
Factoring as a Service

Luke Valenta, Shaanan Cohney, Alex Liao,
Joshua Fried, Satya Bodduluri, Nadia Heninger

University of Pennsylvania

Abstract The difficulty of integer factorization is fundamental to modern
cryptographic security using RSA encryption and signatures. Although a
512-bit RSA modulus was first factored in 1999, 512-bit RSA remains
surprisingly common in practice across many cryptographic protocols.
Popular understanding of the difficulty of 512-bit factorization does not
seem to have kept pace with developments in computing power. In this
paper, we optimize the CADO-NFS and Msieve implementations of the
number field sieve for use on the Amazon Elastic Compute Cloud platform,
allowing a non-expert to factor 512-bit RSA public keys in under four
hours for $75. We go on to survey the RSA key sizes used in popular
protocols, finding hundreds or thousands of deployed 512-bit RSA keys
in DNSSEC, HTTPS, IMAP, POP3, SMTP, DKIM, SSH, and PGP.

1 Introduction

A 512-bit RSA modulus was first factored by Cavallar, Dodson, Lenstra, Lioen,
Montgomery, Murphy, te Riele, Aardal, Gilchrist, Guillerm, Leyland, Marchand,
Morain, Muffett, Putnam, Putnam, and Zimmermann in 1999, which took about
seven calendar months in a distributed computation using hundreds of computers
and at least one supercomputer [7]. The current public factorization record, a
768-bit RSA modulus, was reported in 2009 by Kleinjung, Aoki, Franke, Lenstra,
Thomé, Bos, Gaudry, Kruppa, Montgomery, Osvik, te Riele, Timofeev, and
Zimmermann, and took about 2.5 calendar years and a large academic effort [23].

Despite these successes, 512-bit RSA keys are still regularly found in use.
Several implementations of the number field sieve have been published, including
CADO-NFS [33], Msieve [29], and ggnfs [27], allowing even enthusiastic amateurs
to factor 512-bit or larger RSA moduli. In 2009, Benjamin Moody factored a
512-bit RSA code signing key used on the TI-83+ graphing calculator using
2.5 calendar months of time on a single computer, and a distributed effort then
factored several more 512-bit TI calculator signing keys [13]. The NFS@Home
project has organized several large distributed factorizations since 2009. [8]
In 2012, Zachary Harris factored the 512-bit DKIM RSA keys used by Google
and several other major companies in 72 hours per key using CADO-NFS and
Amazon’s Elastic Compute Cloud (EC2) service [36].

The persistence of 512-bit RSA is likely due in part to the legacy of United
States policies regarding cryptography. In the 1990s, international versions of
cryptographic software designed to comply with United States export control

2 Valenta, Cohney, Liao, Fried, Bodduluri, Heninger

regulations shipped with 40-bit symmetric keys and 512-bit asymmetric keys, and
export-grade cipher suites with these key sizes were built into protocols like SSL.
Restrictions were later raised or lifted on open-source and mass-market software
with cryptographic capabilities, but as of 2015, the United States Commerce
Control List still includes systems “designed or modified to use ‘cryptography’
employing digital techniques performing any cryptographic function other than
authentication, digital signature, or execution of copy-protected ‘software’ and
having . . . an ‘asymmetric algorithm’ where the security of the algorithm is based
on . . . factorization of integers in excess of 512 bits (e.g., RSA)”. [22]

Factoring a 512-bit RSA key using the number field sieve is still perceived
by many as a significant undertaking. In 2015, Beurdoche, Bhargavan, Delignat-
Lavaud, Fournet, Kohlweiss, Pironti, Strub, and Zinzindohoue [6] discovered the
FREAK attack, a flaw in many TLS implementations that allows man-in-the-
middle attacks to downgrade connections to 512-bit export-grade RSA cipher
suites. In evaluating the prospect of a fully exploitable vulnerability, the paper
states “we observe that 512-bit factorization is currently solvable at most in
weeks.” Subsequently, Bhargavan, Green, and Heninger developed a FREAK
attack proof-of-concept in part by configuring CADO-NFS to run more efficiently
on Amazon EC2. This setup was reported to factor a 512-bit key in approximately
7 hours on EC2, with a few additional hours for startup and shutdown [5].

In this paper, we present an improved implementation which is able to factor
a 512-bit RSA key on Amazon EC2 in as little as four hours for $75. Our code is
available at https://github.com/eniac/faas.

We gain these improvements by optimizing existing implementations for the
case of factoring in the cloud. In particular, we rewrote the distributed portion
of the number field sieve to use the Slurm job scheduler [34], allowing us to more
effectively scale to greater amounts of computational resources. We describe our
implementation and parallelizations in Section 3. We then performed extensive
experiments on both CADO-NFS and Msieve to determine optimal parameter
settings for the network interconnect speeds and resource limits achievable on
Amazon EC2. Our experiments are detailed in Section 4.

Figure 1 summarizes the time and cost to factor a 512-bit RSA key using
current optimal parameters with varying amounts of resources, and the average
cost we paid between May and September 2015 for EC2 resources. By tuning the
parameters for factoring, one can achieve different points in the trade-off between
overall clock time and overall cost. Using more machines gives a faster overall
factoring time, but has diminishing returns because of imperfect parallelism.
Linear algebra time was measured empirically and sieving was measured once for
each parameter set and extrapolated to different numbers of instances.

The order of magnitude of the costs we give lines up with previous reports
and estimates of factoring on EC2, and we achieve a significant speedup in overall
running time. Performing a computation of this magnitude reliably remains
a challenging endeavor. Our paper can also be viewed as a case study on the
successes and challenges in trying to replicate a high-performance computing
environment in the Amazon EC2 cloud.

https://github.com/eniac/faas

Factoring as a Service 3

21 22 23 24 25 26

40

80

120

160 256,64
256,16

128,64 128,64

64,64

128,16
128,4

64,4
32,16

32,4
16,4

16,4
16,1 8,1

4,1 2,1 1,1

Time (hrs)

C
o
st

(U
S
D
) lbp 28; td 120

lbp 29; td 120
lbp 29; td 70

Figure 1: A time/cost curve for 512-bit factorization. Each point above is
annotated with the instances used for sieving and linear algebra, respectively,
and represents an experimental estimate. There are diminishing returns from
imperfect parallelization in linear algebra. The dotted line shows the fastest time
we were able to achieve; larger experiments usually encountered node instability.

In order to measure the impact of fast 512-bit factorization, in Section 5 we
analyze existing datasets and perform our own surveys to quantify 512-bit RSA
key usage in modern cryptographic public key infrastructures. We find thousands
of DNSSEC records signed with 512-bit keys, millions of HTTPS, SMTP, IMAPS,
and POP3S servers still supporting RSA_EXPORT cipher suites for TLS, and
a long tail of 768-bit, 512-bit, and shorter RSA keys in use across DKIM, SSH,
IPsec VPNs, and PGP.

2 Background

In this paper, we focus on the impact of factoring on the security of RSA public
keys [32], though integer factorization has many applications across mathematics.
Factoring the modulus of an RSA public key allows an attacker to compute the
corresponding private key, and thus to decrypt any messages encrypted to that
key, or forge cryptographic signatures using the private key.

2.1 Number Field Sieve

The general number field sieve is the fastest known algorithm for factoring
generic integers larger than a few hundred bits [26]. Its running time is described
using L-notation as LN [1/3, 1.923] = exp

(
1.923(log N)1/3(log log N)2/3)

–sub-
exponential, but super-polynomial [21] in the size of N , the integer to be factored.
A gentle introduction to the big ideas behind sieving algorithms for integer
factorization and can be found in Pomerance’s 1996 survey [30], and more in-
depth information on the number field sieve can be found in the books by Lenstra,
Lenstra, Manasse, and Pollard [26] and Crandall and Pomerance [11].

In this section, we give a brief overview of the structure of the algorithm,
in order to identify potential implementation optimizations and barriers to

4 Valenta, Cohney, Liao, Fried, Bodduluri, Heninger

N

polynomial
selection

sieving linear
algebra

square
root

p

Figure 2: The number field sieve. The number field sieve factoring algorithm
consists of several main stages with distinct computational characteristics. Sieving
and linear algebra are the most computationally intensive stages. Sieving is embar-
rassingly parallel, while parallelizing linear algebra can encounter communication
bottlenecks.

parallelization. The number field sieve has four main computational stages:
polynomial selection, sieving, linear algebra, and square root.

The first stage of the algorithm, polynomial selection, searches for a polynomial
f(x) and integer m satisfying f(m) ≡ 0 mod N , where N is the integer to factor.
f(x) defines the number field Q(x)/f(x) to be used in the rest of the algorithm.
A good choice of polynomial in this stage can significantly speed up the rest of
the computation, by generating smaller elements in the sieving phase. Several
techniques exist for choosing the polynomial, but in general many different
polynomials are tested and the best one is passed on to the next stage. The
polynomial selection stage is embarrassingly parallel.

The next stage of the algorithm, sieving, factors ranges of integers and number
field elements to find many relations of elements and saves those whose prime
factors have size less than some size bound B, called the smoothness bound.
CADO-NFS uses the large prime variant of sieving, and the large prime bound
parameters lbp control the log of the smoothness bounds. Decreasing these
bounds increases the difficulty of sieving, since relations are less likely to factor
completely into smaller factors. The sieving stage is also embarrassingly parallel,
since candidate relations can be evaluated independently in small batches.

In the third stage, linear algebra, the coefficient vectors of the relations are
used to construct a large sparse matrix with entries over F2. Before beginning
this stage, some preprocessing on the relations is used to decrease the dimension
of the resulting matrix. In general, more relations collected during sieving will
produce a smaller matrix and reduce the runtime for linear algebra. The goal of
the linear algebra stage is to discover a linear dependency among the rows. This
is accomplished via the Block Wiedemann [9] or Block Lanczos [28] algorithms,
which are specialized for sparse linear algebra. This step can be parallelized, but
the parallelization requires much more communication and synchronization.

The final stage involves computing the square root of a number field element
corresponding to a dependency in the matrix. In practice, many dependencies
will be tested since not all of them will lead to a nontrivial factor; the square
roots can be computed and tested in parallel. This step takes only a few minutes.

Factoring as a Service 5

Discrete log There is also a number field sieve algorithm for discrete logarithms
with a nearly identical structure. Many of the implementation improvements that
we describe here apply equally to the discrete log case. However, for prime fields, a
512-bit discrete log calculation is significantly more computationally burdensome
than a 512-bit factorization, in large part because the linear algebra stage involves
arithmetic over a large-characteristic finite field. Adrian, Bhargavan, Durumeric,
Gaudry, Green, Halderman, Heninger, Springall, Thomé, Valenta, VanderSloot,
Wustrow, Zanella-Béguelin, and Zimmermann [1] describe 512-bit discrete log
computations in practice and their impacts on the security of Diffie-Hellman; we
estimate that a single equivalent discrete log computation performed on Amazon
EC2 would cost approximately $1400 and take 132 hours.

2.2 Amazon EC2

Amazon Elastic Compute Cloud (EC2) is a service that provides virtualized
computing resources that can be rented by the hour. Several competitors exist,
including Google Compute Engine. We specialize our results to Amazon largely
out of convenience and because when we began this project some tools were
specialized to Amazon’s infrastructure.

Amazon EC2 bills for computing resources by the instance-hour. An instance
is a single virtualized machine associated with resources including processing
cores, memory, and disk storage. Amazon offers many different instance types.
We chose the largest type of compute-optimized instance available as of August
2015, the c4.8xlarge instance. This instance type has two Intel Xeon E5-2666 v3
processor chips, with 36 vCPUs in a NUMA configuration with 60 GB of RAM.

There are multiple pricing structures available to purchase instance-hours.
For our purposes, one can purchase fixed-rate on-demand instances, or bid a
variable rate for spot instances which may be terminated depending on demand.
The difference can be significant: for a c4.8xlarge instance, the on-demand price
as of September 2015 is $1.763, while the average spot price we paid between
May and September 2015 was $0.52. We used spot instances for our experiments.
Amazon raised our account limit to allow us to launch up to 200 instances.

The c4.8xlarge instance type supports Enhanced Networking with advertised
connection speeds of up to 10 GbE between instances. Machines can be rented in
different availability zones located around the world, and within an availability
zone one can request machines to be co-located in a single placement group to
minimize latency. We measured the interconnect bandwidth of instances in the
same availability zone and placement group at 9.46 Gbit/s, and between instances
not in the same placement group at 4–5 Gbit/s. We enabled enhanced networking
and launched instances used for linear algebra in one placement group.

The networking environment of Amazon EC2 is distinct from a traditional
HPC cluster. The connection was not saturated during our linear algebra opti-
mization tests in Section 4 below. However, our measured interconnect latency, at
151 µs, is significantly greater than most HPC standards. For reference, InfiniBand
FDR has latency requirements of 7 µs at 10 Gbit speeds.

6 Valenta, Cohney, Liao, Fried, Bodduluri, Heninger

Kleinjung, Lenstra, Page, and Smart [24] parameterized cryptographic key
strengths and symmetric and asymmetric algorithms in terms of the cost to break
them on the Amazon EC2 environment in 2012. For RSA, they estimated from
experiments on truncated sieving jobs and simplified linear algebra that factoring
512-bit RSA would cost $107 for sieving and $30 for linear algebra.

3 Implementation

In order to speed up factoring, we wanted to maximize parallelism. In the
polynomial selection and sieving stages, parallelization is straightforward, because
the tasks can be split into arbitrarily small pieces to be executed independently,
with only a relatively small amount of sequential work to process the results
together at the end. Our improvements in these stages come from reliably
distributing these tasks across cluster resources in a scalable way.

Scaling the linear algebra stage is more complex, because the communication
overhead results in diminishing returns from additional resources. We performed
extensive experiments to characterize the trade-offs and guide parameter selection.

3.1 Managing Amazon EC2 resources with Ansible

We used Ansible [12], a cluster management tool, to set up and configure an EC2
cluster and to scale the cluster appropriately at each stage of factorization. After
the sieving stage, we terminate nodes not required for linear algebra. Ansible can
launch and configure a cluster of 50 on-demand instances in under 5 minutes,
and 50 spot instances in 10–15 minutes.

3.2 Parallelizing polynomial selection and sieving with Slurm

The polynomial selection and sieving stages generate thousands of individual
tasks to be distributed to cluster compute nodes. This requires a job distribution
framework that is fast and scalable to many machines. The CADO-NFS imple-
mentation is distributed with a Python script to coordinate each stage, including
a job distribution system over HTTP designed to require minimal setup from
participating computers. Unfortunately this implementation did not scale well
to simultaneously tracking thousands of tasks. We experimented with Apache
Spark [35] to manage data flow, but Spark was not flexible enough for our needs,
and our initial tests suggested that a Spark-based job distribution system was
more than twice as slow as the system we were aiming to replace.

Ultimately we chose Slurm (Simple Linux Utility for Resource Manage-
ment) [34] for job distribution and management during polynomial selection and
sieving. Slurm can resubmit failed or timed-out tasks, monitors for and deals
with failed nodes, has low startup overhead, and scales well to large clusters.

Our implementation uses a management thread to submit polynomial selection
and sieving tasks asynchronously in batches to the Slurm controller, which then

Factoring as a Service 7

handles distribution and execution. This thread rate limits batch sizes in order
to get around Slurm’s job submission rate of a thousand jobs per second. [4]

In our experiments, we found that scheduling two jobs per vCPU yielded
faster sieving times than one job per vCPU, since the latter did not always fully
saturate CPU usage on the machines.

3.3 Parallelizing linear algebra with MPI

After sieving has completed, the relations that have been produced are processed
to generate a large, sparse matrix. The runtime of this linear algebra phase
depends on the dimension of the matrix and the number of nonzero entries per
matrix row, called the density, so the preprocessing stage attempts to produce
a matrix that is as small as possible by filtering and combining relations. The
parameters that control the effectiveness of the dimension reduction are the
number of relations collected and the allowed density of the matrix.

The parallelization of the linear algebra stage is more complex than sieving
or polynomial selection. In general, the matrix is divided up into an n × n grid.
In each iteration, each worker operates on its own grid element, gathers results
from each of the other workers using the Message Passing Interface (MPI), and
combines the results into its own grid element. We used OpenMPI 1.8.6. [18]

Comparing CADO-NFS and Msieve linear algebra We compared the linear alge-
bra implementations of CADO-NFS, which implements the Block Wiedemann
algorithm, and Msieve, which implements the Block Lanczos algorithm for linear
algebra. Although Block Wiedemann is designed to parallelize well on indepen-
dent resources, Msieve was significantly faster on our EC2 configuration. Both
implementations support MPI out of the box. For a 512-bit factorization with
an identical set of 53 million relations, we found that CADO-NFS without MPI
completed the linear algebra stage in 350 minutes, while Msieve without MPI
completed linear algebra in 140 minutes. When parallelized across multiple EC2
instances, CADO-NFS’s runtime did not decrease significantly, whereas Msieve’s
did. We decided to use Msieve’s implementation for linear algebra.

Unfortunately, the input and output formats used by CADO-NFS and Msieve
are not compatible, so using Msieve’s linear algebra meant we also needed to use
Msieve’s matrix preprocessing and final square root phases or rewrite these stages
ourselves. We compromised by parallelizing Msieve’s square root implementation
to test multiple dependencies simultaneously, so that the square root phase
finishes in approximately 10 minutes.

4 Experiments

We performed several experiments to explore the effects of different parameter
settings on running time. All of the experiments in this section were carried out
on the same arbitrarily chosen 512-bit modulus.

8 Valenta, Cohney, Liao, Fried, Bodduluri, Heninger

Table 1: Large prime bounds. Decreasing the large prime bound parameter
increases the amount of work required for sieving, but decreases the work required
for linear algebra. This is an advantageous choice when large amounts of resources
can be devoted to sieving.
lbp relations matrix rows matrix size sieve CPU-hours linalg instance-hours

28 28.2M 4.96M 1.48 GB 3271.1 5.4
29 44.8M 5.68M 1.71 GB 2369.2 8.5

There will be some variation in running time across different moduli. In
order to understand this variation, we measured the CPU time required to sieve
54.5 million relations for five different randomly generated RSA moduli with
the parameters lbp 29 and target density 70 on a cluster with 432 CPUs. We
observed a median of 2770 CPU hours with a standard deviation of 227 CPU
hours in the sample set.

4.1 Large prime bounds

The large prime bounds lbp specify the log of the smoothness bound for relations
collected in the sieving stage. Decreasing the large prime bound will decrease the
dimension of the matrix and therefore decrease the linear algebra running time,
but will increase sieving time because relations with smaller prime factors are
less common. The lbp parameter provides the first step for tuning the trade-off
between sieving and linear algebra time to optimize for different-sized clusters.

We experimented with lbp values 28 and 29. At lbp 27, CADO-NFS was
unable to gather enough relations. At lbp 30, linear algebra will dominate the
computation time even for small clusters.

Table 1 shows the effect of the changing the large prime bound for one
experimental setup. Both of the runs used the minimum number of relations
required to build a full matrix with target density 70 (see Section 4.2), and linear
algebra was completed on a single machine with 36 vCPUs. Decreasing lbp from
29 to 28 causes the sieving CPU time to increase by 38% even though fewer
relations are collected, but the linear algebra time decreases by 36%.

4.2 Target density

The target density parameter specifies the average number of sparse nonzero
entries per matrix row that Msieve will aim for in matrix construction. Linear
algebra time is dependent on the product of the density and dimension, and can
be decreased by raising the target density to lower the dimension. Figure 3a
shows how increasing the target density decreases linear algebra time for a fixed
set of input relations on a cluster of 16 instances.

For a 512 bit number with 53 million relations (more than 20 million relations
over the minimum), a matrix with target density 70 took 15 minutes to construct

Factoring as a Service 9

70 110 150 190
0.8

0.9

1

1.1

Target Density

L
in
al
g
T
im

e
(h
rs
)

lbp 28; rels 53M

(a)

70 90 110 130

30

40

50

60

Target Density

M
in

re
ls

re
q
u
ir
ed

(M
) lbp 28

lbp 29

(b)

30 35 40 45

1

1.5

Relations (M)

L
in
al
g
T
im

e
(h
rs
)

lbp 28; td 70

lbp 28; td 120

(c)

Figure 3: Target density and oversieving. Increasing the target density pa-
rameter decreases linear algebra time, but requires more relations to construct the
matrix. Collecting additional relations beyond the minimum also produces a bet-
ter matrix and decreases linear algebra time. This trade-off can be advantageous
if more resources can be devoted to sieving, as sieving parallelizes well.

and 68 minutes for the linear algebra computation. For the same set of relations,
a matrix with target density of 120 took 17 minutes to construct and 55 minutes
for linear algebra, a 19% reduction in linear algebra time. However, there were
diminishing returns to increases in target density: increasing the target density
from 120 to 170 reduced the overall time by only 4%.

The drawback to increasing target density is that more relations are needed
from the sieving stage to construct the matrix. Figure 3b shows how the minimum
number of relations required increases sharply as target density is increased
beyond a particular threshold. When large amounts of resources are available
for sieving, the increased work required to collect additional relations can be
compensated for by a larger decrease in linear algebra time. For a given cluster
size, there is an optimal target density that takes into account these trade-offs.

4.3 Oversieving

Oversieving means generating excess relations during the sieving phase. This
can help to produce an easier matrix for the linear algebra phase, reducing
linear algebra runtime. We ran experiments varying cluster configurations, target
densities, and large prime bounds to determine an oversieving curve for each.
Figure 3c shows two representative oversieving curves for a 16-node linear algebra
cluster with lbp 28 and target densities 70 and 120, respectively. For the target
density 70 curve, the linear algebra time for the minimum number of relations
required to construct the matrix, 30 million, was 112 minutes. At 32 million
relations, the linear algebra time was reduced to 101 minutes, an 11% improvement.
However, as Figure 3c shows, there are diminishing returns to oversieving, while
the work required to produce additional relations scales close to linearly. Optimal
oversieving amounts are dependent on the cluster configuration.

10 Valenta, Cohney, Liao, Fried, Bodduluri, Heninger

4.4 MPI grid size

The grid size parameter directly controls the number of work units that MPI
can assign to cluster resources. We experimented with both fine-grained grids
matching the number of work units to the total number of vCPUs, and coarse-
grained grids matching work units to instances. The optimum turned out to
be somewhere in the middle: a single multithreaded work unit was not able to
occupy all of the 36 vCPUs on a single instance, while the other extreme is likely
to become limited by communication overhead since the Block Lanczos algorithm
requires each node to gather results from every other node at each iteration.

In order to determine the optimal grid size, we tested a range of grid sizes for
cluster sizes of 1, 4, 16, and 64 instances. The best performance for clusters with
1 and 4 instances was 4x4 and 8x8, respectively, where each cluster had 16 work
units in total. For the clusters with 16 and 64 instances, the optimal grid size
was 8x8 and 16x16, where each cluster had 4 work units in total. The differences
as cluster size grows are likely due to communication bottlenecks.

4.5 Processor affinity

The default parameters of OpenMPI dictate that each of the work units is bound
to a specific machine, but when multiple work units are assigned to the same
instance they compete for the same processor and memory resources, creating
processor scheduling overhead and increased variance in the work unit iteration
times. Each work unit must iterate together, so the time per iteration is dictated
by the slowest work unit. Since the c4.8xlarge EC2 instances have two processor
sockets and a NUMA memory layout, the distribution of the threads of a work
unit across two processors means longer intra-process communication times and
slower memory access times. We used the rankfile/process affinity parameter in
OpenMPI to bind each of the work units on a single instance to its own subset
of processor cores and saw an improvement of 1-2% in linear algebra time.

We also tested binding each thread of each of the work units to individual
cores, but this did not improve running times.

4.6 Block size

The default block size in Msieve is 8192 bytes. Theoretically, matching the block
size used in Msieve with the size of the L1 cache of the processor should yield
better performance by decreasing cache and memory access times. However, for
the parameters lbp 28 and target density 70, increasing the block size from 8K to
16K increased computation time from 67 minutes to 69 minutes, and increasing
the block size from 8K to 32K increased computation time from 67 minutes to
73 minutes. We decided to leave the block size unchanged.

4.7 Putting it all together

To generate the data points in Figure 1, we individually timed each sieving
job together with system overhead. For each set of parameters, we combined

Factoring as a Service 11

the linear algebra running time from the experiments in this section with the
total measured running time to complete enough sieving jobs to generate the
required number of relations. We then added a measured estimate of costs for
the remaining steps of factoring to get our total running time estimates. We
were able to reliably achieve running times under four hours for factoring, but in
several attempts to verify lower overall times, we encountered issues where some
EC2 instances in our cluster ran more slowly than others or became unresponsive.
These issues become more pronounced with larger cluster sizes. Our sieving setup
can deal gracefully with slow nodes, but linear algebra is more fragile and is
currently limited by the slowest node.

5 512-bit keys still in use

In this section, we survey RSA key lengths across public key infrastructures for a
variety of protocols, finding that 512-bit RSA keys are surprisingly persistent.

5.1 DNSSEC

DNSSEC [3] is a DNS protocol extension that allows clients to cryptographically
authenticate DNS records. DNS records protected by DNSSEC include a public
key record (usually RSA) and a signature that can be chained up to a trusted root
key. DNSKEY records can contain either a zone-signing key (ZSK), used to sign
DNS records, or a key-signing key (KSK), used to sign DNSKEY records. RFC
4033 [3] specifies that zone-signing keys may have shorter validity periods, and
key-signing keys should have longer validity periods. RFC 6781 [25], published by

06/
20
14

09/
201

4

12/
20
14

03/
201

5

06/
20
15

09/
201

5

103

105

107

N
u
m
b
er

o
f
ke
y
s

512 1024 1536

768 1280 2048

(a) Key sizes

0 90 180 270 360 450

0

0.5

1

Duration (days)

C
D
F

512 KSK All KSK RRSig

512 ZSK All ZSK

(b) Key and signature durations

Figure 4: DNSSEC key sizes and duration. The ratios of RSA key lengths has
remained relatively stable over time, although the total number of DNSSEC keys
collected fluctuated across scans. The number of 512-bit keys remained around
10,000, or 0.35% of the total. Many DNSSEC keys are rotated infrequently, and
512-bit keys are rotated less frequently than longer keys.

12 Valenta, Cohney, Liao, Fried, Bodduluri, Heninger

the IETF in 2012 on DNSSEC Operational Practices, states that “it is estimated
that most zones can safely use 1024-bit keys for at least the next ten years.”

An attacker who knows the private key to a zone-signing key or key-signing
key could mount an active attack to forge DNS responses for any descendants
below that location in the chain.

We analyzed several DNSSEC datasets. The most comprehensive is a collection
of DNS records collected by Rapid7 which we downloaded from Scans.io. They
performed biweekly DNS lookups on approximately 529 million domains starting
in June 2014 and continuing to present. The number of lookups varies by as
much as 61 million domains across scans, and the number of domains with valid
DNSSEC records fluctuated between 3.7 million and 1.1 million and decreased
over time compared to total domains. The relative fraction of DNSSEC key sizes
did not change much over time. The distribution is shown in Figure 4a.

In order to measure the completeness of the Rapid7 dataset, we compared
to a second dataset of anonymized 512-bit DNSSEC keys for all .com, .net,
and .org domains between February 22, 2015 and September 3, 2015 from the
SURFnet DNS measurement infrastructure of van Rijswijk-Deij, Jonker, Sperotto,
and Pras [31] which was provided to us by the researchers. The SURFnet data
contained 2,116 distinct public keys of which 1,839 (86%) were present in the
Rapid7 scans from the same time period.

Additionally, in order to measure how many 512-bit keys are in active use,
SURFnet provided a set of all 512-bit DNSkey records collected using their passive
DNS monitoring system for a one-month period between September 12, 2015 and
October 13, 2015. The set included 1,239 records covering 613 distinct domains
and contained 705 distinct keys.

Finally, we performed DNS lookups on eleven thousand zones not contained in
the Rapid7 dataset that were required for signature validation. 56% of domains
with 512-bit keys failed signature verification, most commonly because the TLD
signature was not present in the chain of trust.

Many keys were never rotated at all over the 431-day period spanned by
the Rapid7 dataset, and signatures were renewed more frequently than keys
were updated. Figure 4b illustrates signature validity periods and key lifetimes.
Signature validity periods are clustered around a few common ranges: 33% of
keys were signed for six months, 34% percent for one month, 25% for three weeks,
and 6% for 14 days. 512-bit zone-signing keys and key-signing keys were less
frequently rotated than other key sizes.

5.2 HTTPS

RSA public keys are used for both encryption and authentication in the TLS
protocol. If the client and server negotiate an RSA cipher suite, the client
encrypts the premaster secret used to derive the session keys to the RSA public
key in the server’s certificate. An adversary who compromises the private key
can passively decrypt session traffic from the past or future. However, since no
512-bit certificates have currently valid signatures from certificate authorities,

Factoring as a Service 13

Table 2: HTTPS RSA common key lengths and export RSA support.

Length All Certificates Distinct Keys Trusted Certificates Trusted and Valid

512 303,199 (0.9%) 32,870 0 (0.0%) 0 (0.0%)
768 26,582 (0.1%) 14,581 0 (0.0%) 0 (0.0%)
1024 12,541,661 (36.8%) 3,196,169 4,016 (0.0%) 4,012 (0.0%)
1536 2,537 (0.0%) 2,108 0 (0.0%) 0 (0.0%)
2048 20,782,686 (60.9%) 6,891,678 14,413,589 (42.2%) 14,411,618 (42.2%)
2432 2,685 (0.0%) 1,191 128 (0.0%) 128 (0.0%)
3072 65,765 (0.2%) 58,432 1,787 (0.0%) 1,787 (0.0%)
4096 391,123 (1.1%) 218,334 259,898 (0.8%) 259,830 (0.8%)
8192 2,172 (0.0%) 971 481 (0.0%) 481 (0.0%)

RSA Export 2,630,789 (7.7%)

Total 34,121,474 (100.0%) 14,680,782 (43.0%) 14,678,739 (43.0%)

these servers are also vulnerable to an active man-in-the-middle attack from an
adversary who simply replaces the certificate.

If the client and server negotiate a Diffie-Hellman or elliptic curve Diffie-
Hellman cipher suite, the server uses the public key in its certificate to sign its
key exchange parameters to provide authentication. An adversary who knows
the private key could carry out a man-in-the-middle attack by forging a correct
signature on their desired parameters. Since again no 512-bit certificates are
currently signed or trusted, such an active adversary could also merely replace the
server certificate in the exchange along with the chosen Diffie-Hellman parameters.

Finally, connections to servers supporting RSA_EXPORT cipher suites may
be vulnerable to an active downgrade attack if the clients have not been patched
against the FREAK attack. [6] Successfully carrying out this attack requires the
attacker to factor the server’s ephemeral RSA key, which is typically generated
when the server application launches and is reused as long as the server is up.
“Ephemeral” RSA keys can persist for hours, days, or weeks and are almost
always 512 bits in length.

We examined IPv4 scan results for HTTPS on port 443 performed using
Zmap [17] by the University of Michigan which we accessed via Scans.io and
the Censys scan data search interface developed by Durumeric, Adrian, Mirian,
Bailey, and Halderman [14]. Table 2 summarizes scans from August 23 and
September 1, 2015.

Durumeric, Kasten, Bailey, and Halderman [16] examined the HTTPS cer-
tificate infrastructure in 2013 using full IPv4 surveys and found 2,631 browser-
trusted certificates with key lengths of 512 bits or smaller, of which 16 were
valid. Heninger, Durumeric, Wustrow, and Halderman [20] performed a full IPv4
scan of HTTPS in October 2011 with responses from 12.8 million hosts, and
found 123,038 certificates (trusted and non-trusted) containing 512-bit RSA keys.
Similar to [20], we observe many repeated public keys.

14 Valenta, Cohney, Liao, Fried, Bodduluri, Heninger

Table 3: Mail protocol key lengths.

Port Handshake RSA_EXPORT 512-bit Certificate Key

SMTP 25 4,821,615 1,483,955 (30.8%) 64 (0%)
IMAPS 993 4,468,577 561,201 (12.6%) 102 (0%)
POP3S 995 4,281,494 558,012 (13.0%) 115 (0%)

5.3 Mail

Table 3 summarizes several Internet-wide scans targeting SMTP, IMAPS, and
POP3S. The scans were performed by the University of Michigan using Zmap
between August 23, 2015, and September 3, 2015.

We used the Censys scan database interface provided by [14] to analyze the
data. While only a few hundred few mail servers served TLS certificates containing
512-bit RSA public keys, 13% of IMAPS and POP3S servers and 30% of SMTP
servers supported RSA_EXPORT cipher suites with 512-bit ephemeral RSA,
meaning that unpatched clients are vulnerable to the FREAK downgrade attack
by an adversary with the ability to quickly factor a 512-bit RSA key.

We also examined DKIM public keys. DomainKeys Identified Mail [2] is a
public key infrastructure intended to prevent email spoofing. Public keys are
published by domains in a DNS text record, and mail providers attach digital
signatures to outgoing mail, allowing recipients to verify incoming messages.

Table 4:
DKIM key sizes.

Length Keys
4096 5 (0.0%)
2048 64 (0.5%)
1028 1 (0.0%)
1024 10,726 (92.2%)
768 126 (1.1%)
512 103 (0.9%)
384 20 (0.2%)
128 1 (0.0%)
Parse error 591 (5.1%)
Total 11,637

We gathered DKIM public keys from the Rapid7
DNS dataset. However, the published dataset had
lowercased the base64-encoded key entries, so in
order to examine public keys we performed DNS
lookups on the 11,600 domains containing DKIM
records ourselves on September 4, 2015. We made a
best-effort attempt to parse the records, but 5% of
the responses contained a key that was malformed or
truncated and could not be parsed. Of the remainder,
124 domains used 512-bit keys or smaller, including
one that used a 128-bit RSA public key. We were
able to factor this key in less than a second on a
laptop and verify that it is, in fact, a very short RSA
public key. Table 4 summarizes the distribution.

Durumeric, Adrian, Mirian, Kasten, Bursztein,
Lidzborski, Thomas, Eranti, Bailey, and Halder-
man [15] surveyed cryptographic failures in email
protocols using Internet-wide scans and data from
Google. They examine DKIM use from the perspec-
tive of Gmail’s servers in April 2015 and discovered
that 83% of mail received by Gmail contained a DKIM signature, but of these,
6% failed to validate. Of these failures, 15% were due to a key size of less than
1024 bits, and 63% were due to other errors.

Factoring as a Service 15

5.4 IPsec

Table 5: IPsec VPN cer-

tificate keys

Length Keys
4096 37 (0.8%)
3072 1 (0.0%)
2048 2,257 (51.3%)
1024 1,804 (41.0%)
768 1 (0.0%)
512 69 (1.6%)
Parse error 234 (5.3%)
Total 4,403 (100%)

We conducted two Zmap scans of the full IPv4 space
to survey key sizes in use by IPsec VPN implementa-
tions that use RSA signatures for identity validation
during server-client handshakes. An adversary who
compromised the private keys for one of these cer-
tificates could mount an active man-in-the-middle
attack.

Our Zmap scans targeted IKEv1 aggressive
mode [19], which minimizes the number of messages
sent between the server and client and allows the
server to send a certificate after a only a single mes-
sage is received. The messages we sent contained
proposals for DES, 3DES, AES-128, and AES-256
each with both SHA1 and MD5. Our first scan of-
fered a key exchange using Oakley group 2 (a 1024-
bit Diffie-Hellman group) and elicited certificates
from 4% of the servers that accepted our message.
Our second scan offered Oakley group 1 (a 768-bit
Diffie-Hellman group) and received responses from 0.2% of hosts. Of the non-
responses from both scans, 71% of the servers responded indicating that they did
not support our combination of aggressive mode with our chosen parameters,
16% rejected our connection for being unauthorized (not on a whitelist), and the
remaining 11% returned other errors.

5.5 SSH
Table 6: SSH host key lengths.

RSA Size Hosts Distinct

512 508 (0.0%) 316
768 2,972 (0.0%) 2,419
784 3,119 (0.0%) 223
1020 774 (0.0%) 572
1024 296,229 (4.4%) 91,788
1040 2,786,574 (41.3%) 1,407,922
1536 639 (0.0%) 536
2048 3,632,865 (53.9%) 1,752,406
2064 1,612 (0.0%) 957
4096 15,235 (0.2%) 1,269

RSA Total 6,741,352 3,258,742

DSA 692,011 421,944

ECDSA 2,192 2,192

SSH hosts authenticate themselves
to the client by signing the protocol
handshake with their public host key.
Clients match the host key to a stored
trusted fingerprint. An adversary who
is able to compromise the private key
for an SSH host key can perform an
active man-in-the-middle attack.

Table 6 summarizes host key sizes
collected by a Zmap scan of SSH
hosts on port 22 mimicking OpenSSH
6.6.1p1. The data was collected in
April 2015 by Adrian et al. [1], who
provided it to us. A very large num-
ber of hosts used 1040-bit keys; these
hosts had banners identifying them
as using Dropbear, a lightweight SSH
implementation aimed at embedded

16 Valenta, Cohney, Liao, Fried, Bodduluri, Heninger

devices. Heninger, Durumeric, Wustrow, and Halderman [20] performed a full
IPv4 scan of SSH public keys in February 2012 offering only Diffie-Hellman

Group 1 key exchange. Of 10 million responses, they reported that 8,459 used
512-bit RSA host keys and observed many repeated host keys.

Clients can also use public keys to authenticate themselves to a server. An
adversary who is able to compromise the private key for a client SSH authentica-
tion key can access the server by logging in as the client. Ben Cox [10] collected
1,376,262 SSH public keys that had been uploaded to GitHub by users to au-
thenticate themselves to the service between December 2014 and January 2015
by using GitHub’s public API. He collected 1,205,330 RSA public keys, 27,683
DSA public keys, and 1,060 ECDSA public keys. Of the RSA public keys, 2 had
256-bit length, 3 had 512-bit length, and 28 had 768-bit length.

5.6 PGP

199
1

199
5

200
0

200
5

201
0

201
5

1
10

100
1000
10000

100000

K
ey
s
cr
ea
te
d

512 1024 3072

768 2048 4096

Figure 5: PGP RSA public key lengths by reported creation date.

PGP implements encryption and digital signatures on email or files. RSA
public keys can be used for both encryption and signatures. PGP is designed to
use a public “web of trust” model: users can distribute their public keys along
with signatures attesting trust relationships via a public network of keyservers.

An adversary who compromises a PGP public key could use it to impersonate
a user with a digital signature or decrypt content encrypted to that user.

We downloaded a PGP keyserver bootstrap dataset from keyserver.borgnet.

us on October 4, 2015. It contained 4.9 million public keys from 3 million users.
Of these, 1.6 million were RSA, 1.7 million were DSA, 1.7 million were ElGamal,
398 were ECDH, 158 were EdDSA, and 513 were ECDSA. Figure 5 shows the
shift to longer RSA key lengths over time.

keyserver.borgnet.us
keyserver.borgnet.us

Factoring as a Service 17

6 Conclusions

512-bit RSA has been known to be insecure for at least fifteen years, but common
knowledge of precisely how insecure has perhaps not kept pace with modern
technology. We build a system capable of factoring a 512-bit RSA key reliably in
under four hours. We then measure the impact of such a system by surveying
the incidence of 512-bit RSA in our modern cryptographic infrastructure, and
find a long tail of too-short public keys and export-grade cipher suites still in use
in the wild. These numbers illustrate the challenges of keeping an aging Internet
infrastructure up to date with even decades-old advances in cryptanalysis.

Acknowledgements

We thank Daniel Bernstein, Tanja Lange, Pierrick Gaudry, Emmanuel Thomé,
and Paul Zimmermann for helpful comments and discussion. Nicole Limtiaco,
Toma Pigli, Zachary Ives, and Sudarshan Muralidhar contributed to early versions
of this project. We thank Osman Surkatty for help with Amazon services. We are
grateful to Zakir Durumeric, Roland van Rijswijk-Deij, and Ryan Castellucci for
providing data. We thank Ian Goldberg for suggesting additional references [21].
This work is based upon work supported by the National Science Foundation
under grant no. CNS-1408734, a gift from Cisco, and an AWS Research Education
grant.

References

1. Adrian, D., Bhargavan, K., Durumeric, Z., Gaudry, P., Green, M., Halderman,
J.A., Heninger, N., Springall, D., Thomé, E., Valenta, L., VanderSloot, B., Wus-
trow, E., Zanella-Béguelin, S., Zimmermann, P.: Imperfect forward secrecy: How
Diffie-Hellman fails in practice. In: 22nd ACM Conference on Computer and Com-
munications Security (CCS ’15) (2015)

2. Allman, E., Callas, J., Delany, M., Libbey, M., Fenton, J., Thomas, M.: DomainKeys
identified mail (DKIM) signatures (2007), http://www.ietf.org/rfc/rfc6376.txt

3. Arends, R., Austein, R., Larson, M., Massey, D., Rose, S.: DNS Security Introduction
and Requirements. RFC 4033, Internet Society (March 2005), http://www.ietf.

org/rfc/rfc4033.txt

4. Auble, D., Jette, M., et al.: Slurm documentation. http://slurm.schedmd.com/,
accessed: 2015-09-19

5. Beurdouche, B., Bhargavan, K., Delignat-Lavaud, A., Fournet, C., Kohlweiss, M.,
Pironti, A., Strub, P.Y., Zinzindohoue, J.K.: FREAK: Factoring RSA export keys
(2015), https://www.smacktls.com/#freak

6. Beurdouche, B., Bhargavan, K., Delignat-Lavaud, A., Fournet, C., Kohlweiss, M.,
Pironti, A., Strub, P.Y., Zinzindohoue, J.K.: A messy state of the union: Taming
the composite state machines of TLS. In: IEEE Symposium on Security and Privacy
(2015)

7. Cavallar, S., Dodson, B., Lenstra, A.K., Lioen, W., Montgomery, P.L., Murphy,
B., te Riele, H., Aardal, K., Gilchrist, J., Guillerm, G., Leyland, P., Marchand, J.,

http://www.ietf.org/rfc/rfc6376.txt
http://www.ietf.org/rfc/rfc4033.txt
http://www.ietf.org/rfc/rfc4033.txt
http://slurm.schedmd.com/
https://www.smacktls.com/#freak

18 Valenta, Cohney, Liao, Fried, Bodduluri, Heninger

Morain, F., Muffett, A., Putnam, C., Putnam, C., Zimmermann, P.: Factorization
of a 512-bit RSA modulus. In: Preneel, B. (ed.) Advances in Cryptology - EURO-
CRYPT 2000, Lecture Notes in Computer Science, vol. 1807, pp. 1–18. Springer
Berlin Heidelberg (2000)

8. Childers, G.: NFS@home, http://escatter11.fullerton.edu/nfs/

9. Coppersmith, D.: Solving homogeneous linear equations over GF(2) via block
Wiedemann algorithm. Mathematics of Computation 62(205), 333–350 (1994)

10. Cox, B.: Auditing GitHub users SSH key quality, https://blog.benjojo.co.uk/post/

auditing-github-users-keyscollected

11. Crandall, R., Pomerance, C.B.: Prime numbers: a computational perspective, vol.
182. Springer Science & Business Media (2006)

12. DeHaan, M.: Ansible, http://www.ansible.com

13. Duncan: All TI signing keys factored (September 2009), http://www.ticalc.org/

archives/news/articles/14/145/145273.html

14. Durumeric, Z., Adrian, D., Mirian, A., Bailey, M., Halderman, J.A.: A search engine
backed by Internet-wide scanning. In: Proceedings of the 22nd ACM Conference
on Computer and Communications Security (Oct 2015)

15. Durumeric, Z., Adrian, D., Mirian, A., Kasten, J., Bursztein, E., Lidzborski, N.,
Thomas, K., Eranti, V., Bailey, M., Halderman, J.A.: Neither snow nor rain nor
MITM... an empirical analysis of email delivery security. In: Proceedings of Internet
Measurement Conference (IMC) 2015 (2015)

16. Durumeric, Z., Kasten, J., Bailey, M., Halderman, J.A.: Analysis of the HTTPS
certificate ecosystem. In: Proceedings of the 13th Internet Measurement Conference
(Oct 2013)

17. Durumeric, Z., Wustrow, E., Halderman, J.A.: ZMap: Fast Internet-wide scan-
ning and its security applications. In: Proceedings of the 22nd USENIX Security
Symposium (Aug 2013)

18. Gabriel, E., Fagg, G.E., Bosilca, G., Angskun, T., Dongarra, J.J., Squyres, J.M.,
Sahay, V., Kambadur, P., Barrett, B., Lumsdaine, A., Castain, R.H., Daniel, D.J.,
Graham, R.L., Woodall, T.S.: Open MPI: Goals, concept, and design of a next
generation MPI implementation. In: Proceedings, 11th European PVM/MPI Users’
Group Meeting. pp. 97–104. Budapest, Hungary (September 2004)

19. Harkins, D., Carrel, D.: The Internet Key Exchange (IKE). RFC 2409, RFC Editor
(November 1998), http://www.rfc-editor.org/rfc/rfc2409.txt

20. Heninger, N., Durumeric, Z., Wustrow, E., Halderman, J.A.: Mining your Ps and
Qs: Detection of widespread weak keys in network devices. In: Proceedings of the
21st USENIX Security Symposium (Aug 2012)

21. Hughes, E.: How to give a math lecture at a party (2000), https://web.archive.org/

web/20010222192642/http://www.xent.com/FoRK-archive/oct00/0429.html

22. of Industry, B., Security: Export administration regulations (2015), http://www.

bis.doc.gov/index.php/regulations/export-administration-regulations-ear

23. Kleinjung, T., Aoki, K., Franke, J., Lenstra, A.K., Thomé, E., Bos, J.W., Gaudry,
P., Kruppa, A., Montgomery, P.L., Osvik, D.A., et al.: Factorization of a 768-bit
RSA modulus. In: Advances in Cryptology–CRYPTO 2010, pp. 333–350. Springer
(2010)

24. Kleinjung, T., Lenstra, A.K., Page, D., Smart, N.P.: Using the cloud to determine
key strengths. In: Progress in Cryptology-INDOCRYPT 2012, pp. 17–39. Springer
(2012)

25. Kolkman, O.M., Mekking, W.M., Gieben, R.M.: DNSSEC Operational Practices,
Version 2. RFC 6781, Internet Society (December 2012), http://www.ietf.org/rfc/

rfc6781.txt

http://escatter11.fullerton.edu/nfs/
https://blog.benjojo.co.uk/post/auditing-github-users-keys collected
https://blog.benjojo.co.uk/post/auditing-github-users-keys collected
http://www.ansible.com
http://www.ticalc.org/archives/news/articles/14/145/145273.html
http://www.ticalc.org/archives/news/articles/14/145/145273.html
http://www.rfc-editor.org/rfc/rfc2409.txt
https://web.archive.org/web/20010222192642/http://www.xent.com/FoRK-archive/oct00/0429.html
https://web.archive.org/web/20010222192642/http://www.xent.com/FoRK-archive/oct00/0429.html
http://www.bis.doc.gov/index.php/regulations/export-administration-regulations-ear
http://www.bis.doc.gov/index.php/regulations/export-administration-regulations-ear
http://www.ietf.org/rfc/rfc6781.txt
http://www.ietf.org/rfc/rfc6781.txt

Factoring as a Service 19

26. Lenstra, A.K., Lenstra Jr, H.W., Manasse, M.S., Pollard, J.M.: The number field
sieve. Springer (1993)

27. Monico, C.: GGNFS, http://www.math.ttu.edu/~cmonico/software/ggnfs/

28. Montgomery, P.L.: A block Lanczos algorithm for finding dependencies over GF(2).
In: Guillou, L.C., Quisquater, J.J. (eds.) Advances in Cryptology–EUROCRYPT
’95, Lecture Notes in Computer Science, vol. 921, pp. 106–120. Springer Berlin
Heidelberg (1995)

29. Papadopoulos, J.: Msieve, http://www.boo.net/~jasonp/qs.html

30. Pomerance, C.: A tale of two sieves. In: Notices Amer. Math. Soc (1996), http:

//www.ams.org/notices/199612/pomerance.pdf

31. van Rijswijk-Deij, R., Jonker, M., Sperotto, A., Pras, A.: The Internet of names: A
DNS big dataset. SIGCOMM Comput. Commun. Rev. 45(5), 91–92 (Aug 2015)

32. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public-key cryptosystems. Communications of the ACM 21(2), 120–126 (1978)

33. Team, T.C.D.: CADO-NFS, an implementation of the number field sieve algorithm
(2015), http://cado-nfs.gforge.inria.fr/

34. Yoo, A.B., Jette, M.A., Grondona, M.: Slurm: Simple Linux utility for resource
management. In: Job Scheduling Strategies for Parallel Processing. pp. 44–60.
Springer (2003)

35. Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I.: Spark: cluster
computing with working sets. In: Proceedings of the 2nd USENIX conference on
Hot topics in cloud computing. vol. 10, p. 10 (2010)

36. Zetter, K.: How a Google headhunter’s e-mail unraveled a massive net security
hole, http://www.wired.com/2012/10/dkim-vulnerability-widespread/

http://www.math.ttu.edu/~cmonico/software/ggnfs/
http://www.boo.net/~jasonp/qs.html
http://www.ams.org/notices/199612/pomerance.pdf
http://www.ams.org/notices/199612/pomerance.pdf
http://cado-nfs.gforge.inria.fr/
http://www.wired.com/2012/10/dkim-vulnerability-widespread/

