
Inception Makes Non-malleable Codes Stronger

Divesh Aggarwal1, Tomasz Kazana2,3, and Maciej Obremski3,4

1 Ecole Polytechnique Federale de Lausanne
2 New York University
3 University of Warsaw

4 Aarhus University

Abstract. Non-malleable codes (NMCs), introduced by Dziembowski,
Pietrzak and Wichs [DPW10], provide a useful message integrity guar-
antee in situations where traditional error-correction (and even error-
detection) is impossible; for example, when the attacker can completely
overwrite the encoded message. NMCs have emerged as a fundamental
object at the intersection of coding theory and cryptography.
A large body of the recent work has focused on various constructions
of non-malleable codes in the split-state model. Many variants of NMCs
have been introduced in the literature i.e. strong NMCs, super strong
NMCs and continuous NMCs. Perhaps the most useful notion among
these is that of continuous non-malleable codes, that allows for continu-
ous tampering by the adversary.
In this paper we give the first efficient, information-theoretic secure con-
struction of continuous non-malleable codes in 2-split-state model. En-
route to our main result, we obtain constructions for almost all possible
notion of non-malleable codes that have been considered in the split-state
model, and for which such a construction is possible. Our result is ob-
tained by a series of black-box reductions starting from the non-malleable
codes from [ADL14].
One of the main technical ingredient of our result is a new concept that
we call inception coding. We believe it may be of independent interest.

1 Introduction

Non-malleable Codes. Non-malleable codes (NMCs), introduced by
Dziembowski, Pietrzak and Wichs [DPW10], provide a useful message
integrity guarantee in situations where traditional error-correction (and
even error-detection) is impossible; for example, when the attacker can
completely overwrite the encoded message. NMCs have emerged as a
fundamental object at the intersection of coding theory and cryptogra-
phy.
Informally, given a tampering family F , an NMC (Enc,Dec) against F
encodes a given message m into a codeword c← Enc(m) in a way that,
if the adversary modifies m to c′ = f(c) for some f ∈ F , then the the
message m′ = Dec(c′) is either the original message m, or a completely
“unrelated value”. As has been shown by the recent progress [DPW10,
LL12,DKO13,ADL14,FMVW14,FMNV14,CG14a,CG14b,CZ14,Agg15,

ADKO15b,ADKO15a,CGL15,AGM+15b,AGM+15a,AAnHKM+16] NMCs
aim to handle a much larger class of tampering functions F than tradi-
tional error-correcting or error-detecting codes, at the expense of poten-
tially allowing the attacker to replace a given message x by an unrelated
message x′. NMCs are useful in situations where changing x to an unre-
lated x′ is not useful for the attacker (for example, when x is the secret
key for a signature scheme.)

Strong Non-malleable Codes. A stronger notion of non-malleability
was also considered in [DPW10] in which, whenever the codeword c is
modified to c′ = f(c) 6= c, the decoded message m′ = Dec(c′) is inde-
pendent of m. This is in contrast to the plain notion of non-malleability
where some modification of the codeword c could still result in m′ =
m. Indeed, this is the case in some of the previous constructions of
non-malleable codes like [ADL14,ADKO15a]. For the purpose of conve-
niently defining continuous non-malleable codes, an even stronger notion
called super-strong non-malleable codes has been considered in the lit-
erature [FMNV14, JW15]. Informally speaking, in this notion, if c′ 6= c
is a valid codeword, then c′ must be independent of c.

An intermediate notion can also be considered where if m′ = Dec(c′) /∈
{m,⊥}, then c′ must be independent of c. To be consistent with other
notions of non-malleable codes, we call these super non-malleable codes.

Continuous Non-malleable Codes. It is clearly realistically possible
that the attacker repeatedly tampers with the device and observes the
outputs. As mentioned in [JW15], non-malleable codes can provide pro-
tection against these kind of attacks if the device is allowed to freshly
re-encode its state after each invocation to make sure that the tampering
is applied to a fresh codeword at each step. after each execution the en-
tire content of the memory is erased. While such perfect erasures may be
feasible in some settings, they are rather problematic in the presence of
tampering. Due to this reason, Faust et al. [FMNV14] introduced an even
stronger notion of non-malleable codes called continuous non-malleable
codes where security is achieved against continuous tampering of a single
codeword without re-encoding. Jafargholi and Wichs [JW15] considered
four variants of continuous non-malleable codes depending on

– Whether tampering is persistent in the sense that the tampering
is always applied to the current version of the tampered codeword,
and all previous versions of the codeword are lost. The alternative
definition considers non-persistent tampering where the tampering
always occurs on the original codeword.

– Whether tampering to an invalid codeword (i.e., when the decoder
outputs ⊥) causes a “self-destruct” and the experiment stops and
the attacker cannot gain any additional information, or alternatively
whether the attacker can always continue to tamper and gain infor-
mation.

Split-State Model. Although any kind of non-malleable codes codes do
not exist if the family of “tampering functions” F is completely unre-

stricted,5 they are known to exist for many broad tampering families
F . One such natural family is the family of tampering functions in the
so called t-split-state model. In this model, the codeword is “split” into
t > 1 states c = (c1, . . . , ct); a tampering function f is viewed as a list of t
functions (f1, . . . , ft) where each function fi tampers with corresponding
component ci of the codeword independently: i.e., the tampered code-
word is c′ = (f1(c1), . . . , ft(ct)).
This family is interesting since it seems naturally useful in applications,
especially when t is low and the shares y1, . . . , yt are stored in differ-
ent parts of memory, or by different parties. Not surprisingly, the set-
ting of t = 2 appears the most useful (but also the most challenging
from the technical point of view), so it received the most attention
so far [DPW10, LL12, DKO13, ADL14, FMNV14, CG14a, CG14b, CZ14,
ADKO15b,ADKO15a] and is also the focus of our work.
While some of the above mentioned results achieve security against com-
putationally bounded adversaries, we focus on security in the information-
theoretic setting, i.e., security against unbounded adversaries. The known
results in the information-theoretic setting can be summarized as follows.
Firstly [DPW10] showed the existence of (strong) non-malleable codes,
and this result was improved by [CG14a] who showed that the optimal
rate of these codes is 1/2. Faust et al. [FMNV14] showed the impossibil-
ity of continuous non-malleable codes against non-persistent split-state
tampering. Later [JW15] showed that continuous non-malleable codes
exist in the split-state model if the tampering is persistent.
There have been a series of recent results culminating in constructions
of efficient non-malleable codes in the split-state model [DKO13,ADL14,
CZ14, ADKO15a]. However, there is no known efficient construction in
the continuous setting. Since the work of [FMNV14] rules out the possi-
bility of such a construction for the case of non-persistent tampering, the
best one can hope for is an efficient construction for the case of persistent
tampering in the split-state model.

Our Results. The main result of the paper is the following:

Theorem 1. For any k, there exists an efficient (in k) information-

theoretically secure persistent continuous 2−k
Θ(1)

-non-malleable code with
self-destruct in the split-state model that encodes k-bit messages to poly(k)-
bit codewords.

The construction is obtained in a series of steps. We first show a simple
reduction that any scheme in the split-state model that is a super-strong
non-malleable code is also a persistent continuous non-malleable code.
We believe that this result is interesting on its own. The statement is
proven for the split-state model and a discussion about other model is
placed in Remark 4.
Our main technical reduction is one that shows that any coding scheme
that is super non-malleable in the split-state model can be converted into

5 In particular, F should not include “re-encoding functions” f(c) = Enc(f ′(Dec(c)))
for any non-trivial function f ′, as m′ = Dec(f(Enc(m))) = f ′(m) is obviously related
to m.

a scheme that is super-strong non-malleable in the split-state model. It is
worth mentioning that in particular it proves existance of efficient strong
non-malleable codes which was stated as a open problem in [DPW10].
To do that we develop a new technique we called inception coding. Given
the super non-malleable scheme (Enc,Dec) we modify encoding proce-
dure to sacrifice small suffix of the message (it will not carry any message
related information anymore) to replace it with validity checks for each of
the states. Enc(m′, checkx, checky) = (X,Y) such that Verify(checkx;X) =
Verify(checky;Y) = OK. Those checks can carry uniform seeds inside,
which makes it easier to come up with various constructions. We settled
on the construction combining Reed-Solomon codes with storing ran-
dom coordinates of the codeword (induced by a random seed). Then we
show recursive technique that makes checks arbitrary small (at the cost
of security). Modified scheme encodes slightly shorter messages but it
is crucial for clean transition from super non-malleable codes to super
strong non-malleable codes. We also prove that this modification does
not spoil the security of original code.
Finally, to complete the proof, we show that the coding scheme from [ADL14]
is super non-malleable. This proof was surprisingly involved, since we
need to argue that for any two tampered codewords c′1, c

′
2 of two dis-

tinct messages, if they do not decode to ⊥ or the original messages, re-
spectively, then the two tampered codewords are indistinguishable. This
required a careful re-analysis of the cases in [ADL14].

Background. The notion of non-malleability was introduced by Dolev,
Dwork and Naor [DDN00], and has found many applications in cryp-
tography. Traditionally, non-malleability is defined in the computational
setting, but recently non-malleability has been successfully defined and
applied in the information-theoretic setting (generally resulting in some-
what simpler and cleaner definitions than their computational counter-
parts). For example, in addition to non-malleable codes studied in this
work, the work of Dodis and Wichs [DW09] defined the notion of non-
malleable extractors as a tool for building round-efficient privacy ampli-
fication protocols.
Finally, the study of non-malleable codes falls into a much larger crypto-
graphic framework of providing counter-measures against various classes
of tampering attacks. This work was pioneered by the early works of [ISW03,
GLM+03, IPSW06], and has since led to many subsequent models. We
do not list all such tampering models, but we refer to [KKS11,LL12] for
an excellent discussion of various such models.

Other Related Work. In addition to the works mentioned above, non-
malleable codes have been studied in various tampering models in several
recent results. For tampering functions of size 2poly(n), rate-1 codes (with
efficient encoding and decoding) exist, and can be obtained efficiently
with overwhelming probability [FMVW14].
Cheraghchi and Guruswami [CG14b] gave a rate 1 non-malleable code
against the class of bitwise-tampering functions, where each bit of the
codewords is tampered independently. Recently, Agrawal et al. [AGM+15b,
AGM+15a] improved this result by giving a explicit rate-1 code against

a stronger class of tampering functions, which in addition to tampering
with each bit of the codeword independently, can also permute the bits
of the resulting codeword after tampering, was achieved in [AGM+15b,
AGM+15a].
In the “split state” setting, an encoding scheme was proposed in [CKM11].
For the case of only two states, an explicit non-malleable code for en-
coding one-bit message was proposed by [DKO13]. This was improved
by Aggarwal et al [ADL14] to a scheme that encodes larger messages
but with rate 1/poly(k) where k is the length of the message. This was
further improved to obtain a constant-rate non-malleable code in [CZ14,
ADKO15a].
Another related result by Aggarwal et al [ADKO15b] obtained efficient
construction of non-malleable codes in a model where the adversary, in
addition to performing split-state tampering, is also allowed some limited
interaction between the two states.
In the computational setting, there has been a sequence of works con-
structing non-malleable codes and its variants [LL12, FMNV14]. Chan-
dran et al. [CGM+15] also rely on the computational setting in defin-
ing their new notion of blockwise non-malleable codes. Blockwise non-
malleable codes are a generalization of the split-state model (and the
recent lookahead model of [ADKO15a]) where the adversary tampers
with one state at a time.

2 Preliminaries

For a set S, we let US denote the uniform distribution over S. For an
integer m ∈ N, we let Um denote the uniform distribution over {0, 1}m,
the bit-strings of length m. For a distribution or random variable X we
write x← X to denote the operation of sampling a random x according
to X. For a set S, we write s← S as shorthand for s← US .
The Hamming distance between two strings (a1, . . . , am), (b1, . . . , bm) ∈
{0, 1}m is the number of i ∈ [m] such that ai 6= bi. We denote it as
Ham((a1, . . . , am) ; (b1, . . . , bm)).

Entropy and Statistical Distance. The min-entropy of a random vari-

able X is defined as H∞(X)
def
= − log(maxx Pr[X = x]). We say that X

is an (n, k)-source if X ∈ {0, 1}n and H∞(X) ≥ k. For X ∈ {0, 1}n, we
define the entropy rate of X to be H∞(X)/n. We also define average
(aka conditional) min-entropy of a random variable X conditioned on
another random variable Z as

H̃∞(X|Z)
def
= − log

(
Ez←Z

[
max
x

Pr[X = x|Z = z]
])

= − log
(
Ez←Z

[
2−H∞(X|Z=z)

])
.

where Ez←Z denotes the expected value over z ← Z. We have the fol-
lowing lemma.

Lemma 1 ([DORS08]). Let (X,W) be some joint distribution. Then,

– For any s > 0, Prw←W [H∞(X|W = w) ≥ H̃∞(X|W)−s] ≥ 1−2−s.

– If Z has at most 2` possible values, then H̃∞(X|(W,Z)) ≥ H̃∞(X|W)−
`.

The statistical distance between two random variables W and Z dis-
tributed over some set S is

∆(W,Z) := max
T⊆S
|W (T)− Z(T)| = 1

2

∑
s∈S

|W (s)− Z(s)|.

Note that ∆(W,Z) = maxD(Pr[D(W) = 1]−Pr[D(Z) = 1]), where D is
a probabilistic function. We say W is ε-close to Z, denoted W ≈ε Z, if
∆(W,Z) ≤ ε. We write ∆(W,Z|Y) as shorthand for ∆((W,Y), (Z, Y)),
and note that ∆(W,Z|Y) = Ey←Y∆(W |Y = y, Z|Y = y).

Reed-Solomon Codes. In Section 4 we will use standard Reed-Solomon
error-correcting codes. This is useful and interesting mathematical object
with vast literature on. However we will need only the following fact:

Lemma 2. There exist a function RS : {0, 1}n → {0, 1}n+n
Bdlogne.

such that:
– Hamming distance between any two elements of the image of RS is

at least nB + 1,

– For any x ∈ {0, 1}n there exist a unique sequence of bits u ∈ {0, 1}n
Bdlogne

such that x||u is an element of the image of RS;

– For every u ∈ {0, 1}n
Bdlogne the set of all x ∈ {0, 1}n such that x||u

is an element of the image of RS is affine subspace of {0, 1}n.

Proof. We can define RS as any Reed-Solomon error-correcting code
with alphabet Σ = {0, 1}dlogne, message length k∗ = n/dlogne and
codeword length n∗ = nB+n/dlogne. The above properties of RS follow
from standard properties of Reed-Solomon code. We omit details. ut

The elements of the image of RS are called valid codewords for RS.

3 Various definitions of Non-Malleable Codes

Definition 1. (DPW Non-Malleable Code.) Let (Enc :M→ X ×
X ,Dec : X × X →M∪ {⊥}) be an encoding scheme. For f, g : X → X
and for any m ∈M define the experiment DPWTamperf,gm as:

DPWTamperf,gm =

(X,Y)← Enc(m),

X ′ := f(X), Y ′ := g(Y)
m′ := Dec(X ′, Y ′)

output: m′

We say that an encoding scheme (Enc,Dec) is ε-DPW-non-malleable in
split-state model if for every functions f, g : X → X there exists distri-
bution Df,g on M∪ {same,⊥} such that for every m ∈M we have

DPWTamperf,gm ≈ε

 d← Df,g

if d = same then output m
otherwise output d.

We will consider the following alternative definition of non-malleable
code, which will be a smoother transition to the subsequent definitions
in this section. We show the equivalence of this definition to Definition 1
in Appendix A.

Definition 2. (Non-Malleable Code.) We say that an encoding scheme
(Enc : M → X × X ,Dec : X × X → M ∪ {⊥}) is ε-non-malleable in
split-state model if for every functions f, g : X → X there exists family of
distributions {Df,g

x,y}x,y∈X each on {0, 1} such that for every m0,m1 ∈M

Tamperf,gm0
≈ε Tamperf,gm1

where

Tamperf,gm =

(X,Y)← Enc(m),

output same if Dec(X,Y) = Dec(f(X), g(Y)) ∧Df,g
X,Y = 0

else output: Dec(f(X), g(Y))

Some results in the literature like [FMNV14, JW15] have considered a
notion of super-strong non-malleable codes. We introduce the following
intermediate notion of super non-malleable codes.

Definition 3. (Super Non-Malleable Code.) We say that an encod-
ing scheme (Enc : M → X × X ,Dec : X × X → M ∪ {⊥}) is ε-super
non-malleable in split-state model if for every functions f, g : X → X
there exists family of distributions {Df,g

x,y}x,y∈X each on {0, 1} such that
for every m0,m1 ∈M

SuperTamperf,gm0
≈ε SuperTamperf,gm1

where SuperTamperf,gm =

(X,Y)← Enc(m),

output same if Dec(X,Y) = Dec(f(X), g(Y)) ∧Df,g
X,Y = 0

else if Dec(f(X), g(Y)) = ⊥ output ⊥
else output: (f(X), g(Y))

Definition 4. (Super Strong Non-Malleable Code.) We say that
an encoding scheme (Enc : M → X × X ,Dec : X × X → M∪ {⊥}) is
ε-super strong non-malleable in split-state model if for every functions
f, g : X → X and for every m0,m1 ∈M

SuperStrongTamperf,gm0
≈ε SuperStrongTamperf,gm1

where

SuperStrongTamperf,gm =

(X,Y)← Enc(m),

output same if (X,Y) = (f(X), g(Y))
else if Dec(f(X), g(Y)) = ⊥ output ⊥

else output: (f(X), g(Y))

Definition 5. (Continuous Non-Malleable Code.) [JW15] define
four types of continuous non-malleable codes based on two flags: sd ∈
{0, 1} (self-destruct) and prs ∈ {0, 1} (persistent). We say that an en-
coding scheme (Enc :M→ X ×X ,Dec : X × X →M∪ {⊥}) is (T, ε)-
continuous [sd, prs] non-malleable in split-state model if for every Adver-
sary A and for every m0,m1 ∈M

ConTamperA,T,m0
≈ε ConTamperA,T,m1

where ConTamperA,T,m =

(X,Y)← Enc(m),
f0, g0 ≡ id,
Repeat i = 1, 2, ...,T
A chooses functions f ′i , g

′
i

if prs = 1 then fi = f ′i ◦ fi−1, gi = g′i ◦ gi−1

else fi = f ′i , gi = g′i
if (fi(X), gi(Y)) = (X,Y) then output same

else
if Dec(fi(X), gi(Y)) = ⊥ then output ⊥ if sd = 1 then experiment stops

else output (fi(X), gi(Y)) if prs = 1 then experiment stops

Remark 1. [FMNV14] show that non-persistent continuous non-malleable
codes are impossible to construct in 2-split state model.

Remark 2. In any model allowing bitwise tampering, in particular in
2−split state model, non-self-destruct property is impossible to archive
if space of messages has at least 3 elements.

Proof. Let c = (c1, c2, c3, ...) be codeword, we apply function c→ (0, c2, c3, ...)

– if tampering experiment returned ⊥ then we learned that c1 = 1
– if tampering experiment returned same then we learned that c1 = 0
– if tampering experiment returned something else we can repeat the

experiment for (1, c2, c3,) and limit space of possible messages
that were encoded to 2 thus breaking the security immediately.

we can repeat the process with other coordinates and in the end learn
either whole codeword or limit space to 2 possibilities.

4 Inception Coding Technique

4.1 Check Functions

Definition 6. A function C : {0, 1}s × {0, 1}n → {0, 1}m is called an
ε-check if for any f : {0, 1}n → {0, 1}n and any x such that x 6= f(x),

Pr
S←{0,1}s

(C(S, x) = C(S, f(x))) ≤ ε

In this section we will define several check functions. However, first we
start with definition of auxiliary functions Check1 and Check2,ε.

Definition 7. Let 0 < B < 1 and let function Check1 : {0, 1}n →
{0, 1}n

Bdlogne be such that X||Check1(X) is a valid codeword for RS
(Correctness of this definition follows from Lemma 2).

Definition 8. Let t = 2n1−Bdlog(1/ε)e, and let Check2 : {0, 1}tdlog(n)e×
{0, 1}n → {0, 1}t be a simple sampler function defined as follows. Let
s = s1‖s2‖ · · · ‖st be such that each sj is a bit-string of length dlog(n)e.
Then Check2(s, x) := xs1 . . . xst , where xsj is the bit of x at position sj,
when written in binary form.

Lemma 3. Let t = 2n1−Bdlog(1/ε)e and let

Check : {0, 1}tdlog(n)e × {0, 1}n → {0, 1}n
B logn+t

be defined as Check(s, x) = Check1(x)||Check2(s, x). Then Check is a 2ε-
check.

Proof. If Ham(x; f(x)) < nB then by Lemma 2, Check1(x) 6= Check1(f(x)).
So, without loss of generality, we assume that Ham(x; f(x)) ≥ nB . For t =
2n1−Bdlog(1/ε)e and a uniformly random S = S1‖ · · · ‖St, Check2(S, x) 6=
Check2(S, f(x)) if and only if xSj = f(x)Sj for all j ∈ [t]. Thus,

Pr
S←{0,1}s

(Check2(S, x) = Check2(S, f(x))) ≤
(

1− nB

2dlogne

)2n1−Bdlog(1/ε)e

≤
(

1− 1

2n1−B

)n1−Bdlog(1/ε)e

≤
(

1

2

)dlog(1/ε)e
≤ ε.

ut

For our construction, we would require a check of length nc for a small
constant c > 0. In the following, we show how to compose check functions
to decrease their size.

Lemma 4. If ch1 : {0, 1}s1 × {0, 1}n 7→ {0, 1}m1 is an ε1-check and
ch2 : {0, 1}s2×{0, 1}m1 7→ {0, 1}m2 is an ε2-check then ch : {0, 1}s1+s2×
{0, 1}n 7→ {0, 1}m2 given by

ch(x, s1‖s2) := ch2(ch1(x, s1), s2)

is an (ε1 + ε2)-check function.

Proof. Let S1‖S2 ← Us1+s2 , and let E1 = E1(x, S1) be the event that
ch1(x, S1) = ch1(f(x), S1) and E2 = E2(x, S1, S2) be the event that
ch2(ch1(x, S1), S2) = ch2(ch1(f(x), S1), S2). Then

Pr(E2) ≤ Pr(E1) + Pr(E2 | E1)

≤ ε1 + ε2 .

ut

Lemma 5. Let E be such that dlog(1/ε)e = nE/2. Then there exist a
2 logE

log(1−E/2)ε-check Check? : {0, 1}s × {0, 1}n 7→ {0, 1}m such that:

m ≤ nE ,

s ≤ logE

log(1− E/2)
n3E/2dlogne .

Proof. We will apply Lemma 4 several times to our Check in Lemma 3
to construct a different check function with parameters more convenient
for our application. In Lemma 3 we already defined an 2ε-check for n-bit
strings

Seed length = n1−Bdlognedlog(1/ε)e,

Length of check = nBdlogne+ n1−Bdlog(1/ε)e,

where 1/2 < B < 1. For our final choice of parameters, B will be a
constant close to 1.
Now, we use (t − 1) times lemma 4 to compose Check with itself (of
course each time n is smaller; however we keep 2ε and B the same each
time).and get the following 2tε-check Check?:

Length of check ≤ n(B+δ)t ,

Seed length ≤ tn1−Bdlognedlog(1/ε)e .

where δ is such that (n′)Bdlogn′e + (n′)1−Bdlog(1/ε)e ≤ (n′)B+δ for

n′ = n(B+δ)t .
Now, let us put B = 1−E, δ = E/2 and t = logE

log(1−E/2) to the above and

we get (this just re-notation not a different function) a 2 logE
log(1−E/2)ε-check

Check? with the following properties:

Length of check ≤ nE ,

Seed length ≤ logE

log(1− E/2)
nEdlognedlog(1/ε)e .

if dlog(1/ε)e < nE−3E2/2.

This final statement is obtained by putting dlog(1/ε)e = nE/2 < nE−3E2/2.
ut

Definition 9. For clarity let us define functions s, c, ε as follows:

s(n,E) =
logE

log(1− E/2)
n3E/2dlogne

c(n,E) = nE

ε(n,E) =
2 logE

log(1− E/2)
2−n

E/2

Remark 3. It is important to notice that for any s ∈ {0, 1}s(n,E) and
any r ∈ {0, 1}c(n,E) set As,r = {X ∈ {0, 1}n |Check?(s,X) = r} is an
affine subspace of {0, 1}n. This follows from Lemma 2 and definition of
Check2,ε.

4.2 Inception Coding

Let Enc : {0, 1}k → {0, 1}n × {0, 1}n,Dec : {0, 1}n × {0, 1}n → {0, 1}k ∩
{⊥} be ε′-super non-malleable scheme in 2-split state model, and for
any message m and any affine subspaces Asx,rx , Asy,ry ⊂ {0, 1}n of
large dimensions6 it is possible to efficiently sample from set {(X,Y) ∈
(Asx,rx ×Asy,ry) |Dec(X,Y) = m}.
We will give a coding scheme that is super-strong non-malleable.

Definition 10. The Inception version of above-mentioned scheme (Enc,Dec)
is defined as follows. We first define the decoding function IDec : {0, 1}n×
{0, 1}n → {0, 1}k−2(s(n,E)+c(n,E)) ∪ {⊥}). For any x, y ∈ {0, 1}n,

– Dec(x, y) = (m, sx, rx, sy, ry), where sx, sy ∈ {0, 1}s(n,E) and rx, ry ∈
{0, 1}c(n,E)

– If Check?(sx, x) = rx and Check?(sy, y) = ry then IDec(x, y) = m
else IDec(x, y) = ⊥.

The encoding function IEnc : {0, 1}m−2(s(n,E)+c(n,E)) → {0, 1}n×{0, 1}n
is defined as follows. For any m ∈ {0, 1}k−2s(n,E)−2c(n,E),

– Choose uniformly at random sx, sy from {0, 1}s(n,E), and rx, ry from
{0, 1}c(n,E).

– Sample (X,Y) from set {(x, y) ∈ (Asx,rx×Asy,ry) | IDec(x, y) = m},
– IEnc(m) = (X,Y).

We will need the following lemma.

Lemma 6 ([ADKO15b, Lemma 6.1]). Let Dec : X ×X →M, and
Enc : M → X × X be ε−non-malleable scheme in 2−split state model
for some ε < 1

2
. For any pair of messages m0,m1 ∈M, let (X0

1 , X
0
2)←

Enc(m0), and let (X1
1 , X

1
2)← Enc(m1). Then ∆(X0

1 ; X1
1) ≤ 2ε.

Lemma 7. Let k ≥ 3, and let ε < 1/20. If (Enc,Dec) is ε-non-malleable
scheme then for every sets A,B ⊂ {0, 1}n and every messages m0,m1 ∈
{0, 1}k

|Pr(Enc(m0) ∈ A×B)− Pr(Enc(m1) ∈ A×B)| ≤ ε

Proof. We claim that there exist x, y, z, w ∈ {0, 1}n such thatm0,m1,Dec(x,w),
Dec(z, w), and Dec(z, y) are all different from Dec(x, y). Before proving
this claim, we show why this implies the given result. Consider the tam-
pering functions f, g such that f(c) = x if c ∈ A, and f(c) = z, other-
wise, and g(c) = y if c ∈ B, and g(c) = w, otherwise. Thus, for b = 0, 1,
Tamperf,gmb = Dec(x, y) if and only if Enc(mb) ∈ A × B. The result then
follows from the ε-non-malleability of (Enc,Dec).
Now, to prove the claim, we will use the probabilistic method. Let U
be uniform in {0, 1}k, and let X,Y ← Enc(U). Furthermore, let W,Z ∈
{0, 1}n be uniform and independent of X,Y, U . We claim that X,Y, Z,W
satisfy the required property with non-zero probability.
It is easy to see that the probability that Dec(X,Y) = U is either of
m0 or m1 is at most 2/2k. Also, by Lemma 6, we have that except with
probability 2ε,X is independent of U . Also,W is independent of U . Thus,

6 dim(Asx,rx) = dim(Asy,ry) = n− (c(n,E) + s(n,E))

the probability that Dec(X,W) = U is at most 2ε+ 1/2k. Similarly, the
probability that Dec(Z, Y) = U is at most 2ε + 1/2k. Finally, W,Z are
independent of U , and so the probability that Dec(Z,W) = U is at most
1
2k

.
Thus, by union bound, the probability that X,Y, Z,W do not satisfy the
condition of the claim is at most 5

2k
+ 4ε ≤ 5

8
+ 4ε < 1. ut

Lemma 8. Let (Enc,Dec) be an ε-non-malleable code. For any m ∈
{0, 1}k−2(c(n,E)+s(n,E)) and sx, sy ← {0, 1}s(n,E), rx, ry ← {0, 1}c(n,E),

Pr(Enc(m, sx, rx, sy, ry) ∈ Asx,rx ×Asy,ry) > 2−2c(n,E) − ε

Proof. By Lemma 7, we have that

|Pr(Enc(0k) ∈ Asx,rx×Asy,ry)−Pr(Enc(m, sx, rx, sy, ry) ∈ Asx,rx×Asy,ry)|

is at most ε. So, we will bound the probability that Pr(Enc(0k) ∈ Asx,rx×
Asy,ry). Fix Enc(0k) = (X,Y), and sx, sy. Now, (X,Y) ∈ Asx,rx×Asy,ry
if and only if rx = Check?(sx, X), and ry = Check?(sy, Y) which happens
with probability 2−2c(n,E). ut

In order to prove the super non-malleability property, we introduce the
following intermediate notion.

Definition 11. (Inception Super Non-Malleable Code.) Let (Enc :
{0, 1}k → {0, 1}n×{0, 1}n,Dec : {0, 1}n×{0, 1}n → {0, 1}k ∪{⊥}) be a
coding scheme. We say that (Enc,Dec) is ε-inception super non-malleable
in split-state model if for every functions f, g : X → X there exists fam-
ily of distributions {Df,g

x,y}x,y∈{0,1}n each on {0, 1} such that for every

m0,m1 ∈ {0, 1}k−(c(n,E)+s(n,E))

IncSuperTamperf,gm0
≈ε IncSuperTamperf,gm1

where IncSuperTamperf,gm =
sx, sy ← {0, 1}s(n,E) , rx, ry ← {0, 1}c(n,E)

Enc(m, sx, rx, sy, ry)→ (X,Y), s.t. Check?(sx, X) = rx and Check?(sy, Y) = ry
if Dec(f(X), g(Y)) = ⊥ output ⊥

output same if Dec(X,Y) = Dec(f(X), g(Y)) ∧Df,g
X,Y = 0

else output: (f(X), g(Y))

Lemma 9. If (Enc,Dec) is ε-super non-malleable scheme then (Enc,Dec)

is ε′-inception super non-malleable scheme, where ε′ = 6ε+2−2s(n,E)−2c(n,E)

2−2c(n,E)−ε .

Proof. Let f : {0, 1}n 7→ {0, 1}n, g : {0, 1}n 7→ {0, 1}n be arbitrary
functions. We choose sx, sy uniformly at random from {0, 1}s(n,E), and
rx, ry uniformly at random from {0, 1}c(n,E). Define

f ′(x) =

{
f(x) if x ∈ Asx,rx

0n, otherwise.

g′(y) =

{
g(y) if y ∈ Asy,ry

0n otherwise.

Letm ∈ {0, 1}k−2s(n,E)−2c(n,E) be any message. Let (Xb, Yb)← Enc(mb, sx,

rx, sy, ry) for b = {0, 1}. For b = {0, 1}, we shorthand SuperTamperf
′,g′

(mb,sx,rx,sy,ry)

by Tb and the range of Tb beR = {0, 1}n×{0, 1}n∪⊥, same. Also, letA =
Asx,rx × Asy,ry , and let Pr((Xb, Yb) ∈ A) = pb. By Lemma 7, we have

that |p0−p1| ≤ ε, and by Lemma 8, we have that p0 ≥ 2−2c(n,E)−ε. Also,
note that conditioned on the event that Xb, Yb /∈ A, then (f(Xb), g(Yb))
depends on at most one of Xb, Yb, and hence by Lemma 6, it is inde-
pendent of mb, sx, rx, sy, ry, except with probability at most 2ε. Thus,
for Tb to output same, the functions f, g must be such that they should
be able to guess sx, sy, rx, ry, which happens with probability at most
2−2s(n,E)−2c(n,E). Therefore, the statistical distance between T0 and T1

conditioned on the event that Xb, Yb /∈ A is at most 2ε+2−2s(n,E)−2c(n,E).
Tb is independent of mb except with probability at most 2ε. Also, by the
super non-malleability assumption, we have that ∆(T0;T1) ≤ ε. Thus,
we have that

2ε ≥
∑
z∈R

|Pr(T0 = z)− Pr(T1 = z)|

≥
∑
z∈R

∣∣∣Pr(T0 = z|(X0, Y0) ∈ A) · p0 + Pr(T0 = z|(X0, Y0) /∈ A) · (1− p0)

−Pr(T1 = z|(X1, Y1) ∈ A) · p1 − Pr(T1 = z|(X1, Y1) /∈ A) · (1− p1)
∣∣∣

≥ p0 ·
∑
z∈R

|Pr(T0 = z|(X0, Y0) ∈ A)− Pr(T1 = z|(X1, Y1) ∈ A)| −

∑
z∈R

|Pr(T0 = z|(X0, Y0) /∈ A)− Pr(T1 = z|(X1, Y1) /∈ A)| − 2|p0 − p1|

≥ p0 ·
∑
z∈R

|Pr(T0 = z|(X0, Y0) ∈ A)− Pr(T1 = z|(X1, Y1) ∈ A)|

−2ε− 2−2s(n,E)−2c(n,E) − 2ε .

This implies that∑
z∈R

|Pr(T0 = z|(X0, Y0) ∈ A)− Pr(T1 = z|(X1, Y1) ∈ A)|

is at most 6ε+2−2s(n,E)−2c(n,E)

2−2c(n,E)−ε . Looking at the definition of inception

super non-malleable scheme, we get that this implies the desired result.
ut

Theorem 2. If (Enc,Dec) is ε−super non-malleable scheme then (IEnc, IDec)
is O(ε(n,E) + ε′ + ε)-super strong non-malleable code, where

ε′ =
6ε+ 2−2s(n,E)−2c(n,E)

2−2c(n,E) − ε
.

Proof. Consider any tampering functions f, g, and any message m. In
order to show the desired result, we compare IncSuperTamperf,gm and
SuperStrongTamperf,gm experiments.
If IncSuperTamperf,gm = ⊥, then clearly SuperStrongTamperf,gm = ⊥.

If IncSuperTamperf,gm = same, then we claim that except with proba-
bility at most ε(n,E), SuperStrongTamperf,gm is either ⊥ or same. To see
this, note that if IncSuperTamperf,gm = same and SuperStrongTamperf,gm 6=
same then Dec(f(X), g(Y)) = Dec(X,Y) = (m, sx, rx, sy, ry), and f(X) 6=
X or g(Y) 6= Y . By Lemma 5, this happens with probability at most
ε(n,E).
If IncSuperTamperf,gm is neither ⊥, nor same, then it is the entire tampered
codeword, f(X), g(Y), and so conditioned on this event, SuperStrongTamperf,gm
is either same, or a deterministic function of IncSuperTamperf,gm . However,
the event that SuperStrongTamperf,gm = same and IncSuperTamperf,gm 6=
same implies that f(X) = X, g(Y) = Y andDf,g

X,Y = 1. This event implies

that IncSuperTamperf,gm = (X,Y), which can happen with probability at
most ε′ by Lemma 9.
So, it is sufficient to show that |Pr(SuperStrongTamperf,gm0

= same) −
Pr(SuperStrongTamperf,gm1

= same)| ≤ ε. This follows by Lemma 7 by
setting A = {x ∈ {0, 1}n : f(x) = x}, and B = {y ∈ {0, 1}n : g(y) = y}.

ut

5 Super Strong NMC implies Continuous NMC

In this section we will prove the following statement:

Theorem 3. If (Enc,Dec) is ε-Super Strong Non-Malleable Scheme then
(Enc,Dec) is a (T, (T + 1)ε)−Continuous [1, 1] Non-Malleable Code.

Before the actual proof let us fix some notation. Let A∗ be any adversary
described in definition 5. Let (I)m denote the index of a round when
same is not output in the experiment ConTamperA∗,T,m and (fi, gi) (for
i = 1, . . . , T) denote pairs of functions chosen by A∗ (of course we can
assume that they are always the same because the choice for the next
round does not depend on (X,Y)).
For the main proof, we will need the following lemma:

Lemma 10. (I)m0 ≈Tε (I)m1 .

Proof. Let 0 ≤ i ≤ T be any integer and let:

Ai1 = {X ⊂ {0, 1}n|fj(X) = X, for j < i and fi(X) 6= X},

Bi1 = {Y ⊂ {0, 1}n|gj(Y) = Y, for j < i},

Ai2 = {X ⊂ {0, 1}n|fj(X) = X, for j ≤ i},

Bi2 = {Y ⊂ {0, 1}n|gj(Y) = Y, for j < i and gi(Y) 6= Y }.

From the definition of the stop condition for the considered experiment
we obviously have that:

(I)m = i ⇐⇒ Enc(m) ⊂ Ai1 ×Bi1 or Enc(m) ⊂ Ai2 ×Bi2.

It also holds Ai1 × Bi1 ∩ Ai2 × Bi2 = ∅, so — from Lemma 7 (used twice:
for Ai1 ×Bi1 and for Ai2 ×Bi2) — we have

|Pr(I = i)m0 − Pr(I = i)m1 | ≤ 2ε,

which gives us (I)m0 ≈Tε (I)m1 as needed. ut

Now, since (Enc,Dec) is ε-Super Strong Non-Malleable Scheme then
(fi, gi)m0 ≈ε (fi, gi)m1 for all i = 1, . . . , T . From lemma 10 we also
have that (I)m0 ≈Tε (I)m1 , so:

(I, fI(X), gI(Y))m0 ≈Tε+ε (I, fI(X), gI(Y))m1 ,

which implies that (Enc,Dec) is a (T, (T + 1)ε)-persistent Continuous
Non-Malleable Code with self-destruct.

Remark 4. The above reduction is in the split-state model. It may be
interesting to note that the only place that we use a particular property
of this model is Lemma 10. It is also obvious that if this lemma does not
hold for some model then the reduction will not hold. That means that
Lemma 10 describes in some sense a necessary and sufficient property of
a tampering model in which the main reduction of this section is true.

6 Instantiating a Super NMC using known
results

In [ADL14], Aggarwal et al. gave a construction of non-malleable codes
in the split-state model. Here, we argue that the construction of [ADL14]
is also super-non-malleable.
Note that for any message m with Enc(m) = (X,Y), and any functions
f, g, the output of the tampering experiment in Definition 2 is the same
as that in Definition 3 if Dec(f(X), g(Y)) = m or Dec(f(X), g(Y)) = ⊥.
This leads to the following simple observation.

Observation 6.1 Let ε, ε′ > 0. Let (Enc :M→ X ×X ,Dec : X ×X →
M ∪ {⊥}) be an ε-non-malleable code in the split-state model. Given
f, g : X 7→ X , assume there exists a partitioning (S1, · · · ,Ss+t,S?) of
X × X such that the following hold:
1. For all m ∈ M, 1 ≤ i ≤ s, Pr(X,Y)←Enc(m)(Dec(f(X), g(Y)) ∈
{m,⊥}|(X,Y) ∈ Si) ≥ 1− ε′.

2. For all m1,m2 ∈ M, s + 1 ≤ i ≤ t, let (X1, Y1), (X2, Y2) be
the encoding of m1,m2 respectively, conditioned on the fact that
(X1, Y1), (X2, Y2) ∈ Si. Then ∆((f(X1), g(Y1)), (f(X2), g(Y2)) ≤ ε′.

3. For any m ∈M, Pr(Enc(m) ∈ S?) ≤ ε′.
Then, the scheme (Enc,Dec) is (ε+O(ε′))-super-non-malleable.

In the above observation, we set Df,g
(X,Y) to be 1 if (X,Y) ∈ S1, . . . ,Ss,

and 0, otherwise.
Before describing the encoding scheme from [ADL14], we will need the
following definition of an affine-evasive function.

Definition 12. Let F = Fp be a finite field. A surjective function h :
F 7→ M ∪ {⊥} is called (γ, δ)-affine-evasive if or any a, b ∈ F such that
a 6= 0, and (a, b) 6= (1, 0), and for any m ∈M,
1. PrU←F(h(aU + b) 6= ⊥) ≤ γ

2. PrU←F(h(aU + b) 6= ⊥ | h(U) = m) ≤ δ
3. A uniformly random X such that h(X) = m is efficiently samplable.

Aggarwal [Agg15] showed the following.

Lemma 11. There exists an efficiently computable (p−3/4, Θ(|M| log p ·
p−1/4))-affine-evasive function h : F 7→ M∪ {⊥}.

We now describe the coding scheme from [ADL14] combined with the
affine-evasive function promised by Lemma 11. LetM = {1, . . . ,K} and
X = Fn, where F is a finite field of prime order p such that p ≥ (K/ε)16,
and n chosen as C log6 p, where C is some universal constant.
Then for any m ∈M, Enc(m) = Enc1 ◦ Enc2(m), where for any m ∈M,
Enc2(m) is X where X is uniformly random such that h(X) = m, where
h is affine-evasive function defined earlier, and for any x ∈ F, Enc1(x) =
(L,R), where L,R ∈ Fn are uniform such that 〈L,R〉 = x.
The decoding algorithm is as follows. For `, r ∈ Fn × Fn, Dec(`, r) =
Dec2 ◦Dec1(`, r), where for any `, r ∈ Fn, Dec1(`, r) = 〈`, r〉, and for any
x ∈ F, Dec2(x) = h(x).
The following is implicit in [ADL14].

Theorem 4. Let f, g : Fn 7→ Fn be arbitrary functions. Let s = bn/20c,
and let t = b s

1/6

c log p
c, for some universal constant c. Then, there exists

a set S ⊂ Fn × Fn of size at most p2n−s such that Fn × Fn \ S can be
partitioned into sets of the form
1. L×R such that (〈L′, R′〉, 〈f(L′), g(R′)〉) is p−t-close to uniform for

L′, R′ uniform in L,R respectively.
2. L × R, such that |L × R| ≥ p2n−7s, and there exists A ∈ Fn×n,

a, b ∈ F such that f(`) = A` for all ` ∈ L, and AT g(r) = ar + b for
all r ∈ R.

3. Fn × R, such that |R| ≥ pn−t, and there exists y ∈ Fn, such that
g(r) = y for all y ∈ R.

To argue that the construction given above is also super-non-malleable,
we will need the following:

Lemma 12. Let L and R be independent random variables over Fn. If

H∞(L) + H∞(R) ≥ (n+ 1) log p+ 2 log

(
1

ε

)
,

then

∆((L, 〈L,R〉) ; (L,UF)) ≤ ε and ∆((R, 〈L,R〉) ; (R,UF)) ≤ ε.

Lemma 13. Let X1, Y1 ∈ A, and X2, Y2 ∈ B be random variables such
that ∆((X1, X2) ; (Y1, Y2)) ≤ ε. Then, for any non-empty set A1 ⊆ A,
we have

∆(X2 | X1 ∈ A1 ; Y2 | Y1 ∈ A1) ≤ 2ε

Pr(X1 ∈ A1)
.

Theorem 5. The scheme (Enc,Dec) is a O(ε)-super-non-malleable code.

Proof. We will argue that each partition promised by Theorem 4 is one
of S1, . . . ,Ss+t,S? as in Observation 6.1 with ε′ = ε. Clearly, for any
m ∈ M, Pr(Enc(m) ∈ S) ≤ p−s+1 ≤ ε, and hence we can set S? = S.
So, we consider the partitioning of Fn × Fn \ S.

1. L × R such that (〈L′, R′〉, 〈f(L′), g(R′)〉) is p−t-close to uniform
for L′, R′ uniform in L,R respectively. In this case, for any mes-
sage m, if (L,R) ← Enc(m), then Dec(f(L), g(R)) conditioned on
(L,R) ∈ L ×R is h(〈f(L′), g(R′)〉) conditioned on h(〈L′, R′〉) = m.
By Lemma 13, we have that this is 2 · p−t+1-close to uniform, and
hence, by Lemma 11, we have that h(〈f(L′), g(R′)〉) = ⊥ with prob-
ability at least 1− p−3/4 − p−t+1 ≥ 1− ε.

2. L×R, such that |L×R| ≥ p2n−7s, and there exists A ∈ Fn×n, a, b ∈ F
such that f(`) = A` for all ` ∈ L, and AT g(r) = ar+ b for all r ∈ R.
In this case, if a 6= 0, then using the same argument as in the previous
item, we have that Dec(f(L), g(R)) conditioned on (L,R) ∈ L × R
is ⊥ with probability at least 1− p−1/4 log p− p−t+1 ≥ 1− ε.
So, we can assume without loss of generality that a = 0. This means
that 〈f(`), g(r)〉 = b for all ` ∈ L, r ∈ R. Thus, for L′, R′ uni-
form in L,R, respectively, one of f(L′), g(R′) is contained in a sub-
space of Fn of size pn/2. Without loss of generality, let f(L′) be con-
tained in a subspace of size pn/2. Then, H∞(L′|f(L′)) + H∞(R′) ≥
(3n/2 − 7s) log p. Hence, using Lemma 12, we have that 〈L′, R′〉 is
p−s-close to uniform given f(L′), and R′, and so, using Lemma 13,
this partition satisfies item 2 from Observation 6.1.

3. Fn × R, such that |R| ≥ pn−t, and there exists y ∈ Fn, such that
g(r) = y for all y ∈ R. Let L′, R′ uniform in Fn,R, respectively.
Then, using Lemma 12, we have that 〈L′, R′〉 is p−(n−t−1)/2-close to
uniform given f(L′), and g(R′) = y, and so, using Lemma 13, this
partition satisfies item 2 from Observation 6.1.

The result then follows from Observation 6.1. ut

By combining Theorem 5, Theorem 2, and Theorem 3, we obtain Theo-
rem 1.

References

AAnHKM+16. Divesh Aggarwal, Shashank Agrawal, Divya Gupta
nad Hemanta K. Maji, Omkant Pandey, and Manoj
Prabhakaran. Optimal computational split state non-
malleable codes. To appear in TCC 16-A, 2016.

ADKO15a. Divesh Aggarwal, Yevgeniy Dodis, Tomasz Kazana, and
Maciej Obremski. Leakage-resilient non-malleable codes.
In The 47th ACM Symposium on Theory of Computing
(STOC), 2015.

ADKO15b. Divesh Aggarwal, Stefan Dziembowski, Tomasz Kazana,
and Maciej Obremski. Leakage-resilient non-malleable
codes. In Theory of Cryptography, volume 9014 of Lec-
ture Notes in Computer Science, pages 398–426. Springer
Berlin Heidelberg, 2015.

ADL14. Divesh Aggarwal, Yevgeniy Dodis, and Shachar Lovett.
Non-malleable codes from additive combinatorics. In
STOC. ACM, 2014.

Agg15. Divesh Aggarwal. Affine-evasive sets modulo a prime.
Information Processing Letters, 115(2):382–385, 2015.

AGM+15a. Shashank Agrawal, Divya Gupta, Hemanta K. Maji,
Omkant Pandey, and Manoj Prabhakaran. Explicit non-
malleable codes resistant to permutations. Advances in
Cryptology - CRYPTO, 2015.

AGM+15b. Shashank Agrawal, Divya Gupta, HemantaK. Maji,
Omkant Pandey, and Manoj Prabhakaran. A rate-
optimizing compiler for non-malleable codes against bit-
wise tampering and permutations. In Theory of Cryptog-
raphy, volume 9014 of Lecture Notes in Computer Sci-
ence, pages 375–397. Springer Berlin Heidelberg, 2015.

CG14a. Mahdi Cheraghchi and Venkatesan Guruswami. Capac-
ity of non-malleable codes. In ITCS, 2014.

CG14b. Mahdi Cheraghchi and Venkatesan Guruswami. Non-
malleable coding against bit-wise and split-state tam-
pering. In TCC, 2014.

CGL15. Eshan Chattopadhyay, Vipul Goyal, and Xin Li. Non-
malleable extractors and codes, with their many tam-
pered extensions. CoRR, abs/1505.00107, 2015.

CGM+15. Nishanth Chandran, Vipul Goyal, Pratyay Mukherjee,
Omkant Pandey, and Jalaj Upadhyay. Block-wise non-
malleable codes. IACR Cryptology ePrint Archive,
2015:129, 2015.

CKM11. Seung Geol Choi, Aggelos Kiayias, and Tal Malkin. Bitr:
built-in tamper resilience. In Advances in Cryptology–
ASIACRYPT 2011, pages 740–758. Springer, 2011.

CZ14. Eshan Chattopadhyay and David Zuckerman. Non-
malleable codes in the constant split-state model. FOCS,
2014.

DDN00. D. Dolev, C. Dwork, and M. Naor. Nonmalleable cryp-
tography. SIAM, 30:391–437, 2000.

DKO13. Stefan Dziembowski, Tomasz Kazana, and Maciej
Obremski. Non-malleable codes from two-source ex-
tractors. In Advances in Cryptology-CRYPTO 2013.
Springer, 2013.

DORS08. Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin, and
Adam Smith. Fuzzy extractors: How to generate strong
keys from biometrics and other noisy data. SIAM Jour-
nal on Computing, 38(1):97–139, 2008.

DPW10. Stefan Dziembowski, Krzysztof Pietrzak, and Daniel
Wichs. Non-malleable codes. In ICS, pages 434–452.
Tsinghua University Press, 2010.

DW09. Yevgeniy Dodis and Daniel Wichs. Non-malleable ex-
tractors and symmetric key cryptography from weak se-
crets. In Michael Mitzenmacher, editor, Proceedings of
the 41st Annual ACM Symposium on Theory of Comput-
ing, pages 601–610, Bethesda, MD, USA, 2009. ACM.

FMNV14. S. Faust, P. Mukherjee, J. Nielsen, and D. Venturi. Con-
tinuous non-malleable codes. In Theory of Cryptography
Conference - TCC. Springer, 2014.

FMVW14. S. Faust, P. Mukherjee, D. Venturi, and D. Wichs. Ef-
ficient non-malleable codes and key-derivation for poly-
size tampering circuits. In Eurocrypt. Springer, 2014.

GLM+03. Rosario Gennaro, Anna Lysyanskaya, Tal Malkin, Sil-
vio Micali, and Tal Rabin. Algorithmic Tamper-Proof
(ATP) security: Theoretical foundations for security
against hardware tampering. In Moni Naor, editor,
First Theory of Cryptography Conference — TCC 2004,
volume 2951 of LNCS, pages 258–277. Springer-Verlag,
February 19–21 2003.

IPSW06. Yuval Ishai, Manoj Prabhakaran, Amit Sahai, and David
Wagner. Private circuits II: Keeping secrets in tamper-
able circuits. In Serge Vaudenay, editor, Advances in
Cryptology—EUROCRYPT 2006, volume 4004 of LNCS,
pages 308–327. Springer-Verlag, 2006.

ISW03. Yuval Ishai, Amit Sahai, and David Wagner. Private cir-
cuits: Securing hardware against probing attacks. In Dan
Boneh, editor, Advances in Cryptology—CRYPTO 2003,
volume 2729 of LNCS. Springer-Verlag, 2003.

JW15. Zahra Jafargholi and Daniel Wichs. Tamper detection
and continuous non-malleable codes. In Theory of Cryp-
tography, volume 9014 of Lecture Notes in Computer Sci-
ence, pages 451–480. Springer Berlin Heidelberg, 2015.

KKS11. Yael Tauman Kalai, Bhavana Kanukurthi, and Amit Sa-
hai. Cryptography with tamperable and leaky memory.
In Advances in Cryptology–CRYPTO 2011, pages 373–
390. Springer, 2011.

LL12. Feng-Hao Liu and Anna Lysyanskaya. Tamper and leak-
age resilience in the split-state model. In Advances
in Cryptology–CRYPTO 2012, pages 517–532. Springer,
2012.

A Equivalence of Our Non-malleable Codes
Definition with that of [DPW10]

Theorem 6. If (Enc,Dec) is ε−non-malleable code then it is ε−DPW-
non-malleable code.

Proof. Let us define transform Tm : M ∪ {⊥, same} → M ∪ {⊥} as
follows: for any m′ ∈ M let Tm(m′) = m′, Tm(⊥) = ⊥, Tm(same) = m.
Notice that Tm(Tamperf,gm) = DPWTamperf,gm . Fix any message m0, and
take Df,g = Tamperf,gm0

. We know that Tamperf,gm ≈ε Tamperf,gm0
for any

functions f, g and and any message m. Thus

Tm(Tamperf,gm) ≈ε Tm(Tamperf,gm0
),

DPWTamperf,gm ≈ε Tm(Df,g).

ut

Theorem 7. If (Enc,Dec) is ε−DPW-non-malleable code then it is 4ε−non-
malleable code.

Proof. Using the notation from Theorem 6, we know that, independent
of the choice of Df,g

x,y distributions, the following is true:

Tm(Tamperf,gm) = DPWTamperf,gm .

Now let Df,g
x,y as follows:

Pr(Df,g
x,y = 0) = min

{
Pr(Df,g = same)

Pr(DPWTamperf,gDec(x,y) = Dec(x, y))
, 1

}

if Pr(DPWTamperf,gDec(x,y) = Dec(x, y)) 6= 0. Otherwise let Pr(Df,g
x,y =

0) = 0.
Notice that now

Pr(Tamperf,gm = same) ≈ε Pr(Df,g = same).

By DPW-non-malleable codes definition we get

Tm(Tamperf,gm) ≈ε Tm(Df,g)

thus
Tamperf,gm ≈2ε D

f,g,

and thus that for any m0,m1 we get

Tamperf,gm0
≈4ε Tamperf,gm1

.

ut

	Inception Makes Non-malleable Codes Stronger

