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Abstract. Pairing-based cryptography (PBC) has many elegant properties. It is

claimed that PBC can offer a desired security level with smaller parameters as the

general elliptic curve cryptography (ECC). In the note, we remark that this view is

misleading. Suppose that an elliptic curve E is defined over the field Fq. Then ECC

is working with elements which are defined over Fq. But PBC is working with the

functions and elements defined over Fqk , where k is the embedding degree.

The security of PBC depends directly on the intractable level of either elliptic curve

discrete log problem (ECDLP) in the group E(Fq) or discrete log problem (DLP) in

the group F∗
qk

. That means PBC protocols have to work in a running environment with

parameters of 1024 bits so as to offer 80 bits security level. The shortcoming makes

PBC lose its competitive advantages significantly.
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1 Introduction

In 1985, N. Koblitz [19] and V. Miller [20] introduced elliptic curve cryptography independently.

Since then, ECC has been extensively investigated. In the late 1990’s, a few companies included

some elliptic curve protocols in their security products. The security of ECC is based directly on

the intractablity of ECDLP. Parings derived from elliptic curves, including Weil paring [24] and

Tate paring [15], have been used to reduce ECDLP to DLP [22].

In 2000, Joux [18] proposed one round protocol for tripartite Diffie-Hellman key agreement

protocol using Weil pairing. This is the first instance to show that pairings can be used for “good”.

In Crypto 2001, Boneh and Fracklin [6] proposed a fully functional identity-based encryption scheme

from Weil Pairing. After that, paring-based cryptography has gotten a full development [1-14],

because it has many beautiful and elegant properties. It is widely believed that PBC can offer

a desired security level with smaller parameters. For example, Boneh-Boyen short signatures [2],

Boneh-Boyen-Shacham short group signatures [5], Boneh-Shacham-Lynn short signatures [11], and

Boneh-Sahai-Waters traitor tracing schemes [12]. In fact, this view is misleading. Suppose that an
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elliptic curve E is defined over the finite field Fq. Then ECC is working with elements which are

defined over the base field Fq (its parameters have size O(log q) bits). But PBC is working with

the functions and elements defined over the extension field Fqk (its parameters have size O(k log q)

bits), where k is the embedding degree.

The security of PBC depends directly on the intractable level of either ECDLP in the group

E(Fq) or DLP in the group F∗
qk

. This gives us a dilemma. On the one hand, to ensure the immunity

to the Weil and Tate pairing attacks, it requires that the imbedding degree k > 20 if the order n of

the base point P satisfying n > 2160. On the other hand, it requires k ≤ 6 to ensure the efficiency

of pairing computations in PBC protocols. This means the underlying field Fq is large enough so

that the DLP in F∗
qk

is considered intractable. In a word, PBC protocols have to work in a running

environment with parameters of 1024 bits, not 160 bits as supposed (someone has confused the

inputting-parameter’s size with the working-parameter’s size), so as to offer 80 bits security level.

The shortcoming makes PBC lose its competitive advantages significantly.

2 The Weil pairing over finite fields

Definition 1. An elliptic curve E over a finite field Fq is defined by an equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

where a1, a2, a3, a4, a6 ∈ Fq and 4 6= 0, where 4 is the discriminant of E and is defined as follows:

4 = −d22d8 − 8d34 − 27d26 + 9d2d4d6, where d2 = a21 + 4a2, d4 = 2a4 + a1a3, d6 = a23 + 4a6, d8 =

a21a6 + 4a2a6 − a1a3a4 + a2a
2
3 − a24.

If L is any extension field of Fq, then the set of L-rational points on E is

E(L) = {(x, y) ∈ L× L : y2 + a1xy + a3y − x3 − a2x2 − a4x− a6 = 0} ∪ {∞}

where ∞ is the point at infinity. The number of points in the group E(Fq), denoted by #E(Fq), is

called the order of E over Fq. Hasse’s theorem provides tighter bounds for #E(Fq).
Theorem 1. (Hasse) Let E be an elliptic curve defined over Fq. Then

q + 1− 2
√
q ≤ #E(Fq) ≤ q + 1 + 2

√
q.

Let n be a prime and coprime to the characteristic of Fq. Suppose n divides #E(Fq). Then

there exists a n-torsion group [24]

E(Fqk)[n] := {P ∈ E(Fkq ) |nP = O},

where the number k is called the embedding degree which is the smallest positive integer such that

n divides (qk − 1), and nP denotes the sum of n copies of P . The existence of the n-torsion group

is due to Balasubramanian and Koblitz [16].

2



Theorem 2. Let E be an elliptic curve over Fq and let n be a prime dividing #E(Fq). Suppose

that n does not divide (q − 1) and that gcd(n, q) = 1. Then the n-torsion group E[n] ⊂ E(Fqk) if

and only if n divides (qk − 1).

The structure of n-torsion group E(Fqk)[n] is described by the following relation

E(Fqk)[n] ∼= (Z/nZ)× (Z/nZ).

That means #E(Fqk)[n] = n2. The Weil pairing is defined on the n-torsion group E(Fqk)[n], not

on any n-order group G ⊂ E(Fq).
Let µn be the group of nth roots of unity. Clearly, µn ⊂ Fqk , but µn 6⊂ Fqj for j = 1, · · · , k− 1.

Definition 2. The Weil pairing is a map

en : E(Fqk)[n]× E(Fqk)[n]→ µn

with the following properties:

1. Linearity: If P,Q,R ∈ E(Fqk)[n], then

en(P +Q,R) = en(P,R)en(Q,R),

en(P,Q+R) = en(P,Q)en(P,R).

2. Alternating: If P ∈ E(Fqk)[n], then en(P, P ) = 1. This, along with linearity, implies that if

P,Q ∈ E(Fqk)[n], then en(Q,P ) = en(Q,P )−1.

3. Non-degeneracy: If O 6= P ∈ E(Fqk)[n], there exists Q ∈ E(Fqk)[n] such that en(P,Q) 6= 1.

4. Compatibility: If P ∈ E(Fqk)[mn] and Q ∈ E(Fqk)[n], then emn(P,Q) = en(mP,Q).

5. Galois action: Let P,Q ∈ E(Fqk)[n] and σ ∈ Gal(Fqk/Fq), then en(P,Q)σ = en(P σ, Qσ).

To construct a concrete Weil pairing, we need the following equivalent definition [21]:

Definition 3 Let n > 1 be an integer and let D1,D2 be divisors on an elliptic curve, E, with

disjoint supports, such that nD1, nD2 ∼ 0. This means that there are functions f1 and f2 such that

nDi = div (fi) for i = 1, 2. The Weil pairing is defined as

en(D1,D2) =
f1(D2)

f2(D1)
.

Warning. Most literatures use the notation E[n] to denote the n-torsion group, which does not

specify that the representation of points, the computation of functions and the evaluation for those

functions should be performed in the extension field Fqk .
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3 Miller’s algorithm for computing pairings

In order to calculate the Weil pairing, one should evaluate f(D), where div (f) = n([P ]− [O]). In

1985, Miller [21] gave an explicit algorithm for calculating the Weil pairing. Of course, it can be

used to calculate the Tate pairing, because it is also defined on the n-torsion group.

Let E be an elliptic curve over the field K and P,Q ∈ E(K). Let LP,Q be the normalized

function, such that LP,Q = 0 is the equation of the line passing through P and Q (or the equation

of the tangent line to the curve if P = Q). Then

div(LP,Q) = [P ] + [Q] + [−(P +Q)]− 3[O].

Let

hP,Q :=
LP,Q

LP+Q,−(P+Q)
.

We have div (hP,Q) = [P ] + [Q]− [P +Q]− [O].

Let f0,P = f1,P = 1. Inductively, for n > 0, define

fn+1,P := fn,P hP,nP ,

we have

div (fn,P ) = n[P ]− (n− 1)[O]− [nP ].

It is easy to find that

fm+n,P = fm,P fn,PhmP,nP , fmn,P = fnm,P fn,mP = fmn,P fm,nP .

This means the calculation of fn,P (Q) resembles exponentiation and it can be done in O(log n)

point additions on E/K.

Using the constructed functions, we obtain the following formulas [21].

Proposition 1. Suppose that T is a point in E(K) different from P,Q,Q − P , and O. Then

[P ]− [O] ∼ [P + T ]− [T ], and the supports of [Q]− [O] and [P + T ]− [T ] are disjoint. We have

en(P,Q) =
fn,Q(T )fn,P (Q− T )

fn,P (−T )fn,Q(P + T )
.

Proposition 2. Let E/K be an elliptic curve, P,Q ∈ E(K)[n], and P 6= Q. Then

en(P,Q) = (−1)n
fn,P (Q)

fn,Q(P )
.

Warning. The functions fn,P , fn,Q must be calculated in the group E(K) where the field K

satisfies µn ⊂ K. So do the evaluations of fn,P (Q), fn,Q(P ).
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4 Disadvantages of pairing-based cryptography

4.1 Large working parameters

It is well-known that ECC schemes are public-key mechanisms that provide the same functionality

as RSA schemes. However, a desired security level can be attained with significantly smaller

parameters in ECC systems. For example, a 160-bit elliptic curve key provides the same level of

security as a 1024-bit RSA parameter. Smaller parameters in ECC systems consequently save much

power, bandwidth and storage, and bring a good speed.

The working parameters for an elliptic curve scheme describe an elliptic curve E over Fq, a

base point P ∈ E(Fq), and its order n. The parameters should be chosen so that the ECDLP is

resistant to all known attacks. Usually, we select E so that #E(Fq) is prime or almost prime, that

is, #E(Fq) = hn where n is prime and h is small (e.g., h = 1, 2, 3 or 4). That means the size of the

working parameter q in an ECC scheme is approximately equal to the size of n. To avoid the Weil

and Tate pairing attacks, one should ensure that n does not divide qk − 1 for all 1 ≤ k ≤ 20. The

parameter size comparisons in Table 1 is adapted from [17].

security level 80 112 128 192 256

(bits) (SKIPJACK) (Triple-DES) (AES-Small) (AES-Medium) (AES-Large)

EC parameter n

EC parameter q
160 224 256 384 512

EC parameter k >20

PBC parameter n 160 224 256 384 512

PBC parameter qk 1024 2048 3072 8192 15360

PBC parameter k ≤6

DL parameter q 160 224 256 384 512

DL modulus p 1024 2048 3072 8192 15360

RSA modulus n 1024 2048 3072 8192 15360

Table 1. RSA, DL, EC, PBC parameter sizes for equivalent security levels. Bitlengths are given

for the DL parameter q and the EC parameter n, and the RSA modulus n and the DL modulus p,

respectively.

As we know, pairing-based cryptography protocols require that:

• the base point P ∈ E(K) has a sufficiently large prime order n such that ECDLP in E(K) is

intractable;

• DLP in K∗ is intractable in order to resist the MOV reduction attacks [22];

• it is efficient to compute pairings in E(K).

From the practical point of view, it is annoying for PBC schemes to have to work in extensions

of the base fields, even though the inputting parameters are defined over the base field. Taking
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into account the very long and complicated programming code for PBC systems (see PBC 0.5.14,

maintained by Ben Lynn, released on Jun 14, 2013) we find that PBC schemes are far slow than

its DL counterparts. Smaller inputting parameters in PBC systems can not truly bring them a

good speed. We refer to the following Table 2 for the concrete comparisons between DSA and

Boneh-Boyen short signature [2].

DSA Boneh-Boyen short signature

Setup p : 1024-bit prime, bilinear groups (G1,G2),

q : 160-bit prime factor of p− 1, 160-bit prime p, |G1| = |G2| = p,

g : a base element of order q mod p, generators g1 ∈ G1 and g2 ∈ G2,

y = gx mod p, x ∈ Z∗q (160-bit). x, y ∈ Z∗p, z = e(g1, g2),

a hash function H : {0, 1}∗ −→ Z∗q . u = xg2, v = yg2,

pk={p, q, g, y,H}, pk={g1, g2, u, v, z},
sk={x}. sk={x, y}.

Signing for message m, pick k ∈ Z∗q , for message m ∈ Zp,
compute r = (gk mod p) mod q, pick r ∈ Zp,
s = k−1(H(m) + xr) mod q, compute σ = 1

x+m+yrg1,

output the signature (r, s). output the signature (σ, r).

Storage (r, s): 320 bits. (σ, r): 320 bits.

Computation about 160 multiplications about 160 point additions in G1.

modulo p (1024-bit).

Verifying (gH(m)s−1
yrs

−1
mod p) mod q = r, e(σ, u⊕mg2 ⊕ rv) = z.

where s−1 is computed in Z∗q .
Computation about 320 multiplications about 320 point additions in G2,

modulo p (1024-bit). for computing ρ := u⊕mg2 ⊕ rv;

about 320 point additions in E(K),

where µp ⊂ K, not in G1 or G2,

for computing fp,σ, fp,ρ;

about 320 valuations

for fp,σ(ρ), fp,ρ(σ).

Each valuation needs 4

multiplications and 1 inverse

over the extension field K (1024-bit).

Table 2: Comparisons between DSA and Boneh-Boyen signature

Remark. Taking into account the time delay for processing the long and complicated program-

ming code of Boneh-Boyen signature, we conjecture DSA is almost 60 times faster than Boneh-

Boyen signature.
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4.2 The controversial setting of master key in PBC schemes

We know most PBC schemes have to set a master key for generating users’ private keys. That is

to say, each user’s private key is not truly exclusive in theory, although there are some suggestions

for alleviating this problem by introducing more key-generating centers. The inherent drawback of

PBC indeed counteracts the benefits from ID-based public keys and bilinear property of parings.

5 Difficulties of implementing PBC schemes

To the best of our knowledge, there were few industrial products being integrated with paring-

based cryptosystems. The reasons for this situation could be summarized as follows: (1) the

pairing computation is hard to understand for most engineers; (2) the issue of key escrow in PBC

does not exist with the current PKI system; (3) the heavy group operation of PBC really lowers

the advantages that gained from smaller key size. In view of these difficulties, frankly speaking, we

do not think it is possible for PBC to practically replace the position of RSA or ElGamal in the

next twenty years.

For the current status of “applied” paring-based cryptography, we refer to the following links.

PBC Library [http://crypto.stanford.edu/pbc/]; pbc-0.5.14 (Released on Jun 14, 2013).

JPBC Library [http://gas.dia.unisa.it/projects/jpbc/faq.html]; v2.0.0 (Released on

Dec 04, 2013).

TinyPairing [http://www.cs.cityu.edu.hk/~ecc/TinyPairing/]. TinyPairing v0.1 (Re-

leased on Oct 09, 2009).

Jmiracl [https://dsl-external.bbn.com/tracsvr/openP3S/wiki/jmiracl\].

6 Conclusion

The proposal of ID-based public key, suggested by Shamir [23] in 1984, aimed originally to mitigate

the burden of key management. Thirty years later, we find the burden is not as heavy as one

imagined before. The current PKI system works well. In some ways, the ID-based public key

cryptography has become a pure academic issue. Thus, pairing-based cryptography shall lose its

competitive advantages although it looks very beautiful. Just as the saying goes: “Beautiful flowers

produce no fruits”.
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