
Fast Fourier Orthogonalization
(and Applications to Lattice-Based Cryptography)

Léo Ducas1? and Thomas Prest2,3

1 Cryptology Group, CWI, Amsterdam
2 École Normale Supérieure, Paris

3 Thales Communications & Security, Gennevilliers
l.ducas@cwi.nl,thomas.prest@ens.fr

Abstract. The classical Fast Fourier Transform (FFT) allows to com-
pute in quasi-linear time the product of two polynomials, in the circular
convolution ring R[x]/(xd − 1) — a task that naively requires quadratic
time. Equivalently, it allows to accelerate matrix-vector products when
the matrix is circulant.
In this work, we discover that the ideas of the FFT can be applied to speed
up the orthogonalization process of a circulant matrix. We show that,
when n is composite, it is possible to proceed to the orthogonalization
in an inductive way, leading to a structured Gram-Schmidt decomposi-
tion. In turn, this structured Gram-Schmidt decomposition accelerates a
cornerstone lattice algorithm: the Nearest Plane algorithm. The results
easily extend to cyclotomic rings, and can be adapted to Gaussian Sam-
plers. This finds applications in lattice-based cryptography, improving
the performances of trapdoor functions.
Keywords. Fast-Fourier Transform, Gram-Schmidt Orthogonalization,
Nearest Plane Algorithm, Lattice Algorithms, Lattice Trapdoor Functions.

1 Introduction

The nearest plane algorithm [Bab86] is a central algorithm over lat-
tices. It allows, using a quadratic number of arithmetic operations, to
find a relatively close point in a lattice to an arbitrary target. It is
a core subroutine of LLL [LLL82], and can be used for error correc-
tion over analogical noisy channels. It also found applications in lattice-
based cryptography as a decryption algorithm, and a randomized variant
(called discrete Gaussian sampling) [Kle00,GPV08] provides secure trap-
door functions based on lattice problems. This leads to cryptosystems
(identity-based and attribute-based encryption) with fine-grained access
control [CHKP10,MP12,Boy13,GVW13].

Given a basis B of a lattice L ⊂ Rd, this algorithm reduces a target
vector modulo L. The results belongs to a fundamental domain centered

? Supported by an NWO Free Competition Grant.

2 Léo Ducas and Thomas Prest

in 0, whose shape is the cuboid defined by B̃, the Gram-Schmidt orthogo-
nalization (GSO) of B. Equivalently, it finds the unique lattice point in
this cuboid centered at the target. This algorithm requires a quadratic
number of arithmetic operation in the dimension d. The orthogonalization
process itself is required as a precomputation, and costlier as it performs
a cubic number of arithmetic operations.

When it comes to using this algorithm for practical cryptography, a
quadratic cost is rather prohibitive, considering the lattices at hand have di-
mensions ranging in the hundreds. For efficiency purposes, many cryptosys-
tems (such as [HPS98,LMPR08,LPR10] to name a few) chose to rely on
lattices with some algebraic structure, improving time and memory require-
ments by a factor quasi-linear in the dimension. This is sometimes referred
as lattice-based cryptography in the ring-setting. The core of this opti-
mization is the Fast-Fourier Transform (FFT) [CT65,GS66,HJB84,Nus12]
allowing fast multiplication of polynomials. But this improvement doesn’t
apply in the case of the nearest plane algorithm or its randomized vari-
ant [Kle00,GPV08]: Gram-Schmidt orthogonalization seems to break the
algebraic structure.

To circumvent this issue, Peikert [Pei10] proposed to switch to a simpler
algorithm, the so-called round-off algorithm [Len82,Bab86], and using a
perturbation technique, properly randomized it to obtain a secure discrete
Gaussian sampler. This simpler algorithm is compatible with FFT-based
acceleration techniques, but this comes at another price: the quality of
the solution is affected. In short, instead of reducing the target to the
cuboid associated with B̃, this algorithm instead provides an output in
the parallelepiped associated with B: the fundamental domain has been
skewed. This is pictured in Figure 1.

c c c

Round-off Nearest plane Actual closest vector

Fig. 1. Round-Off and Nearest Plane, and their fundamental domains.

Quality in the ring setting. For this discussion, let us focus on a simple case:
let B ∈ Rd×d be a circulant matrix of first row vector b1 = (f0, . . . , fd−1).
Algebraically, it is the matrix associated to the multiplication by the

Fast Fourier Orthogonalization 3

element f =
∑
fi · xi of the circular convolution ring R = R[x]/(xd − 1).

The typical case encountered in cryptography deals with cyclotomic rings
instead—and involves matrices with several blocks of this form—we will
address this point later.

The question is to quantify the loss of quality when switching from
the slow nearest plane to the fast round-off algorithm and their respective
randomized variants, Klein’s sampler and Peikert’s sampler. We measure
this as the average euclidean length of its output: the lower the better. This
is summarized in Table 1. The factor s1(B) denotes the largest singular

Algorithm Nearest plane Round-off Klein Peikert

Quality
√

1
12

∑
i ‖b̃i‖2

√
d
12 · ‖b1‖

√
d ‖b1‖ηε(Z)

√
d s1(B)ηε(Z)

Table 1. Average output length for random target (B circulant of first row b1).

value of B, which is also its spectral norm: s1(B) = max ‖xB‖/‖x‖. The
factor ηε is called the smoothing parameter [MR07], and some effort has
been done to tackle it [DLP14,BLP+13,BLL+15], but the details are out of
the scope of this paper. For our matter, note that we have the inequalities:

√∑
i ‖b̃i‖2 6

√
d · ‖b1‖ 6 s1(B),

and equalities holds if and only if the matrix B is orthogonal. We call
orthogonality defect the ratio δ(B) = s1(B)/

√
d · ‖b1‖—alternatively one

can consider δ′(B) =
√
d‖b1‖/

√∑
i ‖b̃i‖2.

The theory of random matrices (see [Ver10, Thm. 5.32] and [BY93])
predicts that the orthogonality defect δ(B) should tend to

√
2 as the

dimension d grows, if the entries of B are independent gaussians. But
should it be the case for circulant matrices ? A simple experiment (see
Fig. 2) shows it does not seem likely!

4 Léo Ducas and Thomas Prest

0 100 200 300 400 500
dimension n

1.0

1.5

2.0

2.5

3.0

3.5

Or
th

. d
ef

ec
t δ

(B
)

0 100 200 300 400 500
dimension n

1.0

1.1

1.2

1.3

1.4

1.5

1.6

Al
t.

Or
th

. d
ef

ec
t δ́

(B
)

.

Fig. 2. Experimental orthogonality defect of circulant matrices, and prediction (1)

This phenomenon is easily explained by switching to an algebraic point
of view. Indeed, the singular values of a circulant matrix B are exactly
the magnitudes of the FFT coefficients of f : the FFT diagonalizes the
matrix B, and this is the very reason why FFT allows fast multiplication
in those rings. Also, the FFT is a scaled isometry: if the coefficients of
f are independent gaussians of variance σ2, then the FFT coefficients
f̂i =

∑
j fjζ

ij have both their real and imaginary parts being independent

gaussian as well with variance dσ2/2—except for f̂0. Their magnitudes
|f̂i| follow a Rayleigh distribution of parameter ς =

√
dσ2, whose density

over [0,∞) is given by x
ς2

exp
(
−x2
2ς2

)
. Out of d/2 (half may be ignored as

conjugates of the other half) such samples, we expect the largest one to
be as large as ≈ ς

√
log d/2. Hence

δ(B) ≈
√

log(d/2), (1)

and this closely matches our experiment.

Contribution. In this work, we discover chimeric algorithms, obtained
by crossing Cooley-Tukey’s [CT65] Fast-Fourier Transform algorithm
together with an orthogonalization and nearest plane algorithms (not
exactly Gram-Schmidt orthogonalization, but rather LDL decomposition).
Precisely, we show that the nearest plane algorithm can be performed
using quasi-linear arithmetic operations for matrices with the appropriate
algebraic structures, coming from the d-th circular convolution ring when
d is composed of small factors. The precomputed orthogonalization can
also be done using quasi-linear many operations and produces the LDL
decomposition in a special compact format, requiring O(d log d) complex
numbers.

Fast Fourier Orthogonalization 5

At the core of this technique is the realization that the circulant
representation of matrices is not the appropriate one. Instead, switching
to (mixed-)digit-reversal-order allows to represent the matrix L of the
Gram-Schmidt decomposition in a compact inductive format, namely a
tree of structured matrices, that get smaller and smaller as one reaches the
leaves. Once this hidden structure is unveiled (Theorem 1), the algorithmic
implications follow quite naturally. As a demonstration of the simplicity
of those algorithms, we also propose an implementation in python in the
power-of-two case. The code is strikingly short.

Most of the material of this paper is very well known, but the authors
are unaware of any work proposing such a combination. We chose to
go very thoroughly through the details of both orthogonalization and
Fast-Fourier Transform, to observe how nicely those two operations fit
together.

Gaussian Sampling. We will only present our acceleration for the (de-
terministic) nearest plane algorithm. Generalizing our technique to the
randomized algorithm of Klein is just a matter of replacing each call
to the rounding function b·e, by an appropriately randomized rounding
function—following a discrete Gaussian distribution over the integers.

Impact for lattice-based cryptography. The structure of matrices found for
lattice-based cryptography follow from cyclotomic rings Fd = R[x]/(φd(x)),
and often d is chosen as power of 2. In fact, our algorithm can be generalized
to handle such a case, because there is a ring morphism from Fd to Rd
that is also an isometry. We merely chose the circulant-convolution ring
as it makes our exposition significantly simpler.

Our work makes the nearest plane algorithm reach the same time
complexity as the round-off algorithm for circulant matrices. The same
phenomenon occurs to their randomized variants, the Gaussian samplers.

For samplers, the factor
√

log(d/2) to be saved may seem small, but
it turns out that in practice the security of a cryptosystem is extremely
sensitive to the quality of the Gaussian sampler. A recent work [DP15]
illustrated this phenomenon: for the same parameters, the signature scheme
studied would have about 128 bits of security using Peikert’s sampler,
against up to 192 bits of security using Klein’s sampler, and a fast hybrid
sampler was proposed, reaching 160 bits of security. In this study case,
the seemingly anecdotal factor corresponded to 64 bits of security.

Related work. The first Gaussian sampler is due to Klein [Kle00], as a
tool to solve the bounded-distance-decoding problem. Its use as a secure

6 Léo Ducas and Thomas Prest

trapdoor algorithm was discovered and analyzed in the seminal work of
Gentry, Peikert and Vaikuntanathan [GPV08], opening new horizons for
lattice-based cryptography. In [LP15] it is showed how to decrease the
pre-computation from cubic to quadratic in the ring setting, and how to
store this pre-computation compactly without slowing the nearest plane
algorithm. Alternatively, a FFT-compatible Gaussian Sampler was pro-
posed by Peikert [Pei10] with quasilinear complexity but decreased quality.
A trade-off between Klein and Peikert algorithms was described in [DP15],
together with a study case of its impact for signature schemes based on
NTRU [HPS98] trapdoors. Optimization of the trapdoor basis generation
(with a security reduction to a worst-case lattice problem [Ajt96,Reg05],
unlike the trapdoors of [HPS98]) can be found in [AP11,MP12]. The ques-
tion of fixed-point/floating-point precision was studied in [DN12,Duc13],
and optimized subroutines for sampling in 1-dimensional lattices were de-
veloped in [DN12,DDLL13,Kar13,Duc13,BCG+14,RVV14,DG14,Lep14].
Improvements on the smoothing parameter using statistical tools can
be found in [DLP14,BLL+15], and a dedicated algorithm was developed
in [BLP+13].

Complexity. All the complexities are expressed in terms of number of
arithmetic operation over the reals. Determining the required precision
for a floating-point approximation and therefore the bit-complexity of our
algorithm is left for future works as this issue seems rather orthogonal
to our improvements. As a starting point in that direction, one might
remark that the asymptotic relative error growth of the FFT of a degree-d
polynomial is O(log d) in the worst case and O(

√
log d) in the average

case [GS66,Sch96]. As our algorithms are structurally very close to the
FFT, it would be interesting to see if they benefit from the same error
growth.

Open Problems. On the theoretical side, a interesting problem would be
to apply this trick to the LLL [LLL82] algorithm, even if it weakens a
bit the notion of reduction achieved. On the practical side, it would of
course be nice to see a secure and fast implementation of lattice trapdoors
based on this algorithm, combining the technique of [BLP+13,BLL+15]
to tackle the smoothing parameter. This would have a wide impact, since
many advanced cryptosystems as ABEs [CHKP10,MP12,Boy13,GVW13]
become rather easy to implement once this primitive is provided.

Organization. The paper is organized as follows. First, Section 2 introduces
the mathematical tools that we will use through this paper. Section 3

Fast Fourier Orthogonalization 7

shows that for matrices over convolution rings, the LDL decomposition
can be expressed in a compact, factorized form, and gives a “Fast Fourier”
algorithm for computing it in this form. This compact LDL decomposition
is further exploited in Section 4, which presents a nearest plane algorithm
that also has a “Fast Fourier” structure. Section 5 extends all our previous
results from convolution rings to cyclotomic rings, by reducing the latters
to the formers. As a conclusion, Section 6 demonstrates the practical
feasibility of our algorithms by presenting python implementations of
them in the case where d is a power of two.

2 Preliminaries

For any ring R, R[x] will denote the ring of univariate polynomials over
R. Elements of R will be usually noted in plain letters (such as a, b),
vectors with coefficients in R will be noted in bold letters (such as a,b)
and matrices with coefficients in R will be noted in capital bold letters
(such as A,B). Vectors are mostly in row notation, and as a consequence
vectors-matrix product is done in this order when not stated otherwise.
(a1, ..., an) denotes the row vector formed of the ai’s, whereas [a1, ...,an]
denotes the matrix whose rows are the ai’s.

Notation Summary. This paper contains a fairly large number of notations,
even after the preliminaries. To make its comprehension easier to the reader,
Table 2 summarizes all the notations we use.

2.1 The Convolution Ring Rd

Definition 1. For any d ∈ N?, we note Rd the ring R[x]/(xd − 1), also
known as circular convolution ring, or simply convolution ring.

When d is highly composite, elementary operations in Rd can be
performed in time O(d log d) using the Fast Fourier transform [CT65].

We equip the ring Rd with a conjugation operation as well as an inner
product, giving it an inner product space structure over R. The definitions
that we give also encompass other types of rings that will be used in later
sections of this paper.

Definition 2. Let h ∈ Q[x] be a monic polynomial with distinct roots

over C, R ∆
= R[x]/(h(x)) and a, b be arbitrary elements of R.

– We note a? and call conjugate of a the unique element of R such
that for any root ζ of h, a?(ζ) = a(ζ), where · is the usual complex
conjugation over C.

8 Léo Ducas and Thomas Prest

Table 2. Summary of notations and abbreviations

Notation Brief definition 1st occurence

log The natural logarithm Introduction

Rd The convolution ring R[x]/(xd − 1). Def. 1

a? The conjugate (transpose) of a.† Def. 2

c(a) The coefficients’ vector of a.† Def. 4

C(a) The circulant matrix of a.† Def. 4

gpd(d) The greatest proper divisor of d. Def. 5

Vd\d′(a)
The vectorization operator.

“Breaks” a ∈ Rd into a vector in Rd/d
′

d′ .†
Def. 6

Md\d′(a)
The matrixification operator.

“Breaks” a ∈ Rd into a matrix in R(d/d′)×(d/d′)
d′ .†

Def. 7

LTU Lower triangular unit matrix. Def. 8

FRG Full-rank Gram matrix. Def. 9

P(B) The fundamental parallelepiped [−1/2, 1/2]n ·B. Def. 10

Zd The ring Z[x]/(xd − 1). Def. 11

Ωd The set of d-th primitive roots of unity. Def. 12

ζd A d-th primitive root of unity (e.g. e
2iπ
d). Def. 12

Z×d The invertible elements of the ring Zd
∆
= Z/dZ. Def. 12

φd The cyclotomic polynomial
∏
ζ∈Ωd

(x− ζ). Def. 12

ψd The polynomial
∏
ζd=1,ζ /∈Ωd

(x− ζ). Def. 12

ϕ(d) Euler’s totient function on d: |Z×d |. Def. 13

Fd The cyclotomic ring R[x]/(φd(x)). Def. 13

ιd An inner-product preserving embedding of Fd in Rd. Def. 14
†This operation extends to vectors and/or matrices.

– The inner product over R is defined by 〈a, b〉 ∆=
∑

h(ζ)=0 a(ζ) · b(ζ),

and the associated norm is ‖a‖ ∆=
√
〈a, a〉.

One can check that if a(x) =
∑

d∈Zd aix
i ∈ Rd, then

a?(x) = a(1/x) mod (xd − 1) =
∑
d∈Zd

aix
d−i

We extend the conjugation to matrices: if B = (bij)i,j ∈ Rn×m, then the
conjugate transpose of B is noted B? ∈ Rm×n and is the transpose of the
coefficient-wise conjugation of B.

While the inner product 〈·, ·〉 (resp. the associated norm ‖ · ‖) is
not to be mistaken with the canonical coefficient-wise dot product 〈·, ·〉2
(resp. the associated norm ‖ · ‖2), they are closely related. One can easily
check that for any f =

∑
06i<d fix

i ∈ Rd, the vector (f(ζ)){ζd=1} can be
obtained from the coefficients’ vector (fi)06i<d by multiplying it by the

Fast Fourier Orthogonalization 9

Vandermonde matrix Vd = (ζijd)06i,j<d. Vd verifies VdV
?
d = d · Id and as

an immediate consequence: 〈f, g〉 = d · 〈f, g〉2.

Definition 3. Let m > n and B = {b1, ...,bn} ∈ Rn×md . We say that B
is full-rank (or is a basis) if for any linear combination

∑
16i6n aibi with

ai ∈ Rd, we have the equivalence (
∑

i aibi = 0)⇐⇒ (∀i, ai = 0).

We note that since Rd is not an integral domain, a set formed of a
single nonzero vector is not necessarily full-rank. In the rest of the paper,
a basis will either denote a set of independent vectors {b1, ...bn} ∈ (Rm)n,
or the full-rank matrix B ∈ Rn×m whose rows are the bi’s.

2.2 Coefficient Vectors and Circulant Matrices

Definition 4. We define the coefficient vector c : Rmd → Rdm and the
circulant matrix C : Rmd → Rdn×dm as follows. For any a =

∑
06i<d aix

i ∈
Rd where each ai ∈ R:

1. The coefficients’ vector of a is c(a) = (a0, ..., ad−1) ∈ Rd.
2. The circulant matrix of a is

C(a)
∆
=

a0 a1

. . . ad−1

ad−1 a0
. . . ad−2

. . .
. . .

. . .
. . .

a1 a2 . . . a0

 =

c(a)
c(xa)

...
c(xd−1a)

 ∈ Rd×d.

3. c and C generalize to vectors and matrices in a coefficient-wise manner.

We give a few properties which are either folklore or trivial to verify.

Proposition 1. The coefficients’ vector and the circulant matrix verify
the following properties:

1. C is a ring isomorphism onto its image. In particular C(a)C(b) = C(ab).
2. c(a)C(b) = c(ab).
3. C(a)? = C(a?).

2.3 Vectorize and Matrixify Operators

In this section, we introduce the “vectorize” and “matrixify” functions.
Informally, they “break” elements of a convolutional ring Rd into many
elements of a smaller ring Rd′ , with d′|d. From a matricial point of view,
they can also be seen as permuting rows and columns of a circulant matrix
to turn it into a concatenation of smaller circulant matrices.

10 Léo Ducas and Thomas Prest

Definition 5. Let d ∈ N? be a product of h (not necessarily distinct)
primes. We note gpd(d) the greatest proper divisor of d. When clear
from context, we also note h the number of prime divisors of d (counted

with multiplicity), dh
∆
= d and for i ∈ J1, hK, di−1

∆
= di/ gpd(di) and

ki
∆
= di/di−1, so that 1 = d0|d1|...|dh = d and

∏
j6i kj = di.

The di’s defined in Definition 5 form a tower of proper divisors of
d. For any composite d, there exist multiple towers of proper divisors:
per example , 1|6, 1|2|6 and 1|3|6 for d = 6. In this paper, each time we
mention a tower of proper divisors of d it will refer to the unique one
induced by Definition 5.

Definition 6. Let d, d′ ∈ N? such that d′|d. We define the vectorization

Vd\d′ : Rn×md → Rn×m(d/d′)
d inductively as follows:

1. Let k = d/ gpd(d). For d′ = gpd(d) and a single element a ∈ Rd,
a =

∑
06i<kd

xiai(x
k) where ai ∈ Rd′ for each i. Then

Vd\d′(a)
∆
= (a0, ..., ak−1) ∈ Rkd′

In other words, Vd\d′(a) is the row vector whose coefficients are the
(ai)06i<kd.

2. For a vector v ∈ Rmd or a matrix B ∈ Rn×md , Vd\d′(v) ∈ R(d/d′)m
d and

Vd\d′(B) ∈ Rn×(d/d
′)m

d are the componentwise applications of Vd\d′.
3. For d′′|d′|d and any element a ∈ Rd,

Vd\d′′(a)
∆
= Vd′\d′′ ◦ Vd\d′(a) ∈ Rd/d

′′

d′′

When d is clear from context, we simply note Vd\d′ = V\d′.

Interpretation. In practice, an element a ∈ Rd is represented by a
vector of d elements corresponding to the d coefficients of a. In this
context, the vectorization operation simply permutes coefficients. As
highlighted by Figure 3, when d = 2h is a power of two, Vd\1 permutes
the coefficients according to the bit-reversal order,1 which appears in the
radix-2 Fast Fourier transform (FFT). More generally, one can show that
for an arbitrary d, Vd\1 permutes the coefficient according to the more
general mixed-radix digit reversal order, which appears in the mixed-radix
Cooley-Tukey FFT.

1 https://oeis.org/A030109

Fast Fourier Orthogonalization 11

0 1 2 3 4 5 6 7
⇒

0 2 4 6 1 3 5 7
⇒

0 4 2 6 1 5 3 7

c(a) c(V\4(a)) c(V\2(a))

The vectorization operation “breaks” the element 0 + x + ... + 7x7 of R8 into two
elements 0 + 2x+ 4x2 + 6x3 and 1 + 3x+ 5x2 + 7x3 of R8, then into four elements of
R2.

Fig. 3. Vectorizations of a = 0 + x+ 2x2 + . . . 7x7

Similarly, one can define an operation which we call “matrixifica-
tion”. Like the vectorization breaks any element of Rd into a vector, the
matrixification breaks it into a matrix.

Definition 7. Following the notations of Definition 6, we define the

matrixification Md\d′ : Rn×md → Rn(d/d
′)×m(d/d′)

d′ as follows:

1. For d′ = gpd(d), k = d/d′ and a single element a =
∑

06i<k x
iai(x

k)
where each ai ∈ Rd′:

Md\d′(a)
∆
=

a0 a1

. . . ak−1

xak−1 a0
. . . ak−2

. . .
. . .

. . .
. . .

xa1 xa2 . . . a0

 =

Vd\d′(a)

Vd\d′(x
ka)

...

Vd\d′(x
(d′−1)ka)

 ∈ Rnk×mkd′

In particular, if d is prime, then Md\1(a) ∈ Rd×d is exactly the circulant
matrix C(a).

2. For a vector v ∈ Rmd or a matrix B ∈ Rn×md , Md\d′(v) ∈ R(d/d′′)×(d/d′)m
d

and Md\d′(B) ∈ R(d/d′)n×(d/d′)m
d are the componentwise applications of

Md\d′.

3. For any element a ∈ Rd,

Md\d′′(a)
∆
= Md′\d′′ ◦Md\d′(a) ∈ R(d/d′′)×(d/d′′)

d′′

When d is clear from context, we simply note Md\d′ = M\d′.

Proposition 2. Let d ∈ N?, a, b (resp. a,b, resp. A,B) be arbitrary
scalars (resp. vectors, resp. matrices) over Rd, and d′|d. For concision,

we note V
∆
= Vd\d′ and M

∆
= Md\d′. The vectorization and matrixification

verify the following properties:

12 Léo Ducas and Thomas Prest

1. The matrixification is an algebra isomorphism onto its image, and in
particular M(A ·B) = M(A) ·M(B)

2. The vectorization is a vector space isomorphism onto its image.
3. V(ab) = V(a) ·M(b)
4. The vectorization is an isometry for the canonical coefficient-wise

scalar product 〈·, ·〉2:

〈V(a),V(b)〉2 = 〈a,b〉2

5. B is full-rank if and only if M(B) is full-rank.

Since the proofs are rather straightforward to check from the definitions,
we leave them in Appendix A.

Interpretation. In lattice-based cryptography, cryptosystems using ring
lattices rely on the hardness of problems on lattices over convolution rings.2

In this setting, the basis is constituted of the rows of (concatenations of)
circulant matrices. A prevalent example are the NTRU lattices

Bf,g,F,G =

[
C(f) C(g)

C(F) C(G)

]
If we identify an element a ∈ Rd with its circulant matrix C(a), all the
matrixification does is permute rows and columns of C(a). Permuting the
rows clearly leaves invariant the lattice generated by the matrix. On the
other hand, permuting the columns changes the lattice generated, but
since it preserves the scalar product, the geometry of the lattice isn’t
affected.

0 1 2 3 4 5 6 7

7 0 1 2 3 4 5 6

6 7 0 1 2 3 4 5

5 6 7 0 1 2 3 4

4 5 6 7 0 1 2 3

3 4 5 6 7 0 1 2

2 3 4 5 6 7 0 1

1 2 3 4 5 6 7 0

⇒

0 2 4 6 1 3 5 7

6 0 2 4 7 1 3 5

4 6 0 2 5 7 1 3

2 4 6 0 3 5 7 1

7 1 3 5 0 2 4 6

5 7 1 3 6 0 2 4

3 5 7 1 4 6 0 2

1 3 5 7 2 4 6 0

⇒

0 4 2 6 1 5 3 7

4 0 6 2 5 1 7 3

6 2 0 4 7 3 1 5

2 6 4 0 3 7 5 1

7 3 1 5 0 4 2 6

3 7 5 1 4 0 6 2

5 1 7 3 6 2 0 4

1 5 3 7 2 6 4 0

C(a) C(M\4(a)) C(M\2(a))

Fig. 4. Matrixifications of a = 0 + x+ 2x2 + . . . 7x7

2 In reality, the underlying rings used are more often cyclotomic rings. However, we
reduce the cyclotomic ring case to the convolution ring case in the ulterior Section 5.

Fast Fourier Orthogonalization 13

Computing the Vectorization and Matrixification in the Fourier
Domain. An interesting observation about the “vectorize” and “matrixify”
operators that we defined is that they can be computed very efficiently
when an element a ∈ Rd is represented by its coefficients but also when
it is represented in the Fourier domain. In the first case, it is obvious
that since these operations permutes coefficients of a, they can both be
performed in time O(d).

If a is represented in FFT form, computing its vectorization and
matrixification overRd′ in FFT form can naively be done in time O(d log d)
by computing its reverse FFT, permuting its coefficients and computing
d/d′ FFT’s over Rd′ . However, we observe that it can be done faster, since
it is essentially equivalent to a step of the original Fast Fourier transform.
This is formalized in Lemma 1, a reformulation of a simple lemma that is
at the heart of Cooley-Tukey’s FFT.

Lemma 1 ([CT65], adapted). Let d > 2, d′ = gpd(d), k = d/d′ and
a ∈ Rd be uniquely written as a =

∑
06i<k x

iai(x
k) where each ai ∈ Rd′.

One can compute the FFT of a from the FFT’s of the ai’s (and reciprocally)
in time O(dk). In particular, Vd\d′(a), its inverse and M−1d\d′((ai)i) (resp.

Md\d′(a)) can be computed in FFT form in time O(kd) (resp. O(k2d)).

Proof. In [CT65, equations 7 and 8], Cooley and Tukey show that one
can switch from the FFT of a to the FFT of the ai’s (and conversely) in
time O(kd). Since the ai’s are the coefficients of Vd\d′(a) and Md\d′(a),
the result follows. ut

Lemma 1 allows us to gain a factor O(log d) when computing the
vectorization and matrixification of a, compared to a naive approach. In
Sections 3 and 4, we will define algorithms which heavily rely on these
operators, and will therefore benefit from this speedup as well.

2.4 The Gram-Schmidt and LDL Decompositions

In this section, R ∆
= Rd for some d > 1. We recall the Gram-Schmidt and

LDL decompositions, which are widespread tools inside and outside the
scope of lattice-based cryptography. First, we define the notion of lower
triangular unit matrix, which will be prevalent in the rest this paper.

Definition 8. We say that a matrix L ∈ Rn×n is lower triangular unit
(or LTU) if it is lower triangular and has only 1’s on its diagonal.

14 Léo Ducas and Thomas Prest

The Gram-Schmidt orthogonalization gives, for any basis B ∈ Rn×m,
an orthogonal basis B̃ which spans the same space as a R-module. In
cryptography, it is very useful for lattice reduction, and to find or sample
lattice points close to an arbitrary point.

Algorithm 1 GramSchmidt(B)

Require: Basis B = {b1, ...,bn} ∈ Rn×m
Ensure: Decomposition B = L · B̃, where B̃ ∈ Rn×m is orthogonal and L ∈ Rn×n is

LTU
1: L = 0n×n

2: for i = 1, ..., n do
3: b̃i ← bi
4: for j = 1, ..., i− 1 do

5: Li,j =
〈bi,b̃j〉
‖b̃j‖2

6: b̃i ← b̃i − Li,jb̃j
7: end for
8: end for
9: return (B̃ = {b̃1, ..., b̃n},L = (Lij)16i,j6n)

A decomposition that is complementary to the Gram-Schmidt de-
composition is the LDL decomposition. It writes any symmetric definite
positive matrix (that is, a symmetric matrix G ∈ Rn×n such that for
any x 6= 0, xGx? >R 0) as a product LDL?, where L ∈ Rn×n is lower
triangular with 1’s on the diagonal, and D ∈ Rn×n is diagonal.

To properly define the notion of definite positiveness, we would need
to define a semi-order >R over elements of R.3 To avoid it, we resort to
the notion of full-rank Gram matrix, which is essentially equivalent to
definite positiveness.

Definition 9. We say that a matrix G ∈ Rn×n is full-rank Gram (or
FRG) if it is full-rank and there exists m > n and B ∈ Rn×m such that
G = BB?.

One can show that a matrix is FRG if and only if it is symmetric
definite positive. However, the former notion requires less definitions and
is much simpler to manipulate from an algorithmic viewpoint, so we will
rely on it instead of the latter.

3 The usual semi-order over R = R[x]/(h(x)) is:
(a >R b)⇔ (|a(ζ)| > |b(ζ)| for any root ζ of h).

Fast Fourier Orthogonalization 15

Algorithm 2 LDLR(G)

Require: A full-rank Gram matrix G = (Gij) ∈ Rn×n defined over a ring R
Ensure: The decomposition G = LDL? over R, where L is LTU and D is diagonal
1: L,D← 0 n×n

2: for i from 1 to n do
3: Lii ← 1
4: Di ← Gii −

∑
j<i LijL

?
ijDj

5: for j from 1 to i− 1 do

6: Lij ← 1
Dj

(
Gij −

∑
k<j LikL

?
jkDk

)
7: end for
8: end for
9: return ((Lij),Diag(Di))

We now explicit the relation between both decompositions. For a basis
B, there exists a unique Gram-Schmidt decomposition B = L · B̃ and for
a FRG matrix G, there exists a unique LDL decomposition G = LDL?.
If G = BB?, then G is FRG and one can check that G = L · (B̃B̃?) · L?
is a valid LDL decomposition of G. As both decompositions are unique,
the matrices L in both decompositions are actually the same.

2.5 Babai’s Nearest Plane Algorithm and Klein’s Sampler

Definition 10. Let B = {b1, ...,bn} be a basis. We call fundamental
parallelepiped generated by B and note P(B) the set∑

16j6n

[
−1

2
,
1

2

]
bj =

[
−1

2
,
1

2

]n
·B

Algorithm 3 NearestPlaneR(B,L,D, c)

Require: The decomposition B = L · B̃ over R, a vector c ∈ SpanR(B)
Ensure: A vector v ∈ L(B) such that c− v ∈ P(B̃)
1: t← c ·B−1

2: for j = n, ..., 1 do
3: t̄j ← tj +

∑
i>j(ti − zi)Lij

4: zj ← bt̄je
5: end for
6: return v← z ·B

Proposition 3. Algorithm 3 outputs v ∈ L(B) such that c− v ∈ P(B̃).

The proof of Proposition 3 is standard and deferred to Appendix B.

16 Léo Ducas and Thomas Prest

3 Fast Fourier LDL Decomposition

3.1 A Compact Representation for the LDL Decomposition

Theorem 1. Let d ∈ N and 1 = d0 < d1 < ... < dh = d be a tower of
proper divisors of d. Let b ∈ Rmd be a full-rank vector. There exists a
Gram-Schmidt decomposition of Md\1(b) as follows:

Md\1(b) =

(
h−1∏
i=0

Mdi\1(Li)

)
·B0

where B0 ∈ Rd×dm is orthogonal and each Li ∈ R(d/di)×(d/di)
di

is a
block-diagonal matrix whose (d/di+1) diagonal blocks are lower triangular

unit (LTU) matrices of R(di+1/di)×(di+1/di)
di

.4

As a toy example, the matrix L of the Gram-Schmidt decomposition
of M4\1(a) for an element a ∈ Rm4 would look like this:1

1
a b 1
b a 1

 ·
1
c 1

1
d 1

 .
Proof. If d is prime, the theorem is trivial. We suppose that d is composite
and that the theorem is true for any Ri with i < d. By Proposition 2,

item 5, the matrix Bh−1
∆
= Md\dh−1

(b) is full-rank too. We can therefore

decompose it as Bh−1 = Lh−1B̃, where Lh−1 ∈ Rkd×kddh−1
, B̃ ∈ Rkd×mkddh−1

and

kd
∆
= d/ gpd(d). Lh−1 is LTU and B̃ is orthogonal. Noting B̃ = [b1, ...,bkd],

each vector bj is full-rank and orthogonal to the other bj′ ’s. By inductive
hypothesis, they can be decomposed as follows:

∀j ∈ J1, nK,Mdh−1\1(bj) =

(
h−2∏
i=0

Mdi\1(Li,j)

)
B̃j (2)

Where each B̃j ∈ Rdh−1×mdh−1 is full-rank orthogonal and for i <

h − 1, each Li,j ∈ R
(dh−1/di)×(dh−1/di)
di

is a block-diagonal matrix whose
(dh−1/di+1) diagonal blocks are lower triangular unit (LTU) matrices of

R(di+1/di)×(di+1/di)
di

. For concision, we now note M
∆
= Mdh−1\1 and V

∆
=

4 The indexed products are to be read
∏k
i=0 αi = αkαk−1...α0.

Fast Fourier Orthogonalization 17

Vdh−1\1. We have:

Md\1(b) = M(Lh−1) ·M(B̃h−1)

= M(Lh−1) ·M[b1, ...,bkd]
= M(Lh−1) · [M(b1), ...,M(bkd)]

= M(Lh−1) ·Diag

(
h−2∏
i=0

Mdi\1(Li,j)

)
[B̃1, ..., B̃kd]

= M(Lh−1) ·
(
h−2∏
i=0

Mdi\1(Li)

)
B0

=

(
h−1∏
i=0

Mdi\1(Li)

)
B0

The first equality simply uses the fact that M is a ring homomorphism.
The second and third ones are immediate from the definitions. The fourth
one uses the inductive hypothesis (equation 2) on each bj . In the fifth

equality, we take Li
∆
= Diag(Li,1, ...,Li,kd) and B0

∆
= [B̃1, ..., B̃kd] and just

need to check that they are as stated by the theorem:

– Since each Li,j is block diagonal with (dh−1/di+1) LTU diagonal blocks,
Li is block diagonal with kd(dh−1/di+1) = (d/di+1) LTU diagonal
blocks.

– We also need to show that B0 is orthogonal. Each submatrix B̃j of B0

is the orthogonalization of M(bj) by induction hypothesis. Therefore,
for two distinct rows u,v of B0:

• If they belong to the same submatrix B̃j , they are orthogonal by
induction hypothesis.

• Suppose they belong to different submatrices: u ∈ B̃j ,v ∈ B̃` and
j 6= `. Then u (resp. v) is a linear combination of rows of M(bj)
(resp. M(b`)): v = aj ·M(bj) and v = a` ·M(bj) for some aj ,a` in
Rdh−1 . Noting aj = V−1(aj) and a` = V−1(a`), we have:

〈u,v〉 = 〈V(aj)M(bj),V(a`)M(b`)〉
= 〈V(ajbj),V(a`b`)〉
= 〈ajbj , a`b`〉 = 0

Where the second equality comes from Proposition 2, item 3, the
third one from the fact that V is a scaled isometry and the fourth
one from the fact that bj ,b` are orthogonal.

Therefore B0 is orthogonal.

ut

18 Léo Ducas and Thomas Prest

The theorem we stated gives the Gram-Schmidt decomposition of
Md\1(b) for a vector b ∈ Rmd , but can be easily generalized from a vector
b to a matrix B, and also yields a compact LDL decomposition.

Corollary 1. Let d ∈ N and 1 = d0 < d1 < ... < dh = d be a tower of
proper divisors of d. Let B ∈ Rn×md be a full-rank matrix. There exist
h+ 1 matrices (Li)06i6h where:

– Lh ∈ Rn×nd is LTU.

– For each i < h, Li ∈ Rn(d/di)×n(d/di)di
is a block-diagonal matrix whose

n(d/di+1) diagonal blocks are LTU matrices of R(di+1/di)×(di+1/di)
di

.

Such that, if we note L =
(∏h

i=0 Mdi\1(Li)
)

:

1. The Gram-Schmidt decomposition of Md\1(B) is: Md\1(B) = L ·B0

where B0
∆
= L−1 ·Md\1(B).

2. The LDL decomposition of Md\1(BB?) is: Md\1(B) = L · (B0B
t
0) · Lt.

Proof. We have B = LhB
′, where Lh is given by either the Gram-Schmidt

or LDL decomposition algorithm. B′ = {b′1, ...,b′n} is orthogonal. Ap-
plying Theorem 1 to each row vector b′j of B′ yields n decompositions

(Li,j)06i<h and n orthogonal matrices B̃j , each spanning the same space

as Bj
∆
= Md\1(b

′
j). Taking Li

∆
= Diag(Li,j) and B0

∆
= [B̃1, ..., B̃0,n] yields

the Gram-Schmidt decomposition.

The LDL decomposition is then given “for free” by the equivalence
between it and the Gram-Schmidt decomposition, and indeed, one can
check that since B0 is orthogonal, (B0B

t
0) is diagonal. ut

The Theorem 1 and the Corollary 1 state that for any full-rank matrix
B ∈ Rn×m, the L matrix in its Gram-Schmidt and LDL decompositions
can be represented in a factorized form, where each of the factors Li is a
sparse, block-diagonal matrix. Figure 5 synthetizes this factorization.

3.2 A Fast Algorithm for the Compact LDL Decomposition

Theorem 1 and Corollary 1 are constructive: more precisely, their proofs
give an algorithm to compute the compact factorized form of L quickly.
Algorithm 4 performs the compact LDL decomposition in the form of the
tree given in Figure 5.

Fast Fourier Orthogonalization 19

Lh Rd

Lh−1,1 ... Lh−1,n Rdh−1

Lh−2,1 ... L
h−2,

dh−1
dh−2

... Lh−2,... ... L
h−2,

ndh−1
dh−2

Rdh−2

...

...
...

...
...

...
...

...
...

‖b̃′1‖2 ‖b̃′n‖2 R

Lh ∈ Rn×nd is a LTU matrix, and for each i < h, every Li,j is a lower triangular unit

matrix in R(di+1/di)×(di+1/di)

di
. Each of the matrices Li mentioned in Theorem 1 is the

block-diagonal matrix whose blocks are the (Li,j)16j6nd/di+1
.

Fig. 5. Tree L of precomputed matrices Li,j such that L =
∏
i Mdi\1(Diagj(Li,j))

Algorithm 4 ffLDLRd(G)

Require: A full-rank Gram matrix G ∈ Rn×nd

Ensure: The compact LDL decomposition of G
1: if d = 1 then
2: return (G, [])
3: end if
4: (L,D)← LDLRd(G)
5: for i = 1, ..., n do
6: Li ← ffLDLRgpd(d)

(Md\ gpd(d)(Dii))
7: end for
8: return (L, (Li)16i6n)

Algorithm 4 computes a “Fast Fourier LDL”, instead of the “Fast
Fourier Gram-Schmidt” hinted at in Theorem 1 and Corollary 1. The
reason why we favor this approach is because it allows a complexity gain.
This gain already happens in the classic versions of the aforementioned
algorithms.

As a simple example, consider the L in the Gram-Schmidt decomposi-
tion of B ∈ R2×m

d , which is exactly the L in the LDL decomposition of
BB? ∈ R2×2

d . Computing it with the LDL algorithm is then O(m) times

20 Léo Ducas and Thomas Prest

faster than with the Gram-Schmidt algorithm. The same phenomenon
happens with their recursive variants.

Lemma 2. Let d ∈ N and 1 = d0 < d1 < ... < dh = d be a tower of proper

divisors of d, and for i ∈ J1, hK, let ki
∆
= di/di−1. Let G ∈ Rn×nd be a full-

rank Gram matrix. Then Algorithm 4 computes the LDL decomposition
tree of G in FFT form in time

O(n2d log d) +O(n3d) +O(nd)
∑

16i6h

k2i

In particular, if all the ki are bounded by a small constant k, then the
complexity of Algorithm 4 is upper bounded by O(n3d+ n2d log d).

Proof. Let C(k, d) denote the complexity of Algorithm 4 over a matrix
G ∈ Rk×kd . We have the following recursion formula:

C(n, d) = O(n2d log d) +O(n3d) +O(dk2h) + nC(kh, dh−1) (3)

Where the first term corresponds to computing the FFT of the n2 coeffi-
cients of G, and the second term to performing (L,D)← LDLRd(G) in
FFT form. For each i ∈ J1, nK, we know from Lemma 1 that Md\ gpd(d)(Dii)
can be computed in time O(dk2h), hence the third term. The last one is
for the n recursive calls to itself. We then have

C(kh, dh−1) =
∑

16i6h

d
di
O(di−1k

3
i) + d

d1
C(k1, d0)

= O(d)
∑

16i6h
k2i

(4)

Where the first equality is shown by induction using equation 3, except
the first term O(n2d log d) which is no longer relevant since we are already
in the Fourier domain. Combining equations 3 and 4, we conclude that
the complexity of the total algorithm is

C(n, d) = O(n2d log d) +O(n3d) + nC(kh, dh−1)
= O(n2d log d) +O(nd)

∑
16i6h

k2i

ut

4 Fast Fourier Nearest Plane

In this section, we show how to exploit further the compact form of the
LDL decomposition to have a Fast Fourier variant of the nearest plane
algorithm. It outputs vectors of the same quality as its classical, iterative
counterpart, but runs Õ(d) times faster.

Fast Fourier Orthogonalization 21

Definition 11. We note Zd the ring Z[x]/(xd−1) of elements of Rd with
integer coefficients.

Algorithm 5 ffNearestPlaneRd(t,L)

Require: t ∈ Rnd , a precomputed tree L, (implicitely) a matrix B ∈ Rn×md such that
L is the compact LDL decomposition tree of BB?

Ensure: z ∈ Znd such that
1: if t is a 1-dimensional vector in R then
2: return bte
3: end if
4: L← L.Node()
5: for j = n, ..., 1 do
6: tj ← tj +

∑
i>j(ti − zi)Lij

7: zj ← V−1
d\ gpd(d)

[
ffNearestPlaneRgpd(d)

(Vd\ gpd(d)(tj),L.Child(j))
]

8: end for
9: return z

Thomas!
Thomas: J’ai corrig une erreur du FFNP original (il y avait M(t) au

lieu de V(t))...

Lemma 3. Let B = {b1, ...,bn} and B̃ = {b̃1, ..., b̃n} be its GSO in R.
The vectors z = (z1, ..., zn) and t = (t1, ..., tn) in Algorithm 5 verify

(z− t) ·B = (z− t) · B̃

Proof. We recall that for each i ∈ J1, nK, b̃i = bi −
∑

j<i Lijb̃j . We have:

(z− t) · B̃ =
∑

j=1...n(zj − tj) · b̃j
=
∑

j=1...n

[
(zj − tj) +

∑
i>j(zi − ti) · Lij

]
· b̃j

=
∑

16i6j6n(zi − ti) · Lij · b̃j
=
∑

i=1...n(zi − ti) · bi
= (z− t) ·B

(5)

The first and last equalities are trivial, the second one replaces the tj ’s by
their definitions, the third one just simplifies the sum and the fourth one
is another way of saying that L · B̃ = B. ut

Theorem 2. Let M
∆
= Md\1 and V

∆
= Vd\1. Algorithm 5 outputs z ∈

Zn such that V((z− t)B) ∈ P(B0), where B0 is the orthogonalization of
M(B).

22 Léo Ducas and Thomas Prest

Proof. The result is trivially true if n = d = 1. We prove it in the
general case. By definition, each L.Child(j) is the LDL decomposition
tree of Md\ gpd(d)(b̃j). By induction hypothesis, we therefore know that

V((zj − tj)b̃j) ∈ P(B̃j), where B̃j is the orthogonalization of Bj
∆
= M(b̃j).

From Lemma 3, have

(z− t)B =
∑

j=1...n

(zj − tj) · b̃j

so V((z− t)B) ∈ P([B̃1, ..., B̃n]). Now, from the proof of Corollary 1, we
know that B0 = [B̃1, ..., B̃n] is actually the orthogonalization of M(B),
which concludes the proof. ut

Equivalently, Theorem 2 states that Algorithm 5 outputs z such that

(z− t)B ∈ V−1P(M̃(B)). This behavior is slightly different from the usual
nearest plane algorithm. When instanciated for maximal efficiency from a
quality point of view (therefore completely ignoring the ring structure),

the latter outputs z such that (z− t)B ∈ c−1P(C̃(B)).
Although (z−t)B is in a different cuboid in each case, both algorithms

are essentially identical in terms of quality. Ignoring the action of V−1, c−1

(since they are isometries), the cuboids P(M̃(B)) and P(C̃(B)) predictably
have the same volume. But more importantly, they are generated by
nd orthogonal vectors, and one can easily show that the length of the
longest one is the same in both cases. Therefore, Algorithm 5 is essentially
as good as the nearest plane algorithm in terms of output quality. In
addition, it can be run significantly faster over convolutional ring lattices,
as demonstrated in Lemma 4.

Lemma 4. Let d ∈ N and 1 = d0 < d1 < ... < dh = d be a tower of

proper divisors of d, and for i ∈ J1, hK, let ki
∆
= di/di−1. Let B ∈ Rn×md

and L be its LDL decomposition tree. The complexity of Algorithm 5 is
upper bounded by:

O(nd log d) +O(n2d) +O(nd)
∑

16i6h

k2i

In particular, if all the ki are bounded by a small constant k, then the
complexity of Algorithm 5 is upper bounded by O(n2d+ nd log d).

Proof. Let C(k, d) denote the complexity of Algorithm 5 over input t ∈ Rkd.
We have this recursion formula:

C(n, d) = O(nd log d) +O(n2d) +O(ndk2h) + nC(kh, dh−1)

Fast Fourier Orthogonalization 23

Where the first term corresponds to computing the FFT of the n coefficients
of t, the second term to performing computing the tj ’s (step 6) in FFT
form, the third one to the n calls to V−1d\ gpd(d),Md\ gpd(d) (see Lemma 1)
and the fourth one to the n recursive call to itself. We have:

C(kh, dh−1) =
∑

16i6h

d
di
O(di−1k

3
i) + d

d1
C(k1, d0)

= O(d)
∑

16i6h
k2i

(6)

Where the equalities are obtained using the same reasoning as in the proof
of Lemma 2. Similarly, we can then conclude that:

C(n, d) = O(nd log d) +O(n2d) +O(nd)
∑

16i6h
k2i

ut

5 Extending the Results to Cyclotomic Rings

In this section we argue that our result also applies in the cyclotomic case.
It turns out that all the previous arguments can be made more general.
The required ingredients are the following:

1. A tower of unitary rings endowed with inner products onto R.
2. For any rings S, T of the tower, injective maps M′ : S → T k×k and

V′ : S → T k, with S of rank d over R, and T of rank d/k over R.
3. M′ is a ring morphism.
4. V′ is a scaled linear isometry.
5. V′(ab) = M′(a)V′(b).
6. Computing V′, V′−1, M′ and M′−1 takes time O(dk).

It remains to prove the existence of such maps for towers of cyclotomic
rings. We give explicit constructions in this section, using both our maps
from the previous sections and a generic embedding from cyclotomic rings
Fd to convolution rings Rd.

5.1 Cyclotomic Rings

Definition 12. Let d ∈ N? and ζd denote an arbitrary primitive d-th

root of unity in C, per example ζd = e
2iπ
d . Let Ωd = {ζkd |k ∈ Z×d } be the

set of primitive d-th roots of unity. We note φd and call d-th cyclotomic
polynomial the polynomial in Z[x] defined by

φd(x) =
∏
ζ∈Ωd

(x− ζ) =
∏
k∈Z×d

(x− ζkd)

24 Léo Ducas and Thomas Prest

In addition, we define the polynomial ψd as follows

ψd(x) =
∏

ζd=1,ζ /∈Ωd

(x− ζ) =
∏

k∈(Zd\Z×d)

(x− ζkd)

When d is a power of prime – which is a prevalent case in lattice-based
cryptography –, there exist explicit formulae for computing φd:

– For a prime p, φp(x) =
∑p−1

k=0 x
k

– For a prime power d = pk, φd(x) = φp(x
m/p)

It is immediate that for any d, the degree of φd is ϕ(d), where ϕ(d)
∆
= |Z×d |

is Euler’s totient function. One can also check that φd(x) · ψd(x) = xd − 1.

Definition 13. For d ∈ N?, we note Fd the cyclotomic ring R[x]/(φd(x)).

5.2 Embedding the Ring Fd in the Ring Rd

We now explicit an embedding of Fd into Rd.
Definition 14. Let ed be the unique element in Rd such that ed = 1
mod φd and ed = 0 mod ψd. We define the embedding ιd from Fd into
Rd as follows:

ιd : Fd → Rd
f 7→ f · ed.

When clear from context, we simply note ι = ιd.

Equivalently, ι(f) is the only element in Rd verifying:

ι(f)(ζ) =

{
f(ζ) if φd(ζ) = 0
0 if ψd(ζ) = 0

(7)

Proposition 4. Let d ∈ N? and ι = ιd. The embedding ι:

1. is a ring isomorphism onto its image.
2. is an isometry : for any f, g ∈ Fd, 〈ι(f), ι(g)〉 = 〈f, g〉.

Proof. Let us first prove item 1. The element ed is idempotent in ι(Fd):
e2d = ed. From this, one can easily show that ι is a ring homomorphism. In
addition, for any element g ∈ ι(Fd), g mod φd is the unique antecedent of
g with respect to ι, so ι is bijective and ι−1(g) = g mod φd, which proves
the point 1. Items 2. and 3. follows from equation (7). ut

Lemma 5. Let d > 2, d′|d, k = d/d′ and a ∈ Rd. Then

(a ∈ ι(Fd))⇔ Vd\d′(a) ∈ ι(Fd′)k

For readability, the proof of Lemma 5 is left in Appendix C.

Fast Fourier Orthogonalization 25

5.3 Conclusion for Cyclotomic Rings

We now check that the 6 conditions enounced at the beginning of Section 5
are verified. For d′|d, Fd′ and Fd′ are unitary rings endowed with the
dot product defined in Definition 2, which gives the condition 1. The
embeddings ιd trivialize the construction of maps M′ and V′ from Fd to
Fd′ :

V′ = ι−1d′ ◦ Vd\d′ ◦ ιd M′ = ι−1d′ ◦Md\d′ ◦ ιd.

This gives the condition 2. Lemma 5 allows to argue that the image
of Vd/d′ ◦ ιd is in the definition domain of ι−1d′ : V′ is well defined, and
similarly for M′. Conditions 3 and 5 follow from the fact that ιd, ιd′ are ring
morphisms and that similar properties hold for Md\d′ and Vd\d′ . Condition 4
is true because ιd, Vd\d′ and ιd′ are isometries. Finally, condition 6 holds
in the FFT representation, from Lemma 1 and the from the fact that ι
in the Fourier domain simply consist of inserting some 0 at appropriate
positions.

6 Implementation in Python

In this final section, we give the core of the python implementation of
our algorithm when d is a power of 2. This complete, public-domain
implementation can be found at:

https://github.com/lducas/ffo.py

It includes a verifier verif.py, that is based on the (slow) Gram-
Schmidt algorithm. The file ffo.py is the full version of the simplified
algorithms given below. The file ffo NaN.py is a slightly more evolved
version that also handles the non-full rank case. The file cyclo.py imple-
ment the embedding technique of Section 5 to apply our algorithms to
the cyclotomic ring setting. The file test.py runs test in the rings R64

and F64.

Conventions. In python.numpy, the arithmetic operations +,-,*,/ on arrays
denotes coefficient-wise operations. The functions fft and its inverse ifft
are built in. The symbol j denotes the imaginary unit.

Modified extract of ffo.py
from numpy import *

26 Léo Ducas and Thomas Prest

Inverse vectorize operation Vˆ-1, i/o in fft format
def ffmerge(F1,F2):

d = 2*len(F1)
F = 0.j*zeros(d) # Force F to complex float type
w = exp(-2j*pi / d)
W = array([w**i for i in range(d/2)])
F[:d/2] = F1 + W * F2
F[d/2:] = F1 - W * F2
return F

Vectorize operation V, i/o in fft format
def ffsplit(F):

d = len(F)
winv = exp(2j*pi / d)
Winv = array([winv**i for i in range(d/2)])
F1 = .5* (F[:d/2] + F[d/2:])
F2 = .5* (F[:d/2] - F[d/2:]) * Winv
return (F1,F2)

ffLDL alg., i/o in fft format, outputs an L-Tree (sec 3.2)
def ffLDL(G):

d = len(G)
if d==1:

return (G,[])
(G1,G2) = ffsplit(G)
L = G2 / G1
D1 = G1
D2 = G1 - L * G1 * conjugate(L)
return (L, [ffLDL(D1),ffLDL(D2)])

ffLQ, i/o in fft format, outputs an L-Tree (sec 3.2)
def ffLQ(f):

F = fft(f)
G = F*conjugate(F)
T = ffLDL(G)
return T

ffBabai alg., i/o in base B, fft format
def ffBabai_aux(T,t):

if len(t)==1:
return array([round(t.real)])

(t1,t2) = ffsplit(t)
(L,[T1,T2]) = T
z2 = ffBabai_aux(T2,t2)
tb1 = t1 + (t2-z2) * conjugate(L)
z1 = ffBabai_aux(T1,tb1)

Fast Fourier Orthogonalization 27

return ffmerge(z1,z2)

ffBabai alg., i/o in canonical base, coef. format
def ffBabai(f,T,c):

F = fft(f)
t = fft(c) / F
z = ffBabai_aux(T,t)
return ifft(z * F)

References

[Ajt96] Miklós Ajtai. Generating hard instances of lattice problems (extended
abstract). In 28th ACM STOC, pages 99–108. ACM Press, May 1996.

[AP11] Joël Alwen and Chris Peikert. Generating shorter bases for hard random
lattices. Theory of Computing Systems, 48(3):535–553, 2011.

[Bab86] László Babai. On Lovász’ lattice reduction and the nearest lattice point
problem. Combinatorica, 6(1):1–13, 1986. Preliminary version in STACS
1985.

[BCG+14] Johannes Buchmann, Daniel Cabarcas, Florian Göpfert, Andreas Hülsing,
and Patrick Weiden. Discrete ziggurat: A time-memory trade-off for sampling
from a gaussian distribution over the integers. In Lange et al. [LLL14], pages
402–417.

[BLL+15] Shi Bai, Adeline Langlois, Tancrède Lepoint, Damien Stehlé, and Ron
Steinfeld. Improved security proofs in lattice-based cryptography: using the
rényi divergence rather than the statistical distance. 2015.

[BLP+13] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien
Stehlé. Classical hardness of learning with errors. In Boneh et al. [BRF13],
pages 575–584.

[Boy13] Xavier Boyen. Attribute-based functional encryption on lattices. In Amit
Sahai, editor, TCC 2013, volume 7785 of LNCS, pages 122–142. Springer,
Heidelberg, March 2013.

[BRF13] Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors. 45th ACM
STOC. ACM Press, June 2013.

[BY93] Z Bai and YQ Yin. Limit of the smallest eigenvalue of a large dimensional
sample covariance matrix. The annals of Probability, 21:1276–1294, 1993.

[CHKP10] David Cash, Dennis Hofheinz, Eike Kiltz, and Chris Peikert. Bonsai trees, or
how to delegate a lattice basis. In Henri Gilbert, editor, EUROCRYPT 2010,
volume 6110 of LNCS, pages 523–552. Springer, Heidelberg, May 2010.

[CT65] James W Cooley and John W Tukey. An algorithm for the machine calcula-
tion of complex fourier series. Mathematics of computation, 19(90):297–301,
1965.

[DDLL13] Léo Ducas, Alain Durmus, Tancrède Lepoint, and Vadim Lyubashevsky.
Lattice signatures and bimodal gaussians. In Ran Canetti and Juan A.
Garay, editors, CRYPTO 2013, Part I, volume 8042 of LNCS, pages 40–56.
Springer, Heidelberg, August 2013.

[DG14] Nagarjun C Dwarakanath and Steven D Galbraith. Sampling from discrete
gaussians for lattice-based cryptography on a constrained device. Applicable
Algebra in Engineering, Communication and Computing, 25(3):159–180, 2014.

28 Léo Ducas and Thomas Prest

[DLP14] Léo Ducas, Vadim Lyubashevsky, and Thomas Prest. Efficient identity-based
encryption over NTRU lattices. In Palash Sarkar and Tetsu Iwata, editors,
ASIACRYPT 2014, Part II, volume 8874 of LNCS, pages 22–41. Springer,
Heidelberg, December 2014.

[DN12] Léo Ducas and Phong Q. Nguyen. Faster gaussian lattice sampling using lazy
floating-point arithmetic. In Xiaoyun Wang and Kazue Sako, editors, ASI-
ACRYPT 2012, volume 7658 of LNCS, pages 415–432. Springer, Heidelberg,
December 2012.

[DP15] Léo Ducas and Thomas Prest. A hybrid gaussian sampler for lattices
over rings. Cryptology ePrint Archive, Report 2015/660, 2015. http:
//eprint.iacr.org/2015/660.

[Duc13] Léo Ducas. Lattice Based Signatures: Attacks, Analysis and Optimization.
These, Ecole Normale Supérieure de Paris - ENS Paris, 2013.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard
lattices and new cryptographic constructions. In Richard E. Ladner and
Cynthia Dwork, editors, 40th ACM STOC, pages 197–206. ACM Press, May
2008.

[GS66] W Morven Gentleman and Gordon Sande. Fast fourier transforms: for fun
and profit. In Proceedings of the November 7-10, 1966, fall joint computer
conference, pages 563–578. ACM, 1966.

[GVW13] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Attribute-based
encryption for circuits. In Boneh et al. [BRF13], pages 545–554.

[HJB84] Michael T Heideman, Don H Johnson, and C Sidney Burrus. Gauss and
the history of the fast fourier transform. ASSP Magazine, IEEE, 1(4):14–21,
1984.

[HPS98] Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. NTRU: A ring-based
public key cryptosystem. In ANTS, pages 267–288, 1998.

[Kar13] Charles FF Karney. Sampling exactly from the normal distribution. arXiv
preprint arXiv:1303.6257, 2013.

[Kle00] Philip N. Klein. Finding the closest lattice vector when it’s unusually close.
In SODA, pages 937–941, 2000.

[Len82] Arjen Klaas Lenstra. Factoring polynomials over algebraic number fields.
Stichting Mathematisch Centrum. Informatica, (IW 213/82):1–21, 1982.

[Lep14] Tancrède Lepoint. Design and Implementation of Lattice-Based Cryptography.
Theses, Ecole Normale Supérieure de Paris - ENS Paris, June 2014.

[LLL82] Arjen K. Lenstra, Hendrik W. Lenstra, Jr., and László Lovász. Factoring
polynomials with rational coefficients. Mathematische Annalen, 261(4):515–
534, December 1982.

[LLL14] Tanja Lange, Kristin Lauter, and Petr Lisonek, editors. SAC 2013, volume
8282 of LNCS. Springer, Heidelberg, August 2014.

[LMPR08] Vadim Lyubashevsky, Daniele Micciancio, Chris Peikert, and Alon Rosen.
SWIFFT: A modest proposal for FFT hashing. In Kaisa Nyberg, editor,
FSE 2008, volume 5086 of LNCS, pages 54–72. Springer, Heidelberg, February
2008.

[LP15] Vadim Lyubashevsky and Thomas Prest. Quadratic time, linear space al-
gorithms for Gram-Schmidt orthogonalization and gaussian sampling in
structured lattices. In Elisabeth Oswald and Marc Fischlin, editors, EU-
ROCRYPT 2015, Part I, volume 9056 of LNCS, pages 789–815. Springer,
Heidelberg, April 2015.

Fast Fourier Orthogonalization 29

[LPR10] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and
learning with errors over rings. In EUROCRYPT, pages 1–23, 2010.

[MP12] Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter,
faster, smaller. In David Pointcheval and Thomas Johansson, editors, EURO-
CRYPT 2012, volume 7237 of LNCS, pages 700–718. Springer, Heidelberg,
April 2012.

[MR07] Daniele Micciancio and Oded Regev. Worst-case to average-case reduc-
tions based on Gaussian measures. SIAM J. Comput., 37(1):267–302, 2007.
Preliminary version in FOCS 2004.

[Nus12] Henri J Nussbaumer. Fast Fourier transform and convolution algorithms,
volume 2. Springer Science & Business Media, 2012.

[Pei10] Chris Peikert. An efficient and parallel gaussian sampler for lattices. In Tal
Rabin, editor, CRYPTO 2010, volume 6223 of LNCS, pages 80–97. Springer,
Heidelberg, August 2010.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and
cryptography. In Harold N. Gabow and Ronald Fagin, editors, 37th ACM
STOC, pages 84–93. ACM Press, May 2005.

[RVV14] Sujoy Sinha Roy, Frederik Vercauteren, and Ingrid Verbauwhede. High
precision discrete gaussian sampling on FPGAs. In Lange et al. [LLL14],
pages 383–401.

[Sch96] James C. Schatzman. Accuracy of the discrete fourier transform and the fast
fourier transform. SIAM J. Scientific Computing, 17(5):1150–1166, 1996.

[Ver10] Roman Vershynin. Introduction to the non-asymptotic analysis of random
matrices. arXiv preprint arXiv:1011.3027, 2010.

A Proof of Proposition 2

Proof. We show the properties separately:

1. We first prove this statement for d′ = gpd(d) and for elements a, b ∈ Rd.
All the requirements for showing that M is a homomorphism are trivial
except for the fact that it is multiplicative. First, one can check from
Definition 7 that M(ab) = M(a) ·M(b). Let A = (aij) ∈ Rn×pd and

B = (bij) ∈ Rp×md . Since AB
∆
= (
∑

16k6p aikbkj)16i6n,16j6m, we have

M(AB) = M

((∑
16k6p aikbkj

)
i,j

)
=
(∑

16k6p M(aik)M(bkj)
)
i,j

= M(A)M(B)

Multiplicity then seamlessly transfers to any d′′|d:

Md\d′′(A ·B) = Md′\d′′ ◦Md\d′(A ·B)

= Md′\d′′(Md\d′(A) ·Md\d′(B))

= Md′\d′′ ◦Md\d′(A) ·Md′\d′′ ◦Md\d′(B)

= Md\d′′(A) ·Md′\d′′(B)

30 Léo Ducas and Thomas Prest

To show injectivity, it suffices to see that if d′ = gpd(d), then (Md\d′(a) =
0)⇔ (a = 0). From the definition, this property seamlessly transfers
to any d′|d and any matrix A.

2. This item is immediate from the definition.
3. It suffices to notice that for any a, V(a) is the first line of M(a). As M

is a multiplicative homomorphism, the result follows.
4. It suffices to prove it for elements a, b ∈ Rd (instead of vectors) and

for d′ = gpd(d), the generalization to vectors and to arbitrary values
of d′ is then immediate. Let a =

∑
i x

iai(x
gpd(d)), b =

∑
i x

ibi(x
gpd(d)),

where ∀i, ai =
∑

06j<i ai,jx
j and bi =

∑
06j<i bi,jx

j . Then

〈a, b〉2
∆
=
∑
i,j

〈ai,j , bi,j〉2 =
∑
i

〈ai, bi〉2
∆
= 〈V(a),V(b)〉2

5. We have:

(B full-rank) ⇔ (∀a,aB = 0 iff a = 0)
m

(∀a,V(aB) = 0 iff V(a) = 0)
m

(∀a′,V(a)M(B) = 0 iff V(a) = 0)
m

(M(B) full-rank)⇔ (∀a′,a′M(B) = 0 iff a′ = 0)

The first and last equivalences are simply the definition, the second
and fourth uses the fact that V is a vector space isomorphism and the
third one uses Proposition 2, item 3.

ut

B Proof of Proposition 3

Proof. Let L ·D · L? be the LDL decomposition of BB?. We have:

(v − c) · B̃? = (z− t)B · B̃?

= (z− t)LD
(8)

One can check that for any j ∈ J1, nK,

((z− t)L)j =
∑
i>j

(zi − ti)Lij = t̄j − zj ∈
[
−1

2
,
1

2

]
(9)

where the second (resp. third) equality comes from the way the t̄j ’s
(resp. zj ’s) are computed in Algorithm 3. We note b̃1, ..., b̃n the row vectors

Fast Fourier Orthogonalization 31

of B̃. Combining equations 8 and 9 yields |〈v − c, b̃j〉| 6 1
2‖b̃j‖

2. Since

the vectors b̃1, ..., b̃n are orthogonal and (v− c) ∈ Span(B̃), we can write

v − c =
∑

16j6n

〈v−c,b̃j〉
‖b̃j‖2

b̃j

∈
∑

16j6n

[
−1

2 ,
1
2

]
b̃j

∈ P(B̃)

Where the second equality comes from the fact that |〈v−c, b̃j〉| 6 1
2‖b̃j‖

2,
and the third one from the definition of P . This concludes the proof. ut

C Proof of Lemma 5

Proof. We prove the lemma for d′ = gpd(d), extension to the general case
is straightforward. a can be uniquely written as a =

∑
06i<k x

iai(x
k) where

each ai ∈ Rd′ . Let ζd be an arbitrary d-th primitive root of unity. We recall

that Ωd = {ζjd|j ∈ Z×d } and note Ud
∆
= {ζ ∈ C|ζd = 1} = {ζjd|j ∈ Zd}. One

can check that:

(ζ ∈ Ud\Ωd)⇔ (ζk ∈ Ud′\Ωd′) (10)

Which is immediate by writing ζ = ζjd, with j ∈ Zd\Z×d . We recall

that evaluating a on each ζjd ∈ Ud yields the linear system

a(ζjd) =
∑

06i<k

ζijd ai(ζ
kj
d) =

∑
06i<k

ζijd ai(ζ
j
d′) (11)

As a step of the FFT (see Lemma 1), the system 11 is invertible.
In addition, one can check in equation 10 that if ζ ∈ Ud\Ωd, then a(ζ)
depends only of the ai(ζ

′) for ζ ′ ∈ Ud′\Ωd′ . Similarly, if ζ ∈ Ωd, then
a(ζ) depends only of the ai(ζ

′) for ζ ′ ∈ Ωd′ . So the linear system can be

separated in two independent systems. Noting a(E)
∆
= {a(e)|e ∈ E}:

[
a(Ωd) a(Ud\Ωd)

]
=
[
(ai(Ωd′))06i<k (ai(Ud′\Ωd′))06i<k

] [M1 0

0 M2

]
Since the whole system is invertible, both matrices M1 and M2 are

invertible too. We can conclude that a(Ud′\Ωd′) = 0d−ϕ(d) iff all the
ai(Ud′\Ωd′)’s are zero too. This is equivalent to saying that a ∈ ι(Fd) iff
∀i, ai ∈ ι(Fd′), which proves the lemma. ut

