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Abstract. In CRYPTO 1999, J. An and M. Bellare proposed a Merkle-
Damg̊ard iteration based MAC construction called NI-MAC in order to
avoid constant re-keying on multiblock messages in NMAC and to ease
the security proof. In CRYPTO 2014, Gazi et al. revisited the proof
of NI-MAC in the view of structure graph introduced by Bellare et al.

in CRYPTO 2005 and gave a tight bound of order lq2

2n
, which is an

improvement over the trivial bound of order l2q2

2n
, for q queries, each

of length at most ` blocks. But this is again restricted to the birthday
security. In order to prove the security of NI-MAC, Gazi et al. (CRYPTO
2014) introduced a variant of NI-MAC, called NI2-MAC and analyzed the
advantage of NI2 MAC. Then he showed that the same proof technique
will be applied to the security analysis of NI-MAC.
In this paper, we lift the birthday bound of NI2-MAC construction be-
yond birthday O(q2l4/22n) by a small change in the existing construction
with one extra invocation of a independent keyed function. Finally, we
argue how to lift the security of NI-MAC beyond birthday using the
security proof for NI2-MAC.
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1 Introduction

In symmetric key paradigm, MAC (Message Authentication Code) is used for
preserving message integrity and message origin authentication. The design of
a MAC should not only consider achieving security, but also target attaining
efficiency. In the literature, three different approaches of designing a MAC exists:
(a) universal hash function based MAC, a popular example of which is UMAC [6],
(b) a compression function based MAC, like NMAC [2], HMAC [2], NI [1] etc.
(c) Block cipher based MAC, such as CBC MAC [4], PMAC [7], OMAC [12].
etc.

Most of the popular MACs are block cipher based MACs, but each one of
them suffers from the same problem - security is guaranteed up to the birthday
bound. When the block length of the underlying block cipher is 128-bit, then



birthday bound does not seem to be a problem, as we are guaranteed to have
64 bits of security which is well acceptable for many practical applications. But
when we deal with 64-bit block cipher as used in many light weight crypto
devices, then birthday bound problem becomes the main bottleneck. Throughout
the paper, we use n to denote the block-length and q to denote the number of
MAC-queries by the adversary.

Related Work on Beyond birthday Secure MAC. In recent researches,
many MAC constructions have been proposed with security beyond the birthday
barrier without degrading the performance. The first attempt was made in ISO
9797-1 [3] without security proof. But Algorithm 4 of ISO 9797-1 was attacked
by Joux et al. [15] that falsified the security bound. Algorithm 6 of ISO 9797-
1 was proven to be secure against O(22n/3) queries with restrictions on the
message length [20]. In [20] Yasuda proved that the sum of two independent
ECBC has beyond birthday bound. However, it requires four keys and it is rate
1/2 construction as it requires two block cipher calls for processing each message
block. In 2011, he proposed PMAC Plus Construction [21] that achieves beyond
birthday security. In 2012, Zhang et al. [22] proposed a 3key version of f9 MAC
that achieves BBB.

There is also another deterministic MAC mode provides security beyond
the birthday bound. Given an n-bit to n-bit fixed-key blockcipher with MAC
security ε against q queries, Dodis et al. [9] have designed a variable-length MAC
achieving O(εqpoly(n)) MAC security. However, this design requires even longer
keys and more block cipher invocations. By parity method, Bellare et al. present
MACRX [3] with BBB security, conditioned on the input parameters are random
and distinct. In [13], Jaulmes et al. proposed a randomized MAC that provides
BBB security based on the ideal model (or possibly based on tweakable block
cipher). Another BBB secure randomized construction called generic enhanced
hash then MAC has been proposed in [18] by Minematsu. Recently Datta et
al. in [8] unify PMAC Plus and 3kf9 in one key setting with beyond birthday
security.

In CRYPTO 1999, J. An and M. Bellare [1] proposed a Merkle-Damg̊ard it-
eration based MAC construction called NI-MAC. The construction of NI-MAC
is similar to that of NMAC [2], the only difference is that in NI-MAC the com-
pression function f takes an additional input key k at each invocation. The
motivation of designing NI was to avoid constant re-keying on multi-block mes-
sages in NMAC and to allow for a security proof starting by the standard switch
from a PRF to a random function, followed by information-theoretic analysis.

In CRYPTO 2014, Gazi et al. [10] revisited the proof of NI-MAC in the view
of structure graph introduced by Bellare et al. in CRYPTO 2005 [5] and gave a

tight bound of order lq2

2n , which is an improvement over trivial bound of order
l2q2

2n , for q queries, each of length at most ` blocks. But this is again restricted
to the birthday security. In order to prove the security of NI-MAC, Gazi et
al. [10] introduced a variant of NI-MAC, called NI2-MAC, and then derived
the security of NI-MAC from the security analysis of NI2-MAC. In this paper,
we propose an extension of NI2-MAC with a single invocation of an additional



pseudo-random function and prove (Section 4) that it achieves beyond-birthday
security. Furthermore, we make a remark at the end that if we extend the NI
MAC in the same way as we did for NI2 MAC, then also we achieve beyond
birthday bound security.
Organization: Section 2 revisits the definition of prf, mac, structure graph.
Section 3 contains the construction of NI2+. Security analysis of NI2+ is shown
from Section 4 to Section 6. We conclude the paper in Section 7.

2 Preliminaries

In this section, we briefly discuss the notations and definitions used in this paper.
We also state some existing basic results.

2.1 PRF and Secure MAC

We denote |S| as the cardinality of set S and Sc as the complement set of S. Let

x
$←− S denote that x is chosen uniformly at random from S. Let Func(A,B)

denote the set of all functions from A to B A function ρ : A → B is said to be
a random function, if ρ is chosen uniformly at random from the Func(A,B).

We will specify a random function by performing lazy sampling. In lazy sam-
pling initially the function ρ is undefined at every point of its domain. We main-
tain two sets that grows dynamically. One is domain, Dom(ρ) and another is
Range, Ran(ρ), both initialized to be empty. Dom(ρ), Ran(ρ) keeps the record
of already defined domain points and range points of function ρ respectively.

Therefore, if x /∈ Dom(ρ) then we will choose y
$←− B\ Ran(π) and add y in

Ran(ρ) and x in Dom(ρ). In this regard, x is said to be fresh.
We consider that an adversary A is an oracle machine with access to its

oracle O(·) and outputs either 1 or 0. Accordingly, we write AO(·) = 1 or 0.
The resource of A is measured in terms of the time complexity T (n) that it
takes to interacts with its oracle O(·) and the query complexity q(n) which
says the number of queries and replies exchanged between the adversary and its
oracle. For practical purpose, we restrict to probabilistic polynomial time (PPT)
adversaries only.

The PRF-advantage of a function Fk : A→ B is defined as

AdvPRF
Fk

(A) = Pr
[
AFk(·) = 1 : k

$←− K
]
− Pr

[
Af(·) = 1 : f

$←− Func(A,B)
]
.

If this advantage is negligible in the length of the input for all PPT adversaries,
F is said to be a secure PRF. Note that the first probability is calculated over

the internal coin tosses of the algorithm A and randomness of k
$←− K and second

probability is calculated over the randomness of f
$←− Func(A,B).

The length of M in bits is denoted by len(M). When it is not a multiple of
n, we append 10n−1−len(M) mod n to M to make len(M) a multiple of n. We
denote the maximum number of block in a query by l. We denote the partition



of a message M as M = M1||M2|| . . . ||Ml where each Mi is an n-bit block and
the number of blocks of M is denoted by l.

An adversary attacking a MAC with q queries obtains q tags for q distinct
messages and produces a valid tag of a fresh message that he has not queried
earlier. It is known [11] that any secure PRF is a secure MAC. Thus, to show that
a MAC construction is secure, one needs to show that the PRF-advantage (which
is a function of q, l and n) of an adversary for the construction is negligible.

2.2 Structure Graphs

In this section, we briefly revisit the structure graph analysis of CBC-MAC [5]
by Bellare et al. and that of NI-MAC [10] by Gazi et al.

Consider an iterated/cascaded construction with a function f , where f could
be a random permutation or a random function, that works on a message M =
M1||M2|| . . . ||Ml of length l blocks as follows:

Y0 = 0, and Yi = f(Yi−1,Mi) for i = 1, . . . , l.

Note that for CBC-MAC analysis, f(α, β) is taken as π(α ⊕ β) and for the NI-
MAC analysis, f(α, β) is taken as ρ(α||β), where π is a random permutation
over n bits and ρ is a random function from b+ n bits to n bits, where b is the
message block-length and n is the length of the chaining variable as well as the
tag.

For a set of any two fixed distinct messagesM = {M (1),M (2)} and a function
f , we construct the structure graph Gf (M) with {0, 1}n as the set of nodes
as follows. We follow the computations for M (1) followed by those of M (2) by
creating nodes labelled by the values yi of the intermediate chaining variables Yi
with the edge (Yi, Yi+1) labelled by the block Mi+1. In this process, if we arrive
at a vertex already labelled, while not following an existing edge, we call this
event an f -collision. An accident is an f -collision that does not close a cycle with
alternating edge-directions such that the XOR of the labels of the cycle becomes
0.

More formally, let for two distinct messages M (1) and M (2) of l1 and l2 blocks
respectively, where

M (1) = M
(1)
1 ||M

(1)
2 || . . . ||M

(1)
l1

and M (2) = M
(2)
1 ||M

(2)
2 || . . . ||M

(2)
l2
,

the corresponding Y -values be given by

Y
(1)
0 , Y

(1)
1 , Y

(1)
2 , . . . , Y

(1)
l1

and Y
(2)
0 , Y

(2)
1 , Y

(2)
2 , . . . , Y

(2)
l2

respectively. Let σ = l1 + l2. We use the notation Mi to refer to the block M
(1)
i ,

when i < l1, otherwise to refer to the block M
(2)
i−l1 . Similarly, let Yi to refer to

0 when i = 0; Y
(1)
i , when 1 ≤ i ≤ l1; and Y

(2)
i−l1 , when l1 + 1 ≤ i ≤ σ. Now,

consider the mappings
[[·]] and [[·]′ on {0, . . . , σ}



so that [[i]] = min {j : Yi = Yj} and [[i′]] = [[i]] for i 6= l1 except that [[l1]]′ = 0.
For any fixed f and any two distinct messagesM = {M (1),M (2)}, we define

the structure graph Gf (M) to be the triple Gf (M) = (V,E, L), where

V = {[[i]] : 0 ≤ i ≤ σ}, E = {([[i− 1]]′, [[i]]) : 1 ≤ i ≤ σ}

and L = E → {0, 1}n is an edge-labeling function defined as

L((u, v)) = {Mi : [[i− 1]]′ = u and [[i]] = v}.

Let (Vi, Ei, Li) be the graph obtained after processing only the first i out of
σ blocks of M. We say that (i, [[i]]) is an f -collision if [[i]] < i and Mi /∈
Li−1([[i − 1]]′, [[i]]). Note that the last condition on Mi implies that collision
occurred due to parallel edges with the same message label is not considered.

In [5], a general collision is called a true collision (except the collision that
occurs due to parallel edges with same label on the edges). Further, a true
collision is called an accident if it is not followed from a cycle C with alternating
edges with the sum of the labels of the edges involved in C to 0, otherwise it is
called an induced collision. However, for NI2-MAC, all f -collisions are accidents.
In our work, we need to consider the accidents in Gf (M). Let G(M) denote the
set of all structure graphs corresponding to the set of messages M (by varying
f over a function family). For a fixed graph G, let Acc(G) denote the set of all
accidents in G. We state the following known results.

Proposition 1. [10, Lemma 2] For a fixed graph G, Prf [Gf (M) = G] ≤
2−n|Acc(G)|.

Proposition 2. [5, Lemma 7] Pr[G
$←− G(M) : |Acc(G)| ≥ 2] ≤ 8l4

22n .

3 Proposed Construction of NI2+ for Beyond-Birthday
Secure MAC

We present the schematic diagram of NI2+ in Fig. 3.1 followed by the descrip-
tion in Algorithm 1. fK1

, fK2
and fK3

are three independently chosen keyed

fk1 fk1 fk1 fk1 fk20n

Y1 Y2 Y3 Yl−1 Yl

� � � ��2l 2l−1 22 212l−2

⊕ ⊕ ⊕ ⊕⊕0n

Σ

Θ

fk3 T

M1 M2 M3 Ml 0b

. . .

Fig. 3.1: Construction of NI2+ MAC



Input: fK1 , fK2 , fK3 : K1,K2,K3
$←− K, M ← {0, 1}∗

Output: T ∈ {0, 1}n
M1||M2|| . . .Ml ←M ||10∗; //l is the number of message blocks in M1

Z ← 0n;2

Y ← 0n;3

for i = 1 to l do
Y ← fK1(Mi, Y );4

Z ← 2 · (Z ⊕ Y );5

end
Θ ← Z;6

Σ ← fK2(0b, Y );7

T ← fK3(Σ,Θ);8

Return T ;9

Algorithm 1: Algorithm for NI2+ MAC

functions such that fK1
, fK2

: {0, 1}n+b → {0, 1}n and fK3
: {0, 1}2n → {0, 1}n.

We denote

CascfK1 (M) := fK1
(. . . (fK1

(fK1
(fK1

(0,M1),M2),M3), . . . , )Ml)

to be the output of the last message block in the upper lane of the construction
depicted in Fig.3.1.

For any message M ∈ {0, 1}∗, NI2+ MAC (after suitably padding with 10∗

if the message length is not a multiple of the block length b) partitions M
into l many blocks each of which is b bits long. Then the blocks are iteratively
processed as depicted in Fig.3.1. Final output Yl of CascfK1 (M) as depicted in
Fig.3.1 and 0b becomes the input of fK2(·, ·) and the output of fK2(·, ·) is denoted
as Σ. This is the so-called NI2 construction which we extend as follows. A linear
combination of the intermediate chaining value of CascfK1 (M) is denoted as Θ.
The symbol ‘2’ in the construction is the root of an irreducible polynomial of
degree n. Σ and Θ are then fed into fK3(·, ·) and the output is returned as tag
T .

Remark 1 NI-MAC, as originally proposed by An and Bellare in [1] replaces
the 0 block at the input of fK2 with the bit length |M | of the message M . We
extend NI-MAC in the same way as we do for NI2-MAC and obtain NI+-MAC.

Note: In subsequent sections all the security proofs are done for NI2+ MAC.

4 Security Analysis of NI+-MAC

Gazi et. al in [10] have shown that the advantage of distinguishing the output

of NI-MAC from random output is bounded above by q2

2n

(
l + 64l4

2n

)
and that

for NI2-MAC is q2

2n

(
ld
′
(l) + 64l4

2n

)
where d

′
(l) = max

l′∈{1,...,l}
|
{
d ∈ N : d|l′

}
|. In



this section we analyze the advantage of our construction NI2+-MAC and show
that the advantage of our construction achieves beyond birthday bound security;
better than that of NI-MAC or NI2-MAC. Thus we have the following theorem.

Theorem 1. Let f : {0, 1}n × {0, 1}n × {0, 1}b → {0, 1}n be a (ε1, t, q) secure
PRF and (ε2, t, lq) secure PRF. Let h : {0, 1}n × {0, 1}n × {0, 1}n → {0, 1}n be

a (ε3, t, q) secure PRF. Then NI2+ be a
(
ε
′
, t
′
, q, l

)
secure PRF, where

ε
′
≤ ε1 + ε2 + ε3 +

11q2l4

22n
,

such that t = t
′
+ Õ (lq).

Proof. We give the sketch of the proof of Theorem 1 below. Let A be a adaptive
PRF-adversary against NI2+ running in time t and asking at most q queries, each
of length at most l blocks. NI2+ uses three independent keyed functions f1, f2
and h3. Now if we replace f1, f2 and h3 by three different random functions r1, r2

and r3 respectively such that r1, r2
$←− Func({0, 1}n ×{0, 1}n ×{0, 1}b , {0, 1}n)

and r3
$←− Func({0, 1}n × {0, 1}n × {0, 1}n , {0, 1}n) and call the resulting con-

struction NI2+r , then we have

∆A(NI2+, R) ≤ ε1 + ε2 + ε3 +∆A(NI2+r , R),

where εi is the PRF-advantage of fi, i = 1, 2 and ε3 is the PRF-advantage of h3
and R : {0, 1}∗ → {0, 1}n be a uniform random function.

Therefore to prove Theorem 1, we only need to prove

∆A(NI2+r , R) ≤ 11q2l4

22n .

In the experiment where A interacts with NI2+r , let Ci denotes the event that
during the first i queries, the inputs to r3, i.e., (Σ,Θ) for any two distinct queries
M (j) and M (k) are also distinct. That means (Σ(j), Θ(j)) 6= (Σ(k), Θ(k)), ∀1 ≤
j, k ≤ i. Therefore, as long as the monotone condition [17] C = C0, C1, . . .
remains satisfied, the distribution of the responses of NI2+r to distinct queries
will be exactly identical to the distribution of the outputs of r3 on distinct inputs
and thus to independent uniform random values. In other words, we have

NI2+r |C ≡ R.

Thus, using Lemma 1 in [10] we have, ∆A(NI2+r , R) is upper-bounded by the
probability that a distinguisher A issuing q queries to NI2+r makes the monotone
condition C fail. This probability is denoted by PrA[NI2+r ;C]. Thus,

∆A(NI2+r , R) ≤ PrA[NI2+r ;C]. (1)

Now we explain how to construct a non-adaptive PRF adversary Ana from the
above adaptive PRF adversary A.



Construction of Non-adaptive PRF Adversary. Let Ana be the non adap-
tive PRF adversary that we want to construct from the adaptive PRF adversary
A. Ana will simulate the adaptive PRF adversary A in the following way. At
the time of ith query, M (i), where 1 ≤ i ≤ q, asked by adversary A, Ana will
return random string in response of ith query to A. After all the q queries are
over, Ana will (non-adaptively) ask all the queries that A asked during simulated
interaction.

Therefore, we have the following

PrA[NI2+r ;C] = PrAna
[NI2+r ;C]. (2)

The maximum probability over all such non-adaptive distinguishers Ana is given
by

Pr[NI2+r ;C] = max
Ana

PrAna [NI2+r ;C] (3)

With respect to the NI2+r construction, let Coll(l) denotes the probability that
for random choice of the compression function f1 and f2, results in a collision in
Σ and Θ maximized over the choice of two distinct inputs M (i),M (j), each of
which is at most l blocks long.

More formally, for f1, f2
$←− Func

(
{0, 1}n × {0, 1}n × {0, 1}b → {0, 1}n

)
we

define,

Coll(l) := max
M(i) 6=M(j)||M(i)||,||M(j)||≤l

Prf1,f2 [
(
Σ(i), Θ(i)

)
=
(
Σ(j), Θ(j)

)
]

Note that, (Σ(i), Θ(i)) = (Σ(j), Θ(j)) implies Σ(i) = Σ(j) and Θ(i) = Θ(j).
Therefore, to bound the probability of occurrence of a collision in the input of
r3 necessarily implies to bound the probability of occurrence of a collision in Σ
and a collision in Θ. That means

Prf1,f2 [
(
Σ(i), Θ(i)

)
=
(
Σ(j), Θ(j)

)
] = Prf1,f2 [Σ(i) = Σ(j) ∧Θ(i) = Θ(j)] (4)

Note that, Ana violates the monotone condition C only when the collision occurs
at the input of r3. Therefore from Equation (1), (2) and (3), and using union
bound we obtain,

∆A(NI2+r , R) ≤ Pr[NI2+r ;C] ≤ q2

2
Coll(l). (5)

In Lemma 1 of Section 4.1, we show that Coll(l) ≤ 22l4

22n . Therefore, plugging in
the bound of Coll(l) into Equation (5), we get the result. ut

4.1 Computation of Coll(l)

Recall that, Coll(l) was defined as Pr[Σ(i) = Σ(j) ∧ Θ(i) = Θ(j)] maximized
over the choice of pair of distinct inputs M (i) and M (j), each of length at most
l blocks. Therefore, to establish the bound on Coll(l), we derive the bound on
Pr[Σ(i) = Σ(j) ∧Θ(i) = Θ(j)]



Lemma 1. Given two fixed distinct messages M (i),M (j), each of length is at
most l blocks, we have

Pr[Σ(i) = Σ(j) ∧Θ(i) = Θ(j)] ≤ 22l4

22n
.

Proof. Let Z(i) = Y
(i)
li

denote the input to the function r2 for message M (i)(refer

to Fig.3.1). Similarly, we set Z(j) = Y
(j)
lj

. So, we have,

Pr[Σ(i) = Σ(j) ∧Θ(i) = Θ(j)]

= Pr[Σ(i) = Σ(j) ∧Θ(i) = Θ(j) ∧ Z(i) = Z(j)] +

Pr[Σ(i) = Σ(j) ∧Θ(i) = Θ(j) ∧ Z(i) 6= Z(j)] (6)

≤ Pr[Z(i) = Z(j) ∧Θ(i) = Θ(j)] +

Pr[Σ(i) = Σ(j) ∧Θ(i) = Θ(j) ∧ Z(i) 6= Z(j)] (7)

≤ Pr[Z(i) = Z(j) ∧Θ(i) = Θ(j)] +(
1∑

k=0

Pr[Σ(i) = Σ(j) ∧Θ(i) = Θ(j) ∧NCOL = k|Z(i) 6= Z(j)] · Pr[Z(i) 6= Z(j)]

)
+Pr[NCOL ≥ 2] (8)

≤ Pr[Z(i) = Z(j) ∧Θ(i) = Θ(j)] +
1∑

k=0

Pr[Σ(i) = Σ(j) ∧Θ(i) = Θ(j) ∧NCOL = k|Z(i) 6= Z(j)] + Pr[NCOL ≥ 2].

Since the event Z(i) = Z(j) is a subset of the event Σ(i) = Σ(j), the first term
of Equation (6) is equal to Pr[Z(i) = Z(j) ∧Θ(i) = Θ(j)].

According to Claim 1, we have Pr[Z(i) = Z(j) ∧ Θ(i) = Θ(j)] ≤ ld′(l)
22n + 8l4

22n .

From Proposition 2 we have, Pr[NCOL ≥ 2] ≤ 8l4

22n . From Claim 2, we have,∑1
k=0 Pr[Σ(i) = Σ(j)∧Θ(i) = Θ(j)∧NCOL = k|Z(i) 6= Z(j)] ≤ 4l2+1

22n . Therefore,

Pr[Σ(i) = Σ(j) ∧Θ(i) = Θ(j)] ≤ ld
′
(l)

22n
+

8l4

22n
+

4l2 + 1

22n
+

8l4

22n

≤ ld
′
(l)

22n
+

16l4

22n
+

4l2 + 1

22n

≤ 22l4

22n

In the next two sections, we state and prove the two claims above.

5 Details of the Proof of Claim 1

Claim 1 Fix two distinct messages M (i),M (j) each of length at most l blocks.
Then,

Pr[Z(i) = Z(j) ∧Θ(i) = Θ(j)] ≤ ld′(l)

22n
+

8l4

22n
,



where Z(i) = Y
(i)
li
, Z(j) = Y

(j)
lj

, and li, lj are the number of blocks of M (i),M (j)

respectively.

Proof. We prove the claim using the structure graph. After fixing two messages
M (i) and M (j) and choosing a function f uniformly at random from the set of
all functions over {0, 1}b × {0, 1}n → {0, 1}n, we analyze the structure graph
G := Gf (M (i),M (j)). In particular, we analyze the probability of the event
Z(i) = Z(j) ∧ Θ(i) = Θ(j) in view of number of collisions (say, NCOL) occurred
in the corresponding structure graph G. Therefore, we have,

Pr[Z(i) = Z(j) ∧Θ(i) = Θ(j)] = Pr[Z(i) = Z(j) ∧Θ(i) = Θ(j) ∧NCOL = 1]

+Pr[Z(i) = Z(j) ∧Θ(i) = Θ(j) ∧NCOL ≥ 2].

In Section 5.1, we show that

Pr[Z(i) = Z(j) ∧Θ(i) = Θ(j) ∧NCOL = 1] ≤ ld′(l)

22n
, (9)

where d′(l) is the maximum number of positive divisors of the integer l
′

from
[1, l].

When NCOL in the graph is at least 2, then using Proposition 2 we have,

Pr[Z(i) = Z(j) ∧Θ(i) = Θ(j) ∧NCOL ≥ 2] ≤ Pr[NCOL ≥ 2] ≤ 8l4

22n
. (10)

Therefore, combining Equations (9) and (10), we get the result. ut

Now the only part of the proof that remains is to prove Equation (9).

5.1 Proof of Equation (9)

We can write

Pr[Z(i) = Z(j) ∧Θ(i) = Θ(j) ∧NCOL = 1]

= Pr[Z(i) = Z(j)∧NCOL = 1]·Pr[Θ(i) = Θ(j) | Z(i) = Z(j)∧NCOL = 1]. (11)

In Equation (11), there are two probabilities that need to be computed. First,
we compute Pr[Z(i) = Z(j) ∧ NCOL = 1] by considering different structure
graphs with NCOL = 1, corresponding to the construction NI2+r . Let G denote
the set of all structure graphs with NCOL = 1 and Z(i) = Z(j). Without loss of
generality, let li and lj be the lengths of the messages M (i) and M (j) respectively,
with li ≥ lj . Let G1 ⊂ G be the set of all structure graphs such that the M (i)-
path does not contain any loop. The G2 = G \ G1 is the set of the remaining
structure graphs. For the ease of understanding blue colored path represents the
M (i) path and red colored path represents the M (j) path.



Analysis of G1. If M (j) is a proper prefix of M (i), then |G1| = 0, since in that
case Z(i) won’t be equal to Z(j). So without loss of generality, lets assume that
M (j) is not a prefix of M (i). Suppose the first p blocks constitute the common
prefix. Define t∗ = min {t > li + p : [[t]] ≤ li}. Thus, the edge ([[t∗ − 1]]′, [[t∗]])
in G creates the collision and from that point onwards, M (j) path will follow
the rest of M (i) path which is nothing but the common suffix part of M (i) and
M (j).

p [[t∗]]

Fig. 5.1: Structure Graph of type G1

The scenario is explained in Fig. 5.1. Since there are ≤ l choices for t∗, we have
|G1| ≤ l.

Analysis of G2. In graph G2, M (i) path creates a collision by creating a self
loop. We define t∗ = min {t : [[t]] ≤ t} and let p∗ = [[t∗]]. Therefore, (t∗, p∗)
denotes the collision in M (i) path. Now we can split M (i) into three mutual

disjoint strings x, y, z such that x := M
(i)
1 || . . . ||M

(i)
p∗ , y := M

(i)
p∗+1|| . . .M

(i)
t∗ and

some z chosen to be the smallest string so that we can write M (i) = x||ya||z for
some a ≥ 1.

Note that to have Z(i) = Z(j) and one collision has already been occurred
in the loop, therefore, M (j)-path must be a subpath of M (i)-path and it cannot
bifurcate from M (i) path and then collide with the last output block of M (i) as
that would increases the number of collisions to 2. Thus, the M (j)-path must
be of the form x||yb||z, where b < a (since li > lj in this case). Hence, the
number of blocks in y, i.e., t∗ − p∗, in the diagram must divide li − lj . This

[[t∗]] = p∗x

y

z

Fig. 5.2: Structure Graph of type G2



scenario is explained in Fig. 5.2. There are at most l choices for such a t∗ and
d′(l) choices for such a p∗. Hence, |G2| ≤ ld′(l). In the special case, when li = lj ,
then obviously, |G2| = 0.

Therefore, considering G1 and G2 together, by Proposition 1, we have

Pr[Z(i) = Z(j) ∧NCOL = 1] ≤ ld′(l)

2n
. (12)

Now, we compute the second probability of Equation 11, i.e., Pr[Θ(i) =
Θ(j) | Z(i) = Z(j) ∧NCOL = 1]. Note that Θ(i) = Θ(j) gives an equation of the
form

2liY
(i)
1 + 2li−1Y

(i)
2 + · · ·+ 2Y

(i)
li

= 2ljY
(j)
1 + 2li−1Y

(i)
2 + · · ·+ 2Y

(j)
lj
. (13)

The condition Z(i) = Z(j) and NCOL = 1 is equivalent to the condition Y
(i)
li

=

Y
(j)
lj

and Y
(i)
a 6= Y

(j)
b , whenever either a < li or b < lj . With this condition,

Equation 13 becomes

2liY
(i)
1 + 2li−1Y

(i)
2 + · · ·+ 22Y

(i)
li−1 = 2ljY

(j)
1 + 2li−1Y

(i)
2 + · · ·+ 22Y

(j)
lj−1. (14)

Now, for both the graphs G1 and G2, we will be able to find at least one Y
variable belonging to the part between p and t∗, such that Equation (14) becomes
non-trivial for such variable Y , giving a probability of 1

2n for the second term of
Equation (11). When this along with Equation (12) is plugged in Equation (11),

the probability in Equation (11), i.e., in Equation (9),becomes bounded by ld′(l)
22n .

6 Details of the Proof of Claim 2

Claim 2 Fix two distinct messages M (i),M (j) each of length at most l blocks.
Then,

1∑
k=0

Pr[Σ(i) = Σ(j) ∧Θ(i) = Θ(j) ∧NCOL = k|Z(i) 6= Z(j)] ≤ 4l2 + 1

22n
,

where Z(i) = Y
(i)
li
, Z(j) = Y

(j)
lj

, li, lj is the number of blocks of M (i),M (j) re-
spectively.

Proof. It is to be noted that, under the condition Z(i) 6= Z(j), Σ(i) = Σ(j) is
independent on Θ(i) = Θ(j) & NCOL = k for k = 0, 1. Therefore, we can write

1∑
k=0

Pr[Σ(i) = Σ(j) ∧Θ(i) = Θ(j) ∧NCOL = k|Z(i) 6= Z(j)]

= Pr[Σ(i) = Σ(j)|Z(i) 6= Z(j)]

(
1∑

k=0

Pr[Θ(i) = Θ(j) ∧NCOL = k|Z(i) 6= Z(j)]

)
.



Now, Pr[Σ(i) = Σ(j)|Z(i) 6= Z(j)] ≤ 1
2n as f3 is independent from f1 and f2;

collision probability of a random function. Again from Claim 2 we have,

1∑
k=0

Pr[Θ(i) = Θ(j) ∧NCOL = k|Z(i) 6= Z(j)] ≤ 4l2 + 1

2n
. (15)

Combining the collision probability of a random function and Equation (15), we
get the result. ut

.

Therefore, we are only left with the proof of Equation (15).

6.1 Proof of Equation (15)

To prove the equation, we separately bound the following Pr[Θ(i) = Θ(j) ∧
NCOL = 0 | Z(i) 6= Z(j)] and Pr[Θ(i) = Θ(j) ∧ NCOL = 1 | Z(i) 6= Z(j)]
separately.

Again we consider two distinct messages M (i) and M (j) with lengths li and
ljrespectively, with li ≥ lj . Since we are given the condition Z(i) 6= Z(j), the

structure graphs will have the common feature that the end-point Y
(i)
li

of M (i)-

path and the end-point Y
(j)
lj

of M (j)-path must be different, i.e., from Equa-

tion (13), we have Y
(i)
li
⊕Y (j)

lj
= c 6= 0. Thus, Equation (13) becomes non-trivial,

with probability 1
2n .

Now, we need to count the number of distinct structure graphs for each of
the cases NCOL = 0 and NCOL = 1.

Clearly, when NCOL = 0, only such structure graph is possible, as shown in
Fig. 6.1. Thus, we have

Fig. 6.1: Structure Graph of accident 0

Pr[Θ(i) = Θ(j) ∧NCOL = 0 | Z(i) 6= Z(j)] ≤ 1

2n
. (16)

Now, let us consider the case NCOL = 1. Let G be the set of all structure
graphs with NCOL = 1 with Z(i) 6= Z(j). Let G1 ⊂ G be the set of all structure
graphs such that the M (i)-path does not contain any loop. The G2 = G \G1 is
the set of remaining structure graphs.



Analysis of G1. For G1, the M (j) path can either intersect with M (i) exactly
once or M (j) path does not intersect with M (i) but it creates a loop with itself.
In the first case, M (j)-path cannot have any loop as shown in Fig. 6.2 as that
would increase the number of collision to 2, and in the second case, the M (j)

path cannot intersect M (i)-path at all as that would again increase the number
of collision to 2 as shown in Fig. 6.3. In either case, the number of such graphs
is at most l2.

p

Fig. 6.2: Structure Graph of type G1; M (i) path has no loop

p

Fig. 6.3: Structure Graph of type G1; M (i) path has no loop, M (j) path has loop

Analysis of G2. For G2, note that M (i) path contains a loop. Now the M (j)

path may or may not intersects M (i) path. If it does, then it must follow the
same loop as M (i) and then exit either from the loop or afterwards, as shown
in Fig. 6.4. M (j) path may also bifurcate from M (i) path before the loop and
then it should not intersect with M (i) path again or it should not make any self
loop with itself as both of the cases would increases the number of collision to 2.
Note that M (j) path cannot intersect M (i) path before the loop as that would
increase the number of collision to 2.

If M (j) path does not intersect M (i) path, then M (j) path cannot make a loop
with itself as that would increase the number of collision to 2. Therefore, again
the case is similar to Fig. 6.3 where the blue colored path will then represent
the M (j) path and red colored path will represent M (i) path. In either case, the
number of such graphs is at most l2.



[[t∗]] = p∗x

y

Fig. 6.4: Structure Graph of type G2; M (i),M (j) both path contain a loop

Thus, for the above 4l2 graphs (combined G1 and G2),

Pr[Θ(i) = Θ(j) ∧NCOL = 1 | Z(i) 6= Z(j)] ≤ 4l2

2n
. (17)

Therefore, from Equation (16) and (17), we get

1∑
k=0

Pr[Θ(i) = Θ(j) ∧NCOL = k|Z(i) 6= Z(j)] ≤ 4l2 + 1

2n
.

Remark 2 We have achieved BBB security for the NI2+ MAC which is the
extended version of NI2 MAC. Note that NI2 MAC is a variant of NI MAC.
One can easily show that same modification on NI MAC gives BBB security. It
is to be noted that in case of NI+ MAC when we calculate

Pr[Σ(i) = Σ(j) ∧Θ(i) = Θ(j) ∧ Z(i) = Z(j)],

then we should consider only the structure graph that does not contain any loop
as we need to consider the ith and jth message having same length.

7 Conclusion and Future Work

Rcently, NI2-MAC was introduced in order to prove the security of NI-MAC. In
this paper, we show a modified construction of NI2-MAC and prove its security
to be beyond birthday. While we use we use an extra keyed function (fK3

) in
NI2+, an interesting research problem would be to avoid the usage of this extra
keyed function and achieves beyond birthday security.
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