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Abstract. In this paper, we study the problem of automatically verifying higher-
order masking countermeasures. This problem is important in practice (weak-
nesses have been discovered in schemes that were thought secure), but is inher-
ently exponential: for t-order masking, it involves proving that every subset of
t intermediate variables is distributed independently of the secrets. Some type
systems have been proposed to help cryptographers check their proofs, but many
of these approaches are insufficient for higher-order implementations.
We propose a new method, based on program verification techniques, to check
the independence of sets of intermediate variables from some secrets. Our new
language-based characterization of the problem also allows us to design and im-
plement several algorithms that greatly reduce the number of sets of variables that
need to be considered to prove this independence property on all valid adversary
observations. The result of these algorithms is either a proof of security or a set of
observations on which the independence property cannot be proved. We focus on
AES implementations to check the validity of our algorithms. We also confirm the
tool’s ability to give useful information when proofs fail, by rediscovering existing
attacks and discovering new ones.
Keywords: Masking, Automatic tools, EasyCrypt, Higher-Order Mask-
ing

1 Introduction

This paper discusses the issue of automatically verifying the security of higher-order
masked implementations, which are gaining in importance since differential power or
electromagnetic analysis [31] are the most efficient attacks on block-cipher implementa-
tions. For instance, recent and very efficient attacks have allowed adversaries to recover
the secret key using only one AES power trace [49]. Such attacks are making the use
of masking, a well-known and effective countermeasure to protect against side-channel
attacks, increasingly popular. Masking consists in using a secret-sharing scheme to split
each sensitive variable into (t + 1) shares such that the joint distribution of any subset
of at most t shares is uniform and independent of the secret, but the knowledge of all
(t + 1) shares allows for the efficient recovery of the secret. The computation itself is
then masked as well, replacing basic operations on, say, bytes with complex operations
on (t+ 1) bytes. Intuitively, an implementation that is split over (t+ 1) shares should be
able to resist the leakage of t of its intermediate variables. In practice, even higher-order
attacks, where t is greater than 1 have been conducted [37,39], and therefore deserve
to be considered when designing countermeasures. The increasing number of masking
schemes and masked implementations that were proved secure and later found vulnera-
ble to attacks make them an ideal target for formal methods and proof checking.

Formal Security and Leakage Models. Chari et al. [14] performed the first formal
security analysis of masking, by showing that the number of queries needed to recover a



sensitive bit is at least exponential in the masking order t in a noisy leakage model. In
this model, the adversary does not know the exact value of internal variables, but only
access noisy leakage channels. More precisely, the adversary gets a leaked value sampled
according to a gaussian distribution centered around the actual value. This model is
an abstraction of the real information gained by the adversary since, for example when
attacking smartcards, one can only observe the noisy Hamming weight of a variable, or
the Hamming distance between two successive values of a variable or register. In other
side-channel attacks such as cache attacks, one can obtain the most significant bits of a
byte used as index in a table lookup. In this case, the information obtained is close to
the noisy leakage model. Following [14], Ishai, Sahai and Wagner [29] proposed another
leakage model, the t-threshold probing model, where the adversary knows the exact value
of at most t internal variables in the computation. This model was originally inspired
from chip attacks described for instance in [2]. Ishai, Sahai and Wagned [29] also provide
a compiler that transforms any circuit C secure in the black-box model into a circuit C ′

secure in the t-threshold probing model. Many other leakage models have been considered
in the literature since these papers [34,19,48,23]. In practice, the noisy leakage model is
often thought of as more realistic, since experimental physical leakages are noisy [33]. It
is worth noting that, although the t-threshold probing model enables the adversary to
observe exact values rather than noisy ones, the model is not clearly more powerful than
the noisy leakage model, since the two models also vary in the number of observations
the adversary is allowed.

AES masking and Problems in proofs. Since AES implementations are preferred
targets for side-channel attacks, we focus on masked implementations of AES and its
components. Many papers have proposed masked implementations of AES or only of
its non-linear component, the S-box [11,38,12,47,44,25,45,43,30,27,13,42]. Some of these
masked implementations were also proved secure. Checking first-order masking schemes
is a relatively routine task since it is sufficient to check that each intermediate variable
carries a distribution that is independent from the secret. However, manually checking
higher-order masked implementations seems to be a more difficult task and many errors
appeared in the literature. For instance, the schemes presented by [47] and [45] were
later broken in [16] and [17]. Consequently, it is important to formally verify masked
implementations and many tools to do so appeared recently [35,10,21,20,22]. The first
tools [35,10] use type systems to propagate sensitivity marks along the programs. How-
ever as clearly explained in [21], such approaches are not complete and many programs
are incorrectly evaluated. The main advantage of type systems is that the tools they
yield are very efficient. However, they cannot check properties on probability distribu-
tions. Other tools have been proposed to take into account distributions, but appear
to only be able to handle small circuits, and it is not obvious that results obtained on
small programs by those tools can be composed or combined to obtain security results
on larger ones.

Noisy and Probing Models. Prouff and Rivain [42] extend the noisy model of Chari
et al. [14] to incorporate more general probability leakage distributions rather than just
gaussian [14] or Bernoulli leakage [23]. Moreover, they remove the limitation to one-bit
observations, allowing the adversary to observe any intermediate variable, and also take
the computation into account, while [14] only focuses on shares independently of the
computation. The model follows the only computation leaks information model intro-
duced by Micali and Reyzin in [34]. At each computation step, also called elementary
calculation or CPU instruction in practice, one can learn a leakage function f(x) that
depends only on part of the state x. In [42], the noise function is modeled by bounding
the bias in the distribution of x given f(x), that is the statistical distance between the
distribution Pr[x] and Pr[x|f(x)] is bounded depending on some security parameter ω.
They prove the security of a block cipher implementation in this model by bounding the
mutual information on the key and the plaintext given the leakage functions as ω−(t+1),
with t the masking order. Prouff and Rivain’s work in [42] is the first proof of security
for a block cipher in such a practical and low-level security model. However, the notion
of security used is information theoretic and cannot be used directly in more standard



reductionist security proofs. Consequently, for their result to hold, the adversary can-
not know the ciphertext since this information allows to determine the key given a few
plaintext / ciphertext pairs. Recently, Duc, Dziembowski and Faust [18] recast the noisy
leakage in the more classic statistical security model and show that the security in the
noisy leakage model of [42] can be reduced to the security in the t-threshold probing
model of [29], in which security proofs are much more direct. In addition, the adver-
sary model in [18] captures chosen plaintext attacks, and the proof does not rely on the
existence of leak-free components.

Transition-based Model. In the noisy leakage model as well as in the t-threshold
probing model, only the values of intermediate variables are considered when determin-
ing the security order of an implementation. However, Balash et al. [3] show that this
value-based leakage modelling does not fully capture some real-world scenarios, where
additional leakage may come from transitions at the gate level called glitches. As a conse-
quence, a perfectly masked algorithm secure in the value-based model can face first-order
flaws based on its transitions. In the software scenario, glitches are replaced by memory
transitions, where an arbitrary function (usually the Hamming distance) of the old and
new value of a register may be leaked during the register write, in a single observation.
As explained in [3], the consequence of these practical issues is (at worst) a division of
the security order by two.

Our Approach. We rephrase security in the t-threshold probing model as the notion of
t-non interference, based on non-interference notions used for verifying information-flow
properties in language-based security. We first define a more general notion of program
equivalence. Two probabilistic programs p1 and p2 are said to be (I,O)-equivalent, de-
noted p1 ∼OI p2, whenever the conditional probability distributions on O defined by p1
and p2 are equal, given the assumptions on input variables encoded in I.

This notion of equivalence subsumes the two more specialized notions we consider
here: functional equivalence and t-non-interference. Two programs p and p̄ are said to
be functionally equivalent when they are (I,Z)-equivalent with Z all output variables,
and I all input variables. A program p̄ is said to be t-non-interfering with respect to a
set of secret input variables and a set of observed variables O when p̄(s0, ·) and p̄(s1, ·)
are (I,O)-equivalent (with I the set of non-secret input variables) for any value of the
secret input variables s0 and s1.

We now give an indistinguishability-based definition of the t-threshold probing model.
In our model, the challenger randomly chooses two secret values s0 and s1 (representing
for instance two different values of the secret key) and a bit b according to which the
leakage will be produced: computation always uses secrets s0, but the leaks given to the
adversary are produced using sb. The adversary A is allowed to query an oracle with
chosen instances of public arguments, along with a set of at most t intermediate variables
(adaptively or non-adaptively chosen); such queries reveal their output and the values of
the intermediate variables requested by the adversary. We say that A wins if he guesses
b.

We now state the central theorem to our approach, heavily inspired by Duc, Dziem-
bowski and Faust [18] and Ishai, Sahai and Wagner [29].

Theorem 1. Let p and p be two programs. If p and p are functionally equivalent and
p is t-non-interfering, then for every adversary A against p in the t-threshold probing
model, there exists an adversary S against p in the black box model, such that

∆(S
bb
� p,A

thr
� p) = 0

where ∆(· ; ·) denotes the statistical distance.

Proof. Since p and p are functionally equivalent, we have ∆(S
bb
� p,S

bb
� p) = 0 and

we just have to prove that ∆(S
bb

� p,A
thr

� p) = 0. The simulator receives as inputs the



public variables that are used for the execution of p, and the output of p, but not the t
intermediate values corresponding to the observation set O. Since p is t-non-interfering,
the observations do not depend on the secret variables that are used for the execution
of p, he can choose arbitrary secret variables, run p with these variables and the public
variables given as inputs, and outputs the observations. ut

The theorem can be lifted to the noisy leakage model using Corollary 1 from [18],
using a small bound on the statistical distance instead.

Following Theorem 1, we propose algorithms to prove functional equivalence and t-
non interference properties of probabilistic programs, thereby reducing the security of
masked implementations in the t-threshold probing model to the black-box security of
the algorithms they implement.

We have evaluated the practicality of our approach by implementing our algorithms
on top of EasyCrypt [7,6], and testing the performance of our implementation on rep-
resentative examples from the literature. Pleasingly, our tools are able to successfully
analyze first-order masked implementations of AES (in a couple of minutes), 2 rounds
of second-order masked implementations of AES at level 2 (in around 22 minutes), and
masked implementations of multiplication, up to order 5 (in 45s). Our experiments allow
us to rediscover several known attacks on flawed implementations, to check that proposed
fixes, when they exist, are indeed secure, and finally to discover new attacks on flawed
implementations [47].

Our Results. The problem of verifying the security of higher-order masked implemen-
tation or finding attacks against such implementation is inherently exponential since it
involves considering every combination of t out of n internal variables. More precisely,
to prove t-non-interference, we show that the joint probability distribution on any t
intermediate variables is independent from the secret inputs. We first review previous
uses of formal methods to prove similar properties (Section 2). In Sections 3 and 4, we
describe algorithms that greatly decrease, in practice, the number of checks that need
to be performed. One idea consists in building sets, whose cardinalities are larger than
t, of variables that are all independent. Consequently, we can take into account many
subsets of size t without having to individually check each of them. Moreover, we propose
a technique for systematically verifying that the masked implementation is functionally
equivalent to a reference unprotected implementation. We implement all our algorithms
and illustrate their efficiency for verifying the security of many schemes or part of AES
masked implementations proposed in the literature in section 6. We recover previous
attacks [16,17] and we discover new attacks on flawed implementations [47] by exhibit-
ing observations sets that are not independent of the secret. Finally, we consider other
leakage models such as the recent transition-based model and we experimentally show
that implementations may be made resistant to a much higher-order than the generic
results suggest.

Limitations of our approach. Our work deliberately focuses on algorithmic methods
that are able to cover large spaces of observation sets very efficiently, and without any
assumption on the program. Although our results demonstrate that such methods can
perform surprisingly well in practice, their inherent limitations with respect to scalability
remain. The common strategy to address scalability issues is to develop compositional
techniques. This is done, for instance, in the context of masking compilers, whose proof of
security proceeds by showing that each gadget is secure, and that gadgets are combined
securely. In this light, our algorithmic methods are primarily focused on proving that
gadgets are secure.



2 Language-based techniques for threshold security in the
probing model

This section provides an overview of language-based techniques that could be used to
verify the assumptions of Theorem 1, and to motivate the need for more efficient tech-
niques. First, we introduce mild variants of two standards problems in programming
languages, namely information flow checking and equivalence checking, which formalize
the assumptions of Theorem 1. Next, we discuss two possible approaches for addressing
these problems; the approaches are inspired from certified compilation and translation
validation, and we motivate the use of the latter. Then, we present three prominent
methods to address these problems: type systems (which are only applicable to informa-
tion flow checking), model counting, and relational logics. Finally, we discuss efficiency
issues and justify the need for efficient techniques.

2.1 Problem statement and setting

The hypotheses of Theorem 1 can be seen as variants of two problems that have been
widely studied in the programming language setting: equivalence checking and informa-
tion flow checking. Equivalence checking is a standard problem in program verification,
although it is generally considered in the setting of deterministic programs—whereas here
we consider probabilistic programs. Information flow checking is a standard problem in
language-based security, although it usually considers flows from secret inputs to public
outputs—whereas here we consider flows from secret inputs to intermediate values.

Both problems can be construed as instances of relational verification problems. For
the clarity of exposition, we formalize this view in the simple case of straightline code
programs. Such programs are sequences of random assignments and deterministic assign-
ments, and have distinguished sets of input and output variables. Given a program p,
we let IVar(p), OVar(p), and PVar(p) denote the sets of input, output, and intermediate
variables of p. Without loss of generality, we assume that programs are in single static
assignment (SSA) form, and in particular, that program variables appear exactly once on
the left hand side of an assignment, called their defining assignment—one can very easily
transform an arbitrary straightline program into an equivalent straightline program in
SSA form. Assuming that programs are in SSA form, we can partition PVar(p) into two
sets DVar(p) and RVar(p) of deterministic and probabilistic variables, where a variable is
probabilistic if it is defined by a probabilistic assignment, and is deterministic otherwise.
Let V denote the set of program values (we ignore typing issues). Each program p can
be interpreted as a function:

JpK : D(Vκ)→ D(V`+`
′
)

where D(T ) denotes the set of discrete distributions over a set T , and κ and ` and `′

respectively denote the sizes of IVar(p) and PVar(p) and OVar(p). The function JpK takes
as input a joint distribution on input variables and returns a joint distributions on all
program variables, and is defined inductively in the expected way. Furthermore, one can
define for every subset O of PVar(p) of size m a function:

JpKO : D(Vκ)→ D(Vm)

that computes for every v ∈ Vκ the marginal distributions of JpK(v) with respect to O.
We can now define the information flow checking problem formally: a program p

is non-interfering with respect to a partial equivalence relation Φ ⊆ D(Vκ) × D(Vκ),
and a set O ⊆ PVar(p), or (Φ,O)-non-interfering, iff JpKO(µ1) = JpKO(µ2) for every
µ1, µ2 ∈ D(Vκ) such that Φ µ1 µ2. In this case, we write NIΦ,O(p). Moreover, let O be a
set of subsets of PVar(p), i.e. O ⊆ P(PVar(p)); we say that p is (Φ,O)-non-interfering, if
it is (Φ,O)-non-interfering for every O ∈ O.

Before relating non-interference with security in the t-threshold probing models, we
briefly comment on the nature of Φ. In the standard, deterministic, setting for non-
interference, variables are generally marked as secret or public—in the general case, they



can be drawn from a lattice of security levels, but this is not required here. Moreover, Φ
denotes low equivalence, where two tuples of values v1 and v2 are low-equivalent if they
coincide on public variables. The notion of low-equivalence has a direct counterpart in the
probabilistic setting: two distributions µ1 and µ2 are low equivalent iff their marginal
distributions with respect to public variables are equal. However, non-interference of
masked implementations is often conditioned by well-formedness conditions on inputs;
for instance, the inputs must consist of uniformly distributed, t-wise independent values.
In this case, Φ is defined in such a way that two distributions are related by Φ iff they
are well-defined and low equivalent.

There is a direct interpretation of t-threshold probing security in terms of a non-
interference property. We say that a program p is (Φ, t)-non-interfering if it is (Φ,O)-
non-interfering for all subsets O of PVar(p) with size smaller than t. Then a program p is
secure in the t-threshold probing model (with respect to a relation Φ) iff it is (Φ, t)-non-
interfering. In order to capture t-threshold probing security in the transition-based model,
we rely on a partial function next that maps program variables to their successors. For
programs that have been translated into SSA form, all program variables are of the form
xi, where x is a variable of the original program, and i is an index—typically a program
line number. The successor of such a variable xi, when it exists, is a variable of the form
xj where j is the smallest index such that i < j and xj is a program variable. Then,
we say that a program p is (Φ, t)-non-interfering in the transition-based model, written
NIΦ,t,succ(p), iff p is (Φ,O∪next(O))-non-interfering for every subset of PVar(p) with size
smaller than t. Then a program p is secure in the transition-based t-threshold probing
model (with respect to a relation Φ) iff it is (Φ, t)-non-interfering in the transition-based
model.

We now turn to program equivalence. For the sake of simplicity, we consider two pro-
grams p1 and p2 that have the same sets of input and output variables; we let W denote
the latter. We let JpKW denote the function that computes for every initial distribution
µ the marginal distribution of JpK(µ) with respect to W. We say that p1 and p2 are
equivalent with respect to a partial equivalence relation Φ ⊆ D(Vκ) × D(Vκ), written
p1 ∼ p2, iff Jp1KW(µ) = Jp2KW(µ) for every distribution µ such that R µ µ.

For the sake of completeness, we point out that both notions are subsumed by the
notion of (Φ,O)-equivalence. Specifically, we say that programs p1 and p2 are (Φ,O)-
equivalent, written p1 ∼OΦ p2, iff Jp1KO(µ1) = Jp2KO(µ2) for every two distributions µ1

and µ2 such that Φ µ1 µ2. Therefore, both equivalence checking and information flow
checking can be implemented using as subroutine any sound algorithm for verifying that
p1 ∼OΦ p2.

2.2 Certified compilation vs certifying compilation

There are two possible approaches to proving the validity of masking countermeasures.
The first approach is inspired from certified compilation [32]. This approach either consid-
ers fixed-level transformations that take as input a program p and return a transformed
program p intended to be secure at some fixed order t, or generic transformations that
take as input a program p and return for all levels t a transformed program pt intended to
be secure at order t. The goal of this approach is to prove formally that for all programs
p, all levels t and all transformed programs pt, the programs p and pt are observation-
ally equivalent and moreover the program pt is t-non-interfering. In order to make the
proof “formal”, certified compilation advocates using general purpose verification tools
known as proof assistants; typically, the transformation is programmed, and proved cor-
rect, within the proof assistant—because correctness is expressed in terms of program
semantics, it also entails that the semantics of programs is also modelled in the proof
assistant. On the positive side, the proof is done once and for all, for all programs p
and all levels t; moreover, the proof is compositional, in the sense that it follows the
construction of pt from p. On the negative side, the proof must be repeated for each
transformation, and does not give guarantees about programs that are not obtained by
applying the transformation.



The second approach is inspired from translation validation [41], also known as certi-
fying compilation [36]. In this approach, one is given an original program p, a transformed
program p and a target level t. The goal is to check automatically that p and p are equiv-
alent and that p is non-interfering; in order to achieve efficient verification, translation
validation provisions the possibility to provide additional inputs, called witnesses, that
help to verify the desired property; typical examples of witnesses include type annotations
or loop invariants. Compared to approaches based on certified compilation, approaches
based on translation validation do not deliver generic guarantees that are typically es-
tablished in theoretical papers on masking. On the other hand, these methods are very
flexible, easier to put into practice, and do not make any assumption on the way that
p is generated. Therefore, we opt to follow an approach based on translation validation.
However, several technical ingredients of our approach provide an excellent basis for de-
veloping an approach inspired from certified compilation—provided, of course, that they
would be formalized in a proof assistant.

2.3 Type-based approaches

Information flow type systems are a class of type systems that enforce non-interference
by tracking dependencies between program variables and rejecting programs containing
illicit flows. There are multiple notions of non-interference (for instance, termination-
sensitive, termination-insensitive, or bisimulation-based) and forms of information flow
type systems (for instance, flow-sensitive, or flow-insensitive); we refer the reader to [46]
for a survey. For the purpose of this paper, it is sufficient to know that information flow
type systems for deterministic programs assign to all program variables a level drawn
from a lattice of security levels which includes a level of public variables and secret
variables. In the same vein, one can develop information flow type systems to enforce
probabilistic non-interference; broadly speaking, such type systems distinguish between
public values, secret values, and uniformly distributed values. Following these ideas,
Moss et al. [35] pioneered the application of information flow type system to masking.
They use the type system as a central part in a masking compiler that transforms an
input program into a functionally equivalent program that is resistant to first-order DPA.
Their technique can readily be extended to prove non-interference with respect to a single
observation set.

Because they are implemented with well-understood tools (such as data flow anal-
yses) and are able to handle large programs extremely fast, information type systems
provide an appealing solution that one would like to use for higher-order DPA. However,
the semantic information carried by types is inherently attached to individual values,
rather than tuples of values, and there is no immediately obvious way to devise an in-
formation flow type system even for second-order DPA. Notwithstanding, it is relatively
easy to devise a sound method for verifying resistance to higher-order DPA using an
information flow type system in the style of [35]. The basic idea is to instrument the
code of the original program with assignments w := x1 ‖ . . . ‖ xt, where w is a fresh pro-
gram variable, x1 . . . xt are variables of the original program, and t is the order for which
resistance is sought; we let p′ denote the instrumented program. Clearly, a program p is
secure at order t iff for every initial values v1 and v2, Jp′K{w}(v1) = Jp′K{w}(v2) where w
ranges over the set of fresh variables that have been introduced by the transformation.
It is then possible to use an information flow type system in the spirit of [35] to verify
that c′ satisfies non-interference with respect to output set {w}. However, this transfor-
mational approach suffers from two shortcomings: first, a more elaborate type system is
required for handling concatenation with sufficient accuracy; second, and more critically,
the transformation induces an exponential blow-up in the size of programs.

2.4 Model counting

Model counting [28] is a generalization of the satisfiability problem, that aims to compute
the number of valid assignments for a logical formula in a first-order theory. It is well-
known that model counting can be used to prove equivalence of randomized algorithms



that sample values uniformly from finite sets; this is formalized for instance in [7]. Build-
ing on this observation, Eldib, Wang and Schaumont [21] propose a SMT-based approach
to verify that implementations are secure in the t-threshold probing model. Later, Eldib
and Wang [20] elaborate on this approach and develop an algorithm for automatically
synthesizing masked implementations. Unfortunately, their approach is based on a naive
encoding of model counting and hence it can only be applied to lower masking orders,
i.e. t = 1 or t = 2. An independent work by Fredrikson and Jha [24] develop a more
efficient approach to model counting based on Barvinok’s algorithm [9] and apply their
approach to differential privacy.

2.5 Relational verification

A more elaborate approach is to use program verification for proving non-interference and
equivalence of programs. Because these properties are inherently relational, i.e. either
consider two programs or two executions of the same program, the natural verification
framework to establish such properties is relational program logic. Motivated by appli-
cations to cryptography, Barthe, Grégoire and Zanella-Béguelin [8] introduce pRHL, a
probabilistic Relational Hoare Logic that is specifically tailored for the class of probabilis-
tic programs considered in this paper. Using pRHL, (φ,O)-non-interference a program
p is captured by the pRHL judgment:

{φ}p ∼ p{
∧
y∈O

y〈1〉 = y〈2〉}

which informally states that the values of the variables y ∈ O coincide on any two
executions (which is captured by the logical formula y〈1〉 = y〈2〉) that start from initial
memories related by Φ.

Barthe et al. [7] propose an automated method to verify the validity of such judg-
ments. For the clarity of exposition, we consider the case where p is a straightline code
program. The approach proceeds in three steps:

1. transform the program p into a semantically equivalent program which performs a
sequence of random assignments, and then a sequence of deterministic assignments.
The program transformation repeatedly applies eager sampling to pull all the prob-
abilistic assignments upfront. At this stage, the judgement is of the form

{φ}S;D ∼ S;D{
∧
y∈O

y〈1〉 = y〈2〉}

where S is a sequence of probabilistic assignments, and D is a sequence of determin-
istic assignments;

2. apply a relational weakest precondition calculus to the deterministic sequence of
assignments; at this point, the judgment is of the form

{φ}S ∼ S{
∧
y∈O

ey〈1〉 = ey〈2〉}

where ey is an expression that depends on the variables sampled in S, and on the
program inputs;

3. repeatedly apply the rule for random sampling to generate a verification condition
that can be discharged by SMT solvers. Informally, the rule for random sampling
requires finding an automorphism on the domains of the distribution from which
values are drawn, and proving that a formula derive from the post-condition is valid.
We refer to [8] and [7] for a detailed explanation of the rule for random sampling.
For our purposes, it is sufficient to consider a specialized logic for reasoning about
the validity of judgments of the form above. We describe such a logic in Section 3.1.



It is important to note that there is a mismatch between the definition of (Φ, t)-non-
interference used to model security in the t-threshold probing model, and the notion of
(φ,O)-non-interference modelled by pRHL. In the former, Φ is a relation over distribu-
tions of memories, whereas in the latter φ is a relation over memories. There are two
possible approaches to address this problem: the first is to develop a variant of pRHL
that supports a richer language of assertions; while possible, the resulting logic might not
be amenable to automation. A more pragmatic solution, which we adopt in our tool, is
to transform the program p into a program i; p, where i is some initialization step, such
that p is (Φ,O) non-interfering iff i; p is (φ,O) non-interfering for some pre-condition φ
derived from Φ.

In particular, i includes code marked as non-observable that preshares any input or
state marked as secret, and fully observable code that simply shares public inputs. The
code for sharing and presharing, as well as an example of this transformation are given
in Appendix A.

2.6 Discussion

Both approaches based on type systems and relational verification can be used to check
non-interference with respect to a single set of observations. However, these approaches
are not practical for checking security in the t-threshold probing model, because the set
of observation sets consists of all the possible subsets of program variables with size less
than t, and hence grows exponentially in the size of the implementation, and hence in
the order t for which we want to prove security. Therefore, more efficient methods need
to be developed. One main technical contribution of this paper, detailed in Section 4
is a set of algorithms for verifying that programs are secure in the t-threshold probing
model. The algorithms implement divide-and-conquer strategies and dependency anal-
yses to minimize the set of observations for which information flow checking needs to
be performed. In particular, the algorithms first try to find maximal sets O1, . . . ,On
such that p1 ∼OI p2, and then check whether all sets of size less than t are covered by
O1, . . . ,On. While this second step is an instance of the Hitting Set problem [26], which is
known to be NP-hard, our algorithms perform reasonably well in practice, as illustrated
in Section 6.

2.7 Related work

We conclude this section with a brief mention of two existing methods for security of
masked and multi-party implementations.

Bayrak, Regazzoni, Novo and Ienne [10] develop a SMT-based method for analyzing
the sensitivity of sequences of operations. Informally, the notion of sensitivity charac-
terizes whether a variable used to store an intermediate computation in the sequence of
operations depends on a secret and is statistically independent from random variables.
Their approach is specialized to first-order masking, and suffers from some scalability
issue—in particular, they report analysis of a single round of AES.

Pettai and Laud [40] prove non-interference with respect to several sets of obser-
vations imposed by their adversary model in the context of multi-party computation
(MPC). They do so by propagating information regarding linear dependencies on ran-
dom variables throughout their arithmetic circuits and, using this dependency informa-
tion, progressively replacing subcircuits with random gates. They do not encounter the
same scalability issues we deal with, since they only have to prove non-interference with
respect to three different sets of observations (corresponding to the corruption of each
party) instead of a combinatorial number. However, they perform their non-interference
proofs in the presence of an active adversary that may send invalid data to incoming com-
munication nodes. Their techniques to deal with active adversaries in the MPC model
could be adapted in our setting to consider adversaries that may inject limited faults in
addition to probing intermediate variables or transitions.



3 A logic for probabilistic non-interference

In this section, we propose new verification-based techniques to prove probabilistic non-
interference statements. We first introduce a specialized logic to prove a vector of prob-
abilistic expressions independent from some secret variables. We then explain how this
logic specializes the general approach described in Section in Section 2.5 to a partic-
ularly interesting case. Finally, we describe simple algorithms that soundly construct
derivations in our logic.

3.1 Our Logic

Our logic shares many similarities with the equational logic developed in [5] to reason
about equality of distributions. In particular, it considers equational theories over multi-
sorted signatures.

A multi-sorted signature is defined by a set of types and a set of operators. Each
operator has a signature σ1× . . .× σn → τ , which determines the type of its arguments,
and the type of the result. We assume that some operators are declared as invertible
with respect to one or several of their arguments; informally, a k-ary operator f is
invertible with respect to its i-th argument, or i-invertible for short, if, for any (xj)i 6=j
the function f(x0, . . . , xi−1, ·, xi+1, . . . , xk) is a bijection. If f is i-invertible, we say that
its i-th argument is an invertible argument of f .

Expressions are built inductively from two sets R and X of probabilistic and de-
terministic variables respectively, and from operators. Expressions are (strongly) typed.
The set of deterministic (resp. probabilistic) variables of a vector of expressions e is de-
noted as dvar(e) (resp. rvar(e)). We say that an expression e is invertible in x whenever
e = f1(. . . , e1i1−1, f2(. . . fn(. . . , enin−1, x, . . .) . . .), . . .), ∀i j, x /∈ rvar(eji ), and each fj is
ij-invertible.

We equip expressions with an equational theory E . An equational theory is a set of
equations, where an equation is a pair of expressions of the same type. Two expressions e
and e′ are provably equal with respect to an equational theory E , written e

.
=E e

′, if the
equation e

.
=E e

′ can be derived from the standard rules of multi-sorted equational logic:
reflexivity, symmetry, transitivity, congruence, and instantiation of axioms in E . Such
axioms can be used, for example, to equip types with particular algebraic structures.

Expressions have a probabilistic semantics. A valuation ρ is a function that maps
deterministic variables to values in the interpretation of their respective types. The in-
terpretation JeKρ of an expression is a discrete distribution over the type of e; informally,
JeKρ samples all random variables in e, and returns the usual interpretation of e under an
extended valuation ρ, ρ′ where ρ′ maps each probabilistic variable to a value of its type.
The definition of interpretation is extended to tuples of expressions in the obvious way.
Note that, contrary to the deterministic setting, the distribution J(e1, . . . , ek)Kρ differs
from the product distribution Je1Kρ× . . .× JekKρ. We assume that the equational theory
is consistent with respect to the interpretation of expressions.

Judgments in our logic are of the form (xL,xH) ` e, where e is a set of expressions
and (xL,xH) partitions the deterministic variables of e into public and private inputs,
i.e. dvar(e) ⊆ xL]xH . A judgment (xL,xH) ` e is valid iff the identity of distributions
JeKρ1 = JeKρ2 holds for all valuations ρ1 and ρ2 such that ρ1(x) = ρ2(x) for all x ∈ xL.

The proof system for deriving valid judgments is given in Figure 1. The rule (Indep)
states that a judgment is valid whenever all the deterministic variables in expressions are
public. The rule (Conv) states that one can replace expressions by other expressions that
are provably equivalent with respect to the equational theory E . The rule (Opt) states
that, whenever the only occurrences of a random variable r in e is as the i-th argument of
some fixed application of an i-invertible operator f where f ’s other arguments are some
(ej)i6=j , then it is sufficient to derive the validity of the judgment where r is substituted
for f(e0, . . . , ei−1, r, ei+1, . . . , ek) in e. The soundness of rule (Opt) becomes clear by
remarking that Jf(e0, . . . , ei−1, r, ei+1, . . . , ek)K = JrK, since f is i-invertible. Although
the proof system can be extended with further rules (see, for example [5]), these three
rules are in fact sufficient for our purposes.



dvar(e) ∩ xH = ∅
(xL,xH) ` e

(Indep)
(xL,xH) ` e′ e

.
=E e′

(xL,xH) ` e
(Conv)

(xL,xH) ` e f is i-invertible r ∈ R r /∈ rvar(e0, . . . , ei−1, ei+1, . . . , ek)

(xL,xH) ` e[f(e0, . . . , ei−1, r, ei+1, . . . , ek)/r]
(Opt)

Fig. 1. Proof system for non-interference

3.2 From logical derivations to relational judgments

In Section 2.5, we have shown that the problem of proving that a program is (⊕,O)-
non-interfering could be reduced to proving relational judgements of the form {φ}S ∼
S{

∧
y∈O ey〈1〉 = ey〈2〉} where S is a sequence of random samplings, ey is an expression

that depends on the variables sampled in S and on the program inputs, and φ is a
precondition derived from Φ after the initial sharing and presharing code is inserted, and
exactly captures low-equivalence on the program’s inputs. We now show that proving
such judgments can in fact be reduced to constructing a derivation in the logic from
Section 3.1. Indeed, since both sides of the equalities in the postcondition are equal, it is in
fact sufficient to prove that the (ey)y∈O are independent from secret inputs: since public
inputs are known to be equal and both programs are identical, the postcondition then
becomes trivially true. In particular, to prove the judgment {

∧
x∈xL

x〈1〉 = x〈2〉}S ∼
S{

∧
y∈O ey〈1〉 = ey〈2〉}, it is in fact sufficient to find a derivation of (xL,xH) ` (ey)y∈O,

where xH is the complement of xL in the set of all program inputs. An example detailing
this reasoning step is discussed in Appendix A.

3.3 Our Algorithms

We now describe two algorithms that soundly derive judgments in the logic. Throughout
this paper, we make use of unspecified choose algorithms that, given a set X, return an
x ∈ X or ⊥ if X = ∅. We discuss our chosen instantiations where valuable.

Our simplest algorithm (Algorithm 1) works using only rules (Indep) and (Opt) of
the logic. Until (Indep) applies, Algorithm 1 tries to apply (Opt), i.e. it tries to find
(e′, e, r) such that r ∈ R and e is invertible in r and e = e′[e/r]; if it succeeds then it
performs a recursive call on e′ else it fails. Remark that the conditions are sufficient to
derive the validity of e from the validity of e′ using successive applications of the (Opt)
rule.

The result of the function (h) can be understood as a compact representation of the
logical derivation. Such compact representations of derivations become especially useful
in Section 4, where we efficiently extend sets of observed expressions, but can also be
used, independently of performance, to construct formal proof trees if desired.

Algorithm 1 Proving Probabilistic Non-Interference: A Simple Algorithm

1: function NIR,xH (e) . the joint distribution of e is independent from xH

2: if ∀x ∈ dvar(e). x /∈ xH then
3: return Indep
4: (e′, e, r)← choose({(e′, e, r) | e is invertible in r ∧ r ∈ R ∧ e = e′[e/r]})
5: if (e′, e, r) 6= ⊥ then
6: return Opt(e, r) : NIR,xH (e′)

7: return ⊥

This algorithm is sound, since it returns a derivation h constructed after checking
each rule’s side-conditions. However, it is is incomplete and may fail to construct valid
derivations. In particular, it does not make use of the (Conv) rule.



Our second algorithm (Algorithm 2) is a slight improvement on Algorithm 2 that
makes restricted use of the (Conv) rule: when we cannot find a suitable (e′, e, r), we
normalize algebraic expressions as described in [1], simplifying expressions and perhaps
revealing potential applications of the (Opt) rule. We use only algebraic normalization to
avoid the need for user-provided hints, and even then, only use this restricted version of
the (Conv) rule as a last resort for two reasons: first, ring normalization may prevent the
use of some (e′, e, r) triples in later recursive calls (for example, the expression (a+r) ·r′
gets normalized as a · r′ + r · r′, which prevents the substitution of a+ r by r); second,
the normalization can be costly.

Algorithm 2 Proving Probabilistic Non-Interference: A More Precise Algorithm

1: function NIR,xH (e, b) . the joint distribution of e is independent from xH

2: if ∀x ∈ dvar(e). x /∈ xH then
3: return Indep
4: (e′, e, r)← choose({(e′, e, r) | e is invertible in r ∧ r ∈ R ∧ e = e′[e/r]})
5: if (e′, e, r) 6= ⊥ then
6: return Opt(e, r) : NIR,xH (e′, b)
7: else if b then
8: e← ring simplify(e)
9: return Conv : NIR,xH (e, false)

10: return ⊥

In practice, we have found only one example where Algorithm 1 yields false negatives,
and we have not found any where Algorithm 2 fails to prove the security of a secure
implementation. In the following, we use NIR,xH (X) the function from Algorithm 2 with
b initially true. In particular, the implementation described and evaluated in Section 6
relies on this algorithm.5

Discussion. We observe that Algorithm 2 can only be refined in this way because it
works directly on program expressions. In particular, any abstraction, be it type-based
or otherwise, could prevent the equational theory from being used to simplify observed
expressions. We believe that further refinements are theoretically possible (in particular,
we could also consider a complete proof system for the logic in Section 3.1), although
they may be too costly to make use of in practice.

4 Divide-and-conquer algorithms based on large sets

Even with efficient algorithms to prove that a program p is (R,O)-non-interfering for
some observation set O, proving that p is t-non-interfering remains a complex task:
indeed this involves proving NIR,O(p) for all O ∈ P≤t (PVar(p)). Simply enumerating all
possible observation sets quickly becomes untractable as p and t grow. Our main idea to
solve this problem is based on the following fact: if NIR,O(p) then forall subset O′ of O
we have NIR,O(p). So checking that forall i, NIR,Oi(p) can done in one step by checking
NIR,∪iOi

(p).
The idea is to try to find fewer, larger observation sets O1, . . . ,Ok such that NIR,Ok

(p)
for all k and, for all O ∈ P≤t (PVar(p)), O is a subset of at least one of the Oi. Since
this last condition is the contraposite of the Hitting Set problem, which is known to be
NP-hard, we do not expect to find a generally efficient solution, and focus on proposing
algorithms that prove efficient in practice.

5 Some of the longer-running experiments reported in Section 6 do make use of Algorithm 1
since their running time makes it impractical to run them repeatedly after algorithmic
changes. However, Algorithm 2 only makes a difference when false positives occur, which
is not the case on our long-running tests.



We describe and implement several algorithms based on the observation that the
sequences of derivations constructed to prove the independence judgments in Section 2
allow us to efficiently extend the observation sets with additional observations whose
joint distributions with the existing ones is still independent from the secrets. We first
present algorithms that perform such extensions, and others that make use of observation
sets extended in this way to find a family O1, . . . ,Ok of observation sets that fulfill the
condition above with k as small as possible.

4.1 Extending Safe Observation Sets

The NIR,xH algorithm from Section 2 (Algorithm 2) allows us to identify sets X of
expressions whose joint distribution is independent from variables in xH . We now want
to extend such an X into a set X ′ that may contain more observable expressions and
such that the joint distribution of X ′ is still independent from variables in xH . In both
of the algorithms presented below, we use the sequence of optimistic sampling operations
that serves as witness to the independence of X to extend the observation set.

First we define Algorithm 3, which rechecks that a derivation applies to a given set of
expressions using the compact representation of derivations returned by algorithms 1 and
2: The algorithm simply checks that the consecutive rules encoded by h can be applied

Algorithm 3 Rechecking a derivation

function recheckR,xH (e,h) . Check that the derivation represented by h can be applied to
e

if h = Indep then
return ∀x ∈ dvar(e). x /∈ xH

if h = Opt(e, r) : h′ then
(e′)← choose({e′ | e = e′[e/r]})
if e′ 6= bot then

return recheckR,xH (e′,h′)

if h = Conv : h′ then
e← ring simplify(e)
return recheckR,xH (e,h′)

on e. A key observation is that if NIR,xH (e) = h then recheckR,xH (e,h). Futhermore,
if recheckR,xH (e,h) and recheckR,xH (e′,h) then recheckR,xH (e ∪ e′,h).

Secondly, we consider (as Algorithm 4) an extension operation that only adds expres-
sions on which h can safely be applied as it is.

Algorithm 4 Extending the Observation using a Fixed Derivation

function extendR,xH (x, e,h) . find an x ⊆ x′ ⊆ e such that h(x′) is syntactically
independent from xH

e← choose(e)
if recheckR,xH (e,h) then

return extendR,xH ((x, e), e \ {e},h)
else

return extendR,xH (x, e \ {e},h)

We also considered an algorithm that extends a set x with elements in e following h
whilst also extending the derivation itself when needed. However, this algorithm induces
a loss of performance due to the low proportion of program variables that can in fact be
used to extend the observation set, spending a lot of effort on attempting to extend the
derivation when it was not in fact possible. Coming up with a good choose algorithm



that prioritizes variables that are likely to be successfully added to the observation set,
and with conservative and efficient tests to avoid attempting to extend the derivation
for variables that are clearly not independent from the secrets are interesting challenges
that would refine this algorithm, and thus improve the performance of the space splitting
algorithms we discuss next.

In the following, we use extendR,xH (x, e,h) to denote the function from Algorithm 4,
which is used to obtain all experimental results reported in Section 6.

4.2 Splitting the Space of Adversary Observations

Equipped with an efficient observation set extension algorithm, we can now attempt
to accelerate the coverage of all possible sets of adversary observations to prove t-non-
interference. The general idea of these coverage algorithms is to choose a set X of t
observations and prove that the program is non-interfering with respect to X, then use
the resulting derivation witness to efficiently extend X into a X̂ that contains (hope-

fully many) more variables. This X̂, with respect to which the program is known to be
non-interfering, can then be used to split the search space recursively. In this paper, we
consider two splitting strategies to accelerate the enumeration: the first (Algorithm 5)

simply splits the observation space into X̂ and its complement before covering observa-
tions that straddle the two sets. The second (Algorithm 6) splits the space many-ways,
considering all possible combinations of the sub-spaces when merging the results of re-
cursive calls.

Pairwise Space-Splitting. Our first algorithm (Algorithm 5) uses its initial t-uple X
to split the space into two disjoint sets of observations, recursively descending into the
one that does not supersede X and calling itself recursively to merge the two sets once
they are processed separately.

Algorithm 5 Pairwise Space-Splitting

1: function checkR,xH (x, d, e) . every x,y with y ∈ P≤d (e) is independent of xH

2: if d ≤ |E| then
3: y ← choose(P≤d (e))
4: hx,y ← NIR,xH ((x,y)) . if NIR,xH fails, raise error CannotProve (x,y)
5: ŷ ← extendR,xH (y, e \ y,hx,y) . if hx,y = >, use ŷ = y
6: checkR,xH (x, d, e \ ŷ)
7: for 0 < i < d do
8: for u ∈ P≤i (ŷ) do
9: checkR,xH ((x,u), d− i, e \ ŷ)

Theorem 2 (Soundness of Pairwise Space-Splitting). Given a set R of random
variables, a set xH of secret variables, a set of expressions e and an integer 0 < t, if
checkR,xH (∅, t, e) succeeds then every x ∈ P≤t (e) is independent from xH .

Proof. The proof is by generalizing on x and d and by strong induction on e. If |e| < d,
the theorem is vacuously true, and this base case is eventually reached since ŷ contains
at least d elements. Otherwise, by induction hypothesis, the algorithm is sound for every
e′ ( e. After line 5, we know that all t-tuples of variables in ŷ are independent, jointly
with x, from the secrets. By the induction hypothesis, after line 6, we know that all
t-tuples of variables in e \ ŷ are independent, jointly with x, from the secrets. It remains
to prove the property for t-tuples that have some elements in ŷ and some elements in
e \ ŷ. The nested for loops at lines 7-9 guarantee it using the induction hypothesis. ut



Worklist-Based Space-Splitting. Our second algorithm (Algorithm 6) splits the
space much more finely given an extended safe observation set. The algorithm works
with a worklist of pairs (d, e) (initially called with a single element (t,P≤t (PVar(p)))).
Unless otherwise specified, we lift algorithms seen so far to work with vectors or sets of
arguments in the traditional way. Note in particular, that the for loop at line 7 iterates
over all vectors of n integers such that each element ij is strictly between 0 and dj .

Algorithm 6 Worklist-Based Space-Splitting

1: function checkR,xH ((dj , ej)0≤j<n) . every x =
⋃

0≤j<n xj with xj ∈ P≤dj (ej) is
independent from xH

2: if ∀j, dj ≤ |ej | then
3: yj ← choose(P≤dj (ej))
4: h← NIR,xH (

⋃
0≤j<n yj) . if NIR,xH fails, raise error CannotProve (

⋃
yj)

5: ŷj ← extendR,xH (yj , ej \ yj ,h)
6: checkR,xH ((dj , ej \ ŷj)0≤j<n)
7: for j; 0 < ij < dj do
8: checkR,xH (ij , (ŷj , dj − ij , ej \ ŷj))

Theorem 3 (Soundness of Worklist-Based Space-Splitting). Given a set R of
random variables, a set xH of secret variables, a set of expressions e and an integer
0 < t, if checkR,xH ((t, e)) succeeds then every x ∈ P≤t (e) is independent from xH .

Proof. As in the proof of Theorem 2, we start by generalizing, and we prove that, for
all vector (dj , ej) with 0 < dj for all j, if checkR,xH ((dj , ej)) succeeds, then every
x =

⋃
0≤j<n xj with xj ∈ P≤dj (ej) is independent from xH . The proof is again by

strong induction on the vectors, using an element-wise lexicographic order (using size
order on the e) and lifting it to multisets as a bag order. If there exists an index i for
which |ei| < di, the theorem is vacuously true. Otherwise, we unroll the algorithm in
a manner similar to that in Theorem 2. After line 5, we know that, for every j, every
x ∈ P≤dj (ŷj) is independent from xH . After line 6, by induction hypothesis (for all j,
#ej \ ŷj < #ej since ŷj is of size at least dj), we know that this is also the case for
every x ∈ P≤dj (ŷj). Remains to prove that every subset of ej of size dj that has some
elements in ŷj and some elements outside of it is also independent from xH . This is dealt
with by the for loop on lines 7-8, which covers all possible combinations to recombine yj
and its complement, in parallel for all j. ut

Comparison. Both algorithms lead to significant improvements in the verification time
compared to the naive method which enumerates all t-tuples of observations for a given
implementation. Further, our divide-and-conquer strategies make feasible the verification
of some masked programs on which enumeration is simply unfeasible. To illustrate both
these improvements and the differences between our algorithms, we apply the three
methods to the S-box of [17] (Algorithm 4) protected at various orders. Table 1 shows
the results, where column # tuples contains the total number of t-tuples of program
points, column # sets contains the number of sets used by the splitting algorithms and
the time column shows the verification times when run on a headless VM with a dual
core6 64 bits processor clocked at 2GHz.

As can be seen, the worklist-based method is generally the most efficient one. In the
following, and in particular in Section 6, we use the check function from Algorithm 6.

Discussion. Note that in both Algorithms 5 and 6, the worst execution time occurs
when the call to extend does not in fact increase the size of the observation set under

6 Only one core is used in the computation.



Table 1. Comparison of Algorithms 5 and 6 with naive enumeration and with each other.

Method # tuples Result
Complexity

# sets time

First Order Masking

naive 63 secure X 63 0.001s
pair 63 secure X 17 0.001s
list 63 secure X 17 0.001s

Second Order Masking

naive 12,561 secure X 12,561 0.180s
pair 12,561 secure X 851 0.046s
list 12,561 secure X 619 0.029s

Third Order Masking

naive 4,499,950 secure X 4,499,950 140.642s
pair 4,499,950 secure X 68,492 9.923s
list 4,499,950 secure X 33,075 3.894s

Fourth Order Masking

naive 2,277,036,685 secure X - unpractical
pair 2,277,036,685 secure X 8,852,144 2959.770s
list 2,277,036,685 secure X 3,343,587 879.235s

study. In the unlikely event where this occurs in all recursive calls, both algorithms
degrade into an exhaustive enumeration of all t-tuples.

However, this observation makes it clear that it is important for the extend function to
extend observation sets as much as possible. It could be interesting, and would definitely
be valuable, to find a good balance between the complexity and precision of the extend
function.

5 Proving Functional Correctness

In Sections 2 and 4, we discussed how relational program verifications techniques can
be used in practice to prove that a program is t-non-interfering. It remains for us to
show how the same program verification techniques can be applied to prove the func-
tional equivalence of masked programs with their unprotected version (seen as reference
implementations).

Unlike t-non-interference, functional correctness is a compositional property: correct-
ness of say, a masked multiplication algorithm can be used as is to prove the correctness
of a masked S-Box computation. Although the general problem of taking a masked imple-
mentation and automatically proving it correct with respect to a functional specification
remains hard, it is in fact easy to prove small7 masked components correct using only
EasyCrypt’s normalization tactic for algebraic expressions.

Essentially, the non-relational version of the techniques discussed in Section 2.5 can be
used to turn a functional correctness objective of the form {args = x} p {res = f(x)} for
all x, where f is a functional specification for program p, into {args = x}S {eres = f(x)}
for all x, where S is a sequence of random samplings and eres an expression describing
the output of program p as a function of its input and the random variables sampled
in S. Since we are proving functional correctness, the postcondition needs to hold for
all possible values of the random variables, and we simply replace S with a universal
quantification on all the variables (say rS it samples, yielding the following verification
condition.

∀x rS , eres = f(x)

We then rely on the equational theory E to discharge this goal. An example is described
in Appendix B.

7 Around the size of Coron’s secure algorithm for computing functions of the form x 7→ x �
g(x) with g a linear function [15]. The masking order only has very little influence on this
algorithm’s complexity.



Once the correctness theorems of such small components are obtained in this way,
they can be composed into larger masked functions, whose correctness can be proved
compositionally in EasyCrypt’s interactive proof engine, with very little program verifica-
tion expertise. Indeed, in the absence of global state, functional correctness theorems for
the underlying procedures can be used to simply replace all calls to the procedure with
its functional specification in turn, eventually obtaining a functional correctness theorem
for the complex operation.

Note that even these more complex proofs can be performed systematically once
individual operations are put in correspondence with a basic operation. As such, a com-
piler such as those suggested by Ishai, Sahai and Wagner [29] or Duc, Dziembowski and
Faust [18], or a code generator for specialized masked implementations could be very eas-
ily adapted to produce such proofs along with the masked program, providing an easy
way to validate the transformations they perform from a functional correctness point of
view, without having to certify them.

6 Experiments

In this section, we aim to show on concrete examples the efficiency of the methods we
considered so far. This evaluation is performed using a prototype implementation of
our algorithms that uses the EasyCrypt tool’s internal representations of programs and
expressions, and relying on some of its low-level tactics. As such, the prototype is not
designed for performance, but rather for trust, and the time measurements given below
could certainly be improved. However, the numbers of sets each algorithm considers are
fixed by our choice of algorithm, and by the particular choose algorithms we decided to
use. We discuss this particular implementation decision at the end of this Section.

Our choice of examples mainly focuses on higher-order masking schemes since they
are much more promising than the schemes dedicated to particular orders. Aside from
the masking order itself, the most salient limiting factor for performance is the size of the
program considered, which is also (more or less) the number of observations that need
to be considered. Still, we analyze programs of sizes ranging from simple multiplication
algorithms to eitheir round-reduced or full AES, depending on the masking order.

We discuss our practical results depending on the leakage model considered: we first
discuss our prototype’s performance in the value-based leakage model, then focus on
results obtained in the transition-based leakage model.

6.1 Value-based Model

Table 2 lists the performance of our prototype on multiple examples, presenting the total
number of sets of observations to be considered (giving an indication of each problem’s
relative difficulty), as well as the number of sets used to cover all t-tuples of observations
by our prototype. We also list the verification time, although these could certainly be
improved independently of the algorithms themselves. Each of our tests is identified by
a reference and a function, with additional information where relevant.

The two colored rows correspond to examples on which the tool fails to prove t-non-
interference.

On Schramm and Paar’s table-based implementation of the AES Sbox, supposed to
be secure at order 4, our tool finds 98176 third order observations that it cannot prove
independent from the secrets. The time expressed is the time needed to cover all triples,
the first error is found in 0.221s. These in fact correspond to four families of “bad”
observations, which we now describe. Denoting by X =

⊕
06i64 xi the S-box input and

by Y =
⊕

06i64 yi its output, we can write the four sets of flawed triples as follows:

1. (x0,Sbox(X ⊕ x0 ⊕ i)⊕ (Y ⊕ y0),Sbox(X ⊕ x0 ⊕ j)⊕ (Y ⊕ y0)) ,
∀i, j ∈ GF(28), i 6= j

2. (y0,Sbox(X ⊕ x0 ⊕ i)⊕ (Y ⊕ y0),Sbox(X ⊕ x0 ⊕ j)⊕ (Y ⊕ y0)) ,
∀i, j ∈ GF(28), i 6= j



Table 2. Verification of state-of-the-art higher-order masking schemes with # tuples the number
t-uples of the algorithm at order t, # sets the number of sets built by our prototype and time
the verification time in seconds

Reference Target # tuples Result
Complexity

# sets time (s)

First Order Masking

CHES10 [45] multiplication 13 secure X 7 ε
FSE13 [17] Sbox (4) 63 secure X 17 ε
FSE13 [17] full AES (4) 17,206 secure X 3,342 128

Second Order Masking

RSA06 [47] Sbox 1,188,111 secure X 4,104 1.649
CHES10 [45] multiplication 435 secure X 92 0.001

1st-order flaws
CHES10 [45] Sbox 7,140

(2)
866 0.045

CHES10 [45] key schedule [17] 23,041,866 secure X 771,263 340,745
FSE13 [17] AES 2 rounds (4) 25,429,146 secure X 511,865 1,295
FSE13 [17] AES 4 rounds (4) 109,571,806 secure X 2,317,593 40,169

Third Order Masking

CHES10 [45] multiplication 24,804 secure X 1,410 0.033
FSE13 [17] Sbox(4) 4,499,950 secure X 33,075 3.894
FSE13 [17] Sbox(5) 4,499,950 secure X 39,613 5.036

Fourth Order Masking

3rd-order flaws
RSA06 [47] Sbox 4,874,429,560

(98, 176)
35,895,437 22,119

CHES10 [45] multiplication 2,024,785 secure X 33,322 1.138
FSE13 [17] Sbox (4) 2, 277, 036, 685 secure X 3,343,587 879

Fifth Order Masking

CHES10 [45] multiplication 216,071,394 secure X 856,147 45

3. (x0,Sbox(X ⊕ x0 ⊕ i)⊕ (Y ⊕ y0 ⊕ y4),Sbox(X ⊕ x0 ⊕ j)⊕ (Y ⊕ y0 ⊕ y4)) ,
∀i, j ∈ GF(28), i 6= j

4. (x0, y0,Sbox(X ⊕ x0 ⊕ i)⊕ (Y ⊕ y0)) , ∀i ∈ GF(28).

We recall that y0 is read as y0 = Sbox(x0), and prove that all four families of observations
in fact correspond to attacks.

1. The first family corresponds to the attack detailed by Coron, Prouff and Ri-
vain [16]). By summing the second and third variables, the attacker obtains Sbox(X ⊕
x0⊕i)⊕Sbox(X⊕x0⊕j). The additional knowledge of x0 clearly breaks the independence
from X.

2. To recover secrets from an observation of the second kind, the attacked can sum
the second and third variables to obtain X ⊕ x0, from which it can learn Y ⊕ y0 (by
combining it with the second variable). Since the adversary also knows y0, this concludes
the attacks.

3. The third family is a variant of the first: the S-box masks can be removed in both
cases.

4. Finally, when observing three variables in the fourth family of observations, the
knowlege of both x0 and y0 unmask the third observed variable, making it dependent on
X.

Our tool also finds two suspicious adversary observations on the S-box algorithm
proposed by Rivain and Prouff [45], that in fact correspond to the two flaws revealed
in [17]. However, by the soundness of our algorithm, and since our implementation only
reports these two flaws, we now know that these are the only two observations that
reveal any information on the secrets. We consider several corrected versions of this S-
box algorithm, listed in Table 3. Some of these fixes focused on using a more secure
mask refreshing function (borrowed from [18]) or refreshing all modified variables that
are reused later on (as suggested by [42]. Others focused on making use of specialized



versions of the multiplication algorithm [17] that allow the masked program to retain its
performance whilst gaining in security.

Table 3. Fixing RP-CHES10 [45] at the second order

Reference S-box # tuples Result
Complexity

# sets time

Second Order Masking

RP-CHES10 [45] initially proposed 7,140 1st-order flaws (2) 840 0.070s
RP-CHES10 [45] different refreshMasks 7,875 secure X 949 0.164s
RP-CHES10 [45] more refreshMasks 8,646 secure X 902 0.180s

CPRR-FSE13 [17] use of x · g(x) (Algo 4) 12561 secure X 619 0.073
CPRR-FSE13 [17] use of tables (Algo 5) 12,561 secure X 955 0.196

Although it is important to note that the algorithms appear to be “precise enough”
in practice, Table 2 also reveals that program size is not in fact the only source of
complexity. Indeed, proving the full key schedule at order 2 only involves around 23
million pairs of observations, compared to the 109 million that need to be considered
to prove the security of 4 rounds of AES at the same order; yet the latter takes less
than an hour to complete compared to 4 days for the full ten rounds of key schedule. We
suspect that this is due to the shapes of the two programs’ dependency graphs, with each
variable in the key schedule depending on a large proportion of the variables that appear
before it in the program, whereas the dependencies in full AES are sparser. Note that
this is reminiscent of limitations inherent to Eldib, Wang and Schaumont’s approach [21].
However, although our approach’s complexity still depends on the size of the expressions
observed by the adversary, this dependency is not inherently exponential, allowing us to
consider larger functionalities.

Another important factor in the performance of our algorithm is the instantiation
of the various choice functions. We describe them here for the sake of reproducibility.
In Algorithms 1 and 2, when choosing a triple (e′, e, r) to use with rule (Opt), our
prototype first chooses r as the first (leftmost-first depth-first) random variable that
fulfills the required conditions, then chooses e as the largest superterm of r that fulfills
the required conditions, which fixes e′. When choosing an expression to observe (in
Algorithms 5 and 6) or to extend a set of observation with (in Algorithm 4), we choose
first the expression that has the highest number of dependencies on random or input
variables.. These decisions certainly may have a significant effect on our algorithm’s
performance, and investigating these effects more deeply may help gather some insight
on the core problems related to masking.

6.2 Transition-based Model

The value-based leakage model may not always be the best fit to capture the behavior
of hardware and software. In particular, when considering software implementations, it
is possible that writing a value into a register leaks both its new and old contents. To
illustrate the adaptability of our algorithms, we first run some simple tests. We then il-
lustrate another potential application of our tool, whereby masked implementations that
make use of t+ 1 masks per variable can be proved secure in the transitions model at or-
ders much higher than the generic t/2, simply by reordering instructions and reallocating
registers.

Table 4 describes the result of our experiments. Our first (naive) implementation
was only secure at the second order in the transition-based leakage model and used 22
local registers, our first improved implementation achieves the third-order security in
the transition-based leakage model with only 6 local registers. Trying to provide the
best possible security in this model, we also found a third implementation that achieves
security at order 4. This last implementation is in fact the original implementation with



Table 4. Multiplication in the transition-based leakage model

Reference Multiplication # tuples Security
Complexity

# sets time

RP-CHES10 [45] initial scheme for order 4 3,570 order 2 161 0.008s
RP-CHES10 [45] with some instructions reordering 98,770 order 3 3,488 0.179s
RP-CHES10 [45] using more registers 2,024,785 order 4 17,319 1.235s

additional registers. Note however, that in spite of its maximal security order, this last
implementation still reuses registers (in fact, most are used at least twice).

The main point of these experiments is to show that the techniques and tools we
developed are helpful in building and verifying implementations in other models. Con-
cretely, our tools give counter-measure designers the chance to easily check the security
of their implementation in one or the other leakage model, and identify problematic
observations that would prevent the counter-measure from operating properly against
higher order adversaries.

7 Conclusion

This paper initiates the study of relational verification techniques for checking the se-
curity of masked implementations against t-order DPA attacks. Beyond demonstrating
the feasibility of this approach for levels higher than 2, our work opens a number of
interesting perspectives on automated DPA tools.

The most immediate direction for further work is to exhibit and prove compositional
properties in order to achieve the verification of larger masked programs at higher orders.

Another promising direction is to automatically synthesize efficient and secure im-
plementations by search-based optimization. Specifically, we envision a 2-step approach
where one first use an unoptimized but provably secure compiler to transform a program
p into a program pt that is t-non-interfering, and then applies relational synthesis meth-
ods, in the spirit of [4], to derive the most efficient program p′ that is observationally
equivalent to pt and equally secure—the latter property being verified using pRHL.

Acknowledgments. We thank François-Xavier Standaert and Vincent Grosso for giving
us access to their examples and code generation tools.
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A Initial Transformations on Programs: An Example

To illustrate our algorithms, we consider the simple masked multiplication algorithm
defined in [45] and relying on Algorithm 7, which is secure against 2-threshold probing
adversaries. In practice, the code we consider is in 3-address form, with a single operation
per line (operator application or table lookup). For brevity, we use parentheses instead,
unless relevant to the discussion. In the rest of this paper, we write Line (n).i to denote
the ith expression computed on line n, using the convention that products are computed
immediately before their use. For example, Line (5).1 is the expression a0�b1, Line (5).2
is r0,1 ⊕ a0 � b1 and Line (5).3 is a1 � b0.

Algorithm 7 Secure Multiplication Algorithm (t = 2) from [45]

Input: a0, a1, a2 (resp. b0, b1, b2) such that a0 ⊕ a1 ⊕ a2 = a (resp. b0 ⊕ b1 ⊕ b2 = b
Output: c0, c1, c2 such that c0 ⊕ c1 ⊕ c2 = a� b
1: function SecMult(Ja0, a1, a2K, Jb0, b1, b2K)
2: r0,1

$← F256

3: r0,2
$← F256

4: r1,2
$← F256

5: r1,0 ← (r0,1 ⊕ a0 � b1)⊕ a1 � b0
6: r2,0 ← (r0,2 ⊕ a0 � b2)⊕ a2 � b0
7: r2,1 ← (r1,2 ⊕ a1 � b2)⊕ a2 � b1
8: c0 ← (a0 � b0 ⊕ r0,1)⊕ r0,2
9: c1 ← (a1 � b1 ⊕ r1,0)⊕ r1,2

10: c2 ← (a2 � b2 ⊕ r2,0)⊕ r2,1
11: return Jc0, c1, c2K

When given a program whose inputs have been annotated as secret or public, we
transform it as described at the end of Section 2.5 to add some simple initialization code
that preshares secrets in a way that is not observable by the adversary, and lets the ad-
versary observe the initial sharing of public inputs. This allows us to model, as part of the
program, the assumption that shares of the secret are initially uniformly distributed and
that their sum is the secret. The initialization code, as well as the transformed version of
Algorithm 7 where argument a is marked as secret and b is marked as public, are shown
in Algorithm 8. We use the square brackets on Line (4) of function PreShare to mean
that the intermediate results obtained during the computation of the bracketed expres-
sion are not observable by the adversary: this is equivalent to the usual assumption that
secret inputs and state are shared before the adversary starts performing measurements.

Once the program is in this form, it can be transformed to obtain: i. the set of its
random variables;8 ii. the set of expressions representing all of the possible adversary
observations; This final processing step on SecMult yields the set of random variables
R = {a0, a1, b0, b1, r0,1, r0,2, r1,2}, and the set of expressions shown in Figure 2 (labelled
with their extended line number). Recall that these sets were obtained with a marked
as secret and b marked as public.

Observable transitions. Figure 3 presents the observable transitions for Algorithm 7.
It gives the old value and the new value of the register modified by each program point.
This is done using a simple register allocation of Algorithm 7 (where we use the word
“register” loosely, to denote program variables, plus perhaps some additional temporary
registers if required) that uses a single temporary register that is never cleared, and
stores intermediate computations in the variable where their end result is stored. For
clarity, the register in which the intermediate result is stored is also listed in the Figure.

8 In practice, since we consider programs in SSA form, it is not possible to assign a non-random
value to a variable that was initialized with a random.



Algorithm 8 Presharing, Sharing and Preprocessed multiplication (t = 2, a is secret, b
is public)

1: function PreShare(a)

2: a0
$← F256

3: a1
$← F256

4: a2 ← [a⊕ a0 ⊕ a1]
5: return Ja0, a1, a2K

1: function Share(a)

2: a0
$← F256

3: a1
$← F256

4: a2 ← (a⊕ a0)⊕ a1

5: return Ja0, a1, a2K

1: function SecMult(a, b)

2: a0
$← F256

3: a1
$← F256

4: a2 ← [a⊕ a0 ⊕ a1]

5: b0
$← F256

6: b1
$← F256

7: b2 ← (b⊕ b0)⊕ b1

8: r0,1
$← F256

9: r0,2
$← F256

10: r1,2
$← F256

11: r1,0 ← (r0,1 ⊕ a0 � b1)⊕ a1 � b0
12: r2,0 ← (r0,2 ⊕ a0 � b2)⊕ a2 � b0
13: r2,1 ← (r1,2 ⊕ a1 � b2)⊕ a2 � b1
14: c0 ← (a0 � b0 ⊕ r0,1)⊕ r0,2
15: c1 ← (a1 � b1 ⊕ r1,0)⊕ r1,2
16: c2 ← (a2 � b2 ⊕ r2,0)⊕ r2,1
17: return [c0 ⊕ c1 ⊕ c2]

Fig. 2. Possible wire observations for SecMult. (Note that, after Lines 4 and 7, we keep a2

and b2 in expressions due to margin constraints.)

Line Observed Expression Line Observed Expression

(2) a0 (12).2 r0,2 ⊕ a0 � b2
(3) a1 (12).3 a2 � b0
(4) a2 := (a⊕ a0)⊕ a1 (12) (r0,2 ⊕ a0 � b2)⊕ a2 � b0
(5) b0 (13).1 a1 � b2
(6) b1 (13).2 r1,2 ⊕ a1 � b2
(7).1 b⊕ b0 (13).3 a2 � b1
(7) b2 := (b⊕ b0)⊕ b1 (13) (r1,2 ⊕ a1 � b2)⊕ a2 � b1
(8) r0,1 (14).1 a0 � b0
(9) r0,2 (14).2 a0 � b0 ⊕ r0,1
(10) r1,2 (14) (a0 � b0 ⊕ r0,1)⊕ r0,2
(11).1 a0 � b1 (15).1 a1 � b1
(11).2 r0,1 ⊕ a0 � b1 (15).2 a1 � b1 ⊕ ((r0,1 ⊕ a0 � b1)⊕ a1 � b0)
(11).3 a1 � b0 (15) (a1 � b1 ⊕ ((r0,1 ⊕ a0 � b1)⊕ a1 � b0))⊕ r1,2
(11) (r0,1 ⊕ a0 � b1)⊕ a1 � b0 (16).1 a2 � b2
(12).1 a0 � b2 (16).2 a2 � b2 ⊕ ((r0,2 ⊕ a0 � b2)⊕ a2 � b0)

(16) (16).2 ⊕((r1,2 ⊕ a1 � b2)⊕ a2 � b1)



Fig. 3. Possible transition observations for SecMult with a naive register allocation (shown in
the last column). ⊥ denotes an uninitialized register, whose content may already be known to
(and perhaps chosen by) the adversary.

Line Register Old Contents New Contents

(2) ⊥ a0

(3) ⊥ a1

(4) ⊥ a⊕ a0 ⊕ a1

(5) ⊥ b0
(6) ⊥ b1

(7).1 b2 ⊥ b⊕ b0
(7) b⊕ b0 b⊕ b0 ⊕ a1

(8) ⊥ r0,1
(9) ⊥ r0,2

(10) ⊥ r1,2
(11).1 r1,0 ⊥ a0 � b1
(11).2 r1,0 a0 � b1 r0,1 ⊕ a0 � b1
(11).3 t ⊥ a1 � b0

(11) r0,1 ⊕ a0 � b1 r0,1 ⊕ a0 � b1 ⊕ a1 � b0
(12).1 r2,0 ⊥ a0 � b2
(12).2 r2,0 a0 � b2 r0,2 ⊕ a0 � b2
(12).3 t a1 � b0 a2 � b0

(12) r0,2 ⊕ a0 � b2 r0,2 ⊕ a0 � b2 ⊕ a2 � b0
(13).1 r2,1 ⊥ a1 � b2
(13).2 r2,1 a1 � b2 r1,2 ⊕ a1 � b2
(13).3 t a2 � b0 a2 � b1

(13) r1,2 ⊕ a1 � b2 r1,2 ⊕ a1 � b2 ⊕ a2 � b1
(14).1 c0 ⊥ a0 � b0
(14).2 c0 a0 � b0 a0 � b0 ⊕ r0,1

(14) a0 � b0 ⊕ r0,1 a0 � b0 ⊕ r0,1 ⊕ r0,2
(15).1 c1 ⊥ a1 � b1
(15).2 c1 a1 � b1 a1 � b1 ⊕ r0,1 ⊕ a0 � b1 ⊕ a1 � b0

(15) a1 � b1 ⊕ r0,1 ⊕ a0 � b1 ⊕ a1 � b0 (15).2 ⊕r1,2
(16).1 c2 ⊥ a2 � b2
(16).2 c2 a2 � b2 a2 � b2 ⊕ r0,2 ⊕ a0 � b2 ⊕ a2 � b0

(16) a2 � b2 ⊕ r0,2 ⊕ a0 � b2 ⊕ a2 � b0 (16).2 ⊕r1,2 ⊕ a1 � b2 ⊕ a2 � b1



B Functional Correctness: An Example

We illustrate the automated process to prove functional correctness properties of masked
algorithms for basic operations. Here again, we consider function SecMult (Algo-
rithm 7), which can be given the following specification.

∀ a, b. {a0 ⊕ a1 ⊕ a2 = a ∧ b0 ⊕ b1 ⊕ b2 = b} SecMult {res0 ⊕ res1 ⊕ res2 = a� b}
(1)

This specification is interpreted as follows.

For all a and b in F256, whenever SecMult is run on arguments such that
Ja0, a1, a2K is a valid sharing of a and Jb0, b1, b2K is a valid sharing of b, then
all reachable final states are such that Jres0, res1, res2K (where res represents the
function’s return value) is a valid sharing of a� b.

To prove this specification, EasyCrypt’s weakest precondition calculus computes a first-
order logic formula ξ, the verification condition, whose validity entails specification (1).

∀ r0,1, r0,2, r1,2. c0 ⊕ c1 ⊕ c2 = (a0 ⊕ a1 ⊕ a2)� (b0 ⊕ b1 ⊕ b2) (2)

where
c0 = a0 � b0 ⊕ r0,1 ⊕ r0,2,
c1 = a1 � b1 ⊕ r0,1 ⊕ a0 � b1 ⊕ a1 � b0 ⊕ r1,2, and
c2 = a2 � b2 ⊕ r0,2 ⊕ a0 � b2 ⊕ a2 � b0 ⊕ r1,2 ⊕ a1 � b2 ⊕ a2 � b1.

This verification condition is then discharged automatically by ring normalization. In
theory, the same technique could be applied to prove functional correctness properties
of larger masked implementations. However, the size of the expressions involved in the
verification condition quickly increases with the size of the program, and the prototype
currently reaches its practical limits on larger programs.
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