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1 Introduction

In a key pre-distribution scheme [7], a trusted third party (TTP) provides each node in
a system with a function that enables it to obtain a symmetric key with any other node.
Blundo et al. [1] introduced an elegant and efficient key predistribution scheme based
on symmetric bi-variate polynomials over a finite field. Key pre-distribution schemes are
prone to collusion attacks: various nodes may collude to obtain the key between a pair
of (non-colluding) nodes. For example, if the degree of the bi-variate polynomial in the
scheme of [1] is α, then α+ 1 or more colluding nodes can find the functions of each other
node in the system by simple interpolation, thus breaking this scheme completely.

The HIMMO scheme [2,3] is an efficient key predistribution scheme with strong collu-
sion resistance. The security analysis in [2] shows that HIMMO leads in a natural way to
lattice problems of which the solution will not significantly benefit from the the potential
future introduction of quantum computers [6]. Furthermore, HIMMO has very low band-
width, computation, and memory requirements. These facts make HIMMO an interesting
quantum-safe alternative.

We define 〈x〉q as x−bxq cq, which for positive q is the smallest non-negative residue of
x on division by q.

In the present paper, we further study the following problem, which forms the basis
for one of the collusion attacks on HIMMO from [2]:

MMO problem Let b, B, α,N and m ≥ 2 be given integers, where N is odd and
has bit length (α+ 1)B+ b. Let q1, . . . , qm be m integers of the form qi = N −βi2b,
where 0 < βi < 2B. Let h : Z→ ZN be given by

h(x) =
〈 m∑
i=1

〈fi(x)〉qi
〉
N

for some unknown polynomials fi of degree α ∈ Zqi [x], i = 1, . . . ,m. Given an oracle
which for every query x ∈ [0, 2B) returns h(x), find h(x0) for a given non-queried
x0 ∈ [0, 2B) using at most c queries.



A natural way of addressing this problem is by first finding the moduli q1, . . . , qm
and polynomials fi ∈ Zqi [x], and then using this information to obtain h(xi) for the
given xi. In fact, in [4], the authors studied the MMO problem with known moduli, which
differs from the above MMO problem statement by the fact that the moduli q1, . . . , qm are
given. It was shown that if c pairs (x1, h(x1)), . . . , (xc, h(xc)) are given, finding polynomials
fi ∈ Zqi [x] such that h(xj) =

∑m
i=1〈fi(xj)〉qi for 1 ≤ j ≤ c is equivalent to finding a

point in a certain lattice that is close to a target vector (depending on the observation
h(x1), . . . , h(xc)). A similar result is valid if the function h we are looking for is of the
form h(x) =

〈∑m
i=1〈fi(x)〉qi

〉
N

.

The HIMMO problem considered in the present paper also requires that the moduli
q1, . . . , qm are determined, and that is where the main contributions of the paper are. The
paper contents are as follows. In Section 2, we provide a short description of HIMMO and
show the motivation for the MMO problem. Section 3 describes results for a brute-force
quantum search on the MMO problem. In Section 4, we present an iterative heuristic al-
gorithm that queries the oracle at some specially chosen values x and then creates a list
of possible values for the secret moduli q1, . . . , qm. We also consider quantum speed-ups
for the algorithm. The numerical experiments reported show that, although the algorithm
is much faster than brute force approaches for small parameter values, solving the MMO
problem for realistic parameter values remains infeasible. We conclude the paper in Sec-
tion 5.

2 HIMMO and the MMO problem

In this section, we provide a short description of HIMMO and show the relevance of the
MMO problem in a collusion attack on HIMMO.

HIMMO has several public parameters, viz., the positive integers B, b, α,m ≥ 2, and
the public modulus N , an odd integer of length exactly (α+ 1)B+ b bits. A trusted third
party randomly generates secret root keying material, consisting of

– m distinct random moduli q1, q2, . . . , qm of the form qi = N − 2bβi, where 0 < βi < 2B

and at least one of β1, . . . , βm is odd.

– for 1≤ i ≤ m and 0 ≤ j ≤ k ≤ α, a random integer R
(i)
j,k with 0 ≤ R

(i)
j,k ≤ qi − 1, and

for 0 ≤ k < j ≤ α,R(i)
j,k = R

(i)
k,j .

The TTP provides, over a secure channel, each node in the system with a unique
random B bit identifier ξ, with 0 ≤ ξ < 2B, and with the coefficients of the key generating
polynomial Gξ:

Gξ(y) =
α∑
k=0

Gξ,ky
k where Gξ,k =

〈 m∑
i=1

〈
α∑
j=0

R
(i)
j,kξ

j〉qi
〉
N
.

Two nodes ξ and η in the system that wish to communicate with each other agree on a
common b bits key based on Gξ(η) and Gη(ξ).

In a collusion attack, multiple nodes ξ1, . . . , ξc co-operate to obtain information on the
key between two other nodes. In the collusion attack studied in the present paper, they
try to obtain the root keying material, with which the key generating polynomial Gξ of
any node ξ can be determined. For obtaining the root keying material, the colluding nodes



can use, for each k ∈ {0, . . . , α}, the c equations

Gξ`,k =
〈 m∑
i=1

〈
α∑
j=0

R
(i)
j,kξ

j
` 〉qi
〉
N

for 1 ≤ ` ≤ c.

So for 0 ≤ k ≤ α, the colluding nodes know the value of the polynomial hk(x) =〈∑m
i=1〈fki (x)〉qi

〉
N

for x = ξ1, . . . , ξc, where q1, . . . , qm and the polynomials fki (x) =∑α
j=0R

(i)
j,kx

j (for 1 ≤ i ≤ m) are unknown. That is, the nodes face an MMO problem
for hk after observation of c input-output pairs.

We note the MMO problem allows an attacker to use any strategy to query the oracle.
In the remainder of the paper, we use this freedom to be in a good position to obtain
information on the moduli q1, . . . , qm.

3 Preliminaries: classical and quantum brute-force search

A way to solve the MMO problem is to find m moduli of the form qi = N − 2bβi, with
0 < βi < 2B, and for each modulus, α + 1 polynomial coefficients in the range [0, qi). As
N is a (α+ 1)B + b-bit number, the entire search space has N elements, where

N =

2B−1∑
β1=1

· · ·
2B−1∑
βm=1

m∏
i=1

(N − 2Bβi)
α+1 ≈ 2m((α+1)2+1)B+(α+1)b) (1)

A brute force approach would be to check for each of these elements whether the resulting
function h(x) satisfies h(xj) = yj in each of the c points.

Using Grover’s algorithm [5], a quantum computer could speed up this brute-force
attack with the aid of a ‘quantum oracle’, a unitary operator that flips the sign of state
|(β1, f10, . . . , f1α), . . . , (βm, fm0, . . . , fmα)〉 if

〈 m∑
i=1

〈 α∑
j=0

fijx
j
k

〉
N−2Bβi

〉
N

= yk for all 1 ≤ k ≤ c,

and leaves it invariant otherwise. Grover’s algorithm [5] requires O(
√
N ) ‘queries’ to this

quantum oracle, compared to cN classical function evaluations. However, the running time
would still be very far away from feasible for the HIMMO parameters recommended in [2],
e.g., m ≥ 10, α ≥ 50 and realistic values of b and B, e.g. b = 256, B = 384.

4 Finding the hidden moduli

4.1 Set-up

The function

h(x) =
〈 m∑
i=1

〈fi(x)〉qi
〉
N

depends on the moduli qi and the polynomial coefficients of the fi. By taking repeated
finite differences, the polynomial coefficients can be eliminated. This results in a set of
equations for the moduli. Each solution corresponds to a set of candidates for the qi, for
which one may try to solve for the polynomial coefficients.



4.2 Finite differences

Let ∆ be the difference operator:

∆F (x) = F (x+ 1)− F (x).

We note that for any integer q ≥ 1 and function f(x) on Z and we have

∆〈f(x)〉q = 〈f(x+ 1)〉q − 〈f(x)〉q
= 〈f(x+ 1)− f(x)〉q − ϑ(x)q = 〈∆f(x)〉q − ϑ(x)q,

where ϑ(x) ∈ {0, 1}. Thus by induction, one easily verifies that for any integer k ≥ 2,

∆(k)〈f(x)〉q = ∆(k−1)〈f(x+ 1)〉q −∆(k−1)〈f(x)〉q
= 〈∆(k)f(x)〉q − ϑ(k)(x)q,

for some integers ϑ(k)(x) ∈ {−2k−1 + 1, . . . , 2k−1}.
In particular, if f is a degree-α polynomial, then 〈∆(α+1)f(x)〉q = 0, and so

∆(α+1)h(x) =
〈
−

m∑
i=1

ϑ
(α+1)
i (x)qi

〉
N
− ϑ(α+1)

0 (x)N

=
m∑
i=1

2bϑ
(α+1)
i (x)βi + (ε(x)− ϑ(α+1)

0 (x))N,

where in the last line we made use of the relations qi = N−2bβi, and used the fact that m is

not too large, so that m2b+B+α < N . The number ε(x) is equal to 1 if
∑m

i=1 θ
(α+1)
i (x)βi < 0

and equal to 0 otherwise.
A further modulo-N reduction to the interval [−(N − 1)/2, (N − 1)/2], denoted by

{·}N , gives

y(x)
def
= 2−b{∆(α+1)h(x)}N =

m∑
i=1

ϑ
(α+1)
i (x)βi. (2)

We remark that the derivation of (2) also holds for the finite difference operator ∆s,
defined as ∆sF (x) = F (x + s) − F (x): in fact, each of the α + 1 derivatives may use a
different s.

Now condider the sum of y(x) for a number of consecutive values of x. This sum is itself
a α+ 1-st derivative, and thus also a linear combination of the βi with integer coefficients
in [−2α + 1, 2α]:

∑̀
x=k

y(x) = 2−b
∑̀
x=k

{∆(α+1)h(x)}N

= 2−b{
∑̀
x=k

∆(α+1)h(x)}N , since (`− k + 1)m2α+B < N/2

= 2−b{∆`−k+1∆
(α)h(k)}N

=
m∑
i=1

Ciβi, where − 2α + 1 ≤ Ci ≤ 2α for 1 ≤ i ≤ m.



4.3 Basic system of equations and attacks

Fix a number n ≥ 1 and compute y(x) for n consecutive values x0, x0 + 1, . . . , x0 + n− 1,
which is possible with α + 1 + n queries to the oracle computing h(x). This leads to the
relations

yj =
m∑
i=1

cjiβi, 1 ≤ j ≤ n

with known yj = y(x0 + j − 1), unknown integer coefficients cji and unknown integers

βi ∈ [1, 2B). The coefficients cji satisfy −2α + 1 ≤
∑`

j=k cji ≤ 2α, for 1 ≤ i ≤ m,
1 ≤ k ≤ ` ≤ n. It can be shown that there are (n + 1)2nα sequences (c1i, . . . , cni) that
satisfy these constraints.

Guess coefficients A first brute force solution is to guess the m2 coefficients cji, 1 ≤
i, j ≤ m, and solve for the βi. This leads to a search space with ((m+ 1)2mα)m elements.

For each element that leads to one or more (if the matrix of coefficients is not of full
rank) sets of the βi. Each set gives a candidate set of moduli qi = N − 2bβi with which
one may try to find a solution of the MMO problem with known moduli using standard
lattice techniques.

Guess moduli A second brute force solution to find candidate moduli is to guess the m
numbers β̂i and, for each j, find m small integer coefficients cji i such that yj =

∑m
i=1 cjiβ̂i

(this corresponds to a closest vector problem in Zm), and check whether

∑̀
j=k

cji ∈ [−2α + 1, 2α]

for all i, k, `.. If such cji can be found the β̂i give a candidate set of moduli.
Experiments show that this is not a very good technique: if m is small, the probability

of finding a candidate set of moduli in this way is negligibly small. On the other hand,
when m and α are larger, for example m = 10, α = 50, it appears that a randomly chosen
set of m integers from [1, 2B) has a good chance of qualifying as a candidate set, even if n
is large. This implies that, for larger α and m, our basic idea of eliminating the polynomial
coefficients from the problem by taking the α+1-st discrete derivative defeats the purpose.

Vanishing linear combinations A third method, usable for small m, is to create van-
ishing linear combinations, in the following manner.

Let S be an integer n× (m−1) matrix with of which the elements satisfy the relations

∑̀
j=k

Sji ∈ [−2α + 1, 2α] for all 1 ≤ i ≤ m− 1, 1 ≤ k ≤ ` ≤ n.

Think of S as the matrix of coefficients cji, with one column removed, say the k-th. Choose
L > 0 and consider the (L+ 1)n integer linear combinations

(

n∑
j=1

λjSj1, . . . ,

n∑
j=1

λjSj m−1), 0 ≤ λj ≤ L



It can be shown that each of these linear combinations is an integral point in Xm−1, where

X =

[
−
⌊
n+ 1

2

⌋
(2α − 1)L,

(
1 +

⌊
n+ 1

2

⌋
(2α − 1)

)
L

]
.

The interval X contains 1 +
(
1 + 2

⌊
n+1
2

⌋
(2α − 1)

)
L integral points, so if

(L+ 1)n >

(
1 +

(
1 + 2

⌊
n+ 1

2

⌋
(2α − 1)

)
L

)m−1

, (3)

then at least two of the linear combinations coincide. Taking their difference, we conclude
that if (3) holds, there exists a nonzero integral vector λ ∈ [−L,L]n such that λS = 0. So
then for every 1 ≤ k ≤ m, there is a vector λ such that

n∑
j=1

λjyj =
n∑
j=1

λj

m∑
i=1

cjiβi =
m∑
i=1

(
n∑
j=1

λjcji)βi = (
n∑
j=1

λjcjk)βk = Mkβk

for some Mk with |Mk| ≤
(
1 + 2

⌊
n+1
2

⌋
(2α − 1)

)
L.

This suggests an algorithm for finding β1, . . . , βm.

1. Given α, b, B, m, find n,L satisfying (3) that minimise (2L+ 1)n. Let Λ+ be the set
of integral vectors in [−L,L]n of which the first non-zero coordinate is positive. Let
Cand = [1, 2B).

2. Choose a number x0 ∈ [0, 2B − α − n) and obtain yj = y(x0 + j − 1), 1 ≤ j ≤ n by
α+ 1 + n queries to the oracle that calculates h(x).

3. Set NewCand = ∅.
4. For each λ ∈ Λ+, calculate

∑n
j=1 λjyj , and if the result can be factored as Mβ, with

|M | ≤
(
1 + 2

⌊
n+1
2

⌋
(2α − 1)

)
L and β ∈ Cand, add β to NewCand.

5. Set Cand← NewCand.
6. If |Cand| > m, go back to step 2.
7. Return Cand.

However, this algorithm is flawed. The problem lies in step 4: it may happen that

n∑
j=1

λjyj = 0

for a λ ∈ Λ+. In that case every β in Cand is added to NewCand and survives this round, so
that the number of candidates does not decrease. A simple modification to the algorithm
is to change the condition ‘. . . if the result can be factored as. . . ’ to ‘. . . if the result is
non-zero and can be factored as. . . ’. However, that leads to the elimination of a correct
βk, if for all vectors λ that would have resulted in it appearing as a factor of the result,
the result happens to be zero.

This may be remedied somewhat by keeping a score for each candidate β, and incre-
menting it by one only when it appears as a factor of a non-zero result. This leads to the
following, improved, algorithm.

1. Given α, b, B, m, find n,L satisfying (3) that minimise (2L+1)n. Let Λ+ be the set of
integral vectors in [−L,L]n of which the first non-zero coordinate is positive. Choose
a number of rounds, Nrounds > 0 and set Cand = ∅. Create an array, Scores, indexed
by the elements of Cand. Do steps 2–5 Nrounds times.



2. Choose a number x0 ∈ [0, 2B − α − n) and obtain yj = y(x0 + j − 1), 1 ≤ j ≤ n by
α+ 1 + n queries to the oracle that calculates h(x).

3. Set NewCand = ∅.
4. For each λ ∈ Λ+, calculate

∑n
j=1 λjyj , and if the result is non-zero and can be factored

as Mβ, with |M | ≤
(
1 + 2

⌊
n+1
2

⌋
(2α − 1)

)
L, and β ∈ [1, 2B), add β to NewCand.

5. For each β ∈ NewCand, check if β ∈ Cand. If yes, increment Scores[β], if no, add β to
Cand and set Scores[β] to 1.

The idea is that the real values of β1, . . . , βm obtain a high score after sufficiently many
rounds. Now the technique from the Guess moduli section above can be applied, but
rather than picking the m candidate βs randomly from [1, 2B), they are chosen from the
highest scoring βs.

The amount of work in each round is proportional to the size of Λ+, which equals
((2L+ 1)n − 1)/2. Note that n,L are chosen in this algorithm to minimise this workload
per round, conditional on (3).

We tested the algorithm for a few instances with low α and m. The results from a
typical run with α = 2, m = 3 and b = 256, B = 384 are given in Table 2. After
1000 rounds the three wanted βis are among the top 5 candidates.

Birthday speed-up for vanishing linear combinations The vanishing linear combi-
nations method is based on the occurrence of collisions, that is, different integral linear
combinations of the yj with coefficients in [0, L] that give the same result; a collision is
guaranteed to occur if (3) holds. When

√
γ|X|m−1 different linear combinations are sam-

pled, the probability of a collision is at least 1 − exp(−γ/2). Replacing the condition (3)
in the algorithm by

(L+ 1)2n > γ

(
1 +

(
1 + 2

⌊
n+ 1

2

⌋
(2α − 1)

)
L

)m−1

(4)

results in a much smaller workload per round, depending on the value of γ that is chosen.
The resulting workload for γ = 1 is shown in Table 3. It is a nice side effect of the
lower workload that fewer candidates are generated per round. A disadvantage is that the
probability that a βi survives a round is lowered somewhat, since now the collision that
would create the vanishing linear combination that gives this value of β is not guaranteed
to occur. This implies that the scores are lower and that more rounds may be needed
to obtain a set of β-values with higher scores than the rest. In practice the advantages
clearly outweigh the disadvantages. Applying this algorithm to the same instance with
α = 2, m = 3 as before, we obtain the results given in Table 4. After 100 rounds the three
correct βi are in the top 7, after 1000 rounds they have moved into the top 4 and after
10000 rounds they take the top 3 places. Note that the workload per round for α = 2,
m = 3 is only 4 = 22 in this birthday attack, as opposed to 364 = 28.5 in the full attack,
so that we can run 10 times as many rounds and still be about 9 times as fast.

4.4 Quantum speedups?

Step 4 of our algorithm can be rephrased as follows. Define for

1 ≤M ≤
(

1 + 2

⌊
n+ 1

2

⌋
(2α − 1)

)
L



Table 1. The workload-minimising parameters L, n and the logarithm of the resulting workload per round
for 1 ≤ α ≤ 20 and 2 ≤ m ≤ 10.

L m
α 2 3 4 5 6 7 8 9 10

1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1 1
3 3 1 1 1 1 1 1 1 1
4 1 1 1 1 1 1 1 1 1
5 1 1 1 1 1 1 1 1 1
6 2 1 1 1 1 1 1 1 1
7 1 1 1 1 1 1 1 1 1
8 1 1 1 1 1 1 1 1 1
9 1 1 1 1 1 1 1 1 1

10 2 1 1 1 1 1 1 1 1
11 4 1 1 1 1 1 1 1 1
12 1 1 1 1 1 1 1 1 1
13 1 1 1 1 1 1 1 1 1
14 2 1 1 1 1 1 1 1 1
15 1 1 1 1 1 1 1 1 1
16 1 1 1 1 1 1 1 1 1
17 4 1 1 1 1 1 1 1 1
18 1 1 1 1 1 1 1 1 1
19 1 1 1 1 1 1 1 1 1
20 3 1 1 1 1 1 1 1 1

n m
α 2 3 4 5 6 7 8 9 10

1 2 4 6 10 13 16 20 24 28
2 2 6 10 14 19 24 29 34 40
3 2 8 13 18 24 30 36 42 48
4 4 10 15 22 28 35 42 48 56
5 5 11 18 25 32 39 47 55 62
6 4 13 20 28 36 44 52 60 69
7 7 14 22 31 39 48 57 66 76
8 7 16 24 34 43 52 62 72 82
9 8 17 26 36 46 57 67 78 88

10 6 18 29 39 50 61 72 83 94
11 5 20 31 42 53 65 77 89 101
12 10 21 33 45 57 69 82 94 107
13 11 23 35 47 60 73 86 100 113
14 8 24 37 50 64 77 91 105 119
15 12 25 39 53 67 81 96 110 125
16 13 27 41 56 70 85 101 116 131
17 7 28 43 58 74 89 105 121 137
18 14 29 45 61 77 93 110 127 143
19 15 31 47 64 80 97 115 132 149
20 9 32 49 66 84 101 119 137 155

log2(|Λ+|) m
α 2 3 4 5 6 7 8 9 10

1 2.0 5.3 8.5 14.8 19.6 24.4 30.7 37.0 43.4
2 2.0 8.5 14.8 21.2 29.1 37.0 45.0 52.9 62.4
3 4.6 11.7 19.6 27.5 37.0 46.5 56.1 65.6 75.1
4 5.3 14.8 22.8 33.9 43.4 54.5 65.6 75.1 87.8
5 6.9 16.4 27.5 38.6 49.7 60.8 73.5 86.2 97.3
6 8.3 19.6 30.7 43.4 56.1 68.7 81.4 94.1 108.4
7 10.1 21.2 33.9 48.1 60.8 75.1 89.3 103.6 119.5
8 10.1 24.4 37.0 52.9 67.2 81.4 97.3 113.1 129.0
9 11.7 25.9 40.2 56.1 71.9 89.3 105.2 122.6 138.5

10 12.9 27.5 45.0 60.8 78.2 95.7 113.1 130.6 148.0
11 14.8 30.7 48.1 65.6 83.0 102.0 121.0 140.1 159.1
12 14.8 32.3 51.3 70.3 89.3 108.4 129.0 148.0 168.6
13 16.4 35.5 54.5 73.5 94.1 114.7 135.3 157.5 178.1
14 17.6 37.0 57.6 78.2 100.4 121.0 143.2 165.4 187.6
15 18.0 38.6 60.8 83.0 105.2 127.4 151.2 173.3 197.1
16 19.6 41.8 64.0 87.8 109.9 133.7 159.1 182.9 206.6
17 21.2 43.4 67.2 90.9 116.3 140.1 165.4 190.8 216.1
18 21.2 45.0 70.3 95.7 121.0 146.4 173.3 200.3 225.6
19 22.8 48.1 73.5 100.4 125.8 152.7 181.3 208.2 235.2
20 24.3 49.7 76.7 103.6 132.1 159.1 187.6 216.1 244.7

Table 2. Result for an instance with α = 2, m = 3 and B = b = 256 after 10, 100, and 1000 rounds.
The scores are given as (s, n)j triplets, where s = score, n = number of candidates with this score j =
number of βis with this score.

Nrounds highest scores

10 (10, 4)2, (9, 12)0, (8, 9)1, (7, 23)0, (6, 50)0, (5, 17)0, (4, 112)0, (3, 227)0, (2, 333)0, (1, 1005)0
100 (96, 2)1, (93, 2)1, (89, 2)0, (86, 1)1, (82, 2)0, (81, 4)0, (80, 2)0, (78, 4)0, . . .

1000 (980, 1)1, (974, 1)0, (860, 2)1, (859, 1)1, (839, 1)0, (838, 1)0, (817, 2)0, (810, 2)0, (804, 3)0, . . .



Table 3. The base-2 logarithm of the workload per round for the birthday algorithm with γ = 1.

log2(|Λ+|) m
α 2 3 4 5 6 7 8 9 10

1 2.0 2.0 2.0 5.3 6.9 8.5 11.7 14.8 16.4
2 2.0 2.0 5.3 8.5 11.7 14.8 18.0 21.2 25.9
3 2.0 4.6 8.3 11.7 14.8 19.6 24.4 27.5 32.3
4 2.0 5.3 10.1 14.8 18.0 22.8 27.5 33.9 38.6
5 2.0 6.9 11.7 16.4 21.2 27.5 32.3 38.6 43.4
6 3.6 8.3 13.3 19.6 24.4 30.7 37.0 43.4 49.7
7 3.6 10.1 14.8 21.2 27.5 33.9 40.2 48.1 54.5
8 4.6 10.1 16.4 24.4 30.7 37.0 45.0 52.9 59.2
9 5.3 11.7 18.0 25.9 33.9 40.2 48.1 56.1 64.0

10 5.3 12.9 21.2 27.5 37.0 45.0 52.9 60.8 68.7
11 6.4 14.8 22.2 30.7 38.6 48.1 56.1 65.6 75.1
12 6.9 14.8 24.4 32.3 41.8 51.3 60.8 70.3 79.8
13 6.9 16.4 25.9 35.5 45.0 54.5 64.0 73.5 84.6
14 8.3 17.6 27.5 37.0 46.5 57.6 67.2 78.2 89.3
15 8.3 18.0 29.1 38.6 49.7 60.8 71.9 83.0 94.1
16 8.5 19.6 30.7 41.8 52.9 64.0 75.1 87.8 98.9
17 10.1 21.2 32.3 43.4 54.5 67.2 79.8 90.9 103.6
18 10.1 21.2 33.8 45.0 57.6 70.3 83.0 95.7 108.4
19 10.1 22.8 35.5 48.1 60.8 73.5 86.2 100.4 113.1
20 11.7 24.3 37.0 49.7 62.4 76.7 90.9 103.6 117.9

Table 4. Result from running the birthday attack on the same instance with α = 2, m = 3 and B = b = 256
as before, after 10, 100, 1000 and 10000 rounds. The scores are given as (s, n)j triplets, where s = score,
n = number of candidates with this score j = number of βis with this score.

Nrounds highest scores

10 (4, 1)0, (3, 3)1, (2, 7)1, (1, 52)1
100 (23, 1)1, (22, 1)0, (19, 3)1, (15, 2)1, (13, 4)0, (12, 1)0, (11, 3)0, (10, 3)0, (9, 6)0, . . .

1000 (224, 1)1, (216, 1)1, (212, 1)0, (200, 1)1, (152, 1)0, (138, 1)0, (136, 1)0, (132, 1)0, . . .
10000 (2175, 1)1, (2127, 1)1, (2086, 1)1, (2033, 1)0, (1416, 1)0 (1276, 1)0, (1275, 1)0, (1262, 1)0, . . .



the function FM : Λ+ → [0, 2B) as

FM (λ) =

{
β if

∣∣∣∑n
j=1 λjyj

∣∣∣ = Mβ with 1 ≤ β < 2B

0 otherwise.

Let RM be the image of Λ+ under FM . Then the set NewCand is given by the union
of all the RM , minus {0}. We are not aware of a quantum algorithm that can calculate
NewCand faster than its classical counterpart.

5 Conclusions

The HIMMO scheme is a potential quantum-safe alternative since its underlying design
principles, the HI and MMO problems [2],[3] are related to lattice problems. HIMMO ex-
hibits excellent performance compared with other quantum-safe alternatives, in particular
regarding bandwidth needs, while providing several security services such as key agree-
ment, implicit certificates, or source authentication. In order to further evaluate HIMMO’s
security, this paper focuses on the MMO problem with unknown moduli and several meth-
ods for tackling it. A quantum brute force search of the secret moduli and polynomial
coefficients would have a running time O(2(m((α+1)2+1)B+(α+1)b)/2), too large to allow for
brute force attacks for proposed HIMMO parameter values. Therefore, we introduced the
method of using finite differences in order to eliminate the polynomial coefficients from the
problem. By guessing the coefficients, we come up with ((m+1)2mα)m possible choices for
the unknown moduli. For each such choice, we need to solve an MMO problem with known
moduli to verify if we have found a solution for the MMO problem with unknown moduli.
Alternatively, we can guess the moduli (2mB choices) and for each guess solve a close vec-
tor problem in Zm to verify if the guessed moduli form a valid set of moduli. Experiments
indicate that this method is not very attractive. With the method of vanishing linear com-
binations, we run Nrounds rounds, each with a workload of ((2L+ 1)n− 1)/2, where L and
n satisfy (3). In the birthday speed-up, the workload per round again is ((2L+ 1)n−1)/2,
but L and n satisfy the much weaker condition from (4). After the iterations, a small set of
candidates for the βi’s remain if m and α are small. The results of the workloads per round
collected in Tables 1 and 3 show that for proposed values m and α, the method of vanish-
ing linear combinations and its birthday speed-up are infeasible as well. As a conclusion,
although the methods in this paper can help to attack the MMO problem and HIMMO
scheme with small parameters (https://www.himmo-scheme.com/challenge/), HIMMO
remains safe for proposed parameters m = 10 and α = 50 even if a quantum computer
were available. Other HIMMO parameters such as the key or identifier size would need to
be increased in order to generate long enough keys (256 bits) for later usage or to ensure
secure binding between credentials and long identifiers (384 bits) by means of a collision
resistance hash function, corresponding to a security level of 128 bits.
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