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1 Introduction

Non-malleable Codes. Non-malleable codes (NMCs), introduced by Dziembowski, Pietrzak and Wichs [DPW10],
provide a useful message integrity guarantee in situations where traditional error-correction (and even
error-detection) is impossible; for example, when the attacker can completely overwrite the encoded
message. NMCs have emerged as a fundamental object at the intersection of coding theory and cryp-
tography.
Informally, given a tampering family F , an NMC (Enc,Dec) against F encodes a given message m into
a codeword c ← Enc(m) in a way that, if the adversary modifies c to c′ = f(c) for some f ∈ F , then
the the message m′ = Dec(c′) is either the original message m, or a completely “unrelated value”. As
has been shown by the recent progress [DPW10, LL12, DKO13, ADL14, FMVW14, FMNV14, CG14a,
CG14b,CZ14,Agg15,ADKO15b,ADKO15a,CGL15,AGM+15b,AGM+15a,AAnHKM+16] NMCs aim to
handle a much larger class of tampering functions F than traditional error-correcting or error-detecting
codes, at the expense of potentially allowing the attacker to replace a given message m by an unrelated
message m′. NMCs are useful in situations where changing m to an unrelated m′ is not useful for the
attacker (for example, when m is the secret key for a signature scheme.)

(Super) Strong Non-malleable Codes. A stronger notion of non-malleability, called stron non-malleable
codes, was also considered in [DPW10] in which, whenever the codeword c is modified to c′ = f(c) 6= c,
the decoded message m′ = Dec(c′) is independent of m. This is in contrast to the plain notion of
non-malleability where some modification of the codeword c could still result in m′ = m. Indeed, this
is the case in some of the previous constructions of non-malleable codes like [ADL14, ADKO15a]. For
the purpose of conveniently defining continuous non-malleable codes, an even stronger notion called
super-strong non-malleable codes has been considered in the literature [FMNV14, JW15]. Informally
speaking, in this notion, if c′ 6= c is a valid codeword, then c′ must be independent of c.
An intermediate notion can also be considered where if m′ = Dec(c′) /∈ {m,⊥}, then c′ must be
independent of c. To be consistent with other notions of non-malleable codes, we call these super
non-malleable codes.

Continuous Non-malleable Codes. It is clearly realistically possible that the attacker repeatedly
tampers with the device and observes the outputs. As mentioned in [JW15], non-malleable codes can
provide protection against these kind of attacks if the device is allowed to freshly re-encode its state
after each invocation to make sure that the tampering is applied to a fresh codeword at each step. After
each execution the entire content of the memory is erased. While such perfect erasures may be feasible
in some settings, they are rather problematic in the presence of tampering. Due to this reason, Faust
et al. [FMNV14] introduced an even stronger notion of non-malleable codes called continuous non-
malleable codes where security is achieved against continuous tampering of a single codeword without
re-encoding. Jafargholi and Wichs [JW15] considered four variants of continuous non-malleable codes
depending on

– Whether tampering is persistent in the sense that the tampering is always applied to the current
version of the tampered codeword, and all previous versions of the codeword are lost. The alternative
definition considers non-persistent tampering where the tampering always occurs on the original
codeword.

– Whether tampering to an invalid codeword (i.e., when the decoder outputs ⊥) causes a “self-
destruct” and the experiment stops and the attacker cannot gain any additional information, or
alternatively whether the attacker can always continue to tamper and gain information.

Split-State Model. Although any kind of non-malleable codes do not exist if the family of “tampering
functions” F is completely unrestricted,1 they are known to exist for many large classes of tampering
families F . One such natural family is the family of tampering functions in the so called t-split-state
model. In this model, the codeword is “split” into t > 1 states c = (c1, . . . , ct); a tampering function
f is viewed as a list of t functions (f1, . . . , ft) where each function fi tampers with corresponding
component ci of the codeword independently: i.e., the tampered codeword is c′ = (f1(c1), . . . , ft(ct)).

1 In particular, F should not include “re-encoding functions” f(c) = Enc(f ′(Dec(c))) for any non-trivial function f ′,
as m′ = Dec(f(Enc(m))) = f ′(m) is obviously related to m.
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This family is interesting since it seems naturally useful in applications, especially when t is low and
the shares y1, . . . , yt are stored in different parts of memory, or by different parties. Not surprisingly,
the setting of t = 2 appears the most useful (but also the most challenging from the technical point of
view), so it received the most attention so far [DPW10,LL12,DKO13,ADL14,FMNV14,CG14a,CG14b,
CZ14,ADKO15b,ADKO15a] and is also the focus of our work.
While some of the above mentioned results achieve security against computationally bounded ad-
versaries, we focus on security in the information-theoretic setting, i.e., security against unbounded
adversaries. The known results in the information-theoretic setting can be summarized as follows.
Firstly [DPW10] showed the existence of (strong) non-malleable codes, and this result was improved
by [CG14a] who showed that the optimal rate of these codes is 1/2. Faust et al. [FMNV14] showed the
impossibility of continuous non-malleable codes against non-persistent split-state tampering. Later [JW15]
showed that continuous non-malleable codes exist in the split-state model if the tampering is persistent.
There have been a series of recent results culminating in constructions of efficient non-malleable codes
in the split-state model [DKO13, ADL14, CZ14, ADKO15a]. However, there is no known efficient con-
struction in the continuous setting. Since the work of [FMNV14] rules out the possibility of such a
construction for the case of non-persistent tampering, the best one can hope for is an efficient construc-
tion for the case of persistent tampering in the split-state model.

Our Results and Techniques. This brings us to the main result of the paper which is the following.

Theorem 1. For any k, there exists an efficient (in k) information-theoretically secure persistent con-

tinuous 2−k
Ω(1)

-non-malleable code with self-destruct in the split-state model that encodes k-bit messages
to poly(k)-bit codewords.

Enroute to Theorem 1, we obtain efficient constructions of almost all possible notions of non-malleable
codes in the split-state model for which such a construction is possible.
The construction is obtained in a series of steps. We first show a simple reduction (Theorem 2 in
Section 4) that any scheme in the split-state model that is a super-strong non-malleable code is also
a persistent continuous non-malleable code with self-destruct in the split-state model. The key idea
behind this reduction is the observation by Jafargholi and Wichs [JW15] that for the case of persistent
continuous non-malleable codes with self-destruct, without loss of generality, we can assume that the
experiment stops at the first instance (say at step I) when there is a non-trivial tampering. This is
because if the tampered codeword decodes to ⊥ then the experiment stops because of the self-destruct
property, and if it does not decode to ⊥, then the adversary learns the entire codeword and can
simulate the remaining tampering experiment himself. Thus, the main ingredient of this reduction is
Claim 4 which shows that for any non-malleable code in the split-state model, the random variable I
is independent of the message that is being encoded. As discussed in Remark 4, Claim 4 is the only
place in the proof where we use the fact that our result is for the case of split-state tampering.
Our main technical reduction (Theorem 3 in Section 5) is one that shows that any coding scheme that
is super non-malleable in the split-state model can be converted into a scheme that is super-strong non-
malleable in the split-state model. To do that we develop a new technique we called inception coding.
The key difference between a super non-malleable code and a super-strong non-malleable code is that
in the former, the adversary is assumed to not gain any useful information if he tampers with and
changes the codeword but the tampered codeword still decodes to the same message while in the latter,
the adversary in this case gets to see the entire tampered codeword. Our inception coding essentially
forces all these non-trivial tampered codewords (that originally decoded to the correct message) to
decode to ⊥. In our reduction, given a super non-malleable code (Enc,Dec), we modify the encoding
procedure to sacrifice a small suffix of the message (it will not carry any message related information
anymore) to replace it with validity checks for each of the states that detect whether these states
have been tampered with. The message m is encoded as Enc(m, checkx, checky) = (X,Y ) subject to
the condition that Verify(checkx;X) = Verify(checky;Y ) = OK. This ensures that in the case when
tampered codeword decodes correctly, the validity check can detect the tampering and output ⊥. In
order to use the super non-malleability of (Enc,Dec) to conclude super-strong non-malleability of the
modified encoding scheme, we need to do rejection sampling to ensure that the codeword is valid with
respect to the modified encoding algorithm. This blows up the error by a factor of about 22t where t is
the length of each validity check, and so we require that 22t � 1/ε, where ε is the error parameter for
(Enc,Dec). We obtain a construction of the check function in Definition 8 using the well-studied Reed-
Solomon error-correcting codes. In order to reduce the output length of this construction, we define a
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composition theorem on validity check functions, and show in Lemma 7 that using this composition
theorem repeatedly, we can progressively make the length of the validity check shorter.
Finally, to complete the proof, we show (in Theorem 5 in Section 6) that the coding scheme from [ADL14],
which was shown to be a non-malleable code in the split-state model, is also super non-malleable. This
proof was surprisingly involved, since we need to argue that for any two tampered codewords c′1, c

′
2

of two distinct messages, if they do not decode to ⊥ or the original messages, respectively, then the
two tampered codewords are indistinguishable. This required a careful re-analysis of the various cases
in [ADL14], in particular those where their tampering experiment does not output same or ⊥. Fortu-
nately, this happens only when one of the two tampered parts f(L) or g(R) loses a lot of information
about the two parts L and R of the original codeword, and since the construction of [ADL14] is based
on the inner product function, which is a strong 2-source extractor, one can conclude that the tampered
codeword (f(L), g(R)) is independent of the 〈L,R〉 and hence of the original message.

Background. The notion of non-malleability was introduced by Dolev, Dwork and Naor [DDN00],
and has found many applications in cryptography. Traditionally, non-malleability is defined in the
computational setting, but recently non-malleability has been successfully defined and applied in the
information-theoretic setting (generally resulting in somewhat simpler and cleaner definitions than their
computational counter-parts). For example, in addition to non-malleable codes studied in this work, the
work of Dodis and Wichs [DW09] defined the notion of non-malleable extractors as a tool for building
round-efficient privacy amplification protocols.
Finally, the study of non-malleable codes falls into a much larger cryptographic framework of providing
counter-measures against various classes of tampering attacks. This work was pioneered by the early
works of [ISW03, GLM+03, IPSW06], and has since led to many subsequent models. We do not list
all such tampering models, but we refer to [KKS11, LL12] for an excellent discussion of various such
models.

Other Related Work. In addition to the works mentioned above, non-malleable codes have been stud-
ied in various tampering models in several recent results. For tampering functions of size 2poly(n), rate-1
codes (with efficient encoding and decoding) exist, and can be obtained efficiently with overwhelming
probability [FMVW14].
Cheraghchi and Guruswami [CG14b] gave a rate 1 non-malleable code against the class of bitwise-
tampering functions, where each bit of the codewords is tampered independently. Recently, Agrawal et
al. [AGM+15b,AGM+15a] improved this result by giving a explicit rate-1 code against a stronger class
of tampering functions, which in addition to tampering with each bit of the codeword independently, can
also permute the bits of the resulting codeword after tampering, was achieved in [AGM+15b,AGM+15a].
In the “split state” setting, an encoding scheme was proposed in [CKM11]. For the case of only two
states, an explicit non-malleable code for encoding one-bit message was proposed by [DKO13]. This was
improved by Aggarwal et al [ADL14] to a scheme that encodes larger messages but with rate 1/poly(k)
where k is the length of the message. This was further improved to obtain a constant-rate non-malleable
code in [CZ14,ADKO15a].
Another related result by Aggarwal et al [ADKO15b] obtained efficient construction of non-malleable
codes in a model where the adversary, in addition to performing split-state tampering, is also allowed
some limited interaction between the two states.
Coretti et al. [?, ?] have obtained constructions of information-theoretically secure continuous non-
malleable codes in the bit-wise independent tampering model and have used this construct a non-
malleable encryption scheme.
In the computational setting, there has been a sequence of works constructing non-malleable codes
and its variants [LL12, FMNV14]. Chandran et al. [CGM+15] also rely on the computational setting
in defining their new notion of blockwise non-malleable codes. Blockwise non-malleable codes are a
generalization of the split-state model (and the recent lookahead model of [ADKO15a]) where the
adversary tampers with one state at a time.

2 Preliminaries

For a set S, we let US denote the uniform distribution over S. For an integer m ∈ N, we let Um denote
the uniform distribution over {0, 1}m, the bit-strings of length m. For a distribution or random variable
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X we write x ← X to denote the operation of sampling a random x according to X. For a set S, we
write s← S as shorthand for s← US .

The Hamming distance between two strings (a1, . . . , am), (b1, . . . , bm) ∈ {0, 1}m is the number of i ∈ [m]
such that ai 6= bi. We denote it as Ham((a1, . . . , am) ; (b1, . . . , bm)).

Entropy and Statistical Distance. The min-entropy of a random variable X is defined as H∞(X)
def
=

− log(maxx Pr[X = x]). We say that X is an (n, k)-source if X ∈ {0, 1}n and H∞(X) ≥ k. For
X ∈ {0, 1}n, we define the entropy rate of X to be H∞(X)/n. We also define average (aka conditional)
min-entropy of a random variable X conditioned on another random variable Z as

H̃∞(X|Z)
def
= − log

(
Ez←Z

[
max
x

Pr[X = x|Z = z]
])

= − log
(
Ez←Z

[
2−H∞(X|Z=z)

])
.

where Ez←Z denotes the expected value over z ← Z. We have the following lemma.

Lemma 1 ( [DORS08]). Let (X,W ) be some joint distribution. Then,

– For any s > 0, Prw←W [H∞(X|W = w) ≥ H̃∞(X|W )− s] ≥ 1− 2−s.

– If Z has at most 2` possible values, then H̃∞(X|(W,Z)) ≥ H̃∞(X|W )− `.

The statistical distance between two random variables W and Z distributed over some set S is

∆(W,Z) := max
T⊆S
|W (T )− Z(T )| = 1

2

∑
s∈S

|W (s)− Z(s)|.

Note that ∆(W,Z) = maxD(Pr[D(W ) = 1] − Pr[D(Z) = 1]), where D is a probabilistic function.
We say W is ε-close to Z, denoted W ≈ε Z, if ∆(W,Z) ≤ ε. We write ∆(W,Z|Y ) as shorthand for
∆((W,Y ), (Z, Y )), and note that ∆(W,Z|Y ) = Ey←Y∆(W |Y = y, Z|Y = y).

Reed-Solomon Codes. In Section 5 we will use standard Reed-Solomon error-correcting codes. The
following is a folklore result about Reed-Solomon codes.

Lemma 2. Let n = 2` for some positive integer `, and let q > 0 be an integer. There exist a function
RS : {0, 1}n → {0, 1}n+q logn2 such that:

– Hamming distance between any two elements of the image of RS is at least q + 1,

– For any x ∈ {0, 1}n there exist a unique sequence of bits u ∈ {0, 1}q logn such that x‖u is an element
of the image of RS;

– For every u ∈ {0, 1}q logn the set of all x ∈ {0, 1}n such that x‖u is an element of the image of RS
is affine subspace of {0, 1}n.

3 Various definitions of Non-Malleable Codes

Definition 1. A coding scheme in the split-state model consists of two functions: a randomized encod-
ing function Enc : {0, 1}k 7→ {0, 1}n × {0, 1}n, and a deterministic decoding function Dec : {0, 1}n ×
{0, 1}n 7→ {0, 1}k ∪ {⊥} such that, for each m ∈ M, Pr(Dec(Enc(m)) = m) = 1 (over the randomness
of the encoding algorithm). Additionally, we say that the coding scheme is almost uniform if for any m,
any constant c > 1/2 and large enough n, and any L,R ⊆ {0, 1}n, such that |L| ≥ 2cn, and |R| ≥ 2cn

we have that
|L| × |R|

22n+1
≤ Pr(Enc(m) ∈ L ×R) ≤ |L| × |R|

22n−1
,

where the probability is taken over the randomness of the encoding algorithm.

We now define non-malleable codes.

2 The elements of the image of RS are called valid codewords for RS.
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Definition 2. (Non-Malleable Code from [DPW10].) Let (Enc : M → X × X ,Dec : X × X →
M ∪ {⊥}) be an encoding scheme. For f, g : X → X and for any m ∈ M define the experiment
DPWTampf,gm as:

DPWTampf,gm =


(X,Y )← Enc(m),

X ′ := f(X), Y ′ := g(Y )
m′ := Dec(X ′, Y ′)

output: m′


We say that an encoding scheme (Enc,Dec) is ε-DPW-non-malleable in split-state model if for every
functions f, g : X → X there exists distribution Df,g on M∪{same,⊥} such that for every m ∈M we
have

DPWTampf,gm ≈ε

 d← Df,g

if d = same then output m
otherwise output d.


We will consider the following alternative definition of non-malleable code, which will be a smoother
transition to the subsequent definitions in this section. We show the equivalence of this definition to
Definition 2 (originally formulated in [DPW10]) in Appendix A.

Definition 3. (Non-Malleable Code.) We say that an encoding scheme (Enc :M→ X ×X ,Dec :
X × X → M∪ {⊥}) is ε-non-malleable in split-state model if for every functions f, g : X → X there
exists family of distributions {Df,g

x,y}x,y∈X each on {0, 1} such that for every m0,m1 ∈M

Tampf,gm0
≈ε Tampf,gm1

where

Tampf,gm =


(X,Y )← Enc(m),

output same if Dec(X,Y ) = Dec(f(X), g(Y )) ∧Df,g
X,Y = 0

else output: Dec(f(X), g(Y ))


Some results in the literature like [FMNV14, JW15] have considered a notion of super-strong non-
malleable codes. We introduce the following intermediate notion of super non-malleable codes.

Definition 4. (Super Non-Malleable Code.) We say that an encoding scheme (Enc : M → X ×
X ,Dec : X × X → M ∪ {⊥}) is ε-super non-malleable in split-state model if for every functions
f, g : X → X there exists family of distributions {Df,g

x,y}x,y∈X each on {0, 1} such that for every
m0,m1 ∈M

SupTampf,gm0
≈ε SupTampf,gm1

where SupTampf,gm =


(X,Y )← Enc(m),

output same if Dec(X,Y ) = Dec(f(X), g(Y )) ∧Df,g
X,Y = 0

else if Dec(f(X), g(Y )) = ⊥ output ⊥
else output: (f(X), g(Y ))


Definition 5. (Super Strong Non-Malleable Code.) We say that an encoding scheme (Enc :
M→ X ×X ,Dec : X ×X →M∪{⊥}) is ε-super strong non-malleable in split-state model if for every
functions f, g : X → X and for every m0,m1 ∈M

SupStrTampf,gm0
≈ε SupStrTampf,gm1

where

SupStrTampf,gm =


(X,Y )← Enc(m),

output same if (X,Y ) = (f(X), g(Y ))
else if Dec(f(X), g(Y )) = ⊥ output ⊥

else output: (f(X), g(Y ))
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Definition 6. (Continuous Non-Malleable Code.) [JW15] define four types of continuous non-
malleable codes based on two flags: sd ∈ {0, 1} (self-destruct) and prs ∈ {0, 1} (persistent). We say
that an encoding scheme (Enc : M → X × X ,Dec : X × X → M∪ {⊥}) is (T, ε)-continuous [sd, prs]
non-malleable in split-state model if for every Adversary A and for every m0,m1 ∈M

ConTamperA,T,m0
≈ε ConTamperA,T,m1

where ConTamperA,T,m =



(X,Y )← Enc(m),
f0, g0 ≡ id,
Repeat i = 1, 2, ...,T
A chooses functions f ′i , g

′
i

if prs = 1 then fi = f ′i ◦ fi−1, gi = g′i ◦ gi−1

else fi = f ′i , gi = g′i
if (fi(X), gi(Y )) = (X,Y ) then output same

else
if Dec(fi(X), gi(Y )) = ⊥ then output ⊥ if sd = 1 then experiment stops

else output (fi(X), gi(Y )) if prs = 1 then experiment stops


Remark 1. In the case of persistent tampering, the above definition by [JW15] assumes that the tam-
pering experiment stops if there is a non-trivial tampering that does not decode to ⊥ since in this
case the adversary learns the entire tampered codeword, and can simulate the remaining tampering
experiment himself.

Remark 2. [FMNV14] show that non-persistent continuous non-malleable codes are impossible to
construct in 2-split state model.

Remark 3. In any model allowing bitwise tampering, in particular the 2−split state model, it is not
difficult to conclude that the non-self-destruct property is impossible to achieve even in the case of
persistent tampering if the space of messages contains at least 3 elements. To see this, notice that one
can tamper the codeword c = (c1, c2, c3, . . .) to obtain c′1 = (0, c2, . . .). The adversary then obtains
the output of the tampering experiment which is same if and only if c1 = 0. Thus the adversary
learns c?1 = c1 and continues the tampering experiment with (c?1, 0, c3, . . .) (note that this tampering is
persistent). Thus, the adversary can continue learn the codeword one bit at a time, thereby learning
the entire codeword in N steps where N is the length of the codeword.

4 From Super Strong NMCs to Continuous NMCs

In this section we will prove the following statement:

Theorem 2. If (Enc,Dec) is an ε-super strong non-malleable code in the split-state model then (Enc,Dec)
is a (T, (T + 1)ε)−continuous [1, 1] non-malleable code in the split-state model.

For proving Theorem 2, we will need the following lemmata. The following result states that any
non-malleable code in the 2-split state model is a good 2-out-of-2 secret sharing scheme.

Lemma 3 ( [ADKO15b, Lemma 6.1]). Let Dec : X × X → M, and Enc : M → X × X be an
ε−non-malleable code in the split state model for some ε < 1

2
. For any pair of messages m0,m1 ∈ M,

let (X0
1 , X

0
2 )← Enc(m0), and let (X1

1 , X
1
2 )← Enc(m1). Then ∆(X0

1 ; X1
1 ) ≤ 2ε.

The following result states that given a non-malleable code (Enc,Dec) in the split-state model, for any
sets A,B, and any message m, the probability that Enc(m) falls in the set A×B is almost independent
of the choice of the message m.

Lemma 4. Let k ≥ 3, and let ε < 1/20. Let Enc : {0, 1}k → {0, 1}n×{0, 1}n, Dec : {0, 1}n×{0, 1}n →
{0, 1}k be an ε−non-malleable code in the split state model. For every sets A,B ⊂ {0, 1}n and every
messages m0,m1 ∈ {0, 1}k

|Pr(Enc(m0) ∈ A×B)− Pr(Enc(m1) ∈ A×B)| ≤ ε .
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Proof. We claim that there exist x, y, z, w ∈ {0, 1}n such that m0,m1,Dec(x,w), Dec(z, w), and
Dec(z, y) are all different from Dec(x, y). Before proving this claim, we show why this implies the
given result. Consider the tampering functions f, g such that f(c) = x if c ∈ A, and f(c) = z, other-
wise, and g(c) = y if c ∈ B, and g(c) = w, otherwise. Thus, for b = 0, 1, Tampf,gmb = Dec(x, y) if and
only if Enc(mb) ∈ A×B. The result then follows from the ε-non-malleability of (Enc,Dec).
Now, to prove the claim, we will use the probabilistic method. Let U be uniform in {0, 1}k, and let
X,Y ← Enc(U). Furthermore, let W,Z ∈ {0, 1}n be uniform and independent of X,Y, U . We claim
that X,Y, Z,W satisfy the required property with non-zero probability.
It is easy to see that the probability that Dec(X,Y ) = U is either of m0 or m1 is at most 2/2k. Also,
by Lemma 3, we have that except with probability 2ε, X is independent of U . Also, W is independent
of U . Thus, the probability that Dec(X,W ) = U is at most 2ε + 1/2k. Similarly, the probability that
Dec(Z, Y ) = U is at most 2ε + 1/2k. Finally, W,Z are independent of U , and so the probability that
Dec(Z,W ) = U is at most 1

2k
.

Thus, by union bound, the probability that X,Y, Z,W do not satisfy the condition of the claim is at
most 5

2k
+ 4ε ≤ 5

8
+ 4ε < 1. ut

Before proving Theorem 2, let us fix some notation. Let A∗ be any adversary described in Definition
6. Let (I)m denote the index of a round when same is not output in the experiment ConTamperA∗,T,m
and (fi, gi) (for i = 1, . . . , T ) denote pairs of functions chosen by A∗ (of course we can assume that
they are always the same because the choice for the next round does not depend on (X,Y )).
We will need the following claim.

Claim. For any m0,m1, ∆((I)m0 , (I)m1) ≤ Tε.

Proof. Let 0 ≤ i ≤ T be any integer. We have that for any message m, given (X,Y )← Enc(m), (I)m = i
if and only if fj(X) = X, gj(Y ) = Y for all j < i, and at least one of fi(X) 6= X or gj(Y ) 6= Y . We
want to use Lemma 4 to bound |Pr((I)m0 = i) − Pr((I)m1 = i)|, and for this purpose, we intend to
express the set of all (x, y) such that fj(x) = x, gj(y) = y for all j < i, and at least one of fi(x) 6= x or
gj(y) 6= y as a union of two disjoint rectangles (Ai1 ×Bi1) ∪ (Ai2 ×Bi2) defined as follows.

Ai1 = {X ⊂ {0, 1}n|fj(X) = X, for all j < i and fi(X) 6= X},

Bi1 = {Y ⊂ {0, 1}n|gj(Y ) = Y, for all j < i},

Ai2 = {X ⊂ {0, 1}n|fj(X) = X, for all j ≤ i},

Bi2 = {Y ⊂ {0, 1}n|gj(Y ) = Y, for all j < i and gi(Y ) 6= Y }.

It is easy to see that
(I)m = i ⇐⇒ Enc(m) ⊂ (Ai1 ×Bi1) ∪ (Ai2 ×Bi2) .

It also holds Ai1 ×Bi1 and Ai2 ×Bi2 are disjoint. Thus, using Lemma 4 (used twice: for Ai1 ×Bi1 and for
Ai2 ×Bi2), we have

|Pr((I)m0 = i)− Pr((I)m1 = i)| ≤ 2ε .

Thus,

∆((I)m0 , (I)m1) ≤ 1

2

T∑
i=1

|Pr((I)m0 = i)− Pr((I)m1 = i)| ≤ Tε ,

as needed. ut

Proof (of Theorem 2). Now, let (X0, Y0) ← Enc(m0) and (X1, Y1) ← Enc(m1). Since (Enc,Dec) is an
ε-super strong non-malleable code in the split-state model, for any fixed i,

∆(SupStrTampfi,gim0
,SupStrTampfi,gim1

) ≤ ε .

From lemma 4 we also have that (I)m0 ≈Tε (I)m1 , so:

∆
((

(I)m0 , f(I)m0
(X0), g(I)m0

(Y0)
)
,
(

(I)m1 , f(I)m1
(X1), g(I)m1

(Y1)
))
≤ Tε+ ε .

The desired result then follows from the observation that ConTamperA∗,T,mb for b = 0, 1 depends only
on (I)mb , f(I)m0

(X0), and g(I)m0
(Y0). ut
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Remark 4. The above reduction is in the split-state model. It may be interesting to note that the only
place that we use a particular property of this model is Lemma 4. It is also obvious that if this lemma
does not hold for some model then the reduction will not hold. That means that Lemma 4 describes
in some sense a necessary and sufficient property of a tampering model in which the main reduction of
this section is true.

5 Super Strong NMCs from Super NMCs via Inception Coding

In this section, we will show that any super non-malleable code in the split-state model can be converted
into a super-strong non-malleable code in the split-state model. The main technique used here and called
by us ’inception’ is described in 5.2 (i.e. Definition 9). However before we start the actual definition
and construction let us define some auxiliary objects in Section 5.1

5.1 Check Functions

In order to detect possible tampering with a string x, we introduce the following notion.

Definition 7. A function C : {0, 1}s × {0, 1}n → {0, 1}t is called an ε-check if for any x, y ∈ {0, 1}n
such that x 6= y,

Pr
R←{0,1}s

(C(R, x) = C(R, y)) ≤ ε

In this section we give a construction of an efficient check function that has a short output length.
Consider the following function.

Definition 8. Let q, t, n > 0 be integers. Let Check1 : {0, 1}n → {0, 1}q logn be such that for all
x ∈ {0, 1}n, x||Check1(x) is a valid Reed-Solomon code.3 Let Check2 : {0, 1}t logn × {0, 1}n → {0, 1}t
be a simple sampler function defined as follows. Let r = r1‖r2‖ · · · ‖rt be such that each rj is a logn-
bit string. Then Check2(r, x) := xr1 . . . xrt , where xrj is the bit of x at position rj, when written in

binary form. Then we define the function C0 : {0, 1}t log(n) × {0, 1}n → {0, 1}q logn+t as C0(r, x) :=
Check1(x)‖Check2(r, x).

Lemma 5. The function C0 defined above is a e−
qt
n -check.

Proof. We want to bound the probability that for any two distinct x, y ∈ {0, 1}n and R = R1‖ . . . ‖Rt
chosen uniformly at random from {0, 1}t logn, C0(R, x) = C0(R, y).
By Lemma 2, we have that the Hamming distance between x‖Check1(x) and y‖Check1(y) is at least
q + 1. Thus, if Ham(x; y) < q then Check1(x) 6= Check1(y). So, for C0(R, x) = C0(R, y) we must have
that Ham(x; y) ≥ q. Additionally, we have that Check2(R, x) = Check2(R, y) which implies xRj = yRj
for all j ∈ [t]. This holds if none of R1, . . . , Rt belong to the set of positions on which x and y are not
different which occurs with probability at most(

1− q

n

)t
≤ e−

qt
n .

ut

For our application, we require a check with the output having length upper bounded by nα for a small
constant α > 0. Now, let us describe a composition lemma for check functions that will help us to reach
the expected parameters.

Lemma 6. If C0 : {0, 1}s1 × {0, 1}n 7→ {0, 1}t1 is an ε1-check and C : {0, 1}s2 × {0, 1}t1 7→ {0, 1}t2 is
an ε2-check then C1 : {0, 1}s1+s2 × {0, 1}n 7→ {0, 1}m2 given by

C1(r1‖r2, x) := C(r2, C0(r1, x))

is an (ε1 + ε2)-check.

3 Correctness of this definition follows from Lemma 2.
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Proof. Let R1‖R2 ← Us1+s2 , and let E1 = E1(R1, x) be the event that C0(R1, x) = C0(R1, y) and
E2 = E2(R1, R2, x) be the event that C(R2, C0(R1, x)) = C(R2, C0(R1, y)). Then

Pr(E2) ≤ Pr(E1) + Pr(E2 | E1)

≤ ε1 + ε2 .

ut

We now apply Lemma 6 repeatedly to the construction of Lemma 5 to obtain a check with small length
of both the output and the seed.

Lemma 7. For any constant δ ∈ (0, 1/2) and for a large enough integer n, there exists an efficient

2−n
δ2/5

-check Check? : {0, 1}s × {0, 1}n → {0, 1}t with s ≤ nδ and t ≤ nδ.

Proof. Let δ′ = δ/5. We start with the construction from Lemma 5, and we set t = n3δ′ , and q = n1−2δ′ .

Furthermore, we assume that output length n1 = q logn + t ≤ n1−δ′ , and s1 = t logn ≤ n4δ′ , which

hold for a large enough n. The error is e−n
δ′

.

We then define a check function for the output of length n1, with seed length s2 being at most n4δ′
1 ≤

n(1−δ′)·4δ′ , output length n2 being at most n1−δ′
1 ≤ n(1−δ′)2 , and error is at most e−n

δ′
1 .

We continue this procedure for ` steps until n` ≤ nδ. Thus n`−1 > nδ. The number of steps ` is upper
bounded by log(1− δ′)/ log δ. Thus, using Lemma 6, the error is upper bounded by

log(1− δ′)
log δ

· e−n
5δ′2

≤ 2−n
5δ′2

and the total seed length is

s1 + · · ·+ s` ≤ n4δ′ · log(1− δ′)
log δ

≤ nδ ,

where we again used that n is large enough. ut

5.2 Inception Coding

In this section, we show that any super non-malleable code in the split-state model can be converted
into a super-strong non-malleable code in the split-state model. Notice that for some message m with
(X,Y ) ← Enc(m), the only possible scenario in which the output of the tampering experiment in the
super-strong non-malleability definition and that in the super non-malleability definition are different
is when Dec(X,Y ) = Dec(f(X), g(Y )) even in the case of a non-trivial tampering, i.e., (X,Y ) 6=
(f(X), g(Y )). Our idea is to use some of the least significant bits of the message to store a seed and
an output of a “Check” such that if the decoder outputs the correct message in case of a non-trivial
tampering, then the “Check” can detect this and force the output to be ⊥. This technique of installing
a validity check for a codeword within the message is what we call inception coding and is defined
below.
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Figure 1. Inception coding using super non-malleable code.

Definition 9. Let Enc : {0, 1}k → {0, 1}n×{0, 1}n, Dec : {0, 1}n×{0, 1}n → {0, 1}k∩{⊥} be a coding
scheme. Let C : {0, 1}s × {0, 1}n → {0, 1}t be some function.4 The Inception version of (Enc,Dec, C)
is a coding scheme denoted as IEnc : {0, 1}k−2s−2t → {0, 1}n × {0, 1}n, IDec : {0, 1}n × {0, 1}n →
{0, 1}k−2s−2t ∪ {⊥} and is defined as follows. The encoding algorithm IEnc, for a given message m ∈
{0, 1}k−2s−2t, does the following.

– Choose uniformly at random rx, ry from {0, 1}s, and cx, cy from {0, 1}t.
– Sample (X,Y ) as the output of the encoding algorithm Enc on input (m‖rx‖cx‖ry‖cy) conditioned

on the fact that C(rx, X) = cx and C(ry, Y ) = cy.
– Output (X,Y ).

The decoding algorithm IDec, on input x, y ∈ {0, 1}n, does the following.
– Obtain Dec(x, y) ∈ {0, 1}k, and interpret the output as (m‖rx‖cx‖ry‖cy), where m ∈ {0, 1}k−2s−2t,
rx, ry ∈ {0, 1}s, and cx, cy ∈ {0, 1}t.

– If C(rx, x) = cx and C(ry, y) = cy then output m, else output ⊥.

We now state our main result.

Theorem 3. Let ε1, ε2 > 0. C : {0, 1}s × {0, 1}n → {0, 1}t be an ε1-check. Let Enc : {0, 1}k →
{0, 1}n × {0, 1}n, Dec : {0, 1}n × {0, 1}n → {0, 1}k ∩ {⊥} be a uniform ε2-super non-malleable code
in the split-state model such that for any m, rx, cx, ry, cy, there is an efficient algorithm to sample
(X,Y ) ← Enc(m) conditioned on C(rx, X) = cx and C(ry, Y ) = cy. Then (IEnc, IDec) is an efficient
ε′-super strong non-malleable code in the split-state model with ε′ = 16ε2

2−2t + 2ε1 + ε2.

Proof. Let f : {0, 1}n 7→ {0, 1}n, g : {0, 1}n 7→ {0, 1}n be arbitrary functions and m,m′ ∈ {0, 1}k−2s−2t

be arbitrary messages. We will bound the statistical distance between SupStrTampf,gm and SupStrTampf,gm′
for the encoding scheme (IEnc, IDec). For this purpose, we intend to use the fact that (Enc,Dec) is
super non-malleable. However, the main issue with using this is that the codeword obtained by using
Enc might not be a valid encoding for IEnc. The main idea to make sure that the encoding is valid is
to (artificially) do rejection sampling. We modify the tampering functions f, g to f ′, g′ such that the
tampered codeword becomes irrelevant if the code is not a valid codeword with respect to IEnc. This
is the reason that the error is blown-up by a factor 22t.
Let the space of all x ∈ {0, 1}n such that C(r, x) = c be Ar,c, i.e.,

Ar,c := {x ∈ {0, 1}n |C(r, x) = c} .
4 We will use this definition with C being a check function.
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We choose fresh uniformly random and independent strings rx, ry from {0, 1}s, and cx, cy from {0, 1}t.
Consider the following functions:

f ′(x) :=

{
f(x) if x ∈ Arx,cx

0n, otherwise.

g′(y) :=

{
g(y) if y ∈ Ary,cy

0n otherwise.

Let (X,Y )← Enc(m, rx, cx, ry, cy) and let (X ′, Y ′)← Enc(m′, rx, cx, ry, cy). We shorthand SupTampf
′,g′

(m,rx,cx,ry,cy)

by T and SupTampf
′,g′

(m′,rx,cx,ry,cy)
by T ′. The range of T and T ′ is R = {0, 1}n × {0, 1}n ∪ {⊥, same}.

Also, let A = Arx,cx × Ary,cy , and let Pr((X,Y ) ∈ A) = p and Pr((X ′, Y ′) ∈ A) = p′. By Lemma 4,
we have that |p− p′| ≤ ε2, and by the fact that (Enc,Dec) is almost uniform, we have that p ≥ 2−2t−1.

Also, if (X,Y ) /∈ A, then (f ′(X), g′(Y )) depends on at most one of X,Y , and if (X ′, Y ′) /∈ A, then
(f ′(X ′), g′(Y ′)) depends on at most one of X ′, Y ′. Hence the respective tampering experiments T and
T ′ depend on at most one of the shares and by Lemma 3, we have that in this case T and T ′ are
statistically close, i.e.,:

1

2
·
∑
z∈R

|Pr(T = z ∧ (X,Y ) /∈ A)− Pr(T ′ = z ∧ (X ′, Y ′) /∈ A)| ≤ 2ε2 . (5.1)

Also, by the super non-malleability assumption, we have that ∆(T ;T ′) ≤ ε2. Thus, using Equation 5.1,
and the triangle inequality, we have that

6ε2 ≥
∑
z∈R

∣∣∣Pr(T = z ∧ (X,Y ) ∈ A) + Pr(T ′ = z ∧ (X ′, Y ′) /∈ A)

=
∑
z∈R

∣∣∣Pr(T = z | (X,Y ) ∈ A) · p− Pr(T ′ = z|(X ′, Y ′) ∈ A) · p′
∣∣∣

≥ p ·
∑
z∈R

|Pr(T = z|(X,Y ) ∈ A)− Pr(T ′ = z|(X ′, Y ′) ∈ A)| − |p− p′|

≥ (2−2t−1) ·
∑
z∈R

|Pr(T0 = z|(X0, Y0) ∈ A)− Pr(T1 = z|(X1, Y1) ∈ A)| − 2ε2 .

This implies that ∑
z∈R

|Pr(T = z|(X,Y ) ∈ A)− Pr(T ′ = z|(X ′, Y ′) ∈ A)| ≤ 8ε2
2−2t−1

.

Let T̃ be the tampering experiment T conditioned on the event (X,Y ) ∈ A. Similarly define T̃ ′.

We now compare the experiments T̃ and SupStrTampf,gm . For the purpose of this comparison, we assume
that the random coins needed to generate rx, cx, ry, cy, and (X,Y )← Enc(m) conditioned on (X,Y ) ∈ A
are the same. Then, clearly, if T̃ 6= same, then SupStrTampf,gm is equal to T̃ . Also, we claim that if

T̃ = same, then SupStrTampf,gm ∈ {same,⊥}, except with probability at most ε1. This follows from the

fact that if T̃ = same, and SupStrTampf,gm /∈ {same,⊥}, then this implies that at least one of f(X) 6= X,
or g(Y ) 6= Y but C(rx, f(X)) = cx, and C(ry, g(Y )) = cy which happens with probability at most ε1.

Thus, we can bound the statistical distance between SupStrTampf,gm and SupStrTampf,gm′ by

8ε2
2−2t−1

+ 2ε1 + |Pr(SupStrTampf,gm0
= same)− Pr(SupStrTampf,gm1

= same)| .

Finally, using Lemma 4, we can conclude that

|Pr(SupStrTampf,gm0
= same)− Pr(SupStrTampf,gm1

= same)| ≤ ε2

by setting A = {x ∈ {0, 1}n : f(x) = x}, and B = {y ∈ {0, 1}n : g(y) = y}. ut

12



6 Instantiating a Super Non-malleable Code

In [ADL14], Aggarwal et al. gave a construction of non-malleable codes in the split-state model. Here,
we argue that the construction of [ADL14] is also super-non-malleable.
Note that for any message m with Enc(m) = (X,Y ), and any functions f, g, the output of the tam-
pering experiment in Definition 3 is the same as that in Definition 4 if Dec(f(X), g(Y )) = m or
Dec(f(X), g(Y )) = ⊥. This leads to the following simple observation.

Observation 6.1 Let ε, ε′ > 0. Let (Enc :M→ X×X ,Dec : X×X →M∪{⊥}) be an ε-non-malleable
code in the split-state model. Given f, g : X 7→ X , assume there exists a partitioning (S1, · · · ,Ss+t,S?)
of X × X such that the following hold:
1. For all m ∈M, 1 ≤ i ≤ s, Pr(X,Y )←Enc(m)(Dec(f(X), g(Y )) ∈ {m,⊥}|(X,Y ) ∈ Si) ≥ 1− ε′.
2. For all m1,m2 ∈ M, s + 1 ≤ i ≤ t, let (X1, Y1), (X2, Y2) be the encoding of m1,m2 respectively,

conditioned on the fact that (X1, Y1), (X2, Y2) ∈ Si. Then ∆((f(X1), g(Y1)), (f(X2), g(Y2)) ≤ ε′.
3. For any m ∈M, Pr(Enc(m) ∈ S?) ≤ ε′.

Then, the scheme (Enc,Dec) is (ε+O(ε′))-super-non-malleable.

In the above observation, we set Df,g
(X,Y ) to be 1 if (X,Y ) ∈ S1, . . . ,Ss, and 0, otherwise.

Before describing the encoding scheme from [ADL14], we will need the following definition of an affine-
evasive function.

Definition 10. Let F = Fp be a finite field. A surjective function h : F 7→ M ∪ {⊥} is called (γ, δ)-
affine-evasive if or any a, b ∈ F such that a 6= 0, and (a, b) 6= (1, 0), and for any m ∈M,
1. PrU←F(h(aU + b) 6= ⊥) ≤ γ
2. PrU←F(h(aU + b) 6= ⊥ | h(U) = m) ≤ δ
3. A uniformly random X such that h(X) = m is efficiently samplable.

Aggarwal [Agg15] showed the following.

Lemma 8. There exists an efficiently computable (p−3/4, Θ(|M| log p · p−1/4))-affine-evasive function
h : F 7→ M∪ {⊥}.

We now describe the coding scheme from [ADL14] combined with the affine-evasive function promised
by Lemma 8. Let M = {1, . . . ,K} and X = FN , where F is a finite field of prime order p such that
p ≥ (K/ε)16, and N chosen as C log6 p, where C is some universal constant.
Then for any m ∈ M, Enc(m) = Enc1 ◦ Enc2(m), where for any m ∈ M, Enc2(m) is X where X is
uniformly random such that h(X) = m, where h is affine-evasive function defined earlier, and for any
x ∈ F, Enc1(x) = (L,R), where L,R ∈ FN are uniform such that 〈L,R〉 = x.
The decoding algorithm is as follows. For `, r ∈ FN × FN , Dec(`, r) = Dec2 ◦ Dec1(`, r), where for any
`, r ∈ FN , Dec1(`, r) = 〈`, r〉, and for any x ∈ F, Dec2(x) = h(x).
The following is implicit in [ADL14].

Theorem 4. Let f, g : FN 7→ FN be arbitrary functions. Let s = bN/20c, and let t = b s
1/6

c log p
c, for some

universal constant c. Then, there exists a set S ⊂ FN ×FN of size at most p2N−s such that FN ×FN \S
can be partitioned into sets of the form
1. L×R such that (〈L′, R′〉, 〈f(L′), g(R′)〉) is p−t-close to uniform for L′, R′ uniform in L,R respec-

tively.
2. L ×R, such that |L × R| ≥ p2N−7s, and there exists A ∈ FN×N , a, b ∈ F such that f(`) = A` for

all ` ∈ L, and AT g(r) = ar + b for all r ∈ R.
3. FN ×R, such that |R| ≥ pN−t, and there exists y ∈ FN , such that g(r) = y for all y ∈ R.

To argue that the construction given above is also super-non-malleable, we will need the following:

Lemma 9. Let L and R be independent random variables over FN . If

H∞(L) + H∞(R) ≥ (N + 1) log p+ 2 log

(
1

ε

)
,

then
∆((L, 〈L,R〉) ; (L,UF)) ≤ ε and ∆((R, 〈L,R〉) ; (R,UF)) ≤ ε.
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Lemma 10. Let X1, Y1 ∈ A, and X2, Y2 ∈ B be random variables such that ∆((X1, X2) ; (Y1, Y2)) ≤ ε.
Then, for any non-empty set A1 ⊆ A, we have

∆(X2 | X1 ∈ A1 ; Y2 | Y1 ∈ A1) ≤ 2ε

Pr(X1 ∈ A1)
.

Theorem 5. The scheme (Enc,Dec) is uniform, O(ε)-super-non-malleable code in the split-state model.

Proof. We first show that the scheme is a super non-malleable code in the split-state model. We will
argue that each partition promised by Theorem 4 is one of S1, . . . ,Ss+t,S? as in Observation 6.1 with
ε′ = ε. Clearly, for any m ∈ M, Pr(Enc(m) ∈ S) ≤ p−s+1 ≤ ε, and hence we can set S? = S. So, we
consider the partitioning of Fn × Fn \ S.
1. L×R such that (〈L′, R′〉, 〈f(L′), g(R′)〉) is p−t-close to uniform for L′, R′ uniform in L,R respec-

tively. In this case, for any message m, if (L,R) ← Enc(m), then Dec(f(L), g(R)) conditioned on
(L,R) ∈ L × R is h(〈f(L′), g(R′)〉) conditioned on h(〈L′, R′〉) = m. By Lemma 10, we have that
this is 2 · p−t+1-close to uniform, and hence, by Lemma 8, we have that h(〈f(L′), g(R′)〉) = ⊥ with
probability at least 1− p−3/4 − p−t+1 ≥ 1− ε.

2. L ×R, such that |L × R| ≥ p2N−7s, and there exists A ∈ FN×N , a, b ∈ F such that f(`) = A` for
all ` ∈ L, and AT g(r) = ar + b for all r ∈ R. In this case, if a 6= 0, then using the same argument
as in the previous item, we have that Dec(f(L), g(R)) conditioned on (L,R) ∈ L × R is ⊥ with
probability at least 1− p−1/4 log p− p−t+1 ≥ 1− ε.
So, we can assume without loss of generality that a = 0. This means that 〈f(`), g(r)〉 = b for all
` ∈ L, r ∈ R. Thus, for L′, R′ uniform in L,R, respectively, one of f(L′), g(R′) is contained in a
subspace of FN of size pN/2. Without loss of generality, let f(L′) be contained in a subspace of
size pN/2. Then, H∞(L′|f(L′)) + H∞(R′) ≥ (3N/2 − 7s) log p. Hence, using Lemma 9, we have
that 〈L′, R′〉 is p−s-close to uniform given f(L′), and R′, and so, using Lemma 10, this partition
satisfies item 2 from Observation 6.1.

3. FN ×R, such that |R| ≥ pN−t, and there exists y ∈ FN , such that g(r) = y for all y ∈ R. Let L′, R′

uniform in FN ,R, respectively. Then, using Lemma 9, we have that 〈L′, R′〉 is p−(N−t−1)/2-close
to uniform given f(L′), and g(R′) = y, and so, using Lemma 10, this partition satisfies item 2 from
Observation 6.1.

The result then follows from Observation 6.1.
We now show that the scheme is uniform. Let X0,Y0 ⊂ FN such that |X0| = pc1N , and |Y0| = pc2N

for some c1, c2 ∈ (1/2, 1), and let X1 = FN \ X0, and Y1 = FN \ Y0. Let X0, X1, Y0, Y1 be uniform in
X0,X1,Y0,Y1, respectively. Then by Lemma 9, there exists c > 0, such that for i, j ∈ {0, 1},

∆(〈Xi, Yj〉 ; UF) ≤ p−cN .

Thus, for any a ∈ Fp, the number of x ∈ Xi, y ∈ Yj such that 〈x, y〉 = a is

|Xi| · |Yj | · (
1

p
± p−cN ) .

Thus the fraction of (x, y) ∈ X0 × Y0 such that 〈x, y〉 = a is in the interval(
|Xi| · |Yj |
p2N

· 1− p−cN+1

1 + p−cN+1
,
|Xi| · |Yj |
p2N

· 1 + p−cN+1

1− p−cN+1

)
,

which implies the result. ut

7 Final proof of the main result

Theorem 5 proves that non-malleable code from [ADL14] is super non-malleable. The only additional
requirement that needs to be fulfilled in order to be able to use this code to obtain super strong non-
malleable codes using Theorem 3 is that there is an efficient algorithm to sample (X,Y ) ← Enc(m)
conditioned on C(X, rx) = cx and C(Y, ry) = cy for some given rx, ry, cx, cy,m. Note that here,
X,Y ∈ FN , which is thought of as being embedded in to {0, 1}n for n = Ndlog pe. A way to sample this
will be to sample a ← Enc2(m) ∈ Fp, and then try to sample X,Y such that 〈X,Y 〉 = a (where X,Y
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are interpreted as elements of FN ) and C(X, rx) = cx and C(Y, ry) = cy (where X,Y are interpreted
as elements of {0, 1}n).
Since we don’t know how to sample this efficiently, we resolve this issue by introducing an alternate
definition of inception coding, which we call partial inception coding, that installs only a check for X
into the message.

Definition 11. Let Enc : {0, 1}k → {0, 1}n × {0, 1}n, Dec : {0, 1}n × {0, 1}n → {0, 1}k ∩ {⊥} be a
coding scheme. Let C : {0, 1}s × {0, 1}n → {0, 1}t be some function.5 The Partial Inception version of
(Enc,Dec, C) is a coding scheme denoted as IEnc : {0, 1}k−s−t → {0, 1}n × {0, 1}n, IDec : {0, 1}n ×
{0, 1}n → {0, 1}k−s−t∪{⊥} and is defined as follows. The encoding algorithm IEnc, for a given message
m ∈ {0, 1}k−s−t, does the following.

– Choose uniformly at random rx from {0, 1}s, and cx from {0, 1}t.
– Sample (X,Y ) as the output of the encoding algorithm Enc on input (m‖rx‖cx) conditioned on the

fact that C(rx, X) = cx.
– Output (X,Y ).

The decoding algorithm IDec, on input x, y ∈ {0, 1}n, does the following.
– Obtain Dec(x, y) ∈ {0, 1}k, and interpret the output as (m‖rx‖cx), where m ∈ {0, 1}k−s−t, rx ∈
{0, 1}s, and cx ∈ {0, 1}t.

– If C(rx, x) = cx then output m, else output ⊥.

Then, it is easy to sample from the desired distribution. One can efficiently sample X conditioned on
C(X, rX) = cX since for any r ∈ {0, 1}s and any c ∈ {0, 1}t the set of all x such that C(r, x) = c is an
affine subspace of {0, 1}n. This follows immediately from Lemma 2 and Definition 8. Then, Y can be
sampled easily conditioned on the constraint that 〈X,Y 〉 = a.
However, this introduces an additional requirement on the non-malleable code that the adversary
cannot decode to the same message by changing just one part of the codeword, i.e., for any function
g : {0, 1}n 7→ {0, 1}n, and any message m with (X,Y ) ← Enc(m), the probability that g(Y ) 6= Y and
Dec(X, g(Y )) = m is small. This condition, fortunately, is immediate from the proof of Theorem 5,
where item (2) with A being the identity matrix corresponds to this case, and unless g is also the
identity function, we conclude that Dec(X, g(Y )) = m with probability at most ε.
Thus, using a result analogous to Theorem 3 for the case of Partial Inception coding introduced in
Definition 11 and instantiating it with (Enc,Dec) from [ADL14] gives us the following result.

Theorem 6. There exists an efficient 2−k
Ω(1)

-super-strong non-malleable code in the split-state model
from k-bit messages to k7-bit codewords.

Combining Theorem 6 with Theorem 2 gives us the main result of the paper, i.e., a construction of a
persistent continuous non-malleable code in the split-state model.

Theorem 7. There exists an efficient (T, (T +1) ·2−k
Ω(1)

)−continuous [1, 1] non-malleable code in the
split-state model from k-bit messages to k7-bit codewords.
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A Equivalence of Our Non-malleable Codes Definition (Def. 3) with
that of [DPW10]

Theorem 8. If (Enc,Dec) is an ε−non-malleable code then it is also an ε−non-malleable code accord-
ing to the definition from [DPW10].

Proof. Let us define transform Tm : M ∪ {⊥, same} → M ∪ {⊥} as follows: for any m′ ∈ M let
Tm(m′) = m′, Tm(⊥) = ⊥, Tm(same) = m. Notice that Tm(Tampf,gm ) = DPWTampf,gm . Fix any message
m0, and take Df,g = Tampf,gm0

. We know that Tampf,gm ≈ε Tampf,gm0
for any functions f, g and any

message m. Thus
Tm(Tampf,gm ) ≈ε Tm(Tampf,gm0

),

DPWTampf,gm ≈ε Tm(Df,g).

ut

Theorem 9. If (Enc,Dec) is an ε−-non-malleable code according to the definition from [DPW10], then
it is 4ε−non-malleable code.

Proof. Using the notation from Theorem 8, we know that, irrespective of the choice of Df,g
x,y distribu-

tions, the following is true:
Tm(Tampf,gm ) = DPWTampf,gm .

Now let Df,g
x,y as follows:

Pr(Df,g
x,y = 0) = min

{
Pr(Df,g = same)

Pr(DPWTampf,gDec(x,y) = Dec(x, y))
, 1

}

if Pr(DPWTampf,gDec(x,y) = Dec(x, y)) 6= 0. Otherwise let Pr(Df,g
x,y = 0) = 0.

Notice that now
Pr(Tampf,gm = same) ≈ε Pr(Df,g = same).

By DPW-non-malleable codes definition we get

Tm(Tampf,gm ) ≈ε Tm(Df,g)

thus
Tampf,gm ≈2ε D

f,g,

and thus that for any m0,m1 we get

Tampf,gm0
≈4ε Tampf,gm1

.

ut
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