A) = 1
]
− Pr

[
Expbh-cpa-0

SE (A) = 1
]
,

Advbh-sfcfa
SE (A) = Pr

[
Expbh-sfcfa-1

SE (A) = 1
]
− Pr

[
Expbh-sfcfa-0

SE (A) = 1
]
.

The scheme SE is said to be BH-CPA (or BH-sfCFA) secure, if for every adversary A with reasonable
resources its advantage Advbh-cpa

SE (A) (respectively Advbh-sfcfa
SE (A)) is small.

Analogously to the case of confidentiality, we can define a natural SBB variant of this notion by replacing
the stateful decryption oracle sfDec(·) in Fig. 8 with the decryption oracle Dec(·) from Fig. 7. As before the
resulting experiment, displayed in Fig. 9, assumes properties that are specific to SBB schemes, and hence
this security notion is only meaningful for SBB schemes.

Definition 5.2. [BH-sbbCFA] Let SE = (K, E ,D) be an encryption scheme supporting fragmentation that
is stateless-beyond-buffering. For an adversary A and a bit b, define the experiment Expind-sbbcfa-b

SE (A)
as depicted in Fig. 9. The experiment starts by calling K to generate a key K and initialise the states.
The adversary A is given access to a special left-or-right encryption oracle LoR(·): on input two vectors
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Expbh-sbbcfa-b
SE (A)

(K,σ, %)← K
i← 0, F ← ε, C← ()

b′ ← ALoR(·),Dec(·)

return b′

LoR((m0,m1))

σ0 ← σ, σ1 ← σ
(c0, σ0)← EK(m0, σ0)
(c1, σ1)← EK(m1, σ1)
c0 ← ||(c0), c1 ← ||(c1)
if |c0| 6= |c1| then return  
σ ← σb
for k = 1 to |cb|

i← i+ 1
Ci ← cb(k)

return cb

Dec(f)

M ← ε, prefix← 0
len← |f |
for k = 1 to len

(m, %)← DK(f [k], %)
m′ ← m′ ‖ m
F ← F ‖ f [k]
if % = ε and m′[|m′|] = ¶ then

if F ∈ C then m′ ← ε
M ←M ‖ m′
F ← ε,m′ ← ε

for all c ∈ C

if F � c = F then prefix← 1
if prefix = 0 then

M ←M ‖ m′,m′ ← ε
return M

Figure 9: Experiment to define BH-sbbCFA security.

of messages, either the left or the right result is returned, but with the caveat that the concatenation of
ciphertexts is returned only if it has the same length in both worlds (but note that we do not insist that the
two vectors of messages contain the same number of components). The adversary is additionally given a
decryption oracle Dec(·). It can query the decryption oracle on any sequence of ciphertext fragments, except
that the output corresponding to a ciphertext previously output by the left-or-right oracle will be artificially
suppressed.

The adversary’s goal is to output a bit b′, as its guess of the challenge bit b, and the experiment returns
b′ as well. We define the advantage of an adversary A as:

Advind-sbbcfa
SE (A) = Pr

[
Expind-sbbcfa-1

SE (A) = 1
]
− Pr

[
Expind-sbbcfa-0

SE (A) = 1
]
.

The scheme SE is said to be IND-sbbCFA secure, if for every adversary A with reasonable resources its
advantage Advind-sbbcfa

SE (A) is small.

It turns out that the above definition, which we argue is the natural analogue of the boundary-hiding
definition in the stateful setting, is unsatisfiable by any ‘reasonable’ SBB encryption scheme, see the note
at the end of this section. As such our coverage of boundary hiding in the SBB setting will be somewhat
limited.

Relating Boundary Hiding to Indistinguishability. We now establish a few relations between notions of
boundary hiding and notions of indistinguishability which we will use in later Sections. Theorem 5.3 states
that for length-regular2 schemes boundary hiding implies left-or-right indistinguishability. Intuitively this

2An encryption scheme is said to be length-regular if for all m1,m2 ∈ M where |m1| = |m2| it holds (with probability 1) that
|EncK(m1)| = |EncK(m2)| .
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follows because the special left-or-right oracle in the BH-ATK notions can be used to simulate the left-or-
right oracle in the IND-ATK notions. The requirement on length-regularity ensures that a valid query to the
IND-ATK oracle results in a valid query to the BH-ATK oracle. Other than that the proof is straightforward
and we omit it. Moreover, it is not too hard to show that BH-ATK is strictly stronger than IND-ATK: take
any IND-ATK secure scheme and append each ciphertext with a special marker string, e.g., 1128.

Theorem 5.3. [BH-ATK −→ IND-ATK] Let SE = (K, E ,D) be a length-regular symmetric encryption
scheme supporting fragmentation. For any ATK ∈ {CPA, sbbCFA, sfCFA} and any IND-ATK adversary
Aind there exists a BH-ATK adversary Abh consuming similar resources to Aind such that:

Advind-atk
SE (Aind) ≤ Advbh-atk

SE (Abh) .

Intuitively the concatenation of multiple random strings is indistinguishable from a single random string
of the same length. It then follows that schemes having ciphertexts indistinguishable from random strings
should also hide ciphertext boundaries. This is stated more formally, for the passive setting3, in the following
theorem. Again it is not hard to show that this implication is strict: take any BH-CPA secure scheme and
re-encode its ciphertexts by doubling every bit, i.e., 0→ 00 and 1→ 11.

Theorem 5.4. [IND$-CPA −→ BH-CPA] Let SE = (K, E ,D) be a symmetric encryption scheme support-
ing fragmentation. For any BH-CPA adversary Abh there exists an IND$-CPA adversary Aind$ consuming
similar resources to Abh such that:

Advbh-cpa
SE (Abh) ≤ 2 ·Advind$-cpa

SE (Aind$) .

Proof. For any adversary Abh we construct adversary Aind$ as follows. Adversary Aind$ picks a bit d
uniformly at random and then runs Abh. Then Aind$ uses this bit and its own encryption oracle to simulate
the special left-or-right encryption oracle to Abh. That is, it uses d to pick the message vector, it encrypts
each message in the vector componentwise, and returns their concatenation. If Abh’s output is equal to d,
then Aind$ outputs 1 else it outputs 0. Now when Aind$ is run in the IND$-CPA experiment with b = 1 it
provides Abh with a perfect simulation of the BH-CPA experiment with random bit d. Otherwise if b = 0
the responses to Abh’s queries are completely independent to the bit d because they are random strings of
appropriate length. We thus have that:

Advind$-cpa
SE (Aind$) = Pr

[
Expind$-cpa-1

SE (Aind$) = 1
]
− Pr

[
Expind$-cpa-0

SE (Aind$) = 1
]

= Pr
[
d← {0, 1} : Expbh-cpa-d

SE (Abh) = d
]
− 1

2

=
1

2
+

1

2
·Advbh-cpa

SE (Abh)− 1

2

=
1

2
·Advbh-cpa

SE (Abh) .

3It can be shown that this implication does not hold in the stateful setting, in fact the stateful InterMAC construction of Sec-
tion 7.2 serves as a separating example.
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6 Denial of Service

In this section we study fragmentation-related Denial-of-Service (DoS) attacks. This is, to the best of our
knowledge, the first formal treatment of DoS prevention as a property of a symmetric encryption scheme.
In Section 1.1 we outlined such a DoS attack for the case of SSH. In that example, by carefully tampering
with only a few bits in one of the transmitted ciphertexts, the adversary manages to ‘confuse’ the decryption
algorithm so that it will produce no output until a huge amount of ciphertext is received. Informally this kind
of attack is what our security notions will attempt to capture. We stress that such attacks are not specific to
SSH, but relate more generally to schemes supporting fragmentation. We will equip the adversary with an
encryption oracle and a decryption oracle. Its goal will be to produce a sequence of ciphertext fragments
whose concatenation is at least n bits long, where each of these fragments decrypts to the empty string.
We will then quantify the DoS security of a scheme via the minimum value of n such that no ‘efficient’
adversary is successful in producing such a sequence of fragments.

The countermeasure adopted by SSH to mitigate against such attacks cf. [20, Section 6.1] is to limit
the maximum ciphertext length to n bits; thereby ensuring that the decryption algorithm will produce an
output after at most n bits of ciphertext. In the case of OpenSSH n is set to 221. We consider this to
be a serious limitation since it affects the usability of the scheme. If two parties wish to exchange large
files, it is understood that this may require waiting for large amounts of ciphertext before recovering it at
the receiver side, and this should be allowed. What we wish to avoid is cases where the communicating
parties are exchanging short messages, but the adversary is able to tamper with the ciphertexts in such a
way that the receiver has to wait for a large amount of ciphertext before producing an output. Thus we
aim to formulate DoS security in a way that allows lowering n without necessarily restricting the maximum
message size in the message space. To accommodate this we exclude trivial win conditions of the type
where a passive adversary forwards ciphertexts (or fragmentations thereof) of length n or higher from the
encryption oracle to the decryption oracle. In essence we will insist that the sequence of fragments by which
the adversary wins be generated by an active adversary. In the stateful setting this means that we will require
the ‘winning’ sequence of fragments to occur after the adversary has become active. In the SBB setting,
trivial win conditions will be trickier to catch. We now formulate the two definitions more precisely.

6.1 Security Definitions

Definition 6.1. [n-DOS-sfCFA] Let SE = (K, E ,D) be an encryption scheme supporting fragmentation.
For an adversaryA and a positive integer n, define the experiment Expn-dos-sfcfa

SE (A) as depicted in Fig. 10.
The experiment starts by calling K to generate a key K and initialise the states. The adversary A is then
given access to an encryption oracle Enc(·), and a stateful decryption oracle sfDec(·). The adversary’s
goal is to submit to the stateful decryption oracle sfDec(·) an out-of-sync sequence of fragments whose
combined length is at least n bits, such that all fragments return no output upon decryption. In the event
that the adversary succeeds, the experiment returns 1, and 0 otherwise. The output of the stateful decryption
oracle is never suppressed.

We define the advantage of an adversary A as:

Advn-dos-sfcfa
SE (A) = Pr

[
Expn-dos-sfcfa

SE (A) = 1
]
.

The scheme SE is said to be n-DOS-sfCFA secure, if for every adversary A with reasonable resources its
advantage Advn-dos-sfcca

SE (A) is small.
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Expn-dos-sfcfa
SE (A)

(K,σ, %)← K
C ← ε, F ← ε, C← ()
i← 0, j ← 0
sync← 1,win← 0

AEnc(·),sfDec(·)

return win

Enc(m)

(c, σ)← EK(m,σ)
i← i+ 1, Ci ← c
return c

sfDec(f)

(m, %)← DK(f, %)
if sync = 1 then

F ← F ‖ f
while C � F = C and j < i

j ← j + 1
C ← C ‖ Cj

if F � C 6= F then
sync← 0
if m = ε then F ← F % C
else F ← ε

else
if m = ε then F ← F ‖ f
else F ← ε

if sync = 0 and |F | ≥ n then win← 1
return m

Figure 10: Experiment to define n-DOS-sfCFA security.

The initial lines of code in the decryption oracle work as before: their purpose is to detect when the
queries become out of sync, i.e. when the adversary becomes active. Once the queries have become out of
sync, the variable F is used to store the last concatenation of out-of-sync fragments that did not return any
output upon decryption. If at any point the size of F exceeds n, the win flag is set. In the case where the
first out-of-sync fragment returns no output upon decryption, only the out-of-sync portion of that fragment
is stored in F . That is, we measure the ciphertext from the point at which the tampering has occurred. This
excludes trivial win conditions, resulting say from a legitimately-produced long ciphertext (longer than n
bits) where the last bit is flipped by the adversary. Permitting such win cases would also require limiting a
scheme’s maximum message size for it to be secure.

We now define an analogous DoS security notion in the SBB setting. As before we want to exclude win
conditions where the adversary merely forwards (possibly fragmented) ciphertexts from the encryption ora-
cle to the decryption oracle. While in the stateful setting the adversary is considered active if he reorders or
replays ciphertext, in the SBB setting we will consider this behaviour to be passive. Thus adversarial strate-
gies that exploit reorderings and replays are deemed invalid in the SBB setting. This distinction between the
stateful and SBB settings is present in all security notions considered thus far. Adapting this ideology to DoS
security, if the winning sequence of fragments coincides with the start of a new ciphertext, we do not want
it to correspond to a fragmentation of a long ciphertext that was previously output by the encryption oracle.
Moreover, it should not be prefixed by a previously-output ciphertext, or by a prefix of a previously-output
ciphertext. A sequence of fragments that satisfies these requirements is said to be non-trivial.

Definition 6.2. [n-DOS-sbbCFA] Let SE = (K, E ,D) be an encryption scheme supporting fragmentation.
For an adversaryA and a positive integer n, define the experiment Expn-dos-sfcfa

SE (A) as depicted in Fig. 11.
The experiment starts by calling K to generate a key K and initialise the states. The adversary A is then
given access to an encryption oracle Enc(·), and a decryption oracle Dec(·). The adversary’s goal is to
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Expn-dos-sbbcfa
SE (A)

(K,σ, %)← K
F ← ε, C← ()
i← 0, q ← 0
tmp← 0,win← 0

AEnc(·),Dec(·)

return win

Enc(m)

(c, σ)← EK(m,σ)
i← i+ 1, Ci ← c
return c

Dec(f)

M ← ε,m′ ← ε
len← |f |
for k = 1 to len

(m, %)← DK(f [k], %)
m′ ← m′ ‖ m
F ← F ‖ f [k]
if % = ε and m′[|m′|] = ¶ then

M ←M ‖ m′
F ← ε,m′ ← ε

if M ‖ m′ 6= ε then q ← |F |
if |F | − q ≥ n then

tmp← 1
for all c ∈ C

if |F % c| < n then tmp← 0
win← tmp

return M ‖ m′

Figure 11: Experiment to define n-DOS-sbbCFA security.

submit to the decryption oracle Dec(·) a non-trivial sequence of fragments whose combined length is at least
n bits, such that all fragments return no output upon decryption. In the event that the adversary succeeds,
the experiment returns 1, and 0 otherwise. The output of the decryption oracle is never suppressed.

We define the advantage of an adversary A in this experiment as:

Advn-dos-sbbcfa
SE (A) = Pr

[
Expn-dos-sbbcfa

SE (A) = 1
]
.

The scheme SE is said to be n-DOS-sbbCFA secure if, for every adversary A with reasonable resources, its
advantage Advn-dos-sbbcfa

SE (A) is small.

Once again we exploit literal decryption to decrypt ciphertext fragments incrementally. This allows the
decryption oracle to detect ciphertext boundaries in order to filter out trivial win conditions. The variable
F stores the concatenation of all ciphertext bits belonging to the current ciphertext. If the end of ciphertext
is detected (by checking for the condition where % = ε and m′[|m′|] = ¶), then F is reset. The variable
q points to the end of the last received fragment within F that produced an output. Each time a fragment
is received the decryption oracle checks whether the concatenation of fragments that did not produce an
output, i.e. F [q + 1, |F |], is at least n bits long. If so it further verifies that after all possible replayed
ciphertext prefixes are removed, it still is at least n bits long.

A Note on DoS and Ciphertext Integrity. In an attempt to limit our scope we did not formulate a notion
of ciphertext integrity for schemes supporting fragmentation. Nonetheless, we wish to emphasise that DoS
security does not imply ciphertext integrity, nor the other way round. While a notion of ciphertext integrity
would ensure that an adversarially generated ciphertext is never accepted, it does not guarantee at which
point it will be rejected. Thus, as in the case of SSH, it may be that a ciphertext can only be rejected
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once the (possibly very large) ciphertext has been received in full. On the other hand, if a scheme is n-DOS-
sfCFA secure it does not guarantee that adversarially generated ciphertexts will be rejected. We purposefully
chose to maintain this separation between the two notions, as we feel that the two security goals are rather
different. This said, a combination of the two security notions has practical significance, since it guarantees
that any tampering in the communication would be detected within n bits. Intuitively it is easy to see that
the InterMAC constructions, presented in the next section, achieve this combined security goal.

7 Constructions

7.1 Applying Instantaneously Decodable Postprocessing (IDP)

We now present a simple transformation for converting a symmetric encryption scheme to an encryption
scheme that supports ciphertext fragmentation. In addition we will see that if the scheme that we start
with is IND-sfCCA secure, then the constructed scheme will be IND-sfCFA secure. Similarly if we start
with a scheme that is IND-CCA secure, the constructed scheme will satisfy IND-sbbCFA security. The
construction will make use of an instantaneously decodable encoding scheme. Later we will see that if we
allow the encoding scheme to be keyed and probabilistic, the construction can in addition achieve boundary
hiding against passive adversaries. Towards this goal, we extend the syntax of encoding schemes as follows.

Generalised Encoding Schemes. An encoding scheme ES = (Kc, EC,DC) is a triple of algorithms with
an associated word space W ⊆ {0, 1}∗. The randomised key-generation algorithm Kc takes no input and
returns a secret key K. The encoding algorithm EC which may be stateful, probabilistic, or both, takes as
input a secret key K and a string (word) w ∈ W to return a codeword v ∈ {0, 1}∗. The deterministic
decoding algorithm DC takes as input a secret key K and a codeword v ∈ {0, 1}∗ to return a word w ∈
W∪{ε}, possibly followed by other outputs. For any keyK, we denote the range of the encoding algorithm
by ECK(W) .

Definition 7.1. [Instantaneous Decodability] An encoding scheme ES = (Kc, EC,DC) with associated
wordspaceW ⊆ {0, 1}∗, is said to be instantaneously decodable if for all keys K that can be output by Kc ,
it holds that:

1. For all w ∈ W , and all s ∈ {0, 1}∗, if v ← ECK(w) then (w, s)← DCK(v ‖ s).

2. For all s ∈ {0, 1}∗, if no v ∈ ECK(W) is a prefix of s then (ε, s)← DCK(s).

Note that instantaneous decodability does not require the encoding scheme to be keyed. In fact any
keyless encoding scheme that is prefix-free is also instantaneously decodable. Later in this section we will
give an example of a keyed encoding scheme that is instantaneously decodable. Throughout we assume that
Kc, EC, and DC are efficiently computable algorithms.

Construction 7.2. [The IDP Construction] Let SE = (Ke, E ,D) be a symmetric encryption scheme with
associated message space M and ciphertext space C. Let ES = (Kc, EC,DC) be an instantaneously de-
codable encoding scheme with an associated word space that contains C. Then the construction specified
in Figure 12 yields an encryption scheme supporting fragmentation SE = (K, E ,D) with an associated
message spaceM. Furthermore if SE is stateless, then SE is stateless beyond buffering.

Correctness of the constructed scheme SE follows immediately from the correctness of SE and the in-
stantaneous decodability of ES . Furthermore if SE’s decryption algorithm is stateless, the only state that D
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Algorithm K

Kc ← Kc

(Ke, σ, %)← Ke

K ← Kc ‖ Ke

return (K,σ, (%, ε))

Algorithm EK(m,σ)

(c, σ)← EKe(m,σ)
v ← ECKc(c)
return (v, σ)

Algorithm DK(f, (%, α))

m′ ← ε, w ← f
α← α ‖ f
while (w 6= ε)

(w,α)← DCKc(α)
if (w 6= ε) then

(m, %)← DKe(w, %)
m′ ← m′ ‖ m ‖ ¶

return (m′, (%, α))

Figure 12: The constructed scheme SE using instantaneously decodable postpocessing.

maintains is the buffer α. Now the buffer is always initialised to ε , and it is easy to see that after decrypt-
ing any complete ciphertext, the buffer will always be empty. Finally, because all submitted fragments are
appended to the buffer from which ciphertexts are then extracted and submitted to D, decryption is inde-
pendent of the fragmentation pattern. Hence the scheme also satisfies literal decryption, and consequently
is stateless beyond buffering.

Note that by instantiating the encoding scheme with a prefix-free encoding, we get a very efficient trans-
formation for converting a ‘standard’ symmetric encryption scheme to an encryption scheme that supports
fragmentation. We next show the nice property that if we start from a scheme that is IND-sfCCA secure, the
transformation yields a scheme that is IND-sfCFA secure.

Theorem 7.3. [IDP is IND-sfCFA secure] Let SE = (K, E ,D) be the scheme from Construction 7.2, com-
posed from a symmetric encryption scheme SE = (Ke, E ,D) and an instantaneously decodable encoding
scheme ES = (Kc, EC,DC). Then for any IND-sfCFA adversary Asfcfa against SE , there exists an IND-
sfCCA adversary Asfcca against SE such that:

Advind-sfcfa
SE (Asfcfa) ≤ Advind-sfcca

SE (Asfcca) , (1)

where Asfcca consumes similar resources to Asfcfa.

Proof. For any adversary Asfcfa we construct adversary Asfcca as follows. Adversary Asfcca runs Kc to
generate an encoding key and then runs Asfcfa . It then uses the encoding key together with its left-or-right
oracle to simulate Asfcfa’s left-or-right oracle as per Construction 7.2, keeping record of the ciphertexts it
returns. Asfcfa’s decryption queries are handled by maintaining a buffer to which the queried fragments are
appended. Then Asfcca repeatedly applies the decoding algorithm to the buffer until no codeword can be
extracted, and submits the codewords, in the same order, to its own stateful decryption oracle. When the
queries become out of sync, the returned messages are appended with ¶, concatenated together, and the
resulting string is returned toAsfcfa. Asfcca uses its records to keep track of whenAsfcfa’s queries become out
of sync. This is necessary since the first out of sync query might correspond to an encryption of ε, andAsfcfa

would not be able to distinguish this case from a message being suppressed because it is in sync. Finally
Asfcca outputs whatever Asfcfa outputs.
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Exprpe-b
ES (A)

K ← Kc

b′ ← AEoR(·)

return b′

EoR(`)

w ←$ {0, 1}`
v ← ECK(w)
if b = 0 then

v ←$ {0, 1}|v|
return v

Figure 13: Experiment to define randomness preserving encodings.

From the instantaneous decodability of ES it follows that Asfcca’s decryption queries will be in sync if
and only ifAsfcfa’s decryption queries are in sync. ThereforeAsfcca providesAsfcfa with a perfect simulation
of its environment. Thus:

Pr
[
d←$ {0, 1} : Expind-sfcfa-d

SE (Asfcfa) = d
]
≤

Pr
[
b←$ {0, 1} : Expind-sfcca-b

SE (Asfcca) = b
]
,

and equation (1) follows.

The following analogous theorem is implied by a similar proof which we omit to avoid repetition.

Theorem 7.4. [IDP is IND-sbbCFA secure] Let SE = (K, E ,D) be the scheme from Construction 7.2,
composed from a symmetric encryption scheme SE = (Ke, E ,D) with stateless decryption, and an instan-
taneously decodable encoding scheme ES = (Kc, EC,DC). Then for any IND-sbbCFA adversary Asbbcfa

against SE , there exists an IND-CCA adversary Acca against SE such that:

Advind-sbbcfa
SE (Asbbcfa) ≤ Advind-cca

SE (Acca) ,

where Acca consumes similar resources to Asbbcfa.

Construction 7.2 shows that IND-sfCFA and IND-sbbCFA security are not hard to attain. However when
we instantiate the encoding scheme with a prefix free encoding, ciphertext boundaries will inevitably be
revealed. While this is what allows the constructed scheme to support ciphertext fragmentation, it obviously
conflicts with the goal of boundary hiding. We partly solve this conflict by employing a keyed encoding
scheme, which reveals ciphertext boundaries solely to the holder of the encoding key. We now formulate a
security property for encoding schemes that will allow Construction 7.2 to achieve IND$-CPA security, and
by Theorem 5.4 hide ciphertext boundaries from passive adversaries.

Definition 7.5. [Randomness Preserving Encodings] Let L be a non-empty set of positive integers, and
let ES = (Kc, EC,DC) be an encoding scheme with associated word space W =

⋃
`∈L{0, 1}`. For an

adversary A and a bit b define the experiment Exprpe-b
ES (A) as shown in Figure 13. The experiment starts

by callingKc to generate an encoding keyKc. The adversaryA is then given access to an encode-or-random
oracle EoR(·), that it can query on any length value ` ∈ L. Depending on the value of b, the oracle will either
return an encoding of a random string of length `, or a random string of the same length as that encoding.
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The adversary’s goal is to output a bit b′, as its guess of the challenge bit b, and the experiment returns b′ as
well. We define the adversary’s rpe-advantage as:

Advrpe
ES (A) = Pr

[
Exprpe-1

ES (A) = 1
]
− Pr

[
Exprpe-0

ES (A) = 1
]
.

The encoding scheme ES is said to be a randomness preserving encoding (RPE) scheme, if for every adver-
sary A with reasonable resources its advantage Advrpe

ES (A) is small.

Theorem 7.6. [IDP is IND$-CPA secure] Let SE = (Ke, E ,D) be a symmetric encryption scheme with
associated message space M and ciphertext space C. Let ES = (Kc, EC,DC) be an encoding scheme
with an associated word space that contains C. Define the encryption scheme supporting fragmentation
SE = (K, E ,D) according to Construction 7.2. For any IND$-CPA adversary Aind$ against SE , there exist
adversaries A′ind$ and Arpe such that:

Advind$-cpa
SE (Aind$) ≤ Advind$-cpa

SE (A′ind$) + Advrpe
ES (Arpe) , (2)

where A′ind$ and Arpe consume similar resources to Aind$.

Proof. To prove Theorem 7.6 we introduce we introduce a hybrid experiment ExpH, similar in spirit to
the two IND$-CPA experiments corresponding to each bit value. The hybrid experiment proceeds exactly
as Expind$-cpa-1

SE , except that the encryption oracle returns encodings of random strings instead. More
specifically, after computing an encryption under SE of the queried message, it picks uniformly at random a
string of the same length as the ciphertext, and returns an encoding under ES of this string instead. We then
have that:

Advind$-cpa
SE (Aind$) =

(
Pr
[
Expind$-cpa-1

SE (Aind$) = 1
]
− Pr [ ExpH(Aind$) = 1 ]

)
+
(

Pr [ ExpH(Aind$) = 1 ]− Pr
[
Expind$-cpa-0

SE (Aind$) = 1
])

. (3)

Now we consider each of the above terms in the braces separately. For any adversary Aind$ distinguishing
between the two experiments in the first term, we construct an IND$-CPA adversary A′ind$ against SE . Ad-
versary A′ind$ runs Kc to obtain an encoding key and then runs Aind$ . It then simulates Aind$’s encryption
oracle in accordance with the IDP construction, except that it uses its own oracle to compute encryptions
under SE . It then outputs whatever Aind$ outputs. Note that when A′ind$’s oracle returns real ciphertexts,
it provides Aind$ with a perfect simulation of the IND$-CPA experiment with a bit value of one. Alterna-
tively when A′ind$’s oracle returns random strings, it provides Aind$ with a perfect simulation of the hybrid
experiment. Hence:

Pr
[
Expind$-cpa-1

SE (Aind$) = 1
]
− Pr [ ExpH(Aind$) = 1 ] ≤ Advind$-cpa

SE (A′ind$) (4)

Similarly, for any adversary Aind$ distinguishing between the two experiments in the second term, we con-
struct an RPE adversaryArpe against ES . AdversaryArpe runsKe to obtain an encryption key and then runs
Aind$ . It simulatesAind$’s encryption oracle by computing an encryption of the queried message under SE ,
it then queries its own oracle with the length of this ciphertext and forwards the response to Aind$. It then
outputs whatever A′cpa outputs. When Arpe’s oracle returns encodings of random strings, it provides Aind$
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Algorithm Kc

K ←$K
return K

Algorithm ECK(w)

x←$ {0, 1}n
y ← 〈|w|〉l ⊕ FK(x)
v ← x ‖ y ‖ w
return v

Algorithm DCK(v)

if |v| ≤ n+ l then
return (ε, v)

len← FK(v[1, n])⊕ v[n+ 1, l]
if |v| − n− l < len then

return (ε, v)
w ← v[n+ l + 1, n+ l + len]
z ← v[n+ l + len + 1, |v|]
return (w, z)

Figure 14: The encoding scheme of Theorem 7.7 that is both instantaneously decodable and randomness
preserving.

with a perfect simulation of the hybrid experiment. Otherwise when Arpe’s oracle returns random strings, it
provides Aind$ with a perfect simulation of the IND$-CPA experiment with a bit value of zero. Therefore:

Pr [ ExpH(Aind$) = 1 ]− Pr
[
Expind$-cpa-0

SE (Aind$) = 1
]
≤ Advrpe

ES (Arpe) (5)

Combining equations (3),(4), and (5) yields equation (2), as desired.

We now complete the IDP construction by showing a simple instantiation of an encoding scheme that
is both instantaneously decodable and randomness preserving. The encoding scheme is constructed from a
pseudorandom function family mapping n bit strings to l bit strings, and is presented in Figure 14.

Theorem 7.7. [IDP Instantiation] Let F : K × {0, 1}n → {0, 1}l be a function family indexed by the set
K. Then Figure 14 defines an instantaneously decodable encoding scheme ES = (Kc, EC,DC) with word
space W =

⋃
`≤ l{0, 1}`. Moreover, for any RPE adversary Arpe against ES making at most q queries,

there exists a PRF adversary Aprf such that:

Advrpe
ES (Arpe) ≤ Advprf

F (Aprf) +

(
q2

2n+1

)
, (6)

where adversary Aprf consumes similar resources to Arpe.

Proof. We first outline why the encoding scheme is instantaneously decodable. Note that the decoding
algorithm first recovers the length field and then uses this value to determine where the codeword ends.
Thus the first requirement of Definition 7.1 is satisfied. As for the second requirement, note that the only
case where the input string s is not prefixed by a valid code word is either when its length is less than or
equal to n+ l, or the recovered length value is greater than the length of the remaining string. In both cases
the decoding algorithm returns (ε, s), as required.

We now prove that the encoding scheme is randomness preserving. To do this, we show that from
any RPE adversary Arpe, we can build a PRF adversary Aprf against F . Adversary Aprf runs Arpe, and
simulates its oracle by sampling random strings of the queried length and encoding them according to the
construction of Figure 14 and computing PRF values using its own oracle. Aprf keeps a record of all the
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n bit strings that it samples, and if at any point a collision occurs it outputs 0 and halts. Otherwise Aprf

outputs whateverArpe outputs. Note that whenAprf is instantiated with F , it responds toArpe’s queries with
real encodings of random strings. On the other hand if its oracle is a random function it returns uniformly
random strings (since it never queries its oracle on the same value more than once). Let Zb represent the
event Exprpe-b

ES (Arpe) = 1, and letE represent the event that a collision occurs when sampling n bit strings.
Then we have that:

Advrpe
ES (Arpe) = Pr

[
Z1 ∧ E

]
− Pr

[
Z0 ∧ E

]
+
(
Pr
[
Z1 ∧ E

]
− Pr

[
Z0 ∧ E

])
≤ Pr

[
Z1 ∧ E

]
− Pr

[
Z0 ∧ E

]
+ Pr [ E ] .

Applying a birthday bound to E, and substituting for the other terms we get:

Advrpe
ES (Arpe) ≤ Pr

[
K ←$K : AFK(·)

prf = 1
]

− Pr
[
f ←$ Func(n, l) : Af(·)

prf = 1
]

+

(
q2

2n+1

)
. (7)

Equation (6) then follows from equation (7).

The IDP construction is attractive in terms of efficiency, modularity, and versatility. If we look at prior
constructions, we see that achieving confidentiality and hiding boundaries while supporting fragmentation
was already a source of conflict. Consider SSH for instance. Its effort to encrypt the length field can be
interpreted as an attempt to hide boundaries. When instantiated with CBC encryption, it is easy to see that
SSH achieves BH-CPA security, but as evidenced by the attack from [1] it is insecure in the IND-sfCFA
sense. Alternatively if we look at TLS, the result of [15] implies that it is IND-sfCCA secure. Moreover the
length field contained in the header works as a prefix free encoding, and therefore by Theorem 7.3, TLS is
IND-sfCFA secure. However since the header is in cleartext the scheme obviously does not achieve BH-CPA
security.

7.2 The InterMAC Construction

We now move to a more ambitious goal, to simultaneously achieve all three of our security notions. In
comparison to the IDP construction and SSH, we now additionally consider boundary hiding against active
adversaries and DoS security. None of the schemes considered thus far achieve boundary hiding in the
active setting. To see the difficulty with this consider once more the case of SSH. Given a concatenation
of ciphertexs, the adversary can now flip the first bit and submit it bit by bit to its decryption oracle until
an error is returned, which marks the first ciphertext boundary. In addition to achieving boundary hiding
security in the active setting, the scheme that we present in this section also achievesN -DOS-sfCFA security
without limiting the maximum message size to N bits.

Our proposed scheme breaks a message into equal-sized segments and encrypts them separately. It then
appends a MAC tag to each intermediate ciphertext and concatenates them to produce the final ciphertext.
The sender and receiver keep a state which contains a message and a segment number to be used in the MAC
computation. Each segment uses a bit flag to indicate the last segment in a message. We now describe the
construction in more detail.
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Algorithm K

(Ke, σe, %e)← Ke

Km ← Km

K ← Ke ‖ Km

σ ← (σe, 0)
%← (%e, ε, ε, 0, 0, 0)
return (K,σ, %)

Algorithm EK(m, (σe, i))

c← ε, b← 0, i← i+ 1
for j = 1 to |m|/`m

p← 1 + (j − 1).`m

q ← j.`m

m′ ← m[p, q]
if q = |m| then b← 1
(c′, σe)← EKe(b ‖ m′, σe)
τ ← TKm(〈i〉 ‖ 〈j〉 ‖ c′)
c← c ‖ c′ ‖ τ

return (c, (σe, i))

Algorithm DK(f, (%e, α,m, i, j, fail))

w ← ε, α← α ‖ f
while |α| ≥ N

c← α[1, `c], τ ← α[`c + 1, N ]
α← α[N + 1, |α|]
j ← j + 1
v ← VKm(〈i〉 ‖ 〈j〉 ‖ c, τ)
if v =⊥ and fail = 0 then

w ← w ‖⊥, fail← 1
else if fail = 1 then

w ← w ‖⊥
else

(m′, %e)← DKe(c, %e)
m← m ‖ m′[2, `m + 1]
if m′[1] = 1 then

w ← w ‖ m ‖ ¶
i← i+ 1, j ← 0,m← ε

return (w, (%e, α,m, i, j, fail))

Figure 15: The stateful InterMAC construction IM.

Construction 7.8. [InterMAC] Let SE = (Ke, E ,D) be a symmetric encryption scheme such that its mes-
sage space contains {0, 1}`m+1, for some desired `m ∈ N. Furthermore let E be length-regular, such that it
maps all messages of length `m to ciphertexts of length `c. LetMA = (Km, T ,V) be a message authentica-
tion code with associated tag length `tag and message space {0, 1}∗. Then the stateful InterMAC construc-
tion, specified in Figure 15, yields an encryption scheme supporting fragmentation IM = (K, E ,D) with
message space {{0, 1}`m}+. The ciphertext segment sizeN associated to the stateful InterMAC construction
is given by N = `c + `tag.

At first sight Figure 15 may seem daunting. Accordingly we now give an informal description. Each
message is split into chunks of `m bits, a bit is then prepended to each chunk and encrypted separately. For all
chunks of plaintext except the last, the prepended bit is set to zero. For each of these ciphertexts c′, a MAC
tag is computed over the concatenation of the encoded message counter 〈i〉, the encoded segment index 〈j〉,
and the ciphertext. These ciphertext-tag pairs are then concatenated to yield the final ciphertext. Decryption
starts by appending the input ciphertext fragment f to the buffer string α, and resetting the output plaintext
string w. The while loop then extracts ciphertext segments from the buffer one at a time. Each segment is
parsed into a ciphertext and a MAC tag, and the tag is then verified. The returned output string w is then
constructed as follows. For valid ciphertexts, i.e. ciphertexts where all segments contain a valid tag, the
plaintext is only returned when the last ciphertext segment has been received. Alternatively, once an invalid
segment is encountered, the ⊥ symbol is returned for that segment and every segment (irrespective of its
validity) that is received thereafter.

Theorem 7.9. [InterMAC is N -DOS-sfCFA secure] Let IM = (K, E ,D) be the InterMAC scheme from
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Construction 7.8, composed from a symmetric encryption scheme SE = (Ke, E ,D) and message authenti-
cation codeMA = (Km, T ,V). Let its segment size be N . Then for any N -DOS-sfCFA adversary Ados

against IM, there exists a UF-CMA adversary Auf againstMA such that:

AdvN-dos-sfcfa
IM (Ados) ≤ Advuf-cma

MA (Auf) ,

where Auf consumes similar resources to Ados.

Proof. Consider the Expn-dos-sfcfa
IM (Ados) experiment for n = N . At any point in time, let F ∗ be the

concatenation of all ciphertext fragments queried byAdos, and let u be the largest non-negative integer such
that the substring F ∗[1, uN ] is in sync. Let E represent the event that |F ∗| ≥ (u + 1)N and sfDec(·) did
not return any output after receiving the ((u + 1)N)th bit. For the case of InterMAC, if the adversary wins
the experiment then E must have occurred. We now bound the probability of event E occurring.

Adversary Auf runs Ke to get an encryption key and initialise the states. It then runs Ados and uses the
encryption key together with its tagging oracle to simulateAdos’s encryption oracle (as per Construction 7.8).
In addition it maintains an ordered list of all the ciphertexts it returns, together with their corresponding
messages. Ados’s decryption queries are then handled as follows. Auf maintains the string F ∗ (as defined
above), and uses it together with the other list to keep track of when Ados becomes active. Moreover it
maintains the decryption counters i and j (as per Construction 7.8). WhileAdos’s queries are in sync, it uses
its list to simulate the decryption oracle. When it happens that |F ∗| ≥ (u+ 1)N , it parses F ∗[uN + 1, (u+
1)N ] into a ciphertext c and a MAC tag τ , submits the pair (〈i〉 ‖ 〈j〉 ‖ c, τ) to its verification oracle, and
halts.

Note that until |F ∗| ≥ (u+ 1)N happens, Auf’s simulation of Ados’s environment is perfect. Moreover,
counters i and j ensure that the only possible time where Auf queried a string with these values is when
it computed the tag for the jth segment of the ith ciphertext (if such a segment existed). However, since
MA is a MAC and by assumption F ∗[uN + 1, (u + 1)N ] does not match that segment, it must be that
the corresponding ciphertext components do not match either. It thus follows that whenever E occurs, Auf

produces a valid MAC forgery and wins the UF-CMA experiment. We then have that:

Pr
[
ExpN-dos-sfcfa

IM (Ados)) = 1
]
≤ Pr [ E ] ≤ Pr

[
Expuf-cma

MA (Auf) = 1
]
,

and equation (7.9) thus follows.

Note that we only have BH-sfCFA security left to prove, since IND-sfCFA security will then be implied
by Theorem 5.3.

Theorem 7.10. [InterMAC is BH-sfCFA secure] Let IM = (K, E ,D) be the InterMAC scheme from Con-
struction 7.8, composed from a symmetric encryption scheme SE = (Ke, E ,D) and message authentication
code MA = (Km, T ,V). Then for any BH-sfCFA adversary Asfcfa against IM, there exists adversaries
Acpa, Aprf, and Auf such that:

1

2
·Advbh-sfcfa

IM (Asfcfa) ≤ Advind$-cpa
SE (Acpa) + Advprf

T (Aprf) + Advuf-cma
MA (Auf) , (8)

where all three adversaries consume similar resources to Asfcfa.
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ExpAb
SE(A)

(K,σ, %)← K
j ← 1, sync← 1
C ← ε, F ← ε

b′ ← ALoR(·),sfDec(·)

return b′

LoR((m0,m1))

σ0 ← σ, σ1 ← σ
(c0, σ0)← EK(m0, σ0)
(c1, σ1)← EK(m1, σ1)
c0 ← ||(c0), c1 ← ||(c1)
if |c0| 6= |c1| then return  
σ ← σb, C ← C ‖ cb
return cb

sfDec(f)

m← ε, F ← F ‖ f
while |F | − jN ≥ 0

p← 1 + (j − 1)N, q ← jN
if sync = 1 then

if F [p, q] 6= C[p, q] then
sync← 0,m←⊥

else
m← m ‖⊥

j ← j + 1
return m

Figure 16: The auxiliary experiment used to prove Theorem 7.10.

Proof. We will prove Theorem 7.10 in two parts. For the first part of the proof we will make use of the aux-
iliary experiment ExpAb

IM of Figure 16. This is essentially the Expbh-sfcfa-b
IM experiment with a modified

stateful decryption oracle. Now the stateful decryption oracle does not return any output until the queries
become out of sync, at which point it returns ⊥ at every N -bit boundary of ciphertext that it receives. At
any point in time, let F ∗ be the concatenation of all ciphertext fragments queried by Asfcfa, and let u be the
largest non-negative integer such that the substring F ∗[1, uN ] is in sync. Let E represent the event that in
the BH-sfCFA experiment |F ∗| ≥ (u+1)N and sfDec(·) did not return⊥ after receiving the first ((u+1)N)
bits. LetW denote the event Expbh-sfcfa-b

IM (Asfcfa) = b and letWA denote the event ExpAd
IM(Asfcfa) = d,

where bits b and d are picked uniformly at random. We thus have that:

Pr [W ]− Pr
[
WA

]
= Pr [W ∧ E ] + Pr

[
W ∧ E

]
− Pr

[
WA

]
.

Due to the details of the InterMAC construction, the two experiments are identical if E does not occur.
Bounding Pr

[
E
]
, cancelling equal terms, and then bounding Pr [W ∧ E ] yields:

Pr [W ]− Pr
[
WA

]
≤ Pr [W ∧ E ] + Pr

[
W | E

]
− Pr

[
WA

]
≤ Pr [W ∧ E ]

≤ Pr [ E ] . (9)

Using a reduction similar to that in the proof of Theorem 7.9, it follows that there exists a UF-CMA adversary
Auf such that:

Pr [ E ] ≤ Advuf-cma
MA (Auf) . (10)

Combining equations (9) and (10), and then multiplying by two and subtracting one on each side of the
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inequality, yields:

Advbh-sfcfa
IM (Asfcfa) ≤

(
2 · Pr

[
WA

]
− 1
)

+ 2 ·Advuf-cma
MA (Auf) . (11)

Now from any adversary Asfcfa, we can construct a BH-CPA adversary A′′cpa against IM as follows. A′′cpa
runs Asfcfa, and forwards its encryption queries to its own encryption oracle while keeping record of all
ciphertexts that it returns. Decryption queries are handled by running the sfDec(·) algorithm of Figure 16.
Finally A′′cpa outputs whatever Asfcfa outputs. Note thatA′′cpa provides Asfcfa with a perfect simulation of the
auxiliary experiment. It then follows that:

Pr
[
WA

]
= Pr

[
d←$ {0, 1} : Expbh-cpa-d

IM (A′′cpa) = d
]
. (12)

Combining equations (11) and (12), we obtain:

Advbh-sfcfa
IM (Asfcfa) ≤ Advbh-cpa

IM (A′′cpa) + 2 ·Advuf-cma
MA (Auf) , (13)

and then applying Theorem 5.4 yields:

Advbh-sfcfa
IM (Asfcfa) ≤ 2 ·Advind$-cpa

IM (A′cpa) + 2 ·Advuf-cma
MA (Auf) . (14)

We now move to the second part of the proof and bound the advantage of A′cpa. Towards this aim we
introduce a hybrid experiment ExpH, similar in spirit to the two IND$-CPA experiments corresponding
to each bit value. The hybrid experiment proceeds exactly as Expind$-cpa-1

IM , except for one detail. In the
encryption oracle, for every ciphertext segment, the MAC tag is replaced with a uniformly random string of
length `tag. Then we have that:

Advind$-cpa
IM (A′cpa) =

(
Pr
[
Expind$-cpa-1

IM (A′cpa) = 1
]
− Pr

[
ExpH(A′cpa) = 1

])
+
(

Pr
[
ExpH(A′cpa) = 1

]
− Pr

[
Expind$-cpa-0

IM (A′cpa) = 1
])

. (15)

Now consider each of the above terms in the braces separately. For any adversary A′cpa distinguishing
between the two experiments in the first term, we can associate a PRF adversary Aprf against T . Adversary
Aprf runs Ke to obtain an encryption key and initialise the states, and then runs A′cpa . It simulates its
encryption oracle in accordance with the InterMAC scheme, except that it uses its own oracle to compute
the MAC tags. It then outputs whatever A′cpa outputs. Note that if Aprf’s oracle is instantiated with T , it
perfectly simulates a ‘real’ encryption oracle for A′cpa . On the other hand if its oracle is a random function
it simulates the encryption oracle of the hybrid experiment, as long as it does not query the random function
on the same input more than once. The counters in the InterMAC construction guarantee that this never
occurs. Therefore:

Pr
[
Expind$-cpa-1

IM (A′cpa) = 1
]
− Pr

[
ExpH(A′cpa) = 1

]
≤ Advprf

T (Aprf) . (16)

Similarly for any adversary A′cpa distinguishing between the two experiments in the second term we con-
struct an IND$-CPA adversary Acpa against SE . Adversary Acpa runs A′cpa simulating its encryption oracle
in accordance with the InterMAC scheme, except that it uses its own oracle to compute encryptions under
SE , and replaces tag values with random strings of length `tag . It then outputs whateverA′cpa outputs. When
Acpa’s oracle returns real ciphertexts, it provides A′cpa with a perfect simulation of the hybrid experiment.
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Algorithm K

(Ke, σ, ε)← Ke

Km ← Km

K ← Ke ‖ Km

%← (ε, ε, 0)
return (K,σ, %)

Algorithm EK(m,σ)

c← ε, τ ← 0`tag , b← 0
for j = 1 to |m|/`m

p← 1 + (j − 1).`m

q ← j.`m

m′ ← m[p, q]
if q = |m| then b← 1
(c′, σ)← EKe(b ‖ m′, σ)
τ ← TKm(τ ‖ c′)
c← c ‖ c′ ‖ τ

return (c, σ)

Algorithm DK(f, (α,m, τ0))

w ← ε, α← α ‖ f
while |α| ≥ N

c← α[1, `c], τ ← α[`c + 1, N ]
α← α[N + 1, |α|]
v ← VKm(τ0 ‖ c, τ)
τ0 ← τ
if v =⊥ and m 6= � then

w ← w ‖⊥,m← �
else if m = � then

w ← w ‖⊥
else

(m′, %e)← DKe(c, ε)
m← m ‖ m′[2, `m + 1]
if m′[1] = 1 then

w ← w ‖ m ‖ ¶
τ0 ← 0`tag ,m← ε

return (w, (α,m, τ0))

Figure 17: The stateless beyond buffering InterMAC construction IM∗.

Alternatively when Acpa’s oracle returns random strings, it provides A′cpa with a perfect simulation of the
IND$-CPA experiment with a bit value of zero. Hence:

Pr
[
ExpH(A′cpa) = 1

]
− Pr

[
Expind$-cpa-0

IM (A′cpa) = 1
]
≤ Advind$-cpa

SE (Acpa) . (17)

Combining equations (14),(15),(16), and (17) yields (8), as desired.

7.3 A SBB Variant of InterMAC

Construction 7.11. [SBB InterMAC] Let SE = (Ke, E ,D) be a symmetric encryption scheme with state-
less decryption, having a message space containing {0, 1}`m+1 for some desired `m ∈ N, and error space S⊥.
Furthermore let E be length-regular, such that it maps all messages of length `m to ciphertexts of length `c.
LetMA = (Km, T ,V) be a message authentication code with associated tag length `tag and message space
{0, 1}∗. Let � be such that � 6∈ S⊥. Then the SBB InterMAC construction, specified in Figure 17, yields
an SBB encryption scheme supporting fragmentation IM∗ = (K, E ,D) with message space {{0, 1}`m}+.
The ciphertext segment size N associated to the stateful InterMAC construction is given by N = `c + `tag.

The above construction works analogously to its stateful counterpart, with a few exceptions. Counters
are no longer maintained, and are therefore not included in the MAC tag computation and verification.
Instead, the tag of the previous segment is prepended to the ciphertext when computing the MAC tag. For
the purpose of computing the tag in the first segment of each ciphertext, the previous tag value is set to
0`tag . In decryption, the fail flag has been dropped, and we now set m to the special symbol � instead.
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Thus as before, once an invalid MAC tag is detected, the decryption algorithm always returns ⊥ from that
point onwards. Note that this does not violate the SBB definition, see Section 3.2. Finally, the construction
assumes an invertible encoding mapping the triple (α,m, τ0) to a single string, such that (ε, ε, 0`tag) is
mapped to the empty string. This technicality is required for the scheme to satisfy the SBB definition. Note
that the decryption state does not contain more information than a buffer storing all bits pertaining to the
ciphertext being decrypted. In fact it would have been functionally equivalent to let the decryption state
be such a buffer, flushed only when the end of a ciphertext is found, and compute (α,m, τ0) from this
buffer each time the decryption algorithm is invoked. However we chose this implementation since it is less
wasteful in computational resources, and yet satisfies the SBB definition.

Theorem 7.12. [SBB InterMAC is N -DOS-sbbCFA secure] Let IM∗ = (K, E ,D) be the SBB InterMAC
scheme from Construction 7.11, composed from a symmetric encryption scheme SE = (Ke, E ,D) with
stateless decryption and message authentication codeMA = (Km, T ,V). Let its segment size be N . Then
for any N -DOS-sbbCFA adversary Ados against IM∗ whose encryption queries total at most µe bits, there
exist adversaries Auf and Aprf such that:

AdvN-dos-sbbcfa
IM∗ (Ados) ≤ Advuf-cma

MA (Auf) + Advprf
T (Aprf) +

(
µ2e

`2m · 2`tag

)
, (18)

where Auf and Aprf consume similar resources to Ados.

Proof. Consider the experiment ExpN-dos-sbbcfa
IM∗ (Ados) . Let F and C be as in Figure 11, and let u be the

largest non-negative integer such that there exists a c ∈ C satisfying F [1, uN ] � c = F [1, uN ]. Let E
represent the event that |F | ≥ (u + 1)N and Dec(·) did not return any output after receiving the ((u +
1)N)th bit. For the case of InterMAC, if the adversary wins the experiment, then E must have occurred.
Furthermore, letQ represent the event that for any two ciphertexts c and c′ returned by the encryption oracle
before E has occurred, there exist positive integers x and y, where x ≤ y, such that c[xN − `tag + 1, xN ] =
c′[yN − `tag + 1, yN ] but c[1, xN ] 6= c′[1, yN ] , or c[xN − `tag + 1, xN ] = 0`tag . Thus Q represents the
event that either two tags collide or a tag value of all zeros occurs. We then have that:

Pr
[
ExpN-dos-sbbcfa

IM∗ (Ados)) = 1
]

= Pr [ E ] = Pr [ E ∧Q ] + Pr
[
E ∧Q

]
,

≤ Pr [Q ] + Pr
[
E | Q

]
. (19)

We now bound the probability of event Q occurring. Towards this goal we construct from Ados a PRF
adversary Aprf against T . It starts by running Ke to get an encryption key and initialise the states. It
then runs Ados and uses the encryption key together with its oracle to simulate Ados’s encryption oracle
(as per Construction 7.11). In addition it maintains a list of all the ciphertexts it returns, together with their
corresponding messages. Note that by assumption eventE has not occurred yet, thusAprf is able to simulate
Ados’s decryption oracle by using this list. Therefore, when Aprf’s oracle is instantiated with T it provides
Ados with a perfect simulation of its environment. Aprf runs until Ados halts or E occurs, at which point it
checks whether Q has occurred. If so it outputs 1 otherwise it outputs 0. Aprf can check for Q as it proceeds
by maintaining a list of the strings which it queried to its oracle, indexed by the returned tag values, and
check for collisions or tag values of 0`tag while it populates the list. Consider now the case where Aprf’s
oracle is a random function. The probability of a collision in the tags can be bounded using a standard
birthday bound, while the probability of a tag value of 0`tag is given by the number of queries divided by
2`tag . Applying the union bound on these two probabilities, we have that:

Pr
[
f ←$ Func(`c + `tag, `tag) : Af(·)

prf = 1
]
≤
(

µ2e
`2m · 2`tag+1

)
+

(
µe

`m · 2`tag

)
.
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Rounding the above bound, and applying it to Aprf’s advantage formula, yields:

Pr [Q ] ≤ Advprf
T (Aprf) +

(
µ2e

`2m · 2`tag

)
. (20)

We now bound the second term of inequality (19), by constructing a UF-CMA adversary Auf againstMA
from Ados. Adversary Auf proceeds similarly to Aprf. It runs Ke and uses this key together with its tagging
oracle to simulate Ados’s encryption oracle. It also maintains a list of all the ciphertexts it returns together
with their corresponding messages, and uses this to simulate Ados’s decryption oracle. It then keeps on
simulating Ados’s environment until it halts or |F | ≥ (u + 1)N . If |F | ≥ (u + 1)N happens with u > 0,
it submits the pair (F [uN − `tag + 1, uN + `c], F [uN + `c + 1, (u + 1)N ]) to its verification oracle, and
halts. Alternatively, if |F | ≥ (u+ 1)N occurs with u = 0, it submits the pair (0`tag ‖ F [1, `c], F [`c + 1, N ])
instead. Note that until it occurs that |F | ≥ (u + 1)N , Auf’s simulation of Ados’s environment is perfect.
Furthermore, if Q did not occur, it follows that the first component of the submitted pair was not previously
queried to the tagging oracle. Thus assuming Q did not occur, whenever E occurs, Auf’s submitted pair
constitutes a valid forgery. Therefore:

Pr
[
E | Q

]
≤ Advuf-cma

MA (Auf) . (21)

Combining equations (19),(20) and (21), yields (18), as desired.

A slightly different analysis could be used to achieve a possibly better bound for Theorem 7.12. In
particular when bounding event Q, we could have considered the probability that both the tag and ciphertext
values collide. This would lower the birthday bound term, at the expense of introducing an extra term of the
form Advind$-cpa

SE (A) . If the birthday bound is the dominant term, such an approach would yield a tighter
bound. However we opted for a simpler proof of security.

Theorem 7.13. [SBB InterMAC is IND-sbbCFA secure] Let IM∗ = (K, E ,D) be the SBB InterMAC
scheme from Construction 7.11, composed from a symmetric encryption scheme SE = (Ke, E ,D) with
stateless decryption and message authentication codeMA = (Km, T ,V). Let its segment size be N . Then
for any IND-sbbCFA adversary Asbbcfa against IM∗ whose encryption queries total at most µe bits, there
exist adversaries Acpa, Aprf and Auf, such that:

Advind-sbbcfa
IM∗ (Asbbcfa) ≤ Advind-cpa

SE (Acpa) + 2 ·Advprf
T (Aprf)

+ 2 ·Advuf-cma
MA (Auf) +

µ2e
`2m · 2`tag−1 , (22)

where all four adversaries consume similar resources to Asbbcfa.

Proof. The proof of Theorem 7.13 follows the same lines as its stateful analogue. For the first part of
the proof we will make use of the auxiliary experiment ExpAb

IM of Figure 18. This is essentially the
Expind-sbbcfa-b

IM∗ experiment, with the difference that once the decryption oracle detects a ciphertext which is
not a replay of another ciphertext output by the encryption oracle, it then returns ⊥ at every N -bit boundary
of ciphertext that it receives. Now let F and C be as in Figure 7, and let u be the largest non-negative integer
such that there exists a c ∈ C satisfying F [1, uN ]� c = F [1, uN ]. Let E represent the event that in the IND-
sbbCFA experiment |F | ≥ (u+1)N and Dec(·) did not return⊥ after receiving the first ((u+1)N) bits. Let
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ExpAb
SE(A)

(K,σ, ε)← K
i← 0, j ← 1
fail← 0, p← 1
C← (), F ← ε

b′ ← ALoR(·),Dec(·)

return b′

LoR((m0,m1))

if |m0| 6= |m1| then return  
(c, σ)← EK(mb, σ)
i← i+ 1, Ci ← c
return c

Dec(f)

m← ε, F ← F ‖ f
while |F | − jN ≥ 0

if fail = 1 then m← m ‖⊥
else

match← 0
for all c ∈ C

if F [p, jN ] � c = F [p, jN ]
then match← 1

if F [p, jN ] = c
then p← jN + 1

if match = 0 then
m← m ‖⊥, fail← 1

j ← j + 1
F ← F [p, |F |], p← 1, j ← b|F |/Nc
return m

Figure 18: The auxiliary experiment used to prove Theorem 7.13.

W denote the event Expind-sbbcfa-b
IM∗ (Asbbcfa) = b and let WA denote the event ExpAd

IM∗(Asbbcfa) = d,
where bits b and d are picked uniformly at random. We then have that:

Pr [W ]− Pr
[
WA

]
= Pr [W ∧ E ] + Pr

[
W ∧ E

]
− Pr

[
WA

]
.

Due to the details of the InterMAC construction, the two experiments are identical if E does not occur.
Bounding Pr

[
E
]
, cancelling equal terms, and then bounding Pr [W ∧ E ] yields:

Pr [W ]− Pr
[
WA

]
≤ Pr [W ∧ E ] + Pr

[
W | E

]
− Pr

[
WA

]
≤ Pr [W ∧ E ] ≤ Pr [ E ] . (23)

Using a reduction similar to that in the proof of Theorem 7.12, it follows that there exist adversariesAuf and
Aprf such that:

Pr [ E ] ≤ Advuf-cma
MA (Auf) + Advprf

T (Aprf) +

(
µ2e

`2m · 2`tag

)
. (24)

Combining equations (23) and (24), and manipulating terms, yields:

Pr [W ] ≤ Pr
[
WA

]
+ Advuf-cma

MA (Auf) + Advprf
T (Aprf) +

(
µ2e

`2m · 2`tag

)
.
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Multiplying both sides by two and subtracting one:

Advind-sbbcfa
IM∗ (Asbbcfa) ≤

(
2 · Pr

[
WA

]
− 1
)

+ 2 ·Advuf-cma
MA (Auf) .

+ 2 ·Advprf
T (Aprf) +

(
µ2e

`2m · 2`tag−1

)
(25)

Now from any adversary Asbbcfa, we can construct an IND-CPA adversary Acpa against SE as follows.
Adversary Acpa runs Km to obtain a key for the MAC and then runs Asbbcfa . It simulates its encryption
oracle in accordance with the InterMAC scheme, except that it uses its own oracle to compute encryptions
under SE . In addition it maintains a list of all ciphertexts that it returns. Decryption queries are handled by
simulating the Dec(·) oracle of Figure 18. Finally Acpa outputs whatever Asbbcfa outputs. Note that Acpa

provides Asbbcfa with a perfect simulation of the auxiliary experiment. It then follows that:

Pr
[
WA

]
= Pr

[
d←$ {0, 1} : Expind-cpa-d

SE (Acpa) = d
]
. (26)

Combining equations (25) and (26) yields (22), as desired.
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A The Paterson–Watson Model

To analyse SSH in the context of fragmentation, Paterson and Watson already extended Bellare et al.’s IND-
sfCCA notion to incorporate fragmentation. However, their security definition [16, Definition 2] is tailored
specifically to work with SSH, to the extent that the security experiments are directly referring to quantities
that are SSH specific. For instance, the sequence number and buffer as used by SSH are also crucial for the
definition of security. This already makes their definition very difficult to work with in general.

Nonetheless, one could try to extract a security definition by abstracting away the various SSH specific
quantities, or duplicating them explicitly in the experiment, e.g. let the experiment explicitly keep track
of a sequence number (as we did for our IND-sfCFA experiment) and/or a buffer (as we did for our IND-
sbbCFA game). This itself is not at all trivial, and it would surface the following three problems buried in
the Paterson–Watson experiments:

1. Fragments containing multiple, complete ciphertexts are dealt with in a peculiar way, as the decryption
oracle will only ever output one message at a time. This can cause a considerable lag, in the sense
that submitting one fragment to the decryption oracle might actually result in a much older fragment
being decrypted (and returned), whereas the fresh fragment is simply added to the buffer in full (to be
processed later). This is illustrated in Fig. 19.

2. A correctness requirement is completely missing. One can try to adapt our correctness definition, but
it does not seem to blend well with their choice to output only a single message at a time. (Weaker
notions of correctness are also possible.)

3. A ‘bombing’ behaviour is enforced in the security experiment: once a decryption returns ⊥, all sub-
sequent decryptions will return ⊥. This (needlessly) restricts the security definition to schemes that
actually implement this behaviour in their decryption algorithm. Even if the security notion can only
be met by schemes that employ this ‘bombing’ behaviour, it should not be part of the security experi-
ment.

1 2 3′ 4′ 5′

Figure 19: The Paterson–Watson game would (after buffering f1 = (1)) consider the fragment f2 = (23′)
still in-sync, leading to (suppressed) decryption of ciphertext c1 = (1) only. The third fragment f3 = (4′5′)
triggers decryption of ciphertext c2 = (3′) whose deviation (from 3) causes this third fragment to be out-of-
sync. The actual contents of f3 itself are irrelevant here.
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B Unsatisfiability of SBB Boundary Hiding

We now outline a general attack, applicable to any practically relevant scheme, showing that the BH-sbbCFA
definition given in Figure 9 is unsatisfiable. The reader is recommended to first refer to the next section
where security against Denial of Service attacks is introduced and defined.

Let SE = (K, E ,D) be any SBB encryption scheme supporting fragmentation that is n-DOS-sbbCFA
secure for some value n. Furthermore, letm1 andm2 be any two messages such that |EK(m1)| < |EK(m2)| .
An adversary can then query the message-vector pair ([m1,m2], [m2,m1]) to the special left-or-right oracle
and get a concatenation of ciphertexts c∗. It then chops off the last |EK(m2)| bits from c∗ to get c′, and
submits the string c′ ‖c′ ‖ . . .‖c′ (possibly in fragments) to the decryption oracle. The number of copies of
c′ that are included in this string is such that its total length exceeds n. Now if c∗ corresponds to the first
message vector then c′ will be a prohibited ciphertext and all output will be suppressed by the decryption
oracle. On the other hand if c∗ corresponds to the second message vector, then by the correctness of the
scheme c′ will not be a prohibited ciphertext and the concatenated string is guaranteed to produce some
output by the n-DOS-sbbCFA security of the scheme. Thus the presence or absence of any output from the
decryption oracle will indicate to the adversary which message vector was encrypted.

While our formulation of BH-sbbCFA is quite natural, one could argue that the reason it is unsatisfiable
is because the set of prohibited ciphertexts C depends on the challenge bit b. A possible workaround would
be to additionally split the returned concatenation of ciphertexts cb according to the lengths of the ciphertexts
in c1−b, and include the resulting set of ciphertexts in C as well. However we do not know if this definition
is satisfiable either. Accordingly it remains an open question whether a meaningful and satisfiable definition
of BH-sbbCFA is conceivable or not. More generally, we do not know whether this limitation is due to our
inability to formulate such a definition, or because the goal of boundary hiding inherently requires protecting
against replay and reordering attacks.

C Auxiliary Security Definitions

C.1 Message Authentication

A message authentication codeMA = (K, T ,V) is a triple of algorithms with an associated message space
M ⊆ {0, 1}∗. The randomised key-generation algorithm K takes no input and returns a secret key K. The
deterministic tagging algorithm T takes as input a secret key K ∈ K, and a message m ∈M, and returns a
tag τ ∈ {0, 1}∗. The deterministic verification algorithm V takes as input the secret key K ∈ K, a message
m ∈ M, and a candidate tag τ ′, to return a symbol v ∈ {valid,⊥} denoting whether τ ′ is a valid tag for
m or not. We require that for any key K ∈ K and any m ∈M it hold that:

VK(m, TK(m)) = valid.

A number `tag ≥ 1 is called the tag length associated to the scheme if for any key K ∈ K and any m ∈M

|TK(m)| = `tag.

The standard security notion for message authentication schemes is existential unforgeability under cho-
sen message attacks (UF-CMA). This is an adaptation to the symmetric setting of the corresponding notion
for signature schemes introduced by Golwasser, Micali, and Rivest [13]. An adversary is allowed to obtain
tags for some number of messages of its choice, and wins if it can output a new message together with a
valid tag. A more stringent security requirement on a MAC is that the tagging algorithm be a pseudorandom
function. Both definitions are defined more formally below.
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Expuf-cma
SE (A)

K ← K
L← ∅,win← 0

ATag(·),Ver(·,·)

return win

Tag(m)

τ ← TK(m)
L← L ∪m
return τ

Ver(m, τ)

v ← VK(m, τ)
if v = valid and m 6∈ L then
win← 1
return v

Figure 20: Experiment to define UF-CMA security.

Definition C.1. [UF-CMA] LetMA = (K, T ,V) be a message authentication code. For an adversary A,
define experiment Expuf-cma

MA (A) as shown in Figure 20. A key K is first generated by calling K . The
adversaryA is then given access to a tagging oracle Tag(·) and a verification oracle Ver(·, ·). The adversary
wins if it makes a successful verification query for some message which it had not previously queried to the
tagging oracle. We define the adversary’s advantage as:

Advuf-cma
MA (A) = Pr

[
Expuf-cma

MA (A) = 1
]
.

The message authentication codeMA is said to be UF-CMA secure, if for every adversary A with reason-
able resources its advantage Advuf-cma

MA (A) is small.

Definition C.2. [Pseudorandom Functions] Let F : K×X → Y be a function family indexed by the set K.
Consider an adversary A with oracle access to some function with domain X and codomain Y , and which
returns a single bit as its output. We define the prf-advantage of adversary A with respect to the function
family F as:

Advprf
F (A) = Pr

[
K ←$K : AFK(·) = 1

]
− Pr

[
f ←$ Func(X ,Y) : Af(·) = 1

]
;

where Func(X ,Y) denotes the set of all functions with domain X and codomain Y . F is said to be a pseu-
dorandom function (PRF), if for every adversaryA with reasonable resources its prf-advantage Advprf

F (A)
is small.

C.2 Indistinguishability from Random Strings

Definition C.3. [IND$-CPA] Let SE = (K, E ,D) be a symmetric encryption scheme. For an adversary A
and a bit b, define the experiment Expind$-cpa-b

SE (A) as shown in Figure 21. The experiment starts by calling

Expind$-cpa-b
SE (A)

(K,σ, %)← K
i← 0, C← ()

b′ ← AEnc$(·)

return b′

Enc$(m)

(c, σ)← EK(m,σ)

if b = 0 then c←$ {0, 1}|c|
i← i+ 1, Ci ← c
return c

Figure 21: Experiment to define IND$-CPA security.
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K to generate a key K and initialise the states. The adversary A is then given access to a special encryption
oracle Enc$(·). If b = 1 the oracle returns the encrypted message, otherwise it returns a uniformly-random
bit-string of the same length as the encrypted message.

The adversary’s goal is to output a bit b′ as its guess of the challenge bit b, and the experiment returns b′

as well. The corresponding advantage of an adversary A is given by:

Advind$-cpa
SE (A) = Pr

[
Expind$-cpa-1

SE (A) = 1
]
− Pr

[
Expind$-cpa-0

SE (A) = 1
]
,

The scheme SE is said to be IND$-CPA secure, if for every adversary A with reasonable resources its
advantage Advind$-cpa

SE (A) is small.
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