
Meet in the Middle Attacks on Reduced Round
Kuznyechik

Riham AlTawy and Amr M. Youssef

Concordia Institute for Information Systems Engineering,
Concordia University, Montréal, Québec, Canada

Abstract. Kuznyechik is an SPN block cipher that has been recently
chosen to be standardized by the Russian federation as a new GOST
cipher. The algorithm updates a 128-bit state for nine rounds using a
256-bit key. In this paper, we present meet-in-the-middle attacks on the
4 and 5 round reduced cipher. Our attacks are based on the differential
enumeration approach, where we propose a distinguisher for the middle
rounds and match a sequence of state differences at its output. However,
the application of the exact approach is not successful on Kuznyechik
due to its optimal round diffusion. Accordingly, we adopt an equivalent
representation for the last round where we can efficiently filter cipher-
text pairs and launch the attack in the chosen ciphertext setting. We also
utilize partial sequence matching which further reduces the memory and
time complexities through relaxing the error probability. The adopted
partial sequence matching approach enables successful key recovery by
matching parts of the generated sequence instead of the full sequence
matching used in the traditional settings of this attack. For the 4 and
5 round reduced cipher, the 256-bit master key is recovered with a time
complexity of 2139.6 and 2140.3, and a memory complexity of 224.6 and
2153.3, respectively. Both attacks have similar data complexity of 2113.
Keywords: Kuznyechik, Cryptanalysis, Meet-in-the-middle attacks, Dif-
ferential enumeration, Partial sequence matching, GOST.

1 Introduction

The Russian Federation has recently published a project of a new standard for
block cipher encryption algorithm [2]. A draft for this new algorithm was pre-
sented by its designers at CTCrypt 2014 [21]. The new algorithm, Kuznyechik,
(Grasshopper in Russian), is in the process of being standardized [2] to accom-
pany the current encryption standard GOST 28147-89 [1]. Although the current
standard is considered a lightweight cipher [19], and only theoretical attacks on
the full round cipher have been presented [17, 13], it operates on 64-bit blocks of
data which is not sufficient for the current requirements. Hence, the need arose
for a new standard with larger block length which is intended to supersede the
current GOST 28147-89 cipher.

The meet-in-the-middle (MitM) attack was first proposed in 1977 by Diffie
and Hellman [12] for the analysis of the Data Encryption Standard (DES). Ever



since, the attack has been evolving to cryptanalyze block ciphers such as Present
and Prince [7], KTANTAN [6], LBlock [3], and mCrypton [15]. Additionally,
MitM preimage attacks on hash functions have been presented on HAS-160 [16],
Whirlpool [20], and Streebog [4]. The first application of the MitM attack on
AES was due to the work of Demirci and Selçuk [9], whose approach opened the
door to a new line of research. They constructed a truncated differential four
round distinguisher, and showed that if the input to the distinguisher has only
one active byte that takes all the possible values, then each output byte can
be evaluated as a function of 25 parameters. They also showed that the values
of each output byte corresponding to the input byte values form an ordered
sequence that can be used as a property to identify the right key guess. The
main disadvantage of their technique is the high memory complexity which is
required by a precomputation table to store all the sequences resulting from all
the possible combinations of the 25 byte parameters. Accordingly, the approach
was only valid to attack seven and eight rounds of AES-192 and AES-256, and
not the 128-bit version. Afterwards, the number of parameters was reduced to
24 bytes in [10], which lowered the size of the table by a factor of 8.

Later on, Dunkelman et al. proposed the idea of multisets and differential
enumeration [14] to tackle the high memory requirements of the approach of
Demirci and Selçuk [9]. While the concept of multisets provides better encoding
of the ordered sequence which reduces the size of the table by a factor of 4,
differential enumeration is considered the main advantage of their attack. More
precisely, differential enumeration allows the ordered sequence to be generated
by the knowledge of 16 byte parameters only instead of 24, which brings the
number of entries of the table down from 2192 to 2128 and makes the attack
possible on AES-128. This gain is attributed to the use of a low probability
truncated differential distinguisher where the generated sequences at its output
can only take a restricted number of values. Accordingly, one must initially search
through a large amount of input data pairs to find one pair that satisfies the
chosen distinguisher. Indeed, their proposal has reduced the memory complexity
of the attack at the expense of its data complexity required to search for the
right input data pair.

Finally, Derbez et al. [11] improved the attack of Dunkelman et al. by borrowing
ideas from the rebound attack [18], and proving that not all of the sequences
in the table can be verified by input data satisfying the truncated distinguisher.
They have presented an efficient enumeration technique and showed that the
whole set of sequences can take only 280 values and not 2128 as with the case in
the attack by Dunkelman et al. Accordingly, all the generated sequences require
the knowledge of only 10 byte parameters, thus the number of entries of the
precomputation table is further reduced to 280. A direct consequence of their
improvement is that the memory complexity is not the bottleneck of the attack
anymore but both the time and data complexities are. Nevertheless, their attack
is considered the most efficient attack on the 7-round reduced AES-128 and



8-round reduced AES-196/256. They have also used a 5-round distingusher to
attack the 9-rounds reduced AES-256.

In this work, we present a MitM attack on Kuznyechik using the idea of ef-
ficient differential enumeration. Unlike AES, Kuznyechik employs an optimal
diffusion transformation applied to the whole state, where one byte difference
results in a full active state with certainty after one round. Consequently, we
construct two and three round distinguishers in our attacks to recover 16-bytes
of the master key of the reduced 4 and 5 round cipher. The direct application
of the attack on Kuznyechik requires a time complexity that exceeds that of
the exhaustive search for the 256-bit key, which is also attributed to the opti-
mal round diffusion. Accordingly, we adopt an equivalent representation of the
last round which allows us to efficiently select ciphertext pairs that satisfy the
lower half of the differential path used in the attack with certainty. Hence, our
attacks are considered in the chosen ciphertext setting. This modification lowers
the time complexity of the online phase by a factor of 2120 because we eliminate
the probabilistic propagation of the 16 to 1 transition through the linear trans-
formation from the ciphertext side. We also present partial sequence matching,
by which we generate, store, and match parts of the ordered sequence while
maintaining negligible probability of error. Indeed, not only we decrease the
partially encrypted/decrypted data during online matching and thus the overall
time complexity of the attacks is lowered, but this approach also reduces the
memory requirements of both attacks.

The rest of the paper is organized as follows. In the next section, the description
of the Kuanyetchik block cipher along with the notation used throughout the
paper are provided. Afterwards, in section 3, we provide a detailed description of
the proposed distinguisher, the adopted attack procedure, our filtering approach,
the proposed partial sequences idea, and show how to extend the attack to five
rounds. Finally, the paper is concluded in section 4.

2 Specification of Kuznyechik

Kuznyechik [21, 2] is an SPN block cipher that operates on a 128-bit state. The
cipher employs a 256-bit key which is used to generate ten 128-bit round keys.
As depicted in Figure 1, the encryption procedure updates the 16-byte state by
iterating the round function for nine rounds. The round function consists of:

– SubBytes (S): A nonlinear byte bijective mapping.
– Linear Transformation (L): An optimal diffusion operation that operates on

a 16-byte input and has a branch number = 17.
– Xor layer (X): Mixes round keys with the encryption state.

Additionally, an initial XOR layer is applied prior to the first round. The full
encryption function where the ciphertext C is evaluated from the plaintext P is
given by:

C = (X[K10] ◦ L ◦ S) ◦ · · · ◦ (X[K2] ◦ L ◦ S) ◦X[K1](P )



Fig. 1. Encryption procedure

In our attack, we use an equivalent representation of the round function. The
representation exploits the fact that both the linear transformation, L, and the
Xor operation, X, are linear and thus, their order can be swapped. One has to
first Xor the data with an equivalent round key, then apply the linear transfor-
mation, L, to the result. We evaluate the equivalent round key at round i by
EKi = L−1(Ki). We also use the following property of the Sbox:

Property 1. For a given Sbox differential (δx, δy), the average number of solutions
to S(x)⊕ S(x⊕ δx) = δy is 1.

For further details regarding the employed Sboxes and linear transformation,
the reader is referred to [21].

Key schedule: The ten 128-bit round keys are derived from the 256-bit master
key by undergoing 32 rounds of a Feistel structure function. The first two round
keys, K1 and K2, are derived directly from the master key, K, as follows: K1 ∥
K2 = K. As depicted in Figure 2, each pair of subsequent round keys is extracted
after eight rounds of execution. During each round, the same round function used
in the encryption procedure is applied to the right half of the input to the Feistel
round. However, round constants are used with the X operation instead of round
keys.

The 128-bit round constants Ci are defined as follows: Ci = L(i), i =
1, 2, · · · , 32. Let F [C](a, b) denote (LSX[C](a) ⊕ b, a), where C, a, and b are
128-bit inputs. The rest of the round keys are derived from the first two round
keys, K1 and K2, as follows:

(K2i+1,K2i+2) = F [C8(i−1)+8] ◦ · · · ◦ F [C8(i−1)+1](K2i−1,K2i), i = 1, 2, 3, 4.

It is interesting to note that Kuznyechik bares a lot of resemblance with one
of the AES predecessors, Khazad [5]. In particular, both ciphers employ an
iterative SPN structure for updating the input block state, where the adopted



Fig. 2. Key schedule

linear transformation has an optimal diffusion properties. Also, they both use
Fiestel network for the round keys generation. While in Kuznyechik, two round
keys are generated after eight rounds of execution, only one round of execution
separates consecutive round keys in Khazad. They also differ in that Khazad
employs involution Sboxes and linear transformation, and it does not use a linear
transformation in the last round.

Notation The following notation is used throughout the paper:

– xi, yi, zi: The 16-byte state after the X, S, L operation, respectively, at
round i.

– xj
i : The state at round i whose position within a set or a sequence is given

by j.
– xi[j]: The jth byte of the state xi, where j = 0, 1, · · · , 15, and the bytes are

indexed from left to right.
– ∆xi, ∆xi[j]: The difference at state xi, and byte xi[j], respectively.

The memory complexity of our attacks is given in 16-byte states and the time
complexity is evaluated in reduced round Kuznyechik encryptions. In the follow-
ing section, we give the details of our MitM attack on Kuznyechik.

3 A MitM Attack using Differential Enumeration on
Kuznyechik

Generally, our attack divides the reduced Kuznyechik block cipher, CK , into
three parts, such that CK = Ck2 ◦ Cm ◦ Ck1 , where Cm is the middle part of
the cipher which exhibits a distinguishing property. The employed property is
evaluated without the knowledge of the key bits used in these middle rounds.
Hence, correct round key candidates for k1 and k2 are checked if they verify



this distinguishing property or not. Our middle distinguisher is a truncated dif-
ferential characteristic such that, when a set of input states from a δ-set [8] is
presented as its input, the set of each byte of the output state forms an ordered
sequence.

Definition 1. (δ-set of Kuznyechick) is a set of 256 states where one byte at
a particular position takes all the 28 possible values and the rest of the 15 bytes
are constants.

In our MitM attacks, we employ distinguishers where the δ-set is presented
at their input from the ciphertext side, thus, after partially decrypting it, we
acquire the corresponding ordered sequence. We denote the δ-set at state xi

resulting from changing the byte at position j by δsj , j = 0, 1, · · · , 15, where

δsj = {x0
i , x

1
i , · · · , x255

i }.

We also denote the set of 255 differences at byte xi−r[k] which form the ordered
sequence for an r round distinguisher by osk, k = 0, 1, · · · , 15, where

osk = {∆1xi−r[k],∆
2xi−r[k], · · · ,∆255xi−r[k]},

and ∆lxi−r[k] = x0
i−r[k]⊕ xl

i−r[k], for l = 1, 2, · · · , 255. The correct ordered se-
quence osk is evaluated by partially decrypting the 256 bytes which are different
in the δ-set for r rounds. However, we compute all the possible sequences so
that one does not need to know the key bits involved in this encryption pro-
cess because we simply compute it using all the possible values of the involved
parameters.

3.1 The 4-round Attack

Our proposed 4-round MitM attack employs a two round distinguisher. Fig-
ure 3 depicts the differential path used in the attack in which we embed a
1 → 16 → 1 distinguisher that starts at x4 and ends at x2. The length of the
distinguisher is restricted by the properties of optimal linear transformation used
in the Kuznyechik round. Unlike the MixColumn transformation used in AES
which works on independent columns leading to full state diffusion after two
rounds, the linear transformation L guaranties full diffusion in one round. As
depicted in Figure 3, our δ-set is the set of states resulting from changing the
first byte at state x4 and is given by:

δs0 = {x0
4, x

1
4, · · · , x255

4 }.

The corresponding ordered sequence:

os0 = {∆1x2[0],∆
2x2[0], ·,∆255x2[0]}

is evaluated by the knowledge of the values of 18 bytes. More precisely, in ad-
dition to δs0, given the values of 1 byte at x4[0], 16 bytes at y3, and 1 byte at
y2[0], the ith element, ∆ix2[0] of the ordered sequence is computed as follows:



Fig. 3. Differential path used in the 4-round attack.

– Compute ∆ix4[0] = x0
4[0]⊕ xi

4[0].
– Linearly propagate ∆ix4[0] backwards and compute the value of ∆iy3.
– Using the value of y3 and ∆iy3, pass the substitution layer with certainty

and evaluate ∆ix3

– Linearly propagate ∆ix3 backwards through both X[K3] and L to evaluate
∆iy2[0].

– Using ∆iy2[0] and y2[0], compute ∆ix2[0].

However, by employing the rebound based differential enumeration technique
[11], we deduce that if x0

4 of δs0 belongs to a pair of messages that follows the
differential path in Figure 3, then the corresponding ordered sequence os0 can
have only 224 values. Accordingly, a given ordered sequence can be computed
by the knowledge of 3 byte parameters only. These parameters are ∆x4[0], y2[0],
and ∆y2[0], where ∆x4[0] and ∆y2[0] denote the differences generated by a
conforming message pair. In what follows, we give the details of the attack steps
and explain how we evaluate the 224 sequences from these 3 parameters.

Attack Procedure: The attack recovers the 128-bit first round key K1 and one
byte of EK5 = L−1(K5). The fact that K1 is half the master key, K, enables us
to recover the whole master key by exhaustively searching for the other half. The
benefit of the extra knowledge of the recovered byte of EK5 is limited to making



the exhaustive search for the rest of the master key more efficient (by early
aborting the round keys generation). More precisely, the key schedule employs a
large number of rounds between the generation of sequential round keys, which
leads to a very complex relation between them and renders any key bridging
approaches useless.

The attack is composed of precomputation and online phases. In the precompu-
tation phase, we iterate on all the values of the parameters required for evaluating
the ordered sequence, and for each value, we deduce its corresponding 18 bytes
values which are then used to generate the ordered sequence. We store all the
sequences in a hash table. The online phase is further divided into data collection
and filtration, and key recovery phases. In the data collection phase, we collect
many pairs such that one of them satisfies the 4-round differential character-
istics given in Figure 3. However, given the fact that our required ciphertext
pairs are fully active, we employ an equivalent representation of the last round
to enable efficient filtering by which we are certain that the obtained ciphertext
pairs satisfy the lower two rounds of the differential characteristic. Finally, in
the key recovery phase, for each of the obtained pairs, we compute the ordered
sequences by deducing the first round key K1 and guessing the first byte of EK5.
We then search for a match between the online computed sequence and the ones
stored in the precomputed table, which enables the recovery of K1.

Precomputaion phase: In this phase, we construct a lookup table that con-
tains the 224 ordered sequences of the resulting 255 difference,

os0 = {∆1x2[0],∆
2x2[0], · · · ,∆255x2[0]},

from the δs0 = {x0
4, x

1
4, · · · , x255

4 }. This stage is done by first iterating on the
224 possible values for the 3 bytes ∆x4[0], y2[0], and ∆y2[0], and for each one
of them, we deduce the possible values of the 18 original parameters using the
rebound approach. Then, for each of them, we construct the ordered sequence
of 255 differences. The procedure can be summarized as follows:

1. For each of the 224 possible values of ∆x4[0] ∥ y2[0] ∥ ∆y2[0], evaluate the
values of the 18 bytes required to compute the ordered sequence, which are
y2[0], y3, and x4[0], as follows:
– Using ∆x4[0], evaluate ∆y3 by linearly propagating ∆x4[0] backwards.
– Compute ∆x3 by linearly propagating ∆y2[0] through the linear trans-

formation.
– Find x3, such that S(x3)⊕S(x3⊕∆x3) = ∆y3. According to property 1

in Section 2, not all the 224 differential are possible, but the ones that are
possible results in about 216 solutions on average so we get one solution
on average.

– Evaluate y3 = S(x3).
2. The additional knowledge of the evaluated value of y3 provides us with the

values of the 18 bytes required to compute the 255 differences ∆lx2[0], l =
1, 2, · · · , 255, of the ordered sequence as described at the beginning of this
section.

3. Store all the generated sequences in a hash table.



Online phase: In this phase, we first find enough pairs of messages such that
one of them conforms to the truncated differential characteristic in Figure 3. In
this step we introduce a modification to the default process of data collection [11,
14]. More precisely, instead of collecting enough random pairs with full active
states so that one of them satisfies the two 16 → 1 transitions through the linear
transformation in rounds 1 and 4, we start data collection from the ciphertext
side and employ an equivalent representation of the last round. During this stage,
we commence by composing structures of the inverse linear transformation of
ciphertext that have all the 28 possible values in one byte while the other bytes
are constants. Accordingly, even though their corresponding ciphertext pairs
have full active state, these differences guaranty the 16 → 1 transition through
the linear transformation. Hence, we have to repeat this filtration stage enough
times so that we satisfy only the probabilistic transition in round 1. A direct
consequence of our modification is that instead of requiring 2240 pairs, the attack
is applicable with 2120 pairs only, thus both the data and time requirements of
the attack are lowered by this difference. The second step uses the found pairs
to create a set of sequences and test them against the precomputed table to
identify the correct K1.

Data collection and filtration: In this step, we query the decryption oracle
with structures of chosen ciphertexts to get enough pairs such that one conforms
to the whole truncated differential path. Each structure is composed of 256
ciphertext, where the first byte after applying the inverse linear transformation
on them takes all the 256 values and the remaining fifteen bytes are equal. The
process is described as follows:

1. To get one ciphertext structure, randomly pick the value of the rightmost
fifteen bytes of L−1(C) and let the first byte take all the possible 256 values.

This structure generates about 28×(28−1)
2 ≈ 215 pairs. This step guaranties

that all the corresponding (C,C ′) pairs in the structure conform to the 16 →
1 transition in round 4.

2. Query the decryption oracle for the plaintext pairs (P, P ′) corresponding
to the ciphertext pairs generated in step 1. These pairs are not necessarily
going to conform to the 16 → 1 transition in round 1, which happens with
probability 2−120.

3. Store the 28 plaintexts and their corresponding ciphertexts in a hash table.
4. To get one pair of plaintexts (P, P ′) that satisfy the 16 → 1 probabilistic

transition, we need to try approximately 2120 pairs. Since, each structure
provides 215 pairs, one requires about 2105 structures, and hence the above
two steps are repeated 2105 times.

All in all, we ask for the decryption of 2105× 28 = 2113 chosen ciphertexts to get
the required 2120 pairs.

Key recovery: The previous steps results in 2120 candidate pairs (Pi, Ci) and
(P ′

i , C
′
i), for i = 0, 1, · · · , 2120 − 1, with a plaintext difference, ∆Pi = Pi ⊕ P ′

i ,



and a predetermined ciphertext difference, ∆Ci = Ci ⊕ C ′
i. For each pair, we

deduce the possible values of K1 and guess the value of EK5[0] to compute a
candidate ordered sequence and match it against the precomputed table, and
thus determine the value of the right K1. The following process describes the
method adopted for the recovery of the first round key, and it is repeated for
each plaintext pair (Pi, P

′
i ) and their corresponding ciphertext pair (Ci, C

′
i).

1. Guess a value for ∆x2[0], and linearly propagate it backwards to get the
value of ∆y1.

2. Using the fact that∆x1 = ∆Pi, find the value of x1 which provides a solution
for ∆y1 = S(x1) ⊕ S(x1 ⊕ ∆x1). According to property 1 in section 2, we
get one solution on average.

3. Evaluate K1 = Pi ⊕ x1. By repeating the previous two steps for all the
possible guesses of ∆x2[0], we get 28 candidate values for K1.

4. For each candidate of the 28 values of K1 and for each guess of the 28

guesses of EK5[0], use Ci to get the rest of the 255 ciphertexts Cj
i , for

j = 1, 2, · · · , 255, corresponding to the δs0 generated by Ci as follows:
– The value of x4[0] which is the first byte of the first state in δs0 is

evaluated as follows:

x4[0] = S−1(L−1(Ci)[0]⊕ EK5[0]).

– The set of different values of x4[0] in the states of δs0 has the following
structure:

{x4[0], x4[0]⊕∆1, x4[0]⊕∆2, · · · , x4[0]⊕∆255},

and ∆j = j for j = 1, 2, · · · , 255. Accordingly, we can evaluate the 255

values of L−1(Cj
i )[0] corresponding to the values of x4[0]⊕∆j by

L−1(Cj
i )[0] = S(x4[0]⊕∆j)⊕ EK5[0].

– Get the difference ∆jL−1(Ci)[0] = L−1(Cj
i )[0] ⊕ L−1(Ci)[0], and prop-

agate it through the linear transformation to get the corresponding dif-
ference ∆jCi. Finally, the required 255 values of Cj

i are evaluated by

Cj
i = Ci ⊕∆jCi.

5. Get the 256 plaintexts (Pi, P
1
i , · · · , P 255

i ) corresponding to the ciphertexts
generated in the previous step using K1 from the currently stored structure.

6. Partially encrypt the plaintexts (Pi, P
1
i , · · · , P 255

i ) to get the 256 values of
∆jx2[0], which form the ordered sequence os0.

7. Check if there is a match between the computed os0 and the 224 ordered
sequences stored in the precomputed table. If there is no match we discard
the candidate K1 with certainty.

The probability of a wrong key producing a valid 255 byte ordered sequence is
given by 224+120+16−2040 = 2−1880, which is negligible and can be relaxed. This
fact allows us to present our partial sequence matching idea.



Complexity Analysis: The memory complexity of the attack is attributed to
the precomputed table required for the storage of 224 sequences of size 2040 bits
each. Thus the memory requirements of the attack is given by 224 × 2040/128 ≈
228 128-bit states. That memory complexity can be reduced by a factor of 4
using the multiset encoding idea (cf. Appendix A in [11]), where 512-bits are
used to store the required information of the 255 bytes in a sequence. The data
complexity of the attack is due to the data collection step where we query the
decryption oracle with 2113 chosen ciphertexts. The time complexity for recover-
ing the first round key is dominated by the time required for partially encrypting
the 256 values in a δ-set with all the 216 key candidates for all the 2120 collected
pairs. Accordingly, the time complexity of the attack ≈ 2(120+16+8)×2−1 = 2143.

As it is fairly complex to deduce any relation between the recovered K1

and EK5[0] that can aid us in the recovery of K2, which is the second half of
the master key, we are left with two options. First, with the knowledge of the
recovered K1, we can add one round at the beginning, and repeat the attack
on the following four rounds to recover K2. Otherwise, our second option is to
exhaustively search for K2. Comparing the complexities of both options, we opt
for the second one. Thus, the memory, data, and time complexities required for
the recovery of the 256-bit KuznyechiK key are given by 226, 2113 and 2143 +
2128 ≈ 2143, respectively. In what follows, we present the idea of partial sequence
matching by which we reduce both the memory and time complexities of the
attack.

Partial sequence matching: Our proposed 4-round attack has a time com-
plexity of 2143, which is affected by the number of partial encryptions/decryptions
required to generate the 28 − 1 differences in the ordered sequence from the δ-
set. Accordingly, instead of partially encrypting the 28 values of the δ-set to get
their corresponding ciphertexts, and then encrypting 28 plaintexts to evaluate
the ordered sequence, we can reduce the number of encryption/decryption op-
erations to b, where b < 28 and denotes the number of differences stored in the
ordered sequence. In other words, since the probability of error is so small, it
can be relaxed such that we match b bytes of the 28 of the ordered sequence
to identify the right key. More precisely, if we accept the error probability to
be 2−32, which is still negligible, the required number of bytes, b, is evaluated
by 2−32 = 2120+16+24−8b. Hence, it is enough to match 24 bytes of the ordered
sequence to identify a right key with an error probability of 2−32. In the sequel,
the memory complexity of the attack is reduced to 224×(192/128) ≈ 224.6 states,
and the time complexity is evaluated by 2120+16 × 24.6 × 2−1 ≈ 2139.6. In what
follows, we show how this attack can be extended to cover one more round of
the cipher.

3.2 Extending the Attack to 5 Rounds

Adding an additional round to our attack can be accomplished by either ap-
pending one round from the plaintext or ciphertext side, or by adopting a three
round distinguisher. We opted for employing a longer distinguisher because the



idea of adding one round from either ends makes the attack inapplicable. Indeed,
if we add one round from the plaintext side, we have to deal with all the possible
guesses for the 128-bit value of K1, and then deduce the value of K2 via our
attack. On the other hand, by appending one round from the ciphertext side, we
are not able to use our online filtering stage, which raises the time complexity
of the attack by a factor of 2120.

As depicted in Figure 4, we propose a 1 → 16 → 16 → 1 distinguisher
that covers rounds two to five. The additional round in the distingusher in-

Fig. 4. Differential path used in the 5-round attack.

crease only the memory requirements of the attack because now the sequences
are generated by the knowledge of 34 byte parameters. However, using the dif-
ferential enumeration approach, the ordered sequences can only have 2152 val-
ues. Accordingly, we need only 19 byte parameters, namely ∆x5[0], y4, y2[0],
and ∆y2[0] to deduce a given sequence. In the precomputation phase, we build
a table of size 2152 × 2040/128 ≈ 2156 states. The online phase is exactly
like that of the 4-round attack, and hence, the time complexity is given by



2120+16+8× (2/5) ≈ 2143 and the data complexity is evaluated by 2113. However,
employing partial sequence matching, an error probability of 2−32 is achieved by
matching 40 bytes of the ordered sequence. Accordingly, the memory complex-
ity is given by 2152 × 320/128 ≈ 2153.3, and the time complexity is evaluated by
2120+16 × 25.3 × 2−1 ≈ 2140.3.

4 Conclusion

In this paper, we have presented MitM attacks on the new draft of the Russian
encryption standard, also known as Kuznyechik, using the idea of efficient dif-
ferential enumeration. We have proposed an initial filtration stage which lowers
the time complexity of the basic approach by a factor of 2120. Instead of trying
random data pairs such that the truncated differential path is satisfied probabilis-
tically, we carefully compose ciphertext pairs so that the lower half of the path
is conformed to with certainty. Additionally, we have adopted partial sequence
matching, by which, we store and match parts of the ordered sequences while
maintaining a negligible probability of error which reduces both the memory
and time complexities of the attacks. Our attacks on the 4 and 5 round reduced
cipher have a memory complexity of 224.6 and 2153.3, and a time complexity of
2139.6 and 2140.3, respectively. Both attacks have similar data complexity of 2113.

It should be noted that several improvements, like key bridging techniques
[11], for this class of attacks on AES were possible because of the relatively
simple key schedule. This is unlikely to be the case for Kuznyechik, given the
large number of rounds used in the generation of the round keys, which despite
its conceptual simplicity leads to a very complex relation between successive
round keys. While these attacks may not present direct threat to the security
of Kuznyechik, they are considered forward steps in the public cryptanalysis of
this soon to be the new Russian block cipher standard.

References

1. GOST 28147-89. Information Processing Systems. Cryptographic Protection.
Cryptographic Transformation Algorithm. (In Russian).

2. The National Standard of the Russian Federation GOST R 34. -20 . Rus-
sian Federal Agency on Technical Regulation and Metrology report, 2015.
http://www.tc26.ru/en/standard/draft/ENG GOST R bsh.pdf.

3. AlTawy, R., and Youssef, A. Differential sieving for 2-step matching meet-in-
the-middle attack with application to LBlock. In Lightsec (2014), T. Eisenbarth
and E. Öztürk, Eds., Lecture Notes in Computer Science, Springer. (to appear).

4. AlTawy, R., and Youssef, A. M. Preimage attacks on reduced-round Stribog.
In AFRICACRYPT (2014), D. Pointcheval and D. Vergnaud, Eds., vol. 8469 of
Lecture Notes in Computer Science, Springer, pp. 109–125.

5. Barreto, P., and Rijmen, V. The Khazad Legacy-Level Block Cipher. In First
Open NESSIE Workshop, KU-Leuven, 2000. Submission to NESSIE.

6. Bogdanov, A., and Rechberger, C. A 3-subset meet-in-the-middle attack:
Cryptanalysis of the lightweight block cipher KTANTAN. In SAC (2011),



A. Biryukov, G. Gong, and D. Stinson, Eds., vol. 6544 of Lecture Notes in Com-
puter Science, Springer, pp. 229–240.

7. Canteaut, A., Naya-Plasencia, M., and Vayssire, B. Sieve-in-the-middle:
Improved MITM attacks. In CRYPTO (2013), R. Canetti and J. Garay, Eds.,
vol. 8042 of Lecture Notes in Computer Science, Springer, pp. 222–240.

8. Daemen, J., and Rijmen, V. AES proposal: Rijndael, 1998.
9. Demirci, H., and Selçuk, A. A meet-in-the-middle attack on 8-round AES.

In FSE (2008), K. Nyberg, Ed., vol. 5086 of Lecture Notes in Computer Science,
Springer, pp. 116–126.

10. Demirci, H., Taşkn, I., Çoban, M., and Baysal, A. Improved meet-in-the-
middle attacks on AES. In INDOCRYPT (2009), B. Roy and N. Sendrier, Eds.,
vol. 5922 of Lecture Notes in Computer Science, Springer, pp. 144–156.

11. Derbez, P., Fouque, P.-A., and Jean, J. Improved key recovery attacks on
reduced-round AES in the single-key setting. In EUROCRYPT (2013), T. Johans-
son and P. Nguyen, Eds., vol. 7881 of Lecture Notes in Computer Science, Springer,
pp. 371–387.

12. Diffie, W., and Hellman, M. Exhaustive cryptanalysis of the NBS Data En-
cryption Standard. Computer 10, 6 (1977), 74–84.

13. Dinur, I., Dunkelman, O., and Shamir, A. Improved attacks on full GOST.
Cryptology ePrint Archive, Report 2011/558, 2011. http://eprint.iacr.org/.

14. Dunkelman, O., Keller, N., and Shamir, A. Improved single-key attacks on
8-round AES-192 and AES-256. In ASIACRYPT (2010), M. Abe, Ed., vol. 6477
of Lecture Notes in Computer Science, Springer, pp. 158–176.

15. Hao, Y., Bai, D., and Li, L. A meet-in-the-middle attack on round-reduced
mCrypton using the differential enumeration technique. In Network and System
Security (2014), M. Au, B. Carminati, and C.-C. Kuo, Eds., vol. 8792 of Lecture
Notes in Computer Science, Springer, pp. 166–183.

16. Hong, D., Koo, B., and Sasaki, Y. Improved preimage attack for 68-step HAS-
160. In ICISC (2009), D. Lee and S. Hong, Eds., vol. 5984 of Lecture Notes in
Computer Science, Springer, pp. 332–348.

17. Isobe, T. A single-key attack on the full GOST block cipher. In FSE (2011),
A. Joux, Ed., vol. 6733 of Lecture Notes in Computer Science, Springer, pp. 290–
305.

18. Mendel, F., Rechberger, C., Schläffer, M., and Thomsen, S. S. The re-
bound attack: Cryptanalysis of reduced Whirlpool and Grøstl. In FSE (2009),
O. Dunkelman, Ed., vol. 5665 of Lecture Notes in Computer Science, Springer,
pp. 260–276.

19. Poschmann, A., Ling, S., and Wang, H. 256 bit standardized crypto for 650
GE GOST revisited. In CHES (2010), S. Mangard and F.-X. Standaert, Eds.,
vol. 6225 of Lecture Notes in Computer Science, Springer, pp. 219–233.

20. Sasaki, Y., Wang, L., Wu, S., and Wu, W. Investigating fundamental se-
curity requirements on Whirlpool: Improved preimage and collision attacks. In
ASIACRYPT (2012), X. Wang and K. Sako, Eds., vol. 7658 of Lecture Notes in
Computer Science, Springer, pp. 562–579.

21. Shishkin, V., Dygin, D., Lavrikov, I., Marshalko, G., Rudskoy, V., and
Trifonov, D. Low-Weight and Hi-End: Draft Russian Encryption Standard. In
CTCrypt (2014), pp. 183–188.


