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Abstract

Oblivious RAM (ORAM) is a cryptographic primitive that allows a trusted CPU to securely
access untrusted memory, such that the access patterns reveal nothing about sensitive data.
ORAM is known to have broad applications in secure processor design and secure multi-party
computation for big data. Unfortunately, due to a well-known logarithmic lower bound by
Goldreich and Ostrovsky (Journal of the ACM, ’96), ORAM is bound to incur a moderate cost
in practice. In particular, with the latest developments in ORAM constructions, we are quickly
approaching this limit, and the room for performance improvement is small.

In this paper, we consider new models of computation in which the cost of obliviousness
can be fundamentally reduced in comparison with the standard ORAM model. We propose
the Oblivious Network RAM model of computation, where a CPU communicates with multiple
memory banks, such that the adversary observes only which bank the CPU is communicating
with, but not the address offset within each memory bank. In other words, obliviousness within
each bank comes for free—either because the architecture prevents a malicious party from ob-
serving the address accessed within a bank, or because another solution is employed to obfuscate
memory accesses within each bank—and hence we only need to obfuscate the communication
patterns between the CPU and the memory banks. We present several new constructions for
obliviously simulating general or parallel programs in the Network RAM model. We describe
applications of the Network RAM model in secure processor design and in distributed storage
applications with a network adversary.

1 Introduction

Oblivious RAM (ORAM), introduced by Goldreich and Ostrovsky [18,19], allows a trusted CPU (or
a trusted computational node) to obliviously access untrusted memory (or storage) during computa-
tion, such that an adversary cannot gain any sensitive information by observing the data access pat-
terns. Although the community initially viewed ORAM mainly from a theoretical perspective, there
has recently been an upsurge in research on both new efficient algorithms (c.f. [8,13,22,39,43,47,50])
and practical systems [9,11,12,21,33,38,41,42,48,52] for ORAM. Still the most efficient ORAM im-
plementations [10,41,43] require a relatively large bandwidth blowup, and part of this is inevitable
in the standard ORAM model. Fundamentally, a well-known lower bound by Goldreich and Ostro-
vsky states that any ORAM scheme with constant CPU cache must incur at least Ω(logN) blowup,
where N is the number of memory words, in terms of bandwidth and runtime. To make ORAM
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techniques practical in real-life applications, we wish to further reduce its performance overhead.
However, since latest ORAM schemes [43,47] have practical performance that approaches the limit
of the Goldreich-Ostrovsky lower bound, the room for improvement is small in the standard ORAM
model. In this paper, we investigate the following question:

In what alternative, realistic models of computation can we significantly lower the cost of oblivious
data accesses?

Motivated by practical applications, we propose the Network RAM (NRAM) model of compu-
tation and correspondingly, Oblivious Network RAM (O-NRAM). In this new model, one or more
CPUs interact with M memory banks during execution. Therefore, each memory reference includes
a bank identifier, and an offset within the specified memory bank. We assume that an adversary
cannot observe the address offset within a memory bank, but can observe which memory bank the
CPU is communicating with. In other words, obliviousness within each bank “comes for free”. Un-
der such a threat model, an Oblivious NRAM (O-NRAM) can be informally defined as an NRAM
whose observable memory traces (consisting of the bank identifiers for each memory request) do not
leak information about a program’s private inputs (beyond the length of the execution). In other
words, in an O-NRAM, the sequence of bank identifiers accessed during a program’s execution must
be provably obfuscated.

1.1 Practical Applications

The NRAM and O-NRAM models of computation are motivated by two primary application do-
mains:

• Secure processor architecture. Today, secure processor architectures [1,12,33,38,44,45] are
designed assuming that the memory system is passive and untrusted. In particular, an adversary
can observe both memory contents and memory addresses during program execution. To secure
against such an adversary, the trusted CPU must both encrypt data written to memory, and
obfuscate memory access patterns.

Our new O-NRAM model provides a realistic alternative that has been mentioned in the archi-
tecture community [33, 34] and was inspired by the Module Parallel Computer (MPC) model
of Melhorn and Vishkin [35]. The idea is to introduce trusted decryption logic on the memory
DIMMs (for decrypting memory addresses). This way, the CPU can encrypt the memory ad-
dresses before transmitting them over the insecure memory bus. In contrast with traditional
passive memory, we refer to this new type of memory technology as active memory. In a simple
model where a CPU communicates with a single active memory bank, obliviousness is automati-
cally guaranteed, since the adversary can observe only encrypted memory contents and addresses.
However, when there are multiple such active memory banks, we must obfuscate which memory
bank the CPU is communicating with.

• Distributed storage with a network adversary. Consider a scenario where a client (or
a compute node) stores private, encrypted data on multiple distributed storage servers. We
consider a setting where all endpoints (including the client and the storage servers) are trusted,
but the network is an untrusted intermediary. In practice, trust in a storage server can be
bootstrapped through means of trusted hardware such as the Trusted Platform Module (TPM)
or as IBM 4758; and network communication between endpoints can be encrypted using standard
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SSL. Trusted storage servers have also been built in the systems community [3]. On the other
hand, the untrusted network intermediary can take different forms in practice, e.g., an untrusted
network router or WiFi access point, untrusted peers in a peer-to-peer network such as Bitcoin
or TOR, or packet sniffers in the same local area network. Achieving oblivious data access
against such a network adversary is precisely captured by our O-NRAM model.

1.2 Results and Contributions

We introduce the Oblivious Network RAM model, and we conduct the first systematic study to
understand the “cost of obliviousness” in this model. We consider running both sequential programs
and parallel progams in this new setting. We propose novel algorithms capable of exploiting the
“free obliviousness” within each bank, such that the cost of obliviousness is significantly lower in
comparison with the standard Oblivious (Parallel) RAMs. We give a summary of our results below.

First, observe that if there are only O(1) number of memory banks, there is a trivial solution
with O(1) cost: just make one memory access (real or dummy) to each bank for each step of
execution. On the other hand, if there are Ω(N) memory banks each of constant size (where N
denotes the total number of memory words), then the problem approaches standard ORAM [18,19]
or OPRAM [7]. The intermediate parameters are therefore the most interesting. For simplicity, in
this section, we mainly state our results for the most interesting case when the number of banks
M = O(

√
N), and each bank can store up to O(

√
N) words. In Sections 3, 4 and 5, our results

will be stated for more general parameter choices.
We now state our main results. An overview of our results is also provided in Table 1.

“Sequential-to-sequential” compiler. First, we show that any RAM program can be obliviously
simulated on a Network RAM, consuming only O(1) words of local CPU cache, with Ô(logN)
blowup in both runtime and bandwidth, where–throughout the paper–when we say the complexity
of our scheme is Ô(f(N)), we mean that for any choice of h(N) = ω(f(N)), our scheme attains
complexity g(N) = O(h(N)). Further, when the RAM program has Ω(log2N) memory word size,
it can be obliviously simulated on Network RAM with only Ô(1) bandwidth blowup (assuming
non-uniform memory word sizes as used by Stefanov et al. in [42]).

In comparison, the best known (constant CPU cache) ORAM scheme has roughly Ô(logN)
bandwidth blowup for Ω(log2N) memory word size [47]. For smaller memory words, the best
known ORAM scheme has O(log2 / log logN) blowup in both runtime and bandwidth [26].

“Parallel-to-sequential” compiler. We demonstrate that parallelism can facilitate oblivious-
ness, by showing that programs with a “sufficient degree of parallelism” – specifically, programs
whose degree of parallelism P = ω(M logN) – can be obliviously simulated in the Network RAM
model with only O(1) blowup in runtime and bandwidth. Here, we consider parallelism as a prop-
erty of the program, but are not in fact executing the program on a parallel machine. The overhead
stated above is for the sequential setting, i.e., considering that both the NRAM and the O-NRAM
has a single processor.

“Parallel-to-parallel” compiler. Finally, we consider oblivious simulation in the parallel setting.
We show that for any parallel program executing in t parallel-steps with P = M1+δ processors,
we can obliviously simulate the program on a Network PRAM with P ′ = O(P/ log∗ P ) processors,
running in time O(t log∗ P ) time, thereby achieving O(log∗ P ) blowup in parallel runtime and
bandwidth, and optimal total work. In comparison, the best known OPRAM scheme has poly logN
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Setting RAM to O-NRAM blowup c.f. Best known ORAM blowup

Sequential-to-sequential compiler

W =small Ô(logN) O(log2N/ log logN) [26]

W = Ω(log2N)
bandwidth: Ô(1) bandwidth: Ô(logN) [47]

runtime: Ô(logN) runtime: O(log2N/ log logN) [26]

W = Ω(N ε) Ô(1) Ô(logN) [47]

Parallel-to-sequential compiler

ω(M logN)-parallel O(1) Same as standard ORAM

Parallel-to-parallel compiler

M1+δ-parallel
O(log∗N)

best known: poly logN [7]
for any const δ > 0 lower bound: Ω(logN)

Table 1: A systematic study of “cost of obliviousness” in the Network ORAM model.
W denotes the memory word size in # bits, N denotes the total number of memory words, and
M denotes the number of memory banks. For simplicity, this table assumes that M = O(

√
N),

and each bank has O(
√
N) words. Like implicit in existing ORAM works [19, 26], small word size

assumes at least logN bits per word—enough to store a virtual address of the word.

blowup in parallel runtime and bandwidth,

1.3 Technical Highlights

Our most interesting technique is in constructing the parallel-to-parallel compiler. We achieve this
through an intermediate stepping stone where we first construct a parallel-to-sequential compiler
(which may be of independent interest).

At a high level, the idea is to assign each virtual address to a pseudorandom memory bank
(and this assignment stays the same during the entire execution). Suppose that a program is
sufficiently parallel such that it always makes memory requests in P = ω(M logN)-sized batches.
For now, assume that all memory requests within a batch operate on distinct virtual addresses
– if not we can leverage a hash table to suppress duplicates, using an additional “scratch” bank
as the CPU’s working memory. Then, clearly each memory bank will in expectation serve P/M
requests for each batch. With a simple Chernoff bound, we can conclude that each memory bank
will serve O(P/M) + f(N), for any f(N) ∈ ω(logN) requests for each batch, except with negligible
probability. In a sequential setting, we can easily achieve O(1) bandwidth and runtime blowup: for
each batch of memory requests, the CPU will sequentially access each bank O(P/M) + f(N), for
any f(N) ∈ ω(logN) number of times, padding with dummy accesses if necessary (see Section 4).

However, additional difficulties arise when we try to execute the above algorithm in parallel. In
each step, there is a batch of P memory requests, one coming from each processor. However, each
processor cannot perform its own memory request, since the adversary can observe which processor
is talking to which memory bank and can detect duplicates (note this problem did not exist in the
sequential case since there was only one processor). Instead, we wish to
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1. “sort” the memory requests according to their corresponding banks while suppressing dupli-
cates; and

2. pad the number of accesses to each bank to a worst-case maximum – as mentioned earlier, if
we suppressed duplicate addresses, each bank has P/M + ω(logN) requests with probability
1− negl(N).

At this point, we can assign processors to the memory requests in a round-robin manner,
such that which processor accesses which bank is “fixed”. Now, to achieve the above two tasks
in O(log∗ P ) parallel time, we need to employ non-trivial parallel algorithms for “colored com-
paction” [4] and “static hashing” [5, 17], while using a scratch bank as working memory (see Sec-
tion 5).

1.4 Related Work

ORAM: the theory. Oblivious RAM (ORAM) was first proposed in a seminal work by Gol-
dreich and Ostrovsky [18, 19] where they laid a vision of employing an ORAM-capable secure
processor to protect software against piracy. In their work, Goldreich and Ostrovsky showed both
a poly-logarithmic upper-bound (commonly referred to as the hierarchical ORAM framework) and
a logarithmic lower-bound for ORAM—both under constant CPU cache. Goldreich and Ostro-
vsky’s hierarchical construction was improved in several subsequent works [6, 20, 22, 26, 36, 49–51].
Recently, Shi et al. proposed a new, tree-based paradigm for constructing ORAMs [39], thus leading
to several new constructions that are conceptually simple and practically efficient [8,13,43,47]. No-
tably, Circuit ORAM [47] partially resolved the tightness of the Goldreich-Ostrovsky lower bound,
by showing that certain stronger interpretations of their lower bound are indeed tight.

Theoretically, the best known ORAM scheme (with constant CPU cache) for small O(logN)-
sized memory words1 is a construction by Kushilevitz et al. [26], achieving O(log2N/ log logN)
bandwidth and runtime blowup. Path ORAM (variant with O(1) CPU cache [48]) and Circuit
ORAM can achieve better bounds for bigger memory words. For example, Circuit ORAM achieves
O(logN)ω(1) bandwidth blowup for a word size of Ω(log2N) bits; and for O(logN)ω(1) runtime
blowup for a memory word size of N ε bits where 0 < ε < 1 is any constant within the specified
range.

ORAMs with larger CPU cache sizes (caching up to Nα words for any constant 0 < α < 1)
have been suggested for cloud storage outsouring applications [20,42,51]. In this setting, Goodrich
and Mitzenmacher [20] first showed how to achieve O(logN) bandwidth and runtime blowup.

Other than secure processors and cloud outsourcing, ORAM is also noted as a key primi-
tive for scaling secure multi-party computation to big data [23, 29, 47, 48]. In this context, Wang
et al. [47, 48] pointed out that the most relevant ORAM metric should be the circuit size rather
than the traditionally considered bandwidth metrics. In the secure computation context, Lu and
Ostrovsky [30] proposed a two-server ORAM scheme that achieves O(logN) runtime blowup. Sim-
ilarly, ORAM can also be applied in other RAM-model cryptographic primitives such as (reusable)
Garbled RAM [14–16,31,32].

Recently, Boyle, Chung and Pass [7] proposed the notion of Oblivious Parallel RAM, and
presented a construction for oblivious simulation of PRAMs in the PRAM model. Our result is

1Every memory word must be large enough to store the logical memory address.
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incomparible to their result: Our security model is weaker than theirs since we assume obliviousness
within each memory bank comes for free; on the other hand, we obtain far better asymptotical and
concrete performance. Goodrich and Mitzenmacher [20] observed that computational tasks that can
be expressed in the streaming map-reduce model can be transformed into efficient oblivious coun-
terparts in the standard (sequential) RAM model. Like Goodrich and Mitzenmacher, we consider
how programs with inherent parallelism can be transformed into efficient, oblivious counterparts in
the sequential setting—but our techniques apply to the NRAM model of computation.

ORAM: implementations. Path ORAM [43] and variants [10] enabled the first ORAM-capable
secure processors to be prototyped [9, 11, 12, 33, 34, 38]. Several notable implementation have been
endeavored [40,41,51,52] for cloud outsourcing applications. Recent efforts have also implemented
ORAMs in a secure computation context [23,48]. Circuit ORAM is currently the scheme of choice
in the secure computation context [47]. Liu, Hicks, and Shi [28] were the first to apply programming
language techniques to the problem of oblivious program execution. Their vision of memory-trace
oblivious program execution was subsequently implemented both on an ORAM-capable secure
processor backend [27], and on a secure computation backend [29].

2 Definitions

2.1 Background: Random Access Machines (RAM)

We consider RAM programs to be interactive stateful systems 〈Π, state, D〉, consisting of a memory
array D of N memory words, a CPU state denoted state, and a next instruction function Π which
given the current CPU state and a value rdata read from memory, outputs the next instruction I
and an updated CPU state denoted state′:

(state′, I)← Π(state, rdata)

Each instruction I is of the form I = (op, . . .), where op is called the op-code whose value is read,
write, or stop. The initial CPU state is set to (start, ∗, stateinit). Upon input x, the RAM machine
executes, computes output z and terminates. CPU state is reset to (start, ∗, stateinit) when the
computation on the current input terminates.

On input x, the execution of the RAM proceeds as follows. If state = (start, ∗, stateinit), set
state := (start, x, stateinit), and rdata := 0. Now, repeat the doNext() till termination, where
doNext() is defined as below:

doNext()

1. Compute (I, state′) = Π(state, rdata). Set state := state′.

2. If I = (stop, z) then terminate with output z.

3. If I = (write, vaddr,wdata) then set D[vaddr] := wdata.

4. If I = (read, vaddr,⊥) then set rdata := D[vaddr].

2.2 Network RAM (NRAM)

Nework RAM. A Network RAM (NRAM) is the same as a regular RAM, except that memory
is distributed across multiple banks, Bank1, . . . ,BankM . In an NRAM, every virtual address vaddr
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can be written in the format vaddr := (m, offset), where m ∈ [M ] is the bank identifier, and offset
is the offset within the Bankm . Otherwise, the definition of NRAM is identical to the definition of
RAM.

Probablistic NRAM. Similar to the probablistic RAM notion formalized by Goldreich and Os-
trovsky [18, 19], we additionally define a probablistic NRAM. A probablistic NRAM is an NRAM
whose CPU state is initialized with randomness ρ (that is unobservable to the adversary). If an
NRAM is deterministic, we can simply assume that the CPU’s initial randomness is fixed to ρ := 0.
Therefore, a deterministic NRAM can be considered as a special case of a probablistic NRAM.

Outcome of execution. Throughout the paper, we use the notation RAM(x) or NRAM(x) to
denote the outcome of executing a RAM or NRAM on input x. Similarly, for a probablistic NRAM,
we use the notation NRAMρ(x) to denote the outcome of executing on input x, when the CPU’s
initial randomness is ρ.

2.3 Oblivious Network RAM (O-NRAM)

Observable traces. To define Oblivious Network RAM, we need to first specify which part of
the memory trace an adversary is allowed to observe during a program’s execution. As mentioned
earlier in the introduction, each memory bank has trusted logic for encrypting and decrypting the
memory offset. The offset within a bank is transferred in encrypted format on the memory bus.
Hence, for each memory access op := “read” or op := “write” to virtual address vaddr := (m, offset),
the adversary observes only the op-code op and the bank identifier m, but not the offset within the
bank.

Definition 1 (Observable traces). For a probabilistic NRAM, we use the notation Trρ(NRAM, x)
to denote its observable traces upon input x, and initial CPU randomness ρ:

Trρ(NRAM, x) := {(op1,m1), (op2,m2), . . . , (opT ,mT )}

where T is the total execution time of the NRAM, and (opi,mi) is the op-code and memory bank
identifier during step i ∈ [T ] of the execution.

We remark that one can consider a slight variant model where the opcodes {opi}i∈[T ] are also
hidden from the adversary. Since to hide whether the operation is a read or write, one can simply
perform one read and one write for each operation – the differences between these two models
are insignificant for technical purposes. Therefore, in this paper, we consider the model whose
observable traces are defined in Definition 1).

Oblivious Network RAM. Intuitively, an NRAM is said to be oblivious, if for any two inputs x0
and x1 resulting in the same execution time, their observable memory traces are computationally
indistinguishable to an adversary.

For simplicity, we define obliviousness for NRAMs that run in deterministic T time regardless of
the inputs and the CPU’s initial randomness. One can also think of T as the worst-case execution
time, and that the program is always padded to the worst-case execution time. Oblivious NRAM
can also be similarly defined when its runtime is randomized – however we omit the definition in
this paper.
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Definition 2 (Oblivious Network RAM). Consider an NRAM that runs in deterministic time
T = poly(λ). The NRAM is said to be computationally oblivious if no polynomial-time adversary A
can win the following security game with more than 1

2 + negl(λ) probability. Similarly, the NRAM
is said to be statistically oblivious if no adversary, even computationally unbounded ones, can win
the following game with more than 1

2 + negl(λ) probability.

• A chooses two inputs x0 and x1 and submits them to a challenger.

• The challenger selects ρ ∈ {0, 1}λ, and a random bit b ∈ {0, 1}. The challenger executes
NRAM with initial randomness ρ and input xb for exactly T steps, and gives the adversary
Trρ(NRAM, xb).

• A outputs a guess b′ of b, and wins the game if b′ = b.

2.4 Notion of Simulation

Definition 3 (Simulation). We say that a deterministic RAM := 〈Π, state, D〉 can be correctly
simulated by another probabilistic NRAM := 〈Π′, state′, D′〉 if for any input x for any initial CPU
randomness ρ, RAM(x) = NRAMρ(x). Moreover, if NRAM is oblivious, we say that NRAM is an
oblivious simulation of RAM.

Below, we explain some subtleties regarding the model, and define the metrics for oblivious
simulation.

Uniform vs. non-uniform memory word size. The O-NRAM simulation can either employ
uniform memory word size or non-uniform memory word size. For example, the non-uniform word
size model has been employed for recursion-based ORAMs in the literature [43, 47]. In particular,
Stefanov et al. describe a parametrization trick where they use a smaller word size for position
map levels of the recursion [43].

Metrics for simulation overhead. In the ORAM literature, several performance metrics have
been considered. To avoid confusion, we now explicitly define two metrics that we will adopt later.
If an NRAM correctly simulates a RAM, we can quantify the overhead of the NRAM using the
following metrics.

• Runtime blowup. If a RAM runs in time T , and its oblivious simulation runs in time T ′,
then the runtime blowup is defined to be T ′/T . This notion is adopted by Goldreich and
Ostrovsky in their original ORAM paper [18,19].

• Bandwidth blowup. If a RAM transfers Y bits between the CPU and memory, and its
oblivious simulation transfers Y ′ bits, then the bandwidth blowup is defined to be Y ′/Y .
Clearly, if the oblivious simulation is in a uniform word size model, then bandwidth blowup
is equivalent to runtime blowup. However, bandwidth blowup may not be equal to runtime
blowup in a non-uniform word size model.

In this paper, we consider oblivious simulation of RAMs in the NRAM model, and we focus on
the case when the Oblivious NRAM has only O(1) words of CPU cache.
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3 Sequential Oblivious Simulation

We first consider oblivious simulation of arbitrary RAMs in the NRAM model.

3.1 First Attempt: Oblivious NRAM with O(M) CPU Cache

Let M denote the number of memory banks in our NRAM, where each bank has O(N/M) capacity.
We first describe a simple Oblivious NRAM with O(M) CPU private cache. Under a non-uniform
memory word size model, Our O-NRAM construction achieves O(1) bandwidth blowup under
Ω(log2N) memory word size. Later, in Section 3.2, we will describe how to reduce the CPU cache
to O(1) by introducing an additional scratch memory bank of O(M) in size. In particular, an
interesting parametrization point is when M = O(

√
N).

Our idea is inspired by the partition-based ORAM idea described by Stefanov, Shi, and Song [42].
For simplicity, Like many earlier ORAM works [19, 39], we focus on presenting the algorithm for
making memory accesses, namely the Access algorithm. A description of the full O-NRAM construc-
tion is apparent from the Access algorithm: basically, the CPU interleaves computation (namely,
computing the next-instruction function Π) with the memory accesses.

CPU private cache. The CPU needs to maintain the following metadata:

• A position map that stores which bank each memory word currently resides in. We use the
notation position[vaddr] to denote the bank identifier for the memory word at virtual address
vaddr. Although storing the position map takes O(N logM) bits of CPU cache, we will later
describe a recursion technique [39,42] that can reduce this storage to O(1); and

• An eviction cache consisting of M queues. The queues are used for temporarily buffering
memory words before they are obliviously written back to the memory banks. Each queue
m ∈ [M ] can be considered as an extension of the m-th memory bank. The eviction cache is
O(M) + f(N), for any f(N) = ω(logN) in size. For now, consider that the eviction cache is
stored in the CPU cache, such that accesses to the eviction cache do not introduce memory
accesses. Later in Section 3.2, we will move the eviction cache to a separate scratch bank – it
turns out that to do this, there is a small technicality that requires us to use a deamortized
Cuckoo hash table [2].

Memory access operations. Figure 1 describes the algorithm for making a memory access. To
access a memory word identified by virtual address vaddr, the CPU first looks up the position
map m := position[vaddr] to find the bank identifier m where the memory word vaddr currently
resides. Then, the CPU fetches the memory word vaddr from the bank m. Since the set of vaddr’s
stored in any bank may be discontiguous, we first assume that each bank implements a hash table
such that one can look up each memory location by its vaddr. Later, we will describe how to
instantiate this hash table (Theorem 1). After fetching the memory word vaddr, the CPU assigns
it to a fresh random bank m̃. However, to avoid leaking information, the memory word is not
immediately written back to the bank m̃. Instead, recall that the CPU maintains M queues for
buffering memory words before write-back. At this point, the memory word at address vaddr is
added to queue[m̃] — signifying that the memory word vaddr is scheduled to be written back to
Bankm̃ .
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Access(op, vaddr,wdata):

1: m̃ ← UniformRandom(1 . . .M)
2: m := position[vaddr], position[vaddr] := m̃
3: if word at vaddr is in queue[m] then
4: rdata := queue[m].ReadAndRm(vaddr)
5: ReadBank(m,⊥)
6: else
7: queue[m].ReadAndRm(⊥)

/* Dummy operation, needed when the eviction queues are stored in a scratch bank, see Section 3.2 */

8: rdata := ReadBank(m, vaddr)
/* Each bank implements a hash table with good worst-case cost (Theorem 1). */

9: end if
10: if op = read then wdata := rdata
11: queue[m̃] := queue[m̃].push(vaddr,wdata)
12: Call SeqEvict(ν)
13: return rdata

Figure 1: Algorithm for data access. Read or write a memory word identified by vaddr. If
op = read, the input parameter wdata = None, and the Access operation returns the newly fetched
word. If op = write, the Access operation writes the specified wdata to the memory word identified
by vaddr, and returns the old value of the word at vaddr.

Background eviction. To prevent the CPU’s eviction queues from overflowing, a background
eviction process obliviously evicts words from the queues back to the memory banks. One possible
eviction strategy is that, on each data access, the CPU chooses ν = 2 queues for eviction – by
sequentially cycling through the queues. When a queue is chosen for eviction, an arbitrary block is
popped from the queue and written back to the corresponding memory bank. If the chosen queue
is empty, a dummy block is evicted to prevent leaking information. Stefanov et al. proved that
such an eviction process is fast enough so that the CPU’s eviction cache load is bounded by O(M)
except with negligible probability [42] – assuming that M = ω(logN).

Lemma 1. The CPU’s eviction cache is bounded by O(M)+f(N), for any f(N) = ω(logN) words
except with negl(N) probability.

Proof. The proof follows from Stefanov et al. [42], and is a straightforward application of Chernoff
bound.

Instantiating the per-bank hash table. In Figures 1 and 2, we assume that each bank imple-
ments a hash table with good worst-case performance. We now describe how to instantiate this
hash table to achieve Ô(1) cost per operation except with negligible failure probability.

A first idea is to implement a standard Cuckoo hash table [37] for each memory bank. In
this way, lookup is worst-case constant time, whereas insertion is average-case constant time, and
worst-case Ô(logN) time to achieve a failure probability negligible in N . To ensure obliviousness,
we can not reveal the insertion time – for example, insertion time can reveal the current usage of
each bank, which in turns leaks additional information about the access pattern. However, we do
not wish to incur this worst-case insertion time upon every write-back.
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Evict(m):

1: if len(queue[m]) = 0 then
2: WriteBank(m,⊥,None)
3: else
4: (vaddr,wdata) := queue[m].pop()
5: WriteBank(m, vaddr,wdata)
6: end if

SeqEvict(ν):

// Let cnt denote a stateful counter.

1: Repeat ν times:
2: cnt := (cnt + 1) mod M
3: Evict(cnt)

Figure 2: Background evicition algorithms with eviction rate ν. SeqEvict linearly cycles
through the eviction queues to evict from. If a queue selected for eviction is empty, evict a dummy
word for obliviousness. Counter cnt is a global variable.

To deal with this issue, we will rely on a deamortized Cuckoo hash table such as the one
described by Arbitman et al. [2]. Their idea is to rely on a small queue that temporarily buffers
the pending work associated with insertions. Upon every operation, perform a fixed amount of
work at a rate faster than the amortized insertion cost of a standard Cuckoo hash table. For our
application, we require that the failure probability be negligible in N . Therefore, we introduce a
modified version of Arbitman et al.’s theorem [2] as stated below.

Theorem 1 (Deamortized Cuckoo hash table: negligible failure probability version). There exists
a deamortized Cuckoo hash table of capacity s = poly(N) such that with probability 1 − negl(N),
each insertion, deletion, and lookup operation is performed in worst-case Ô(1) time (not counting
the cost of operating on the queue) – as long as at any point in time at most s elements are stored in
the data structure. The above deamortized Cuckoo hash table consumes O(s) +O(N δ) space where
0 < δ < 1 is a constant.

In the above, the O(s) part of the space corresponds to the two tables T0 and T1 for storing
the elements of the hash table, and the additional O(N δ) space is for implementing the pending
work queue (see Arbitman et al. [2] for more details). Specifically, Arbitman et al. suggested that
the work queue be implemented with constant number k of standard hash tables which are N δ,
for δ < 1, in size. To achieve negligible failure probability, we instead set k = k(N) to be any
k(N) = ω(1). See Appendix A for details of our modified construction and analysis.

Recursion. In the above scheme, the CPU stores both a position map of Θ(N logN) bits, and
an eviction cache containing Θ(M) memory words. On each data access, the CPU reads Θ(w) bits
assuming each a memory word is of w bits. Therefore, the bandwidth blowup is O(1).

We now show how to rely on a recursion idea to avoid storing this position map inside the
CPU — for now, assume that the CPU still stores the eviction cache, which we will get rid of
in Section 3.2. The idea is to recursively store the position map in smaller Oblivious NRAMs.
Specifically, consider a sequence of ONRAMs denoted ONRAM0,ONRAM1, . . . ,ONRAMd, where
ONRAM0 is the actual data ONRAM, whereas all other ONRAMs are metadata ONRAMs. The
position map of ONRAMi is stored in ONRAMi+1, and the recursion is repeated until we reach an
ONRAMd of constant size. To access a memory word in ONRAM0, the client first makes a position
map lookup in ONRAM1 which triggers a recursive call to look up the position of the position in
ONRAM2, and so on.

The original binary-tree ORAM [39] described a simple way to parametrize the recursion, using a
uniform memory word size across all recursion levels. Later schemes [43,47], however, described new
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tricks to parametrize the recursion, where a different memory word size is chosen for all the metadata
levels than the data level (i.e., ONRAM0) – the latter trick allows one to reduce the bandwidth
blowup for reasonably big memory words size. Below, we describe these parametrizations, state
the bandwidth blowup and runtime blowup we achieve in each setting. Recall that as mentioned
earlier, the bandwidth blowup and runtime blowup equate for a uniform memory word size setting;
however, under non-uniform memory word sizes, the two metrics may not equate.

• Uniform memory word size. The depth of recursion is smaller when the memory word is
larger.

– Assume that each memory word is at least c logN bits in size for some constant c > 1. In
this case, the recursion depth is O(logN). Hence, the resulting O-NRAM has Ô(logN)
runtime blowup and bandwidth blowup.

– Assume that each memory word is at least N ε bits in size for some constant 0 < ε < 1. In
this case, the recursion depth is O(1). Hence, the resulting O-NRAM has Ô(1) runtime
blowup and bandwidth blowup.

• Non-uniform memory word size. Using a parametrization trick by Stefanov et al. [43], we can
also parametrize the position map recursion levels to have a different word size than the data
level. Of particular interest is the following point of parametrization:

– Assume that each memory word of the original RAM is W = Ω(log2N) bits — this
will be the word size for the data level of the recursion. For the position map levels,
we will use a word size of Θ(logN) bits. In this way, the recursion depth is O(logN).
For each access, the total number of bits transferred include one data word of W bits,
and O(logN) words of O(logN) bits. Thus, we achieve Ô(1) bandwidth blowup, but
Ô(logN) run-time blowup.

Finally, observe that we need not create separate memory banks for each level of the recursion.
In fact, the recursion levels can simply reuse the memory banks of the top data level, introducing
only a constant factor blowup in the size of the memory bank.

3.2 Achieving O(1) Words of CPU Cache

We now explain how to reduce the CPU cache size to O(1), while storing the eviction queues in a
separate scratch bank. It turns out that there is a small technicality when we try to do so, requiring
the use of a special data structure as described below. When we move the eviction queues to the
scratch bank, we would like each queue to support the operations: pop(), push() and ReadAndRm(),
as required by algorithms in Figures 1 and 2 with worst-case Ô(1) cost except with negl(N) failure
probability. While a simple queue supports pop() and push() with these time bounds, it does not
not support ReadAndRm(). To achieve this, the scratch bank will maintain the following data
structures:

• Store M eviction queues supporting only pop() and push() operations. The total number
of elements in all queues does not exceed O(M) + f(N) for any f(N) = ω(logN) except
with negligible failure probability. It is not hard to see that these M eviction queues can be
implemented with O(M) + f(N) for any f(N) = ω(logN) space in total and O(1) cost per
operation.
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• Separately, store the entries of all M eviction queues in a single deamortized Cuckoo hash
table [2] inside the scratch bank. Such a deamortized Cuckoo hash table can achieve Ô(1) cost
per operation (insertion, removal, lookup) except with negligible failure probability. When an
element is popped from or pushed to any of the eviction queues, it is also inserted or removed
in this big deamortized Cuckoo hash table. However, when an element must be read and
removed from any of the eviction queues, then the element is looked up from the big hash
table and it is just marked as deleted. When time comes for this element to be popped from
some queue during the eviction process, a dummy eviction is performed.

Theorem 2 (O-NRAM simulation of arbitrary RAM programs: uniform word size model). Any
N -word RAM with a word size of W = f(N) logN bits can be simulated by an Oblivious NRAM
that consumes O(1) words of CPU cache, and with O(M) memory banks each of O(M+N/M+N δ)
words in size, for any constant 0 < δ < 1. The oblivious NRAM simulation incurs Ô(logf(N)N)
run-time blowup and bandwidth blowup. As special cases of interest:

• When the word size is W = N ε bits, the run-time blowup and bandwidth blowup are both
Ô(1).

• When the word size is W = c logN bits for some constant c > 1, the run-time blowup and
bandwidth blowup are both Ô(logN).

Theorem 3 (O-NRAM simulation of arbitrary RAM programs: non-uniform word size model).
Any N -word RAM with a word size of W = Ω(log2N) bits can be simulated by an Oblivious NRAM
(with non-uniform word sizes) that consumes O(W ) bits of CPU cache, and with O(M) memory
banks each of O(W · (M+N/M+N δ)) bits in size. Further, the oblivious NRAM simulation incurs
Ô(1) bandwidth blowup and Ô(logN) run-time blowup.

Note that for the non-uniform version of the theorem, we state the memory bank and cache
sizes in terms of bits instead of words to avoid confusion. In both the uniform and non-uniform
versions of the theorem, an interesting point of parametrization is when M = O(

√
N), and each

bank is O(W
√
N) bits in size.

3.3 Obliviousness Proof

We first argue that the base scheme described in Section 3.1 is oblivious by Definition 2– in fact
its obliviousness proof is trivial. Each data access will perform a ReadBank operation on a random
bank. The choice of this bank is determined by position[vaddr] whose value was chosen independently
at random earlier, and the value has not been observed by the adversary. Besides the ReadBank
operation, each memory access also performs eviction ν times. Since eviction simply scans through
the banks and performs WriteBank operations on them, it is clearly oblivious. Note that each
ReadBank (or WriteBank) operation is in fact a hash table lookup (or hash table write). For each
hash table operation, the number of memory accesses is always padded to a maximum value to
ensure obliviousness. In particular, we use a hash table with Ô(1) worst-cast cost per operation
as mentioned in Theorem 1. Next, it is not hard to see that the recursion does not break the
obliviousness, since in a recursive ONRAM, each memory access would simply make a lookup in
each ONRAMi from i = d (smallest metadata ONRAM) to i = 0 (top-level data ONRAM).

Next, for the techniques described in Section 3.2 to reduce the CPU cache to O(1), the key
difference is to use a scratch bank to implement the hash table and the eviction queues. From
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Figure 1, it is clear that when and what operations are made to the scratch bank are deterministic
and independent of any secrets. Further, for the eviction queues and the hash table, each operation
will always be padded to the maximum number of accesses (to the scratch bank).

Based on the above arguments, it is easy to construct a simulator which, without knowing
the inputs to the program, simulates the “observable trace”. The simulated trace has identical
distribution as the real trace.

3.4 Extension: Oblivious Data Structures in the NRAM Model

Since our O-NRAM construction is a recursion-based construction, we can apply similar techniques
as Wang et al. [46] to efficiently realize a class of oblivious data structures in the NRAM model.

Theorem 4. Oblivious stack, queue, priority queue, map and set can be realized in the NRAM
model with only Ô(1) bandwidth blowup and runtime blowup, assuming O(1) words of CPU cache,
and O(M) memory banks each of O(M + N/M + N δ) words in size. The above holds as long as
each entry in the data structure contains Ω(logN) bits.

Proof. Observe that the oblivious data structure techniques by Wang et al. [46] are directly ap-
plicable based on our generic O-NRAM construction which is recursion based. Wang et al. use
a O(logN)-sized CPU cache. Here this CPU cache can be stored in a scratch bank with ω(1)
standard hash tables each N δ words in size.

4 Sequential Oblivious Simulation of Parallel Programs

We are eventually interested in parallel oblivious simulation of parallel programs (see Section 5). As
a stepping stone, we first consider sequential oblivious simulation of parallel programs. However, we
emphasize that the results in this section can be of independent interest in their own right. In par-
ticular, one way to interpret these results is that “parallelism facilitates obliviousness”. Specifically,
if a program exhibits a sufficient degree of parallelism, then this program can be made oblivious at
only const overhead in the Network RAM model. The intuition for why this is so, is that instruc-
tions in each parallel time step can be executed in any order. Since subsequences of instructions
can be executed in an arbitrary order during the simulation, many sequences of memory requests
can be mapped to the same access pattern, and thus the request sequence is partially obfuscated.

4.1 Parallel RAM

To formally characterize what it means for a program to exhibit a sufficient degree of parallelism,
we will formally define a P -parallel RAM. In this section, the reader should think of parallelism
as a property of the program to be simulated – we actually characterize costs assuming both the
non-oblivious and the oblivious programs are executed on a sequential machine (different from
Section 5).

An P -parallel RAM machine is the same as a RAM machine, except the next instruction function
outputs P instructions which can be executed in parallel.

Definition 4 (P -parallel RAM). An P -Parallel RAM is a RAM which has a next instruction func-
tion Π = Π1, . . . ,ΠP such that on input (state = state1|| · · · ||stateP , rdata = rdata1|| · · · ||rdataP ), Π
outputs P instructions (I1, . . . , IP ) and P updated states state′1, . . . , state

′
P such that for p ∈ [P ],

(Ip , state
′
p) = Πp(statep , rdatap). The instructions I1, . . . , IP satisfy one of the following:
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• All of I1, . . . , IP are set to (stop, z) (with the same z).

• All of I1, . . . , IP are either of the form. (read, vaddr,⊥) or (write, vaddr,wdata).

Finally, the state state has size at most O(P ).

In general, we consider the standard Concurrent Read, Concurrent Write (CRCW) PRAM,
where CPUs may read the same data simultaneously, and simultaneous write conflicts are resolved
in a canonical way.

As a warmup exercise, we will first consider a special case where in each parallel step, the memory
requests made by each processor has distinct addresses—we refer to this model as a restricted
PRAM. Later in Section 4.3, we will extend the result to the general CRCW PRAM case.

Definition 5 (Restricted P -parallel RAM). For a P -parallel RAM denoted PRAM := 〈D, state1,
. . ., stateP , Π1, . . .ΠP 〉, if every batch of instructions I1, . . . , IP have unique vaddr’s, we say that
PRAM is a restricted P -parallel RAM.

4.2 Warmup: Restricted Parallel RAM to Oblivious NRAM

Our goal is to compile any P -parallel RAM (not necessarily restricted), into an efficient O-NRAM.
As an intermediate step that facilitates presentation, we begin with a basic construction of O-
NRAM from any restricted, parallel RAM. In the following section, we extend to a construction of
O-NRAM from any parallel RAM (not necessarily restricted).

Let PRAM := 〈D, state1, . . . , stateP ,Π1, . . .ΠP 〉 be a restricted P -Parallel RAM, for P = ω(M logN).
We now present an O-NRAM simulation of PRAM that requires M + 1 memory banks, each with
O(N/M + P ) physical memory, where N is the database size.

Setup: Pseudorandomly assign memory words to banks. The setup phase takes the initial
states of the PRAM, including the memory array D and the initial CPU state, and compiles them
into the initial states of the Oblivious NRAM denoted ONRAM.

To do this, the setup algorithm chooses a secret keyK, and sets ONRAM.state = PRAM.state||K.
Each memory bank of ONRAM will be initialized as a Cuckoo hash table. Each memory word
in the PRAM’s initial memory array D will be inserted into the bank numbered (PRFK(vaddr)
mod M) + 1, where vaddr is the virtual address of the word in PRAM. Note that the ONRAM’s
(M + 1)-th memory bank is reserved as a scratch bank whose usage will become clear later.

doNext(): //We only consider read and write instructions here but not stop.

1: For p := 1 to P : (opp , vaddrp ,wdatap) := Πp(statep , rdatap)

2: (rdata1, rdata2, . . . , rdatap) := Access
({

opp , vaddrp ,wdatap
}
p∈[P ]

)
Figure 3: Oblivious simulation of each step of the restricted parallel RAM’s execution.

Simulating each step of the PRAM’s execution. Each doNext() operation of the PRAM will
be compiled into a sequence of instructions of the ONRAM. We now describe how this compilation
works. Our presentation focuses on the case when the next instruction’s op-codes are reads or
writes. Wait or stop instructions are left unmodified during the compilation.
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Access
(
{opp, vaddrp,wdatap}p∈P

)
:

1: for p = 1 to P do
2: m ← PRFK(vaddrp);
3: queue[m] := queue[m].push(p, opp , vaddrp ,wdatap);

// queue is stored in a separate scratch bank.

4: end for
5: for m = 1 to M do
6: if |queue[m]| > max then abort
7: Pad queue[m] with dummy entries (⊥,⊥,⊥,⊥) so that its size is max;
8: for i = 1 to max do
9: (p, op, vaddr,wdata) := queue[m].pop()

10: rdatap := ReadBank(m, vaddr)
// Each bank is a deamortized Cuckoo hash table.

11: if op = write then wdata := rdatap
12: WriteBank(m, vaddr,wdata)
13: end for
14: end for
15: return (rdata1, rdata2, . . . , rdataP )

Figure 4: Obliviously serving a batch of P memory requests with distinct virtual ad-
dresses.

As shown in Figure 3, for each doNext instruction, we first compute the batch of instructions
I1, . . . , IP , by evaluating the P parallel next-instruction circuits Π1, . . . ,ΠP . This results in P
parallel read or write memory operations. This batch of P memory operations (whose memory
addresses are guaranteed to be distinct in the restricted parallel RAM model) will then be served
using the subroutine Access.

We now elaborate on the the Access subroutine. Each batch will have P = ω(M logN) memory
operations whose virtual addresses are distinct. Since each virtual address is randomly assigned to
one of the M banks, in expectation, each bank will get P/M = ω(logN) hits. Using a balls and
bins analysis, we show that the number of hits for each bank is highly concentrated around the
expectation. In fact, the probability of any ω(logN) deviation from the expectation is negligible
in N . Therefore, we will choose an appropriate max := O(P/M) + f(N), for any f(N) = ω(logN)
for each bank, and make precisely max number of accesses to each memory bank. Specifically,
the Access algorithm first scans through the batch of P = ω(M logN) memory operations, and
assigns them to M queues, where the m-th queue stores requests assigned to the m-th memory
bank. Then, the Access algorithm sequentially serves the requests to memory banks 1, 2, . . . ,M in
a linear order, padding the number of accesses to each bank to max. This way, the access patterns
to the banks are guaranteed to be oblivious.

The description of Figure 4 makes use of M queues with a total size of P = ω(M logN) words.
It is not hard to see that these queues can be stored in an additional scratch bank of size O(P ),
incurring only constant number of accesses to the scratch bank per queue operation. Further, in
Figure 4, the time at which the queues are accessed, and the number of times they are accessed
are not dependent on input data (notice that Line 7 can be done by linearly scanning through each
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queue, incurring a max cost each queue).

Cost analysis. Since max = O(P/M) + f(N), for any f(N) = ω(logN) in Figure 4 (see Theo-
rem 5), it is not hard to see each batch of P = ω(M logN) memory operations will incur Θ(P )
accesses to data banks in total, and Θ(P ) accesses to the scratch bank. Therefore, the ONRAM
incurs only a constant factor more total work and bandwidth than the underlying PRAM.

Theorem 5. Let PRF be a family of pseudorandom functions, and PRAM be a restricted P -Parallel
RAM for P = ω(M logN). Let max := O(P/M) + f(N), for any f(N) = ω(logN), in Figure 4.
Then, the construction described above is an oblivious simulation of PRAM using M banks each of
O(N/M+P ) words in size. Moreover, the oblivious simulation performs total work that is constant
factor larger than that of the underlying PRAM.

Proof. Assuming the execution never aborts (Line 6 in Figure 4), then Theorem 5 follows immedi-
ately, since the access pattern is deterministic and independent of the inputs. Therefore, it suffices
to show that the abort happens with negligible probability on Line 6. This is shown in the following
lemma.

Lemma 2. Let max := O(P/M) + f(N), for any f(N) = ω(logN) with appropriately chosen
constants. For any PRAM and any input x, abort on Line 6 of Figure 4 occurs only with negligible
probability (over choice of the PRF).

Proof. We first replace PRF with a truly random function f . Note that if we can prove the lemma
for a truly random function, then the same should hold for PRF, since otherwise we obtain an
adversary breaking pseudorandomness.

We argue that the probability that abort occurs on Line 6 of Figure 4 in a particular step i of
the execution is negligible. By taking a union bound over the (polynomial number of) steps of the
execution, the lemma follows.

To upper bound the probability of abort in some step i, consider a thought experiment where
we change the order of sampling the random variables: We precompute all the PRAM’s instructions
up to and including the i-th step of the execution (independently of f), obtaining P distinct virtual
addresses, and only then choose the outputs of the random function f on the fly. That is, when
each virtual memory address vaddrp in step i is serviced, we choose m := f(vaddrp) uniformly and
independently at random. Thus, in step i of the execution, there are P distinct virtual addresses
(i.e., balls) to be thrown into M memory banks (i.e., bins). Due to standard Chernoff bounds, for
P = ω(M logN), the probability that there exists a bin whose load exceeds O(P/M) + f(N), for
any f(N) = ω(logN) is N−ω(1), which is negligible in N .

4.3 Parallel RAM to Oblivious NRAM

Use a hash table to suppress duplicates. In Section 4.2, we describe how to obliviously
simulate a restricted parallel-RAM in the NRAM model. We now generalize this result to support
any P -parallel RAM, not necessarily restricted ones. The difference is that for a generic P -parallel
RAM, each batch of P memory operations generated by the next-instruction circuit need not have
distinct virtual addresses. For simplicity, imagine that the entire batch of memory operations are
reads. In the extreme case, if all P = ω(M logN) operations correspond to the same virtual address
residing in bank m, then the CPU should not read bank m as many as P number of times. To
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Access
(
{opp, vaddrp,wdatap, p}p∈P

)
:

/* HTable, queue, and result data structures are stored in a scratch bank. For obliviousness, operations on

these data structures must be padded to the worst-case cost as we elaborate in the text.*/

1: for p = 1 to P : HTable[opp, vaddrp] := (wdatap, p) // hash table insertions

2: for {(op, vaddr),wdata, p} ∈ HTable do // iterate through hash table

3: m := PRFK(vaddr)
4: queue[m] := queue[m].push(op, vaddr,wdata);
5: end for
6: for m = 1 to M do
7: if |queue[m]| > max then abort
8: Pad queue[m] with dummy entries (⊥,⊥,⊥) so that its size is max;
9: for i = 1 to max do

10: (op, vaddr,wdata, p) := queue[m].pop()
11: result[p] := ReadBank(m, vaddr)
12: if op = write then wdata := rdata
13: WriteBank(m, vaddr,wdata)
14: end for
15: end for
16: return (result[1], . . . , result[p]) // hash table lookups

Figure 5: Obliviously serving a batch of P memory request, not necessarily with
distinct virtual addresses.

address this issue, we rely on an additional Cuckoo hash table [37] denoted HTable to suppress the
duplicate requests (see Figure 5, and the doNext function is defined the same way as Section 4.2).

The HTable will be stored in the scratch bank. We can employ a standard Cuckoo hash table
that need not be deamortized. As shown in Figure 5, we need to support hash table insertions,
lookups, and moreover, we need to be able to iterate through the hash table. We now make a few
remarks important for ensuring obliviousness. Line 1 of Figure 5 performs P = ω(M logN) number
of insertions into the Cuckoo hash table. Due to standard Cuckoo hash analysis, we know that
these insertions will take O(P ) + f(N), for any f(N) = ω(logN) total time except with negligible
probability. Therefore, to execute Line 1 obliviously, we simply need to pad with dummy insertions
up to some max′ = O(P ) + f(N), for any f(N) = ω(logN).

Next, we describe how to execute the loop at Line 2 obliviously. The total size of the Cuckoo
hash table is O(P ). To iterate over the hash table, we simply make a linear scan through the
hash table. Some entries will correspond to dummy elements. When iterating over these dummy
elements, we simply perform dummy operations for the for loop. Finally, observe that Line 16
performs lookups to the Cuckoo hash table, and each hash table lookup requires worst-case O(1)
accesses to the scratch bank.

Cost analysis. Since max = O(P/M) + f(N), for any f(N) = ω(logN) in Figure 5 (see Theo-
rem 5), it is not hard to see each batch of P = ω(M logN) memory operations will incur O(P )
accesses to data banks in total, and O(P ) accesses to the scratch bank. Note that this takes into
account the fact that Line 1 and the for-loop starting at Line 2 are padded with dummy accesses.
Therefore, the ONRAM incurs only a constant factor more total work and bandwidth than the

18



underlying PRAM.

Theorem 6. Let max = O(P/M)+f(N), for any f(N) = ω(logN) for some appropriate choice of
constants. Assume that PRF is a secure pseudorandom function, and PRAM is a P -Parallel RAM
for P = ω(M logN). Then, the above construction obliviously simulates PRAM in the NRAM
model, incurring only a constant factor blowup in total work and bandwidth consumption.

Proof. (sketch.) Similar to the proof of Theorem 5, except that now we have the additional hash
table. Note that obliviousness still holds, since, as discussed above, each batch of P memory
requests requires O(P ) accesses to the scratch bank, and this can be padded with dummy accesses
to ensure the number of scratch bank accesses remains the same in each execution.

5 Parallel Oblivious Simulation of Parallel Programs

In the previous section, we considered sequential oblivious simulation of programs that exhibit
parallelism – there, we considered parallelism as being a property of the program which will actually
be executed on a sequential machine. In this section we consider parallel and oblivious simulations
of parallel programs. Here, the programs will actually be executed on a parallel machine, and
we consider classical metrics such as parallel runtime and total work as in the parallel algorithms
literature.

We introduce the Network PRAM model – informally, this is a Network RAM with parallel
processing capability. Our goal in this section will be to compile a PRAM into an Oblivious Network
PRAM (O-NPRAM), a.k.a., the “parallel-to-parallel compiler”.

Our O-NPRAM is the Network RAM analog of the Oblivious Parallel RAM (OPRAM) model
by Boyle et al. [7]. Goldreich and Ostrovsky’s logarithmic ORAM lower bound (in the sequential
execution model) directly implies the following lower bound for standard OPRAM [7]: Let PRAM
be an arbitrary PRAM with P processors running in parallel time t. Then, any P -parallel OPRAM
simulating PRAM must incur Ω(t logN) parallel time. Clearly, OPRAM would also work in our
Network RAM model albeit not the most efficient, since it is not exploiting the fact that the
addresses in each bank are inherently oblivious. In this section, we show how to perform oblivious
parallel simulation of “sufficiently parallel” programs in the Network RAM model, incurring only
O(log∗N) blowup in parallel runtime, and achieving optimal total work. Our techniques make use
of fascinating results in the parallel algorithms literature [4, 5, 24].

5.1 Network PRAM (NPRAM) Definitions

Similar to our NRAM definition, an NPRAM is much the same as a standard PRAM, except that
1) memory is distributed across multiple banks, Bank1, . . . ,BankM ; and 2) every virtual address
vaddr can be written in the format vaddr := (m, offset), where m is the bank identifier, and offset
is the offset within the Bankm. We use the notation P -parallel NPRAM to denote an NPRAM
with P parallel processors, each with O(1) words of cache. If processors are initialized with secret
randomness unobservable to the adversary, we refer to this as a probablistic NPRAM.

Observable traces. In the NPRAM model, we assume that an adversary can observe the following
parts of the memory trace: 1) which processor is making the request; 2) whether this is a read or
write request; and 3) which bank the request is going to. The adversary is unable to observe the
offset within a memory bank.
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Definition 6 (Observable traces for NPRAM). For a probabilistic P -parallel NPRAM, we use the
notation Trρ(NPRAM, x) to denote its observable traces upon input x, and initial CPU randomness
ρ (collective randomness over all processors):

Trρ(NPRAM, x) :=
[(

(op11,m
1
1), . . . , (op

P
1 ,m

P
1 )
)
, . . . ,

(
(op1T ,m

1
T ), . . . , (opPT ,m

P
T )
)]

where T is the total parallel execution time of the NPRAM, and {(op1i ,m1
i ), . . . , (op

P
i ,m

P
i )} is of

the op-codes and memory bank identifiers for each processor during parallel step i ∈ [T ] of the
execution.

Based on the above notion of observable memory trace, an Oblivious NPRAM can be defined
in a similar manner as the notion of O-NRAM (Definition 2).

Metrics. We consider classical metrics adopted in the vast literature on parallel algorithms,
namely, the parallel runtime and the total work. In particular, to characterize the oblivious simu-
lation overhead, we will consider

• Parallel runtime blowup. The blowup of the parallel runtime comparing the O-NPRAM
and the NPRAM.

• Total work blowup. The blowup of the total work comparing the O-NPRAM and the
NPRAM. If the total work blowup is O(1), we say that the O-NPRAM achieves optimal total
work.

5.2 Construction of Oblivious Network PRAM

Preliminary: colored compaction. The colored compaction problem [4] is the following:

Given n objects of m different colors, initially placed in a single source array, move the objects
to m different destination arrays, one for each color. In this paper, we assume that the space
for the m destination arrays are preallocated. We use the notation di to denote the number
of objects colored i for i ∈ [m].

Lemma 3 (Log∗-time parallel algorithm for colored compaction [4]). There is a constant ε > 0
such that for all given n, m, τ , d1, . . . , dm ∈ N, with m = O(n1−δ) for arbitrary fixed δ > 0,
and τ ≥ log∗ n, there exists a parallel algorithm for the colored compaction problem (assuming
preallocated destination arrays) with n objects, m colors, and d1, . . . , dm number of objects for each
color, executing in O(τ) time on dn/τe processors, consuming O(n+

∑m
i=1 di) space, and succeeding

with probability at least 1− 2−n
ε
.

Preliminary: parallel static hashing. We will also rely on a parallel, static hashing algorithm [5,
24], by Bast and Hagerup. The static parallel hashing problem takes n elements (possibly with
duplicates), and in parallel creates a hash table of size O(n) of these elements, such that later each
element can be visited in O(1) time. In our setting, we rely on the parallel hashing to suppress
duplicate memory requests. Bast and Hagerup show the following lemma:

Lemma 4 (Log∗-time parallel static hashing [5, 24]). There is a constant ε > 0 such that for
all τ ≥ log∗ n, there is a parallel, static hashing algorithm, such that hashing n elements (which
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parAccess
(
{opp, vaddrp,wdatap}p∈P

)
:

/* All steps can be executed in O(log∗ P ) time with P ′ = O(P/ log∗ P ) processors with all except negligible

probability.*/

1: Using the scratch bank as memory, run the parallel hashing algorithm on the batch of P =
M1+δ memory requests to suppress duplicate addresses. Denote the resulting set as S, and
pad S with dummy requests to the maximum length P .

2: In parallel, assign colors to each memory request in the array S. For each real memory
access {op, vaddr,wdata}, its color is defined as PRFK(vaddr). Each dummy memory access
is assigned a random color. It is not hard to see that each color has no more than max :=
P/M + f(N), for any f(N) = ω(logN) requests except with negligible probability.

3: Using the scratch bank as memory, run the parallel colored compaction algorithm to assign
the array S to M preallocated queues each of size max (residing in the scratch bank).

4: Now, each queue i ∈ [M ] contains max number of requests intended for bank i – some real,
some dummy. Serve all memory requests in the M queues in parallel. Each processor i ∈ [P ′]
is assigned the k-th memory request iff (k mod P ′) = i. Dummy requests incur accesses to
the corresponding banks as well.
For each request coming from processor p, the result of the fetch is stored in an array result[p]
in the scratch bank.

Figure 6: Obliviously serving a batch of P memory requests using P ′ := O(P/ log∗ P )
processors in O(log∗ P ) time. In Steps 1, 2, and 3, each processor will make exactly one access
to the scratch bank in each parallel execution step – even if the processor is idle in this step, it
makes a dummy access to the scratch bank. Steps 1 through 3 are always padded to the worst-case
parallel runtime.

need not be distinct) can be done in O(τ) parallel time, with O(n/τ) processors and O(n) space,

succeeding with 1− 2−(logn)
τ/ log∗ n − 2−n

ε
probability.

Construction. We now present a construction that allows us to compile a P -parallel PRAM,
where P = M1+δ for any constant δ > 0, into a O(P/ log∗ P )-parallel Oblivious NPRAM. The
resulting NPRAM has O(log∗ P ) blowup in parallel runtime, and is optimal in total amount of
work.

In the original P -parallel PRAM, each of the P processors does constant amount of work in each
step. In the oblivious simulation, this can trivially be simulated in O(log∗ P ) time with O(P/ log∗ P )
processors. Therefore, clearly the key is how to obliviously fetch a batch of P memory accesses
in parallel with O(P/ log∗ P ) processors, and O(log∗ P ) time. We describe such an algorithm in
Figure 6. Using a scratch bank as working memory, we first call the parallel hashing algorithm to
suppress duplicate memory requests. Next, we call the parallel colored compaction algorithm to
assign memory request to their respective queues – depending on the destination memory bank.
Finally, we make these memory accesses, including dummy ones, in parallel.

Theorem 7. Let PRF be a secure pseudorandom function, let M = N ε for any constant ε > 0. Let
PRAM be a P -parallel RAM for P = M1+δ, for constant δ > 0. Then, there exists an Oblivious
NPRAM simulation of PRAM with the following properties:

• The Oblivious NPRAM consumes M banks each of which O(N/M + P ) words in size.
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• If the underlying PRAM executes in t parallel steps, then the Oblivious NPRAM executes in
O(t log∗ P ) parallel steps utilizing O(P/ log∗ P ) processors. We also say that the NPRAM has
O(log∗ P ) blowup in parallel runtime.

• The total work of the Oblivious NPRAM is asymptotically the same as the underlying PRAM.

Proof. We now prove security and costs separately.

Security proof. Observe that Steps 1, 2, and 3 in Figure 6 make accesses only to the scratch
bank. We make sure that each processor will make exactly one access to the scratch bank in
every parallel execution step – even if the processor is idle in this step, it will make a dummy
access. Further, Steps 1 through 3 are also padded to the worst-case running time. Therefore, the
observable memory traces of Steps 1 through 3 are perfectly simulatable without knowing secret
inputs.

For Step 4 of the algorithm, since each of the M queues are of fixed length max, and each
element is assigned to each processor in a round-robin manner, the bank number each processor
will access is clearly independent of any secret inputs, and can be perfectly simulated (recall that
dummy request incur accesses to the corresponding banks as well).

Costs. First, due to Lemma 2, each of the M queues will get P/M+f(N), for any f(N) = ω(logN)
memory requests with probability 1−negl(N). This part of the argument is the same as Section 4.
Now, observe that the parallel runtime for Steps 2 and 4 are clearly O(log∗ P ) with O(P/ log∗ P )
processors. Based on Lemmas 4 and 3, Steps 1 and 3 can be executed with a worst-case time of
O(log∗ P ) on O(P/ log∗ P ) processors as well. We note that the conditions M = N ε and P = M1+δ

ensure negl(N) failure probability.

6 Conclusion

We define a new model for oblivious execution of programs, where an adversary cannot observe the
memory offset within each memory bank, but can observe the patterns of communication between
the CPU(s) and the memory banks. Under this model, we demonstrate novel sequential and par-
allel algorithms that exploit the “free obliviousness” within each bank, and asymptotically lower
the cost of oblivious data accesses in comparison with the traditional ORAM [19] and OPRAM [7].
In the process, we propose novel algorithmic techniques that “leverage parallelism for oblivious-
ness”. These techniques have not been used in the standard ORAM or OPRAM line of work, and
demonstrate interesting connections to the fundamental parallel algorithms literature.
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A Analysis of Deamortized Cuckoo Hash Table

We first describe our modification of the Cuckoo hash table of Arbitman et al. [2]. Throughout
this section, we follow [2] nearly verbatim.

Our data structure uses two tables T0 and T1, and two auxiliary data structures: a queue, and
a cycle-detection mechanism. Each table consists of r = (1 + ε)n entries for some small constant
ε > 0. Elements are inserted into the tables using two hash functions h0, h1 : U → 0, ..., r − 1, which
are independently chosen at the initialization phase. We assume that the auxiliary data structures
satisfy the following properties:

1. The queue is constructed to store g(N), for any g(N) = ω(logN), number of elements at any
point in time. It should support the operations Lookup, Delete, PushBack, PushFront, and
PopFront in worst-case constant time (with overwhelming probability over the randomness
of its initialization phase).

2. The cycle-detection mechanism is constructed to store g(N), for any g(N) = ω(logN), el-
ements at any point in time. It should support the operations Lookup, Insert and Reset
in worst-case Ô(logN) time (with all but negligible probability over the randomness of its
initialization phase).

An element x ∈ U can be stored in exactly one out of three possible places: entry h0(x) of
table T0, entry h1(x) of table T1, or the queue. The lookup procedure is straightforward: when
given an element x ∈ U , query the two tables and if needed, perform lookups in the queue. The
deletion procedure is also straightforward by first searching for the element, and then deleting it.
Our insertion procedure is parameterized by a value L = L(N), for any L(N) ∈ ω(1), and is
defined as follows. Given a new element x ∈ U , we place the pair (x, 0) at the back of the queue
(the additional bit 0 indicates that the element should be inserted to table T0). Then, we take
the pair at the head of the queue, denoted (y, b), and place y in entry Tb[hb(y)]. If this entry is
not occupied, we again take the pair that is currently stored at the head of the queue, and repeat
the same process. If the entry Tb[hb(y)] is occupied, however, we place its previous occupant z in
entry T1−b[h1−b(z)] and so on, as in the above description of cuckoo hashing. After L elements
have been moved, we place the current nestless element at the head of the queue, together with a
bit indicating the next table to which it should be inserted, and terminate the insertion procedure.

We next restate Theorem 1:

Theorem 8 (Deamortized Cuckoo hash table: negligible failure probability version). There is an
implementation of the above deamortized Cuckoo hash table of capacity s such that with probability
1 − negl(N), each insertion, deletion, and lookup operation is performed in worst-case Ô(1) time
(not counting the cost of operating on the queue) – as long as at any point in time at most s elements
are stored in the data structure. The above deamortized Cuckoo hash table consumes O(s) +O(N δ)
space where 0 < δ < 1 is a constant.

In the following, we describe the instantiation of the auxiliary data structures.

The queue. We will argue that with overwhelming probability the queue contains at most g(N),
for any g(N) ∈ ω(logN), elements at any point in time. Therefore, we design the queue to store at
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most g(N) elements, and allow the whole data structure to fail if the queue overflows. Although a
classical queue can support the operations PushBack, PushHead, and PopFront in constant time, we
also need to support the operations Lookup and Delete in constant time. One possible instantiation
is to use k, for any k ∈ ω(1), arrays A1, ..., Ak each of size N δ, for some δ < 1. Each entry of these
arrays consists of a data element, a pointer to the previous element in the queue, and a pointer
to the next element in the queue. In addition we maintain two global pointers: the first points to
the head of the queue, and the second points to the end of the queue. The elements are stored
using a function h chosen from a collection of pairwise independent hash functions. Specifically,
each element x is stored in the first available entry amongst {A1[h(1, x)], ..., Ak[h(k, x)]}. For any
element x, the probability that all of its k possible entries are occupied when the queue contains at
most g(N) elements is upper bounded by (g(N)/N δ)k, which can be made negligible by choosing
an appropriate k.

The cycle-detection mechanism. As in the case of the queue, we will argue that with all
but negligible probability the cycle-detection mechanism contains at most g(N), for any g(N) ∈
ω(logN), elements at any point in time. Therefore, we design the cycle-detection mechanism to
store at most g(N) elements, and allow the whole data structure to fail if the cycle-detection
mechanism overflows. One possible instantiation is to use the above-mentioned instantiation of the
queue together with any standard augmentation that enables constant time resets.

Note that in our case of negligible failure probability, the size of the queue and the cycle detection
mechanism are both bounded by g(N) = Ô(logN), instead of being bounded by logN as in [2]. It
is not hard to see that as long as the auxiliary data structures do not fail or overflow, all operations
are performed in time Ô(1). Thus, our goal is to prove that with 1− negl(N) probability, the data
structures do not overflow.

We continue with the following definition, which will be useful for the efficiency analysis.

Definition 7. Given a set S ⊆ U and two hash functions h0, h1 : U → {0, ..., r−1}, the cuckoo graph
is the bipartite graph G = (L,R,E), where L = R = {0, ..., r−1} and E = {(h0(x), h1(x)) : x ∈ S}.

For an element x ∈ U we denote by CS,h0,h1(x) the connected component that contains the edge
(h0(x), h1(x)) in the cuckoo graph of the set S ⊆ U with functions h0 and h1.

Similarlty to [2], in order to prove Theorem 8, we require the following lemma:

Lemma 5. For T = f(N), where f(N) = ω(logN), and f(N) = o(logN log logN), and c2 = ω(1),
we have that for any set S ⊆ U of size N and for any x1, . . . , xT ∈ S it holds that

Pr

[
T∑
i=1

|CS,h0,h1(xi)| ≥ c2T

]
≤ negl(N),

where the probability is taken over the random choice of the functions h0, h1 : U → {0, ..., r − 1},
for r = (1 + ε)n.

The proof of Lemma 5 will be discussed in Section A.1.
Denote by E1 the event in which for every 1 ≤ j ≤ N/f(N), where f(N) = ω(logN), and

f(N) = o(logN log logN), it holds that

f(N)∑
i=1

|CS,h0,h1(xi)| ≤ c2f(N).
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By using Lemma 5 and applying a union bound, we have that E1 occurs with probability
1− negl(N).

We denote by stash(Sj , h0, h1) the number of stashed elements in the cuckoo graph of Sj with
hash functions h0 and h1. Denote by E2 the event in which for every 1 ≤ j ≤ N/f(N), it holds
that stash(Sj , h0, h1) ≤ k. A lemma of Kirsch et al. [25] implies that for k = ω(1), the probability
of the event E2 is at least 1− negl(N).

The following lemmas prove Theorem 8:

Lemma 6. Let π be a sequence of p(N) operations. Assuming that the events E1 and E2 occur,
then during the execution of π the queue does not contain more than 2f(N) + k elements at any
point in time.

Lemma 7. Let π be a sequence of p(N) operations. Assuming that the events E1 and E2 occur, then
during the execution of π the cycle-detection mechanism does not contain more than (c2 + 1)f(N)
elements at any point in time.

The proofs of Lemmas 6 and 7 follow exactly as in [2], except the logN parameter from [2] is
replaced with f(N) in our proof.

A.1 Proving Lemma 5

As in [2], Lemma 5 is proved via Lemmas 8 and 9 below. Given these, the proof of Lemma 5 follows
identically to the proof in [2].

Let G(N,N, p) denote the distribution on bipartite graphs G = ([N ], [N ], E) where each edge
is independently chosen with probability p. Given a graph G and a vertex v we denote by CG(v)
the connected component of v in G.

Lemma 8. Let Np = c for some constant 0 < c < 1. For T = f(N), where f(N) = ω(logN), and
f(N) = o(logN log logN), and c2 = ω(1), we have that for any vertices v1, . . . , vT ∈ L ∪R

Pr

[
T∑
i=1

|CG(vi)| ≥ c2T

]
≤ negl(N),

where the graph G = (L,R,E) is sampled from G(N,N, p).

We first consider a slightly weaker claim that bounds the size of the union of several connected
components:

Lemma 9. Let Np = c for some constant 0 < c < 1. For T = f(N), where f(N) = ω(logN), and
f(N) = o(logN log logN), and c2 = O(1), we have that for any vertices v1, . . . , vT ∈ L ∪R

Pr

[∣∣∣∣∣
T⋃
i=1

CG(vi)

∣∣∣∣∣ ≥ c2T
]
≤ negl(N),

where the graph G = (L,R,E) is sampled from G(N,N, p).

The proof of our Lemma 9 follows from Lemma 6.2 of [2]. Specifically, we observe that their
Lemma 6.2 works for any choice of T (even though in their statement of Lemma 6.2, they require
T ≤ logN . In particular, their Lemma 6.2 works for T = f(N).
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Next, the proof of our Lemma 8 can be obtained via a slight modification of the proof of Lemma
6.1 of [2]. Specifically, in their proof, they choose a constant c3 and show that

Pr

[
T∑
i=1

|CG(vi)| ≥ c2c3T

]
≤ Pr

[∣∣∣∣∣
T⋃
i=1

CG(vi)

∣∣∣∣∣ ≥ c2T
]

+
(c2e)

c3 · T 2c3+1

cc33 · nc3
.

By instead setting c3 = ω(1), and using Lemma 9 to upperbound Pr
[∣∣∣⋃T

i=1CG(vi)
∣∣∣ ≥ c2T], we

have that

Pr

[
T∑
i=1

|CG(vi)| ≥ c2c3T

]
≤ negl(N).

To get from Lemma 8 to Lemma 5, we can go through the exact same arguments as [2] to show
that G(N,N, p) is a good approximation of the Cuckoo graph distribution for an appropriate choice
of p. Note once again that in our case of negligible failure probability, the size of the queue and
the cycle detection mechanism are both bounded by g(N) = O(f(N)).
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