
An Alternative Approach to Non-black-box Simulation
in Fully Concurrent Setting∗

Susumu Kiyoshima

NTT Secure Platform Laboratories, Japan.
kiyoshima.susumu@lab.ntt.co.jp

January 26, 2015

Abstract

We give a new proof of the existence of public-coin concurrent zero-knowledge arguments for
NP in the plain model under standard assumptions (the existence of one-to-one one-way func-
tions and collision-resistant hash functions), which was originally proven by Goyal (STOC’13).

In the proof, we use a new variant of the non-black-box simulation technique of Barak
(FOCS’01). An important property of our simulation technique is that the simulator runs in a
straight-line manner in the fully concurrent setting. Compared with the simulation technique of
Goyal, which also has such a property, the analysis of our simulation technique is (arguably)
simpler.

∗This article is a minor revision of the version that appears in the proceedings of TCC 2015.

1 Introduction

Zero-knowledge proofs and non-black-box simulation. Zero-knowledge (ZK) proofs [GMR89],
with which the prover can convince the verifier of the correctness of a mathematical statement without
providing any additional knowledge, have played fundamental roles in cryptography. In particular,
ZK protocols1 have been used as building blocks in many cryptographic protocols, and techniques
developed for them have been used in a variety of fields of cryptography.

Traditionally, the security of all ZK protocols was proven via black-box simulation. That is, their
zero-knowledge property was proven by showing a simulator that uses the adversary only in a black-
box way. Although such a simulator can get advantage only through the rewinding of the adversary,
black-box simulation is known to be powerful enough to construct ZK protocols with a variety of
additional properties, security, and efficiency.

Black-box simulation has, however, inherent limitations. For example, let us consider public-coin
ZK protocols—the ZK protocols such that in each round the verifier sends only the outcome of its
coin-tossing—and concurrent ZK protocols—the ZK protocols such that the zero-knowledge prop-
erty holds even when the adversary concurrently interacts with many provers in an arbitrary sched-
ule. It was shown that public-coin ZK protocols and concurrent ZK protocols can be constructed
with black-box simulation techniques [GMW91, RK99, KP01, PRS02]. However, it was also shown
that neither of them can be constructed with black-box simulation technique if we additionally re-
quire round efficiency. Concretely, it was shown that no constant-round public-coin ZK protocol and
no o(log n/ log log n)-round concurrent ZK protocol can be proven secure via black-box simulation
[GK96, CKPR02]. Furthermore, it was also shown that no public-coin concurrent ZK protocol can
be proven secure via black-box simulation irrespective to its round complexity [PTW09].

Because of these impossibility results on black-box simulation, developing non-black-box simula-
tion techniques is an important research direction. Developing non-black-box simulation techniques
is however considered to be a significantly hard task since non-black-box simulation seems to require
the “reverse engineering” of the adversary.

The first non-black-box simulation technique was proposed in a groundbreaking work of Barak
[Bar01]. The simulation technique of Barak is completely different from previous ones. In particular,
in the simulation technique of Barak, the simulator runs in a “straight-line” manner, i.e., it does not
rewind the adversary. With his non-black-box simulation technique, Barak showed that we can go
beyond the black-box simulation barrier; in particular, Barak constructed the first constant-round
public-coin ZK protocol, which cannot be proven secure via black-box simulation.

Non-black-box simulation in the concurrent setting. Since we can overcome the black-box im-
possibility result of constant-round public-coin ZK protocols by using Barak’s non-black-box simula-
tion technique, it is natural to expect that we can also overcome other black-box impossibility results
by using Barak’s technique. In particular, since Barak’s simulation technique works in a straight-line
manner and therefore completely removes the issue of recursive rewinding [DNS04], it is natural to
think that we can overcome the black-box impossibility results of o(log n/ log log n)-round concurrent
ZK protocols and public-coin concurrent ZK protocols by using Barak’s simulation technique in the
concurrent setting.

Unfortunately, Barak’s non-black-box simulation technique does not work in the concurrent set-
ting. Although Barak’s simulation technique can be extended so that it can handle bounded-concurrent
execution [Bar01] (i.e., a concurrent execution such that there is an a-priori upper-bound on the num-
ber of concurrent sessions) and parallel execution [PRT13], it had been open for years to extend
Barak’s simulation technique so that it can handle fully concurrent execution.

1We use “ZK protocols” to denote ZK proofs and arguments.

1

Recently, several works showed that with a trusted setup or non-standard assumptions, Barak’s
simulation technique can be extended so that it can handle fully concurrent execution. These works
then showed that, with their extended simulation techniques, we can overcome the black-box impos-
sibility results of o(log n/ log log n)-round concurrent ZK protocols and public-coin concurrent ZK
protocols. For example, Canetti, Lin, and Paneth [CLP13a] constructed a public-coin concurrent ZK
protocol in the global hash function (GHF) model, where a single hash function is used in all con-
current sessions. Also, Chung, Lin, and Pass [CLP13b] constructed a constant-round concurrent ZK
protocol by assuming the existence ofP-certificates (i.e., “succinct” non-interactive proofs/arguments
forP), and Pandey, Prabhakaran, and Sahai [PPS13] constructed a constant-round concurrent ZK pro-
tocols by assuming the existence of differing-input indistinguishability obfuscations.

Additionally, Goyal [Goy13] showed that even in the plain model under standard assumptions,
Barak’s non-black-box simulation technique can be extended so that it can handle fully concurrent
execution. With his simulation technique, then, Goyal constructed the first public-coin concurrent
ZK protocol in the plain model under standard assumptions (the existence of a family of collision-
resistant hash functions). Like the original simulation technique of Barak and many of its variants, the
simulation technique of Goyal has a straight-line simulator; thus, in the simulation technique of Goyal
the simulator performs straight-line concurrent simulation. Because of this straight-line concurrent
simulation property, the simulation technique of Goyal has huge potential. In fact, Goyal notes in
[Goy13] that his technique can be used to obtain new results on concurrently secure multi-party
computation and blind signatures.

Thus, we currently have several good positive results on non-black-box simulation in the concur-
rent setting, and in particular we have a one that has a straight-line concurrent simulator even in the
plain model under standard assumptions [Goy13].2 However, the state-of-the-art is still not satisfac-
tory and there are many open problems to be addressed. (For example, the simulation technique of
Goyal [Goy13] requires the protocol to have O(nε) rounds, where ε > 0 is an arbitrary constant. Thus,
the problem of constructing o(log n/ log log n)-round concurrent ZK protocols in the plain model un-
der standard assumptions is still open.) Thus, studying more on non-black-box simulation and de-
veloping new non-black-box simulation techniques in the concurrent setting is an important research
direction.

1.1 Our Result

In this paper, we show a new non-black-box simulation technique that works in the fully concurrent
setting. With this simulation technique, then, we give a new proof of the following theorem, which
was originally proven by Goyal [Goy13].

Theorem. Assume the existence of one-to-one one-way functions and a family of collision resistant
hash functions. Then, for any constant ε > 0, there exists an O(nε)-round public-coin concurrent
zero-knowledge argument of knowledge.

Like the simulation technique of Goyal [Goy13], our simulation technique is based on Barak’s
simulation technique, can handle fully concurrent execution in the plain model under standard as-
sumptions, and has a simulator that runs in a straight-line manner even in the fully concurrent setting.
Our non-black-box simulation technique requires the same hardness assumption and the same round
complexity as that of Goyal, and therefore it does not lead to immediate improvement over the result
of Goyal. Nonetheless, our simulation technique is meaningful since it is different from the technique
of Goyal and the analysis of it is (in our opinion) simpler than the analysis of Goyal’s technique. Since

2Also, in their groundbreaking works [BP12, BP13], Bitansky and Paneth showed a non-black-box simulation technique
that is not based on Barak’s simulation technique.

2

there is only a limited number of non-black-box simulation techniques that can handle fully concur-
rent execution (and in particular there is only one straight-line concurrent simulation technique in the
plain model under standard assumptions), constructing a new non-black-box simulation technique in
the concurrent setting is meaningful even when there is no improvement. We hope that our technique
leads to further study on non-black-box simulation in the concurrent setting.

Brief overview of our technique. Our public-coin concurrent ZK protocol is based on the public-
coin concurrent ZK protocol of Canetti, Lin, and Paneth (CLP) [CLP13a], which is secure in the
global hash function model. Below, we give a brief overview of our technique, assuming familiarity
with Barak’s non-black-box simulation technique and the techniques of CLP. In Section 2, we give
a more detailed overview of our technique, including the explanation of the techniques of Barak and
CLP.

The protocol of CLP is similar to the ZK protocol of Barak except that it has multiple “slots”
(i.e., pairs of a prover’s commitment and a receiver’s random-string message). In any of these slots,
the simulator can generate a PCP-proof as a trapdoor witness for the universal argument (UA). Thus,
with multiple slots, the simulator can choose which slot to use in the generation of the PCP-proof,
and therefore by using a good “proving strategy” that determines which slot to use, the simulator can
avoid the blow-up of its running time and can generate PCP-proofs in all sessions in polynomial time
even in the concurrent setting. The proving strategy that CLP uses is similar in spirit to the oblivious
rewinding strategy of [KP01, PRS02] (in which black-box concurrent ZK protocols are constructed).
In particular, in the proving strategy of CLP, the transcript is recursively divided into blocks and then
PCP-proofs are generated only at the end of the blocks.

A problem that CLP encountered is that there is only one opportunity for the simulator to give a
UA-proof in each session and therefore the simulator need to remember all previously generated PCP-
proofs during the simulation. Because of this problem, the length of the PCP-proofs can be rapidly
blowing up in the concurrent setting and therefore the size of the simulator cannot be bounded by a
polynomial. In [CLP13a], CLP solved this problem in the global hash function model by cleverly
using the global hash function in UA.

To solve this problem in the plain model, we modify the protocol of CLP so that the simulator also
has multiple opportunities to give UA-proofs.We then show that, by using a good proving strategy that
also determines which opportunity the simulator takes to give UA-proofs, the simulator can avoid the
blow-up of its size as well as its running time. (Our proving strategy works so that a PCP-proof that
is generated at the end of a block is used only until the end of the “parent block” of this block; thus,
the simulator need to remember PCP-proofs only for a limited time, and therefore the length of the
PCP-proofs does not blow up.) This proving strategy is the core of our simulation technique and the
main deference between the simulation technique of ours and that of Goyal [Goy13]. (The simulator
of Goyal also has multiple opportunities to give UA-proofs, and it determines which opportunity to
take by using a proving strategy that is different from ours.) Interestingly, the strategy that we use
is deterministic (whereas the strategy that Goyal uses is probabilistic). Because of the use of this
deterministic strategy, when we show that every session is successfully simulated, we need to use
only a simple counting argument. Because of this, the analysis of our simulation technique is quite
simple.

2 Overview of Our Technique

As briefly described in Section 1.1, our protocol is based on the protocol of Canetti et al. [CLP13a],
which in turn is based on Barak’s non-black-box zero-knowledge protocol [Bar01]. Below, we first
recall the protocols of [Bar01, CLP13a] and then give an overview of our protocol.

3

2.1 Known Techniques

Barak’s protocol. Roughly speaking, Barak’s non-black-box zero-knowledge protocol BarakZK
proceeds as follows.

Protocol BarakZK

1. The verifier V chooses a hash function h ∈ Hn and sends h to the prover P.

2. P sends c ← Com(0n) to V , where Com is a statistically binding non-interactive commitment
scheme. Then, V sends random string r to P. In the following, the pair (c, r) is called a slot.

3. P proves the following statement by using a witness-indistinguishable argument.

• x ∈ L, or

• (h, c, r) ∈ Λ, where (h, c, r) ∈ Λ holds if and only if there exists a machine Π such that c
is a commitment to h(Π) and Π outputs r in nlog log n steps.3

Note that the statement proven in Step 3 is not in NP. Thus, P proves this statement by a witness-
indistinguishable universal argument (WIUA), with which P can prove any statement in NEXP.

Intuitively, the security of BarakZK is proven as follows. The soundness is proven by showing
that Π(c) , r holds with overwhelming probability when a cheating prover P∗ commits to h(Π) for a
machine Π. The zero-knowledge property is proven by using a simulator that commits to h(Π) such
that Π is a machine that emulates the cheating verifier V∗; since Π(c) = V∗(c) = r holds from the
definition, the simulator can give a valid proof in WIUA. This simulator runs in polynomial time since,
from the property of WIUA, the running time of the simulator during WIUA is bounded by poly(t),
where t is the running time of Π(c).

Barak’s protocol in the concurrent setting. The proof of the ZK property of BarakZK does not
work in the concurrent setting. In particular, the above simulator does not work in the concurrent
setting since we have V∗(c) , r when V∗ receives messages during a slot (i.e., when V∗ receives
messages in other sessions before sending r).

A potential approach for achieving concurrent ZK property with BarakZK is to use a simulator
S that commits to a machine that emulates S itself. A key observation behind this approach is that
although V∗ can receive unbounded number of messages during a slot, all of these messages are
generated by S. Thus, if the committed machine Π emulates S from the point that V∗ receives c to
the point that V∗ sends r, Π can output r even when V∗ receives many messages during a slot.

This approach, however, causes a problem in simulator’s running time. For example, let us con-
sider the following “nested concurrent sessions” schedule (Figure 1).

• The i-th session is executed so that the (i + 1)-th session is completely contained in the slot of
the i-th session. That is, the (i + 1)-th session starts after V∗ receives c in the i-th session, and
the (i + 1)-th session ends before V∗ sends r in the i-th session.

Let m be the number of sessions, and let t be the running time of S during the simulation of the
m-th session. Then, to simulate the (m − 1)-th session, S need to run at least 2t steps—t steps for
simulating the slot (which contains the m-th session) and t steps for simulating WIUA. Then, to
simulate the (m − 2)-th session, S need to run at least 4t steps—2t steps for simulating the slot and 2t
steps for simulating WIUA. In general, to simulate the i-th session, S need to run at least 2m−it steps.
Thus, the running time of S becomes super-polynomial when m = ω(log n).

3Here, nlog log n can be replaced with any super-polynomial function. We use nlog log n for concreteness.

4

WIUA

WIUA

WIUA

WIUA

1st 2nd 3rd m-th

P V

Figure 1: The “nested concurrent sessions” schedule.

Protocol of Canetti et al. [CLP13a]. To avoid the blow-up of the simulator’s running time, Canetti,
Lin, and Paneth (CLP) [CLP13a] used the “multiple slots” approach that was originally used in the
black-box concurrent zero-knowledge protocols of [RK99, KP01, PRS02]. The idea is that with many
sequential slots, S can choose any of them as a witness in WIUA, and therefore with a good proving
strategy that determines which slot to use as a witness, S can avoid the nested computation in WIUA.
To implement this approach, CLP first observed that the four-round public-coin UA of [BG08], from
which WIUA can be constructed, can be divided into the offline phase and the online phase such that
all heavy computation is done in the offline phase. As explained later, this online/offline property
enables S to perform all heavy computations only at specific points during the simulation, which is
crucial to avoid the nested computation in WIUA. Concretely, the UA of [BG08] is divided as follows.
Let x ∈ L be the statement to be proven in UA and w be a witness for x ∈ L.

Offline/online UA

• Offline Phase:

1. V sends a random hash function h ∈ Hn to P.

2. P generates a PCP-proof π of statement x ∈ L by using w as a witness. Then, P computes
UA2 := h(π). In the following, (h, π,UA2) is called the offline proof.

• Online Phase:

1. P sends UA2 to V .

2. V chooses randomness ρ for the PCP-verifier and sends UA3 := ρ to P.

3. P computes queries Q by executing the PCP-verifier with statement x ∈ L and randomness
ρ.4 Then, P computes the replies for queries Q and sends them to V . We denote these
replies by UA4.

4Recall that the PCP-verifier performs the verification by making a few queries to the PCP-proof.

5

4. V verifies the correctness of the replies by executing the PCP-verifier.

Note that the only heavy computation—the generation of π and the computation of h(π)—is per-
formed in the offline phase. Thus, in the online phase, the running time of P can be bounded by a
fixed polynomial in n.5 In the offline phase, the running time of P is bounded by a fixed polynomial
in t, where t is the time needed for verifying x ∈ L with witness w. The length of the offline proof is
also bounded by a polynomial in t.

CLP [CLP13a] then considered the following protocol (which is an over-simplified version of
their final protocol). Let Nslot be a parameter that is determined later.

Protocol BasicCLP

Stage 1. V chooses a hash function h ∈ Hn and sends h to P.

Stage 2. For each i ∈ [Nslot] in sequence, P and V do the following.

• P sends ci ← Com(0n) to V . Then, V sends a random string ri to P.

Stage 3. P and V execute the special-purpose WIUA of [PR05] with the UA system of [BG08] being
used as the underlying UA system.

1. P sends cUA ← Com(0n) to V .

2. V sends the third UA message UA3 to P (i.e., V sends a random string of appropriate
length).

3. P proves the following statement by using a witness-indistinguishable proof of knowledge
(WIPOK).

• x ∈ L, or
• there exists i ∈ [Nslot] and the second and the fourth UA messages UA2,UA4 such that

UA2 is the committed value of cUA and (h,UA2,UA3,UA4) is an accepting proof of
the statement (h, ci, ri) ∈ Λ.

Recall that the idea of the multiple-slot approach is that S avoids the nested computation in WIUA by
using a proving strategy that determines which slot to use as a witness. Thus, roughly speaking, the
simulation proceeds as follows: First, S commits to a machine Π in each slot and then computes an
offline proof (in particular, a PCP-proof) w.r.t. a slot chosen according to a proving strategy; then, S
commits to the second UA message (i.e., the hash of the PCP-proof) in Stage 3-1 and gives a valid
WIPOK proof in Stage 3-3. As a proving strategy that determines which slot to use as a witness, CLP
considered a strategy that is similar in spirit to the oblivious rewinding strategy of [KP01, PRS02]. In
this strategy, the entire transcript of all sessions is recursively divided into blocks. Let M be the total
number of messages across the sessions, and let q be a parameter called the splitting factor. Assume
for simplicity that M is a power of q, i.e., M = qd for d ∈ N. Then, the entire transcript is divided into
blocks as follows.

• The level-d block is the entire transcript of all sessions. Thus, the level-d block contains M = qd

messages.

• Then, the level-d block is divided into q sequential blocks, where each block contains qd−1

messages. These blocks are called the level-(d − 1) blocks.

5Here, P is assumed to have random access to π.

6

• Similarly, each level-(d−1) block is divided into q sequential blocks, where each block contains
qd−2 messages. These blocks are called the level-(d − 2) blocks.

• In this way, each block is continued to be divided into q blocks until level-0 blocks are obtained.
A level-0 block contains only a single message.

Then, at the end of each block of each level, S computes offline proofs w.r.t. all slots that are contained
in this block. Note that when q = nε for a constant ε, the maximum level of blocks (i.e., d) is constant.
Thus we have at most constant level of nesting in the execution of WIUA. Furthermore, it was shown
by CLP that when Nslot = ω(q) = ω(nε), the simulator does not “get stuck,” i.e., at least one offline
proof is computed before Stage 3 begins in every session except with negligible probability.

The protocol BasicCLP is, however, not concurrent zero-knowledge in the plain model since the
size of S’s state can become super-polynomial. Recall that in the simulation, S generates an offline
proof in Stage 2 and uses it in Stage 3. Then, since V∗ can choose any concurrent schedule (and
therefore can delay the execution of Stage 3), S need to remember all previously generated offline
proofs during its execution. Thus, each committed machine need to contain all previously generated
offline proofs, and therefore an offline proof w.r.t. a slot (which is generated by using a machine
committed in this slot as a witness) is as long as the total length of all offline proofs that are generated
before this slot. Thus, the length of offline proofs can be rapidly blowing up and therefore the size of
S’s state cannot be bounded by a polynomial.

A key observation by CLP [CLP13a] is that this problem can be solved in the global hash model,
in which a global hash function is shared by all protocol executions. Roughly speaking, CLP avoids
the blow-up of the simulator’s size by considering machines that contain only the hash of the offline
proofs; then, to guarantee that the simulation works with such machines, they modified BasicCLP so
that P proves in WIUA that x ∈ L or the committed machine outputs r given an access to the hash-
inversion oracle; in the simulation, S commits to a machine that emulates S by recovering offline
proofs from the hash value with the hash-inversion oracle. In this modified protocol, the soundness is
proven by using the fact that the same hash function is used across all sessions.

In this way, CLP [CLP13a] obtained a public-coin concurrent zero-knowledge protocol in the
global hash model. Since q = nε and Nslot = ω(q), the round complexity is O(nε

′
) for a constant

ε′. (Since ε is an arbitrary constant, ε′ can be an arbitrary small constant.) CLP also showed that by
modifying the protocol further, the round complexity can be reduced to O(log1+ε n).

2.2 Our Techniques

We obtain an O(nε)-round protocol by removing the use of a global hash function from the protocol of
CLP [CLP13a]. Recall that in the protocol of CLP, a global hash function is used to avoid the blow-
up of the simulator’s state size. In particular, a global hash function is used so that the simulation
works even when the committed machines do not contain previously computed offline proofs. Below,
to obtain our protocol, we first modify the machines to be committed by the simulator (and slightly
modify BasicCLP and the simulator accordingly). The modified machines do not contain previously
generated offline proofs and therefore their sizes are bounded by a fixed polynomial. We then modify
BasicCLP and the simulator so that the simulation works even when the simulator commits to the
modified machines.

In the following, we set q := nε and Nslot := ω(q).

Modification on the machines to be committed. We modify machines so that they emulate the
simulator not from the start of a slot but from a more prior point of the simulation; thus, the modified
machines emulate more part of the simulation than before. Intuitively, if a machine emulates more

7

part of the simulation, it potentially generates more offline proofs by itself, and therefore more likely
to be able to output r even when it contains no offline proof. For example, let us consider an extreme
case that each committed machine emulates the simulator from the beginning of the simulation. In
this case, each committed machine generates every offline proofs by itself, and therefore it can output
r even when it contains no offline proof. Unfortunately, in this case the running time of the simulator
becomes super-polynomial since the running time of each committed machine is too long. Thus, we
need to consider machines that do not emulate too much of the simulation.

Concretely, we consider a machine that emulates the simulator from the beginning of a block. In
particular, for each i ∈ [n], we consider the following machine Πi.

• Πi emulates the simulator from the beginning of the level-i block that contains the commitment
in which Πi is committed. Πi does not contain any previously generated offline proofs, and if
the emulation fails due to the lack of the offline proofs, Πi terminates and outputs fail.

(Recall that the maximum level of the blocks is d < n.) Then, we modify BasicCLP so that P gives
n commitments in parallel in each slot, and let the simulator commit to Πi in the i-th commitment.
More precisely, the simulator does the following. In the interaction with V∗, for each i ∈ [d], we say
that a level-i block is the current level-i block if it will contain the next-scheduled message. In each
slot, we call the i-th commitment the i-th column.

• In each slot, in the i-th column for each i ∈ [n], the simulator commits to machine Πi, which
emulates the simulator from the beginning of the current level-i block.

• At the end of each block in each level, for each slot that is contained in this block, the simulator
generates the offline proof w.r.t. this slot by using a machine that emulates the simulator from
the beginning of this block. Note that such a machine must have been committed in each slot.

(A machine that emulates S from the beginning of a block is already considered in [CLP13a] for a
different purpose. In [CLP13a], such a machine is used to reduce the round complexity. Here, we use
such a machine to avoid the blow-up of the simulator’s size.)

When the simulator commits to these machines, the running time of the simulator can be bounded
by a polynomial in n as follows. First, since each committed machine contains no offline proofs, the
size of each committed machine is bounded by a fixed polynomial. Then, let ti be the maximum time
spent by the simulation of a level-i block. (Thus, at the end of a level-i block, each offline proof can
be computed in time poly(ti).) Then, since a level-i block contains q level-(i − 1) blocks, and since at
most m := poly(n) offline proofs are generated at the end of each level-(i − 1) block, we have

ti ≤ q · (ti−1 + m · poly(ti−1)) ≤ poly(ti−1) .

Then, since the maximum level d = logq M is constant and since we have t0 = poly(n), we have
td = poly(n). Thus, the running time of the simulator is bounded by a polynomial in n.

We note that although the above machines do not contain any previously generated offline proofs,
they do contain all previously generated witnesses of WIPOK (i.e., UA2 and UA4).6 As explained
below, allowing the machines to contain all previously generated witnesses is crucial to obtain a
protocol and a simulator with which the simulation works even when the modified machines are
committed.

6Since the length of the witnesses of WIPOK is bounded by a fixed polynomial, the size of the machines does not blow
up even when they contain all previously generated witnesses of WIPOK.

8

Modifications on the protocol and the simulator. When the above machines are committed, the
simulation may fail since the committed machines can output fail. In particular, the simulation fails if
there exists a block in which the simulator uses an offline proof that are generated before this block
starts. (If such a block exists, the machines that are committed in this block output fail since they do
not contain the necessary offline proof.) Thus, to guarantee successful simulation, we need to make
sure that in each block, the simulator uses only the offline proofs that are generated in this block. Of
course, we also need to make sure that the simulator does not “get stuck,” i.e., we need to guarantee
that in each session, the simulator computes a valid witness of WIPOK before WIPOK starts.

To avoid the simulation failure, we first modify BasicCLP as follows. As noted in the previous
paragraph, we need to construct a simulator such that in each block, the simulator uses only the offline
proofs that are generated in this block. In BasicCLP, it is hard to construct such a simulator since
an offline proof may be used long after it is generated. (Recall that during the simulation, offline
proofs are generated in Stage 2 and they are used in Stage 3 to compute witnesses of WIPOK.) Thus,
we modify BasicCLP so that the simulator can use offline proofs soon after generating them. In
particular, we modify BasicCLP so that the simulator can use the offline proofs in Stage 2. Toward
this end, we first observe the following.

• The simulator can compute a witness of WIPOK from the offline proof anytime after Stage 3-2.

• The pair of Stage 3-1 and Stage 3-2 is syntactically the same as a slot: P sends a commitment
in Stage 3-1 and V sends a random string in Stage 3-2. Thus, we can merge Stage 3-1 and Stage
3-2 into sequential slots.7 8

Following these observations, we modify BasicCLP and obtain the following protocol. (As stated
before, we also modify BasicCLP so that P gives parallel commitments in each slot.)

Protocol OurZK

Stage 1. V chooses a hash function h ∈ Hn and sends h to P.

Stage 2. For each i ∈ [Nslot] in sequence, P and V do the following.

• P sends ci,1 ← Com(0n), . . . , ci,n ← Com(0n) to V . Then, V sends a random string ri to
P.

Stage 3. P proves the following statement with WIPOK.

• x ∈ L, or

• there exist i1, i2 ∈ [Nslot], j ∈ [n], and the second and the fourth UA message UA2 and UA4
such that UA2 is the committed value of ci2, j and (h,UA2, ri2 ,UA4) is an accepting proof
of the statement (h, ci1, j, ri1) ∈ Λ.

In OurZK, a witness of WIPOK can be computed in a session if there are two slots such that (i) a
machine is committed in a slot and (ii) an offline proof w.r.t. this slot is committed in the other slot.
The computation of the WIPOK witness can be done anytime after such two slots, and after that, the
offline proof will never be used.

We next modify the simulator as follows. Recall that, as noted above, we need the simulator such
that (i) each committed machine does not output fail due to the lack of offline proofs, and (ii) the
simulator does not get stuck.

7The idea of merging a part of special purpose WIUA into slots is also used in [COP+14] for different purpose. In
[COP+14], this idea is used to reduce the round complexity.

8Alternatively, we can also think of executing the pair of Stage 3-1 and Stage 3-2 in parallel with each slot.

9

commit to program commit to offline proof

compute offline proof compute witness
for WIPOK from

Figure 2: Our simulator’s strategy, when splitting factor is q = 5.

Roughly speaking, our simulator does the following (see Figure 2). Recall that for each i ∈
{0, . . . , d − 1}, a level-(i+1) block is divided into q level-i blocks. Then, in each level-(i+1) block, for
each session, our simulator first tries to obtain a level-i block that contains a slot in which a machine is
committed in the i-th column. If it succeeds in obtaining such a level-i block, our simulator computes
an offline proof w.r.t. this slot. Next, our simulator tries to obtain a level-i block that contains a slot
in which this offline proof is committed in the i-th column. If it succeeds in obtaining such a level-i
block, our simulator computes a witness of WIPOK from this offline proof.

More precisely, we consider the following simulator. In what follows, for each i ∈ {0, . . . , d − 1},
we say that two level-i blocks are sibling if they are contained by the same level-(i + 1) block.

• In each slot of each session, in the i-th column for each i ∈ [n], the simulator commits to
a machine that emulates the simulator from the beginning of the current level-i block if no
sibling of the current level-i block contains a slot of this session; if there exists a sibling that
contains a slot of this session, an offline proof must have been computed at the end of this
sibling (see below), and the simulator commits to this offline proof.

• At the end of each level-i block for each i ∈ {0, . . . , d − 1}, the simulator does the following
for every slot that is contained in this block: if a machine is committed in the i-th column of
this slot, the simulator computes an offline proof by using the committed machine; if an offline
proof is committed in the i-th column of this slot, the simulator computes a witness of WIPOK
from this offline proof.

• When WIPOK starts, the simulator does the following: if the simulator have a valid witness,
the simulator give a valid proof with this witness; if the simulator does not have a valid witness,
the simulator aborts with output stuck.

Note that the simulator can compute a witness of WIPOK if there exists a block in which the simulator
obtains two lower-level blocks such that each of them contains a slot.

We first note that each committed machine does not fail due to the lack of offline proofs. This
follows immediately from the fact that in each block, the simulator uses only offline proofs that are
generated in this block.

Thus, it remains to show that the simulator does not get stuck, i.e., the simulator has a valid
witness when each WIPOK starts. Below, we use the following terminology.

• A block is good w.r.t. a session if it contains a slot of this session and does not contain the first
message of WIPOK of this session.

• For each i ∈ [d], we say that a level-(i − 1) block is a child of a level-i block if the former is
contained by the latter. (Thus, each block has q children.)

10

From the construction, the simulator does not get stuck if for each session that reaches WIPOK in the
simulation, there exists a block that has at least two children that are good w.r.t. this session. Thus, we
show that for each session that reaches WIPOK in the simulation, there exists a block that has at least
two children that are good w.r.t. this session. To prove this, it suffices to show that for each session
that reaches WIPOK in the simulation, there exists a block such that it has at least three children that
contain a slot of this session. (This is because at most one child contains the first message of WIPOK.)
Assume for contradiction that there exists a session such that it reaches WIPOK and every block has
at most two children that contain a slot of this session. Let C(i) be the maximum number of slots
that are contained by a level-i block. Then, since in each block there are at most q − 1 slots that are
contained by the block but do not contained by its children, we have

C(i) ≤ 2C(i − 1) + q − 1 .

Then, since C(0) = 0 and since the maximum level d is constant, we have

C(d) ≤ 2dC(0) +
d−1∑
i=0

2i(q − 1) = O(q) .

This means that in the entire transcript there are at most O(q) slots of this session. Since Nslot = ω(q),
this contradicts to the assumption that this session reaches WIPOK. Thus, for each session that reaches
WIPOK, there exists a block that has at least two children that are good w.r.t. this session. Thus, the
simulator does not get stuck.

Since q = O(nε) and Nslot = ω(q), the round complexity of our protocol is O(nε
′
) for a constant

ε′ > ε. Since ε is an arbitrary constant, ε′ can be an arbitrary small constant.

Toward the final protocol. To obtain a formal proof of security, we need to add a slight modifica-
tion to the above protocol. In particular, as pointed out in previous works [Goy13, CLP13a, CLP13b,
PPS13], when the code of the simulator is committed in the simulation, we have to take special care
to the randomness of the simulator.9 Fortunately, the techniques used in the previous works can
also be used here to overcome this problem. If we use the technique of [CLP13a, CLP13b], which
requires only one-way functions, we can remove the requirement of one-to-one one-way functions
from our result. However, to simplify the analysis, in this paper we use the technique of [Goy13],
which requires one-to-one one-way functions.

2.3 Comparison with the Simulation Technique of Goyal [Goy13]

In this section, we compare the simulation technique of ours with that of Goyal [Goy13], which is the
only known simulation technique that realizes straight-line concurrent simulation in the plain model
under standard assumptions.

Since both the simulation technique of ours and that of Goyal are based on Barak’s non-black-box
simulation technique, there are many similarities between them: For example, the simulator commits
to a machine that emulates itself; the protocol is modified so that it has multiple slots; the simulator is
given multiple opportunities to give UA proofs10; the blocks are used to determine which opportunity
the simulator takes to give UA proofs.

9When the code of the simulator is committed, the randomness used for generating this commitment is also committed;
thus, if a protocol is designed naively, we need a commitment scheme such that the committed value is hidden even when
it contains the randomness used for the commitment.

10In our work, the simulator is given multiple opportunities to give UA proofs by modifying the protocol so that the
encrypted UA is merged into the sequential execution of slots. In [Goy13], the simulator is given multiple opportunities to
give UA proofs by modifying the protocol so that the encrypted UA is explicitly executed multiple times.

11

However, there are also differences between them. A notable difference is how the simulator
determines which opportunity to take to give UA proofs. Recall that, in the simulation technique of
ours, the strategy that the simulator uses to determine whether it embeds a UA message in a slot is
deterministic (the simulator checks whether a sibling of the current block contains a slot; see Figure 2
in Section 2.2). In contrast, in the simulation technique of Goyal, the strategy that the simulator uses
is probabilistic (the simulator uses a probabilistic procedure that performs the “marking” of the blocks
and the UA messages). Since in the simulation technique of ours the simulator uses a deterministic
strategy, the analysis of our simulator is simple: We use only a simple counting argument (and no
probabilistic argument) to show that the simulator will not get stuck.

3 Preliminary

We assume familiarity to the definition of basic cryptographic protocols, such as interactive proofs of
knowledge, witness-indistinguishable proofs, and commitment schemes.

3.1 Notations

We use n to denote the security parameter. For any k ∈ N, let [k] def
= {1, . . . , k}. For any randomized

algorithm Algo, we use Algo(x; r) to denote the execution of Algo with input x and randomness r. We
use Algo(x) to denote the execution of Algo with input x and uniformly chosen randomness.

3.2 Assumptions

We assume the existence of a family of collision-resistant hash functionsH = {hα}α∈{0,1}∗ . LetHn
def
=

{hα ∈ H : α ∈ {0, 1}n}. Then, we require thatHn satisfies the following properties.

• For any h ∈ Hn, the domain of h is {0, 1}∗ and the range of h is {0, 1}n.

• For any h ∈ Hn, x ∈ {0, 1}poly(n), and i ∈ {1, . . . , |x|}, after computing h(x), we can compute a
short certificate σi ∈ {0, 1}n

2
for the fact that the i-th bit of x is xi.

We can achieve these properties by using the Merkle hash tree.
We also assume the existence of one-to-one one-way function f . Recall that from one-to-one

one-way function f , we can construct perfectly binding non-interactive commitment scheme Com,
where Com(b; r) = (f (r), hc(r) ⊕ b) for b ∈ {0, 1} and the hard-core bit hc of f . (See, e.g., [Gol01].)
Note that each valid commitment of Com has a unique decommitment.

3.3 Concurrent Zero-Knowledge

We recall the definition of concurrent zero-knowledge. For any polynomial m(·), m-session concurrent
cheating verifier is a PPT Turing machine V∗ such that on input (1n, x, z), V∗ concurrently interacts
with m(n) independent copies of P. The interaction between V∗ and each copy of P is called session.
There is no restriction on how V∗ schedules messages among sessions, and V∗ can abort some ses-
sions. Let viewV∗〈P(w),V∗(z)〉(1n, x) be the view of V∗ in the above concurrent execution, where 1n

and x ∈ L are the common inputs, w ∈ RL(x) is the private input of P, and z is the auxiliary input of
V∗.

Definition 1 (Concurrent Zero-Knowledge). An interactive proof or argument 〈P,V〉 for language L
is concurrent zero-knowledge if for every polynomial m(·) and every m-session concurrent cheating
verifier V∗, there exists a PPT simulator S such that following are computationally indistinguishable.

12

• {viewV∗〈P(w),V∗(z)〉(1n, x)}n∈N,x∈L∩{0,1}poly(n),w∈RL(x),z∈{0,1}∗

• {S(1n, x, z)}n∈N,x∈L∩{0,1}poly(n),w∈RL(x),z∈{0,1}∗

^

3.4 PCP and Universal Argument

We recall the definitions of probabilistically checkable proof (PCP) systems and universal argument
system.

3.4.1 Universal Language LU .

For simplicity, we show the definitions of PCPs and universal arguments that prove only the member-
ship of a single “universal” language LU . For triplet y = 〈M, x, t〉, we have y ∈ LU if non-deterministic
machine M accepts x within t steps. Let RU be the witness relation of LU , i.e., RU is a polynomial-
time decidable relation such that y = 〈M, x, t〉 ∈ LU if and only if there exists w ∈ {0, 1}≤t such
that (y,w) ∈ RU . Note that every language L ∈ NP is linear-time reducible to LU via mapping
x 7→ 〈ML, x, 2|x|〉, where ML is any fixed non-deterministic polynomial-time machine that decides L.
Thus, a proof system for LU allows us to handle all NP statements.11

3.4.2 PCP System.

Roughly speaking, a PCP system is a PPT verifier that can decide the correctness of a statement
y ∈ LU given access to an oracle π that represents a proof in a redundant form. Typically, the verifier
reads only few bits of π in the verification.

Definition 2 (PCP system—basic definition). A probabilistically checkable proof (PCP) system (with
a negligible soundness error) is a PPT oracle machine V (called verifier) that satisfies the following:

• Completeness: For every n ∈ N and every y ∈ LU ∩ {0, 1}poly(n), there exists an oracle π such
that

Pr
[
Vπ(1n, y) = 1

]
= 1 .

• Soundness: For every n ∈ N, every y ∈ {0, 1}poly(n) \ LU , and every oracle π, there exists a
negligible function negl(·) such that

Pr
[
Vπ(1n, y) = 1

]
< negl(n) .

^

In this paper, we use PCP systems as a building block in the universal argument UA of [BG08].
To be used in UA, PCP systems need to satisfy four auxiliary properties: relatively efficient oracle
construction, non-adaptive verifier, efficient reverse sampling, and proof of knowledge. To understand
this paper, the definitions of the first two properties are required; for the definitions of other properties,
see [BG08].

Definition 3 (PCP system—auxiliary properties). Let V be a PCP-verifier.

11In fact, every language in NEXP is polynomial-time reducible to LU .

13

• Relatively efficient oracle construction: There exists an algorithm P (called prover) such that,
given any (y,w) ∈ RU , algorithm P outputs an oracle πy that makes V always accepts (i.e., as
in the completeness condition). Furthermore, there exists a polynomial p(·) such that on input
(y,w), the running time of P is p(|y| + |w|).

• Non-adaptive verifier: The verifier’s queries are determined based only on the input and its
internal coin tosses, independently of the answers given to previous queries. That is, V can
be decomposed into a pair of algorithms Q and D such that on input y and random tape r, the
verifier makes the query sequence Q(y, r, 1),Q(y, r, 2), . . . ,Q(y, r, p(|y|)), obtains the answers
b1, . . . , bp(|y|), and decides according to D(y, r, b1 · · · bp(|y|)), where p is some fixed polynomial.

^

3.4.3 Universal Argument.

Universal arguments [BG08], which are closely related to the notion of CS poofs [Mic00], are “ef-
ficient” arguments of knowledge for proving the membership in LU . For y = 〈M, x, t〉 ∈ LU , let
TM(x,w) be the running time of M on input x with witness w, and let RU(y) def

= {w : (y,w) ∈ RU}.

Definition 4 (Universal argument). A pair of interactive Turing machines 〈P,V〉 is a universal argu-
ment system if it satisfies the following properties:

• Efficient verification: There exists a polynomial p such that for any y = 〈M, x, t〉, the total
time spent by (probabilistic) verifier strategy V on inputs 1n and y is at most p(n + |y|).

• Completeness by a relatively efficient prover: For every n ∈ N, y = 〈M, x, t〉 ∈ LU ∩
{0, 1}poly(n), and w ∈ RU(y), it holds that

Pr
[〈P(w),V〉(1n, y) = 1

]
= 1 .

Furthermore, there exists a polynomial q such that the total time spent by P, on input (1n, y,w),
is at most q(n + |y| + TM(x,w)) ≤ q(n + |y| + t).

• Computational Soundness: For every PPT Turing machine P∗, there is a negligible function
negl(·) such that for every n ∈ N, y = 〈M, x, t〉 ∈ {0, 1}poly(n) \ LU , and z ∈ {0, 1}∗, it holds that

Pr
[〈P∗(z),V〉(1n, y) = 1

]
< negl(n) .

• Weak Proof of Knowledge: For every polynomial p(·) there exists a polynomial p′(·) and
a PPT oracle machine E such that the following holds: For every PPT Turing machine P∗,
every sufficiently large n ∈ N, every y = 〈M, x, t〉 ∈ {0, 1}poly(n), and every z ∈ {0, 1}∗, if
Pr

[〈P∗(z),V〉(1n, y) = 1
]
> 1/p(n), then

Pr
r

[
∃w = w1 · · ·wt ∈ RU(y) s.t. ∀i ∈ [t], EP∗(1n,y,z)

r (1n, y, i) = wi
]
>

1
p′(n)

where EP∗(1n,y,z)
r (·, ·, ·) denotes the function defined by fixing the randomness of E to equal r,

and providing the resulting Er with oracle access to P∗(1n, y, z). ^

The weak proof-of-knowledge property of universal arguments only guarantees that each individual
bit wi of some witness w can be extracted in probabilistic polynomial time. Given an input 1n and
y = 〈M, x, t〉 ∈ LU ∩ {0, 1}poly(n), since the witness w ∈ RU(y) is of length at most t, it follows that

14

there exists an extractor running in time polynomial in poly(n) · t that extracts the whole witness; we
refer to this as the global proof-of-knowledge property of a universal argument.

In this paper, we use the public-coin four-round universal argument system UA of [BG08] (Figure
3). As observed in [CLP13a], the construction of UA can be separated into an expensive offline stage
and an efficient online stage. In the online stage, the running time of the prover is polynomial in
n, and in the offline stage, the running time of the prover is poly(n + |y| + TM(x,w)). In this paper,
the third message UA3 satisfies |UA3| = n · poly(log |y|) ≤ n2 and the fourth message UA4 satisfies
|UA4| = poly(n).

• Input: The common input of the prover P and the verifier V is y = 〈M, x, t〉 ∈ LU . The
private input of P is w ∈ RU(y).

• Offline Phase:

1. V sends a random hash function h ∈ Hn to P.

2. P generates a PCP-proof π of statement y ∈ LU by using w as a witness. Then P
computes UA2 := h(π). The tuple (h, π,UA2) is called the offline proof.

• Online Phase:

1. P sends UA2 to V .

2. V chooses randomness ρ ∈ {0, 1}n2
for the PCP-verifier and sends UA3 := ρ to P.

3. P computes queries Q by executing the PCP-verifier with statement y ∈ LU and
randomness ρ. Then, P sends UA4 := {(i, πi, σi)}i∈Q to V , where πi is the i-th bit of π
and σi is a certificate that the i-th bit of π is indeed πi.

4. V verifies the correctness of all certificates, and checks whether the PCP-verifier
accepts on input (y, {(i, πi)}i∈Q) with randomness ρ.

Figure 3: Online/offline UA system of [BG08, CLP13a].

4 Our Public-Coin Concurrent Zero-Knowledge Argument

Theorem 1. Assume the existence of one-to-one one-way functions and a family of collision resistant
hash functions. Then, for any constant ε > 0, there exists an O(nε)-round public-coin concurrent
zero-knowledge argument of knowledge cZKAOK.

Proof . cZKAOK is shown in Figure 4, where the following building blocks are used in cZKAOK.

• Perfectly binding non-interactive commitment scheme Com such that each valid commitment
of Com has a unique decommitment. (As noted in Section 3.2, such a commitment scheme can
be constructed from one-to-one one-way functions.)

• Constant-round public-coin witness-indistinguishable proof of knowledge WIPOK.

• Four-round public-coin universal argument UA of [BG08] (Figure 3 in Section 3.4.3).

Clearly, cZKAOK is public-coin and its round complexity is O(nε). Thus, Theorem 1 follows from
the following lemmas.

Lemma 1. cZKAOK is concurrently zero-knowledge.

15

Lemma 2. cZKAOK is argument of knowledge.

Lemma 1 is proven in Section 4.1 and Lemma 2 is proven in Section 4.2.

Input: The input of the prover P is (x,w), where x ∈ L and w ∈ RL(x). The input of the verifier
V is x.

Parameter: An integer Nslot = O(nε).

Stage 1: The verifier V chooses a random hash function h ∈ Hn and sends h to the prover P.

Stage 2: For each i ∈ [Nslot] in sequence, P and V do the following.

1. P computes Ci, j ← Com(0n) for each j ∈ [n]. Then, P sends ~Ci = (Ci,1, . . . ,Ci,n) to
V .

2. V sends random ri ∈ {0, 1}n
2

to P.

Stage 3: P proves the following by using WIPOK.

• x ∈ L, or

• 〈h, ~C1, r1, . . . , ~CNslot , rNslot〉 ∈ Λ1, where language Λ1 is shown in Figure 5.

Figure 4: Public-coin concurrent zero-knowledge argument cZKAOK.

�

Remark 1. The languages Λ2 in Figure 5 is slightly over-simplified and will make cZKAOK work
only when H is collision resistant against poly(T (n))-time adversaries. To make it work assuming
collision resistance against polynomial-time adversaries, one should use a “good” error-correcting
code ECC (i.e., with constant relative distance and with polynomial-time encoding and decoding),
and replacing the condition C = Com(h(Π); R) with C = Com((|ECC(Π)| , h(ECC(Π))); R).

4.1 Concurrent Zero-knowledge Property

Proof of Lemma 1. Let V∗ be a cheating verifier. Without loss of generality, we assume that V∗ is
deterministic. Let m(·) be a polynomial such that V∗ invokes m(n) concurrent sessions. Let q def

= nε/2.
We assume without loss of generality that in the interaction between V∗ and provers, the total number
of messages across all sessions is always the power of q (i.e., it is qd for an integer d). Note that since
the number of messages is polynomially bounded, we have d = logq(poly(n)) = O(1).

4.1.1 Simulator S

Before describing our simulator S, we first introduce blocks. The level-d block is defined to be the
entire transcript of all sessions. Then, for ` ∈ {0, . . . , d − 1}, level-` blocks are defined by dividing
each level-(` + 1) block into q sequential blocks of equal length. Thus, for every ` ∈ {0, . . . , d}, a
level-` block contains q` messages.

We next introduce a subroutine SOLVE, which generates a simulated transcript by recursively
executing itself. (On input ` ∈ [d], SOLVE generates a simulated transcript of a level-` block by
executing itself q times on input ` − 1.) The details of SOLVE is described below.

We give SOLVE an oracle access to O, where O is the oracle that is defined in the definition of
Λ2 (Figure 5). Roughly speaking, we give SOLVE an access to O to avoid the issue of randomness

16

Language Λ1: (statement for WIPOK)

〈h, ~C1, r1, . . . , ~CNslot , rNslot〉 ∈ Λ1 if and only if there exist

• i1, i2 ∈ [Nslot] and j ∈ [n] such that i1 < i2

• the second and fourth UA messages UA2 ∈ {0, 1}n and UA4 ∈ {0, 1}poly(n)

• randomness R ∈ {0, 1}poly(n) for Com

such that

• Ci2, j = Com(UA2; R), and

• (h,UA2, ri2 ,UA4) is an accepting proof of 〈h,Ci1, j, ri1〉 ∈ Λ2.

Language Λ2:

Let T (·) be a slightly super-polynomial function (say, T (n) = nlog log n). Then, 〈h,C, r〉 ∈ Λ2 if
and only if there exist

• an oracle machine Π such that |Π| ≤ T (n)

• a string τ such that |τ| ≤ T (n)

• randomness R ∈ {0, 1}poly(n) for Com

• a string y such that |y| ≤ T (n)

such that

• C = Com(h(Π); R), and

• r is a substring of τ, and

• ΠO outputs τ within T (n) steps, where O is an oracle that receives a commitment of Com
and returns the (unique) decommitment of this commitment, and

• In the execution of ΠO, for every query ρ̃ from Π to O, there exists (ρ̃, ρ, r) ∈ y such that
ρ̃ = Com(ρ; r) (i.e., (ρ, r) is the decommitment of ρ̃).

Figure 5: Languages used in cZKAOK.

17

sketched in Section 2.2.12 Specifically, we give SOLVE only “encrypted randomness” ρ̃, which is a
Com commitment to which true randomness ρ is committed. SOLVE computes the committed value
ρ from ρ̃ by using O and then uses ρ as randomness in the simulation of Com and WIPOK. (When
SOLVE is used in S, oracle O is emulated by S in polynomial time.)

We also give SOLVE the following input (x, z, `, trans,V,W, ρ̃):

• x and z are the input of V∗.

• ` ∈ {0, . . . , d} is an execution level.

• trans ∈ {0, 1}poly(n) is a partial transcript that was simulated so far. The goal of SOLVE is to
simulate subsequent q` messages after trans.

• V = {vs, j}s∈[m], j∈[n] is the values to be committed in Com in the simulation. (In a slot of the s-th
session, vs,1, . . . , vs,n are committed.) Each vs, j is ⊥ if the value to be committed has not been
determined yet.

• W = {ws}s∈[m] is the WIPOK witnesses that are computed so far. Each ws is ⊥ if the witness of
the s-th session has not been computed yet.

• ρ̃ = (ρ̃1, . . . , ρ̃qd) is a vector of “encrypted” randomness (i.e., commitments of Com), where the
randomness decrypted from ρ̃i is used to simulate the i-th messages.

The output of SOLVE is (trans′,W′,Π〈·〉), where trans′ is the simulated messages that are generated
by this execution of SOLVE, W′ is the updated table of the WIPOK witnesses, and Π〈·〉 is a machine
that emulates this execution of SOLVE and outputs trans′.

Given the above input, SOLVE does the following. Below, we use a function car that takes a triple
(a, b, c) as input and outputs a.

SOLVEO(x, z, `, trans,V,W, ρ̃)

• When ` = 0 (the base case), do the following.

– If the next-scheduled message msg is a verifier message, feed (x, z, trans) to V∗ and re-
ceive msg from V∗.

– If the next-scheduled message msg is a prover message, do the following. Let init ∈
[qd] be the index of msg across all sessions (thus, trans contains init − 1 messages).
Parse (ρ̃1, . . . , ρ̃qd) ← ρ̃ and compute the committed value ρinit of ρ̃init by using O. Then,
compute msg as follows with randomness ρinit.

∗ If msg is a message of Com in the s-th session for s ∈ [m], compute the following
for each j ∈ [n].

C j ←
Com(vs, j) if vs, j , ⊥

Com(0n) otherwise

Then, set msg := (C1, . . . ,Cn).
∗ If msg is the first message of WIPOK in the s-th session for s ∈ [m], honestly com-

pute msg by using witness ws. (If ws is not a valid witness, aborts with output stuck.)
If msg is another message of WIPOK, honestly compute msg by reconstructing the
prover state of WIPOK from trans, W, and ρ̃.

12This technique is borrowed from [Goy13].

18

– Output (msg,W,Π〈·〉), whereΠ〈·〉 is a machine that computes car(SOLVE〈·〉(x, z, `, trans,V,W, ρ̃)).

• When ` > 0, do the following.

Step 1: Updating values to be committed. LetΠ〈·〉 be a machine that computes car(SOLVE〈·〉

(x, z, `, trans,V,W, ρ̃)). Then, for every s ∈ [m] such that vs,` = ⊥ holds and the s-th
session has already started in trans, update V by setting vs,` := hs(Π), where hs is the hash
function used in the s-th session.

Step 2: Initializing temporary variables. Let ctrs := 0 and tmps := ⊥ for every s ∈ [m].

Step 3 to Step 2q + 2: For each k ∈ [q], do the following:

Step 2k+ 1: Executing the k-th child-block. Compute

(transk,Wk,Πk)← SOLVEO(x, z, ` − 1, trans,V,W, ρ̃) .

Then, update trans := trans ‖ transk and W := Wk. Let yk be the set of all query-
answer pairs with O during this recursive execution.

Step 2k+ 2: For each s ∈ [m] such that (i) transk includes a slot sl of the s-th session
and (ii) the s-th session has started before transk , do the following.13

Case 1. When ctrs = 0, do the following.
1. Let i1 be the slot-index of slot sl (i.e., i1 ∈ [Nslot] s.t. slot sl is the i1-th slot of

the s-th session). Let (~Ci1 , ri1) denote slot sl, where ~Ci1 = (Ci1,1, . . . ,Ci1,n).
2. Computing offline proof. By using ρ̃ andO, compute the randomness R1 used

for Ci1,`−1. Then, compute PCP-proof πs of statement 〈hs,Ci1,`−1, ri1〉 ∈ Λ2
with witness 〈Πk, transk,R1, yk〉 and compute UA2 := hs(πs).
Comment: SOLVE and S are designed so that the committed value of Ci1,`−1
is Πk, which outputs transk by emulating the recursive execution of SOLVE of
Step 2k + 1.

3. Updating values to be committed. Update V by setting vs,`−1 := hs(πs).
4. Update tmps := (i1, πs,UA2).
5. Update ctrs := ctrs + 1.

Case 2: When ctrs = 1, do the following.
1. Let i2 be the slot-index of slot sl and let (~Ci2 , ri2) denote slot sl, where ~Ci2 =

(Ci2,1, . . . ,Ci2,n).
2. Completing UA. Parse (i1, πs,UA2) ← tmps. Then, compute the fourth UA

message UA4 from offline proof (hs, πs,UA2) and the third UA message ri2 .
3. Let R2 be the randomness used for Ci2,`−1. Then, update W by setting ws :=
〈i1, i2, ` − 1,UA2,UA4,R2〉.
Comment: SOLVE and S are designed so that the committed value of Ci2,`−1
is UA2 = hs(πs).

4. Update ctrs := ctrs + 1.

Step 2q + 3: Output (trans1 ‖ trans2 ‖ · · · ‖ transq,W,Π〈·〉).

With SOLVE, the simulator S is defined as follows.
13We note that if transk includes a slot, we have |transk | ≥ 1 and thus we have ` ≥ 2.

19

S(1n, x, z)

1. For every i ∈ [qd], choose random ρi ∈ {0, 1}n and r ∈ {0, 1}poly(n), and compute ρ̃i :=
Com(ρi; r). Let ρ̃ := (ρ̃1, . . . , ρ̃qd).

2. Let V := {vs, j}s∈[m], j∈[n] and W := {ws}s∈[m], where vs, j = ws = ⊥ for every s ∈ [m] and j ∈ [n].

3. Compute (trans′,W′,Π〈·〉) ← SOLVE〈·〉(x, z, d, ε,V,W, ρ̃), where ε is an empty string. When
SOLVE queries ρ̃ for O, find i such that ρ̃ = Com(ρi; ri) and return (ρi, ri) to SOLVE.14

4. Output trans′.

4.1.2 Running Time of S

Lemma 3. S(x, z) runs in polynomial time.

Proof . We first show that in each execution of SOLVE, for any k ∈ [q], the size of Πk in Step
2k + 1 is bounded by a fixed polynomial in n. From the construction of SOLVE, Πk is a machine that
computes car(SOLVE〈·〉(x, z, `−1, trans,V,W, ρ̃)). Then, since the length of (x, z, `−1,V,W, trans, ρ̃)
is bounded by a fixed polynomial in m, the size of Πk is bounded by a fixed polynomial in m. Thus,
the size of Πk is bounded by a fixed polynomial in n.

We then bound the running time of S as follows. Note that from the constructions of S and
SOLVE, each execution of SOLVE can be uniquely identified by the value of ` and init def

= |trans| + 1.
For ` ∈ {0, . . . , d} and init ∈ [qd], we use SOLVE`,init to denote the execution of SOLVE with input `

and init. Let t`,init be the running time of SOLVE`,init, and let t`
def
= maxinit(t`,init). Note that in every

SOLVE`,init, the running time of the recursive execution of SOLVE in Step 2k + 1 is at most t`−1;
thus, in Step 2k + 2, PCP-proof πs can be computed in time poly(t`−1) and the length of πs is at most
poly(t`−1) for every s ∈ [m]. Note also that every computation in SOLVEt,init can be performed in
fixed polynomial time in n except for the following computations:

Type-1 computation. The recursive executions of SOLVE.

Type-2 computation. The generations of the offline proofs (i.e., PCP-proofs and their hash values).

Each type-1 computation can be performed in time t`−1, and each type-2 computation can be per-
formed in time poly(t`−1). Then, since for each k ∈ [q] there are a single type-1 computation and m
type-2 computations, we have

t` ≤ q · (t`−1 + m · poly(t`−1) + poly(n)) ≤ poly(t`−1)

for any ` ∈ [d]. Then, since we have d = O(1) and t0 = poly(n), we have td = poly(n). Thus, S runs
in polynomial time. �

4.1.3 Indistinguishability of Views

Lemma 4. The output of S(x, z) is computationally indistinguishable from the view of V∗.

Proof . We prove this lemma by considering a sequence of hybrid experiments. Let H0 be the real
execution of V∗ and honest provers. Then, for each i ∈ [qd], we consider the following hybrids. In
what follows, we use SOLVE`,init to denote the execution of SOLVE with input ` and init (see the
proof of Lemma 3).

14From the construction of SOLVE, there must exist such i.

20

Hybrid Hi proceeds identically to the execution of S until the end of the execution of SOLVE0,i. At
this point, the view of V∗ is simulated up until the i-th message across all sessions (inclusive).
Let (msg,W,Π〈·〉) be the output of SOLVE0,i, and let trans be the simulated view of V∗ at this
point (including msg). Then, after SOLVE0,i is executed, the view of V∗ is simulated from
trans as follows: Every message is computed with true randomness (instead of “decrypted”
randomness), every commitment is generated by committing to 0n, every WIPOK that starts
after trans is executed with witness for x ∈ L, and every WIPOK that starts in trans is executed
as in SOLVE (i.e., by reconstructing the prover state). The output of Hi is the simulated view
of V∗.

Note that the output of Hqd is identical to that of S.
To show the indistinguishability between the output of Hi and that of Hi−1 for each i ∈ [qd], we

consider a sequence of intermediate hybrid experiments in which Hi is gradually changed to Hi−1 as
follows.

Hybrid Hi:1 is the same as Hi except that in the execution of SOLVE0,i, the next message msg is
computed with true randomness (instead of the one decrypted from ρ̃i).

Hybrid Hi:2 is the same as Hi:1 except that in the execution of SOLVE0,i, if the next message is Com
commitments, then the commitments are computed as in the honest prover (i.e., C j ← Com(0n)
for every j ∈ [n]).

Hybrid Hi:3 is the same as Hi:2 except that in the execution of SOLVE0,i, if the next message is the
first message of WIPOK, then subsequently all messages in this WIPOK are computed with
witness for x ∈ L.

Before showing the indistinguishability among these intermediate hybrids, we show the following
claim.

Claim 1. In Hqd , S does not output stuck.

Proof . We first introduce notation. Recall that in hybrid Hqd , SOLVE is recursively executed many
times. We use block to denote an execution of SOLVE. A block is in level ` if the corresponding
SOLVE is executed with input `. For each block, the child-blocks of this block are blocks that are
recursively executed by this block; thus, each block has q child-blocks. For any slot of any session,
we say that a block contains this slot if the corresponding execution of SOLVE outputs a transcript
that includes this slot (both the prover and the verifier message). A block is good w.r.t. a session
if this block (i) contains a slot of this session, (ii) begins after this session begins, and (iii) does not
contain the first message of WIPOK of this session.15

From the construction, S does not output stuck if for every session that reaches Stage 3, there
exists a block such that two of its child-blocks are good. (If there exists such a block, Case 2 of Step
2k + 2 is executed in this block for this session and therefore a witness of WIPOK is computed.)

Thus, it remains to show that for every session that reaches Stage 3, there exists a block that has
two good child-blocks. To show this, it suffices to show that for every session that reaches Stage
3, there exists a block that has four child-blocks that contain slots of this session. (If four child-
blocks contain slots, two of them are good since they begin after this session begins and they do
not contain the first message of WIPOK.) Assume for contradiction that there exists a session such

15To simplify the description of our simulator, we use a definition of the good block that is slightly different from that
given in the overview of our technique (Section 2). (Here, we additionally require that the block begins after the session
begins.) We can also use the definition given Section 2 if we modify SOLVE so that the machine that emulates itself is
committed even in the sessions that start after it begins.

21

that every block has at most three child-blocks that contain slots of this session. For ` ∈ {0, . . . , d}
and init ∈ [qd], let Cinit(`) be the number of slots of this session that are contained by the block
corresponding to SOLVE`,init, and let C(`) def

= maxinit(Cinit(`)). Then, since each block contains at
most three child-blocks that contain slots, and since in each block there are at most q−1 slots that are
contained by this block but do not contained by any of its child-block, we have

C(`) ≤ 3C(` − 1) + q − 1 .

Thus, we have

C(d) ≤ 3C(d − 1) + q − 1

≤ 32C(d − 2) + 3(q − 1) + q − 1

≤ · · · ≤ 3dC(0) +
d−1∑
i=0

3i(q − 1)

= 3dC(0) +
1
2

(3d − 1)(q − 1) .

From d = O(1) and C(0) = 0, we have C(d) = O(q). Then, since S outputs the view of V∗ that was
generated by a block of level d, there are at most O(q) = O(nε/2) slots in the simulated view. Then,
since we have Nslot = O(nε), this contradicts to the assumption that the session reaches Stage 3. �

Now, we are ready to show the indistinguishability among the intermediate hybrids.

Claim 2. For every i ∈ [qd], the output of Hi:1 is computationally indistinguishable from that of Hi.

Proof . Recall that Hi:1 differs from Hi in that ρi is replaced with true randomness that is independent
of ρ̃. Note that if we replace ρi with true randomness, we can no longer compute PCP-proofs w.r.t.
SOLVE0,i and any execution of SOLVE that contains SOLVE0,i. However, since in both Hi and Hi:1
no PCP-proof is computed after SOLVE0,i, this causes no problem. Thus, the indistinguishability
follows from the hiding property of Com. �

Claim 3. For every i ∈ [qd], the output of Hi:2 is computationally indistinguishable from that of Hi:1.

Proof . It suffices to consider the case that the next message msg in SOLVE0,i is Com commitments.
Note that both in Hi:1 and Hi:2, the Com commitments are generated with true randomness; further-
more, the committed values of Com and the randomness used in Com are not used anywhere else (in
particular, not used in the PCP generations and WIPOK). Thus, the indistinguishability follows from
the hiding property of Com. �

Claim 4. For every i ∈ [qd], the output of Hi:3 is computationally indistinguishable from that of Hi:2.

Proof . It suffices to consider the case that the next message msg in SOLVE0,i is the first message
of WIPOK. Note that both in Hi:2 and Hi:3, WIPOK are executed with true randomness that is not
used anywhere else; furthermore, from Claim 1, a valid witness is used both in Hi:2 and Hi:3. (Recall
that Hi:2 and Hi:3 proceed identically with Hqd until SOLVE0,i starts.) Thus, the indistinguishability
follows from the witness indistinguishability of WIPOK. �

Claim 5. For every i ∈ [qd], the output of Hi−1 is identically distributed to that of Hi:3.

Proof . Note that in Hi:3, the next message msg in SOLVE0,i is computed in exactly the same way as
in Hi−1. Thus, the claim follows. �

22

From Claims 2, 3, 4, and 5, the output of H0 and that of Hqd are computationally indistinguishable.
This completes the proof of Lemma 4. �

This completes the proof of Lemma 1. �

4.2 Argument of Knowledge Property

As noted in Remark 1, the language Λ2 shown in Figure 5 is slightly over-simplified; in particular,
the argument-of-knowledge property of cZKAOK can be proven only when H is collision resistant
against poly(T (n))-time adversaries.

Below, we prove the argument-of-knowledge property assuming that H is collision resistant
against poly(T (n))-time adversaries. By using a trick shown in [BG08], it is easy to extend this
proof so that it works under the assumption thatH is collision resistant only against polynomial-time
adversaries.

Proof of Lemma 2 (whenH is collision resistant against poly(T (n))-time adversaries). For any cheat-
ing prover P∗, let us consider the following extractor E.

• Given oracle access to P∗, E interacts with P∗ as a honest verifier until the start of Stage 3.
Then, E uses the extractor of WIPOK to extract a witness w.

To show that E outputs a witness of x ∈ L, it suffices to show that w is a witness of 〈h, ~C1, r1, . . . ,
~CNslot , rNslot〉 ∈ Λ1 with at most negligible probability. In the following, we use the word “fake witness”
to denote a witness for 〈h, ~C1, r1, . . . , ~CNslot , rNslot〉 ∈ Λ1. Then, we say that P∗ is bad if E outputs a
fake witness with non-negligible probability. In the following, we show that if there exists a bad
cheating prover, we can break the collision resistance ofH .

We first show the following claim.

Claim 6. For any ITM P, let us consider an experiment Exp1(n, P) in which P interacts with a verifier
V as follows.

1. Interactively generating statement. First, V sends random h ∈ Hn to P. Next, P sends a
commitment C of Com to V, and V sends a random r1 ∈ {0, 1}n

2
to P.

2. Generating UA proof. P sends to V the second UA message UA2 of statement 〈h,C, r1〉 ∈ Λ2,
and V sends to P random r2 ∈ {0, 1}n

2
. Then, P sends to V the fourth UA message UA4.

3. We say that P wins in the experiment if (h,UA2, r2,UA4) is an accepting UA proof for 〈h,C, r1〉 ∈
Λ2.

Then, if there exists a bad P∗, there exists PPT ITM P∗∗ that wins in Exp1(n, P∗∗) with non-negligible
probability.

Proof . From the assumption that P∗ is bad, for infinitely many n we can extract a fake witness from
P∗ with probability at least δ(n) def

= 1/poly(n). In the following, we fix any such n. Then, from an
average argument, there exist i∗1, i

∗
2 ∈ [Nslot] and j∗ ∈ [n] such that with probability at least δ′(n) def

=

δ(n)/n(Nslot)2 > δ(n)/n3, we can extract a fake witness 〈i1, i2, j, . . .〉 such that (i1, i2, j) = (i∗1, i
∗
2, j∗).

Then, we consider the following P∗∗ that participates in Exp1.

1. P∗∗ internally invokes P∗ and interacts with P∗ as a honest verifier of cZKAOK with the follow-
ing exceptions:

• In Stage 1, P∗∗ forwards h from the external V to P∗.

23

• In the i∗1-th slot of Stage 2, P∗∗ forwards Ci∗1, j
∗ from P∗ to the external V and forward r1

from the external V to P∗.

• In Stage 3, P∗∗ extracts a witness w from P∗ by using the extractor of WIPOK.

2. If w is not a fake witness of the form 〈i∗1, i∗2, j∗, . . .〉, P∗∗ aborts with output fail. Otherwise, parse
〈i∗1, i∗2, j∗,UA2,UA4,R〉 ← w. Then, P∗∗ sends UA2 to the external V and receives r2.

3. P∗∗ rewinds the internal P∗ to the point that P∗ had sent Com in the i∗2-th slot. Then, P∗∗ sends
r2 to P∗ as the verifier message of the i∗2-th slot. Then, P∗∗ interacts with P∗ as a honest verifier
and extracts a witness w′ in Stage 3.

4. If w′ is not a fake witness of the form 〈i∗1, i∗2, j∗, . . .〉, P∗∗ aborts with output fail. Otherwise,
parse 〈i∗1, i∗2, j∗,UA′2,UA′4,R

′〉 ← w′. Then, P∗∗ sends UA′4 to the external V .

To analyze the probability that P∗∗ wins in Exp1(n, P∗∗), we first observe the following. Let trans
be the prefix of a transcript of cZKAOK up until the prover-message of the i∗2-th slot (inclusive).
Then, we say that trans is good if under the condition that a prefix of the transcript is trans, a fake
witness of the form 〈i∗1, i∗2, j∗, . . .〉 is extracted from P∗ with probability at least δ′/2. From an average
argument, the prefix of the transcript is good with probability at least δ′/2 when P∗ interacts with a
honest verifier of cZKAOK. Then, since a transcript of cZKAOK is perfectly emulated in Step 1 of
P∗∗, the prefix of the internally emulated transept is good with probability at least δ′/2.

We next observe that under the condition that the prefix of the internally emulated transcript is
good in Step 1 of P∗∗, P∗∗ wins in Exp1(n, P∗∗) with probability at least (δ′/2)2−negl(n). This follows
from the following. First, from the definition of good prefix, both w and w′ are fake witnesses of the
form 〈i∗1, i∗2, j∗, . . .〉 with probability at least (δ′/2)2. Next, when w and w′ are fake witnesses, both
UA2 and UA′2 are the committed values of Ci∗2, j

∗ and thus we have UA2 = UA′2 except with negligible
probability; thus, when w and w′ are fake witnesses, (h,UA2, r2,UA′4) is an accepting UA proof except
with negligible probability.

Thus, by combining the above two observations, we conclude that the probability that P∗∗ wins
in Exp1(n, P∗∗) is at least

δ′

2

(δ′2
)2

− negl(n)

 ≥ 1
poly(n)

.

�

Next, we show the following claim.

Claim 7. For any ITM E∗, let us consider an experiment Exp2(n, E∗) in which E∗ interacts with a
verifier V as follows.

1. Interactively generating statement. This step is the same as Exp1, where E∗ plays as P. Let
〈h,C, r1〉 be the interactively generated statement.

2. Outputting witness. E outputs w = 〈Π, τ,R, y〉. We say that E wins in the experiment if w is a
valid witness of 〈h,C, r1〉 ∈ Λ2.

Then, if there exists PPT ITM P∗∗ that wins in Exp1(n, P∗∗) with non-negligible probability, there
exists poly(T)-time ITM E∗ that wins in Exp2(n, E∗) with non-negligible probability.

24

Proof . We first note that the extractor of UA works even when the statement is interactively gener-
ated after h is sent. This is because the extractor of UA extracts a witness by first emulating honest
execution till the end and then restarting the execution from the second verifier message. Thus, by
simply using the extractor of UA for P∗∗, we obtain E∗ that outputs a valid witness of 〈h,C, r〉 ∈ Λ2
with non-negligible probability. Note that since the running time of the global extractor of UA is
poly(T (n)), the running time of E∗ is also poly(T (n)). �

Finally, we reach a contradiction by showing that given E∗ described in Claim 7, we can break
the collision-resistance property ofH .

Claim 8. If there exists poly(T)-time ITM E∗ that wins in Exp2(n, E∗) with non-negligible probability,
there exists poly(T)-time machineA that breaks the collision-resistance property ofH .

Proof . We consider the followingA.

1. Given h ∈ H , A internally invokes E∗ and emulates Exp2(n, E∗) for E∗ perfectly except that
A forwards h to E∗ in Step 1. Let 〈h,C, r〉 and w be the statement and the output of E∗ in this
emulated experiment.

2. If w is not a valid witness of 〈h,C, r〉 ∈ Λ2, A aborts with output fail. Otherwise, parse
〈Π, τ,R, y〉 ← w.

3. A rewinds E∗ to the point that E∗ had sent C, and from this pointA emulates Exp2(n, E∗) again
with flesh randomness. Let 〈h,C, r′1〉 be the statement and w′ be the witness in this emulated
experiment.

4. If w′ is not a valid witness of 〈h,C, r′1〉 ∈ Λ2, A aborts with output fail. Otherwise, let
〈Π′, τ′,R′, y′〉 ← w′.

5. Then,A outputs (Π,Π′) if Π , Π′ and h(Π) = h(Π′). Otherwise,A outputs fail.

We first show that both w and w′ are valid witnesses with non-negligible probability. Note that for
infinitely many n, E∗ outputs a valid witness in Exp2(n, E∗) with probability ε def

= 1/poly(n). In the
following, we fix any such n. Let trans be the prefix of a transcript of Exp2(n, E∗) up until E∗ sends
C (inclusive). Then, we say that trans is good if under the condition that a prefix of the transcript is
trans, E∗ outputs a valid witness with probability at least ε/2. Then, from an average argument, the
prefix of the internally emulated transcript is good with probability at least ε/2. Thus, w and w′ are
valid witnesses with probability at least (ε/2)(ε/2)2 = (ε/2)3.

Next, we show that when A obtains two valid witnesses w = 〈Π, τ,R, y〉 and w′ = 〈Π′, τ′,R′, y′〉,
we have Π , Π′ and h(Π) = h(Π′) except with negligible probability. First, from the binding property
of Com, we have h(Π) = h(Π′) except with negligible probability. (Recall that from the condition
that w and w′ are valid witnesses, we have Com(h(Π); R) = Com(h(Π′); R′) = C.) Next, since r is a
substring of τ and r′ is a substring of τ′, we have τ , τ′ except with negligible probability. (If τ = τ′

holds, r′ is a substring of τ′ with probability at most T (n)/2n = negl(n) since r′ is chosen at random
after τ is determined.) Then, since ΠO always outputs τ and Π′O always outputs τ′, we conclude that
we have Π , Π′ except with negligible probability. (Recall that for each query to O, the reply is
uniquely determined.)

From the above two observations, we conclude thatA breaks the collision-resistance property of
H . �

From Claims 6, 7, and 8, we conclude that there exists no bad P∗. Thus, the extractor E outputs a
witness of x ∈ L except with negligible probability. �

25

5 Acknowledgment

I greatly thank the anonymous reviewers of TCC 2015 for pointing out an error I made in an earlier
version of this paper. Their comments also help me to improve the presentation of this paper.

References

[Bar01] Boaz Barak. How to go beyond the black-box simulation barrier. In FOCS, pages 106–
115, 2001.

[BG08] Boaz Barak and Oded Goldreich. Universal arguments and their applications. SIAM J.
Comput., 38(5):1661–1694, 2008.

[BP12] Nir Bitansky and Omer Paneth. From the impossibility of obfuscation to a new non-black-
box simulation technique. In FOCS, pages 223–232, 2012.

[BP13] Nir Bitansky and Omer Paneth. On the impossibility of approximate obfuscation and
applications to resettable cryptography. In STOC, pages 241–250, 2013.

[CKPR02] Ran Canetti, Joe Kilian, Erez Petrank, and Alon Rosen. Black-box concurrent zero-
knowledge requires (almost) logarithmically many rounds. SIAM J. Comput., 32(1):1–47,
2002.

[CLP13a] Ran Canetti, Huijia Lin, and Omer Paneth. Public-coin concurrent zero-knowledge in the
global hash model. In TCC, pages 80–99, 2013.

[CLP13b] Kai-Min Chung, Huijia Lin, and Rafael Pass. Constant-round concurrent zero knowledge
from P-certificates. In FOCS, pages 50–59, 2013.

[COP+14] Kai-Min Chung, Rafail Ostrovsky, Rafael Pass, Muthuramakrishnan Venkitasubrama-
niam, and Ivan Visconti. 4-round resettably-sound zero knowledge. In TCC, pages 192–
216, 2014.

[DNS04] Cynthia Dwork, Moni Naor, and Amit Sahai. Concurrent zero-knowledge. J. ACM,
51(6):851–898, 2004.

[GK96] Oded Goldreich and Hugo Krawczyk. On the composition of zero-knowledge proof sys-
tems. SIAM J. Comput., 25(1):169–192, 1996.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of
interactive proof systems. SIAM J. Comput., 18(1):186–208, 1989.

[GMW91] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but their
validity or all languages in NP have zero-knowledge proof systems. J. ACM, 38(3):691–
729, 1991.

[Gol01] Oded Goldreich. Foundations of Cryptography: Volume 1, Basic Tools. Cambridge Uni-
versity Press, August 2001.

[Goy13] Vipul Goyal. Non-black-box simulation in the fully concurrent setting. In STOC, pages
221–230, 2013.

[KP01] Joe Kilian and Erez Petrank. Concurrent and resettable zero-knowledge in poly-
loalgorithm rounds. In STOC, pages 560–569, 2001.

26

[Mic00] Silvio Micali. Computationally sound proofs. SIAM J. Comput., 30(4):1253–1298, 2000.

[PPS13] Omkant Pandey, Manoj Prabhakaran, and Amit Sahai. Obfuscation-based non-black-
box simulation and four message concurrent zero knowledge for NP. Cryptology ePrint
Archive, Report 2013/754, 2013. http://eprint.iacr.org/.

[PR05] Rafael Pass and Alon Rosen. New and improved constructions of non-malleable crypto-
graphic protocols. In STOC, pages 533–542, 2005.

[PRS02] Manoj Prabhakaran, Alon Rosen, and Amit Sahai. Concurrent zero knowledge with log-
arithmic round-complexity. In FOCS, pages 366–375, 2002.

[PRT13] Rafael Pass, Alon Rosen, and Wei-Lung Dustin Tseng. Public-coin parallel zero-
knowledge for NP. J. Cryptology, 26(1):1–10, 2013.

[PTW09] Rafael Pass, Wei-Lung Dustin Tseng, and Douglas Wikstrm. On the composition of
public-coin zero-knowledge protocols. In CRYPTO, pages 160–176, 2009.

[RK99] Ransom Richardson and Joe Kilian. On the concurrent composition of zero-knowledge
proofs. In EUROCRYPT, pages 415–431, 1999.

27

