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Abstract. Gaži et al. [CRYPTO 2014] analyzed the NI-MAC construc-
tion proposed by An and Bellare [CRYPTO 1999] and gave a tight
birthday-bound ofO(lq2/2n), as an improvement over the previous bound
of O(l2q2/2n). In this paper, we design a simple extension of NI-MAC,
called NI+-MAC, and prove that it has O(q2l4/22n) security bound. Our
construction not only lifts the security of NI-MAC beyond birthday, it
also reduces the number of keys from 2 (NI uses 2 independent keys)
to 1. Before this work, Yasuda had proposed [FSE 2008] a single fixed-
keyed compression function based BBB-secure MAC that uses an extra
tweak. However, our proposed construction NI+ does not require any ex-
tra tweak and thereby has reduced the state size compared to Yasuda’s
proposal [FSE 2008]. Further, the security proof of Yasuda’s construc-
tion is straight-forward, as tweakable functions are replaced by uniform
independent random functions. On the other hand, our proof technique
is completely different and uses the structure graph based analysis intro-
duced by Bellare et al. [CRYPTO 2005].
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1 Introduction

In symmetric key paradigm, MAC (Message Authentication Code) is used for
preserving message integrity and message origin authentication. The design of
a MAC should not only consider achieving security, but also target attaining
efficiency. In the literature, three different approaches of designing a MAC exists:
(a) universal hash function based MAC, a popular example of which is UMAC [8],
(b) a compression function based MAC, like NMAC [2], HMAC [2], NI [1] etc.
(c) Block cipher based MAC, such as CBC MAC [4], PMAC [9], OMAC [17].
etc.

Most of the popular MACs are block cipher based MACs, but each one of
them suffers from the same problem - security is guaranteed up to the birthday
bound. When the block length of the underlying block cipher is 128-bit, then
birthday bound does not seem to be a problem, as we are guaranteed to have
64 bits of security which is well acceptable for many practical applications. But
when we deal with 64-bit block cipher (e.g HIGHT [16], PRESENT [10]) as used
in many light weight crypto devices (e.g RFID, smartcard) then birthday bound



problem becomes the main bottleneck.

Related Work on NMAC and HMAC. NMAC and its variant HMAC [2]
is the first re-keying compression function based MAC where a key is appended
to a message and then the appended message is hashed using Merkle-Damg̊ard
technique. It has been standardized in [23]. and has become popular and widely
used in many network protocols like SSH, IPSec, TLS etc. Bellare et al. in [2]
proves that NMAC is a secure PRF based on the assumption (i) f is a secure
PRF and (ii) Cascf is a WCR (weakly collision resistant). HMAC when instan-
tiated with MD4 or SHA-1, both of them play the role of Cascf then they have
been found not to satisfy the WCR property [35, 36] and hence the security of
HMAC [2] stands void. To restore the PRF security of NMAC, Bellare in [6]
investigates the proof and drops assumption (ii). Koblitz and Menezes in [22]
criticizes the way [6] discusses the practical implication of their result against
uniform and non-uniform reductions used in the proof.

Dodis et.al in [12] investigates the indifferentiable property of HMAC from a
keyed random oracle. In a recent line of researches, generic attack against iterated
hash based MAC are being investigated [30, 31, 29, 24]. More recently, Gaži et.
al in [14] showed a tight bound on NMAC. There is also a recent result [15] on
the generic security analysis of NMAC and HMAC with input whitening.

Yausda in [38] had proposed a novel way of iterating a compression function
dedicated for the use of MAC which is more efficient than standard HMAC to
process data much faster. In [40] Yasuda has showed that classical sandwiched
construction with Merkle-Damg̊ard iteration based hashing provides a secure
MAC which is an alternative for HMAC, useful in situation where the message
size is small and high performance is required. A new secret-prefix MAC based
on hash functions is presented in [43] which is similar to HMAC but does not
require the second key.

U.Maurer et. al in [26] has presented a MAC construction namely PDI, that
tranforms any FIL MAC to AIL MAC and investigated the tradeoff between the
efficiency of MAC and the tightness of its security reduction. In [27] construction
of AIL MAC from a FIL MAC with a single key was presented which is better
than NI [1].

Related Work on Beyond birthday Secure MAC.
Block Cipher Based BBB MAC. In recent researches, many MAC construc-
tions have been proposed with security beyond the birthday barrier without
degrading the performance. The first attempt was made in ISO 9797-1 [3] with-
out security proof. But Algorithm 4 of ISO 9797-1 was attacked by Joux et
al. [20] that falsified the security bound. Algorithm 6 of ISO 9797-1 was proven
to be secure against O(22n/3) queries with restrictions on the message length [44].
In [44] Yasuda also presented SUM-ECBC, a 4-key rate-1/2 construction with
beyond birthday bound security. In 2011, Yasuda improved the number of keys
and rate over SUM-ECBC and proposed a 3-key rate-1 PMAC Plus construc-
tion [45] with beyond birthday security. In 2012, Zhang et al. [48] proposed a
3key version of f9 MAC (3kf9) that achieves BBB security.



There is also another deterministic MAC mode provides security beyond the
birthday bound. Given an n-bit to n-bit fixed-key blockcipher with MAC secu-
rity ε against q queries, Dodis et al. [13] have designed a variable-length MAC
achieving O(εqpoly(n)) MAC security. However, this design requires even longer
keys and more block cipher invocations. By parity method, Bellare et al. present
MACRX [3] with BBB security, conditioned on the input parameters are random
and distinct. In [18], Jaulmes et al. proposed a randomized MAC that provides
BBB security based on the ideal model (or possibly based on tweakable block
cipher). Another BBB secure randomized construction called generic enhanced
hash then MAC has been proposed in [28] by Minematsu. Recently Datta et
al. in [11] unify PMAC Plus and 3kf9 in one key setting with beyond birthday
security.

Compression Function based BBB MAC. Besides the block cipher based
BBB MAC constructions, Yasuda in [39] proposed a compression function based
MAC construction - Multi-lane HMAC, that acheievs BBB security. In [42] Ya-
suda presented a double pipe mode operation (Lucks Construction [25]) for con-
structing AIL MAC from a FIL MAC that acheives BBB security. This work
is further extended to provide full security in [46]. In [41] Yasuda has proposed
a fixed single keyed compression function based cascaded MAC in a tweakable
setting where the tweaks are some distinct masking keys of b bits. Thus for a l
blocks message, one needs to compute l many different masks where the masks
are generated from a single mask ∆0 using the field multiplication. The security
of the scheme has been proved to be O(lq2/22n). Further improvement on [41]
is followed in [47].

Related Work on fixed-key MAC. An et al.in [1] proposed a fixed-keyed
compression function based MAC called NI-MAC. The construction of NI-MAC
is similar to that of NMAC [2], the only difference is that NI-MAC uses two
independent keyed compression functions f1, f2. The motivation of designing NI
was to avoid constant re-keying on multi-block messages in NMAC and to allow
for a security proof starting by the standard switch from a PRF to a random
function, followed by information-theoretic analysis.

We mention here that the security proof technique for re-keying compression
function based MAC is completely different from that of fixed-keyed compression
function based MAC. The security of the former scheme is proved using reduc-
tion argument, whereas that of the latter is proved by replacing the fixed-keyed
compression function with a random function.

Gaži et al.in [14] revisited the proof of NI-MAC and gave a tight birthday

bound of O( lq
2

2n ), a better bound than earlier O( l
2q2

2n ).

Our Contributions. The main disadvantage of the scheme of [41] is that one
needs to store the masking key ∆0. Thus, from the hardware point of view, it is
infeasible to use the scheme in low-buffer and light-weight crypto devices, which
are the basic target for achieving BBB security of a cryptographic scheme. More-
over, the proof technique of [41] is straight forward, as tweakable keyed functions
are replaced by independent uniform random functions. In this paper, we pro-
pose NI+, a non-tweakable single-keyed, rate-b/(b + n), compression function



based MAC that achieves beyond-birthday security, where b is the block length
and n is the number of output bits. Moreover, our scheme is better than [41] in
terms of required state size. Since our scheme does not use any extra tweak, our
security proof technique is completely different than [41]. For our proof, we use
the structure graph analysis of [5] and consider more bad events.

We mention here that NI+ is an extension of NI-MAC, and it not only lifts
the security of NI beyond birthday (Sect. 4), but also reduces the number of
required keys from two (NI uses two independent keys) to one. In this context,
we have shown that keeping the original structure of NI-MAC, with Θ being the
sum of all intermediate chaining variables and Σ being the last block output
(Σ,Θ defined in Sect. 3), cannot achieve BBB security.

In the following table we compare the different parameters along with their
security bound of known BBB secure MACs. We write BC to denote block
cipher based MAC, CFrk denotes re-keying compression function based MAC
(e.g HMAC), CFfk denotes fixed-keyed compression function based MAC (e.g

NI), Rate , b
rs , where b-size of message block, s-total input size of the function

without the key part and r is the total number of function calls to process a
single message block.

Construction Type # Keys Rate Security Bound State size (#bits)

SUM-ECBC [44] BC 4 1/2 O(l3q3/22n) 2n

PMAC Plus [45] BC 3 1 O(l3q3/22n) 4n

3kf9 [48] BC 3 1 O(l3q3/22n) 2n

1kf9 [11] BC 1 1 O(q3l4/22n) 2n

1k PMAC+ [11] BC 1 1 O(q3l4/22n) 4n

L-Lane (L = 2) HMAC [39] CFrk 3 1/2 O(q2/22n) 2n

1-pass mode [41] CFfk 1 1 O(lq2/22n) (2b+ 2n)

NI+[This paper] CFfk 1 b/(b+ n) O(q2l4/22n) (b+ 2n)

2 Preliminaries

In this section, we briefly discuss the notations and definitions used in this paper.
We also state some existing basic results.

2.1 Notation and Definitions

We denote |S| as the cardinality of set S. Let x
$←− S denote that x is chosen

uniformly at random from S. [n] denotes the set of integers {1, 2, . . . , n}. (s)|n
denotes the last n bit substring of b bit string s.

Let M be a binary string over {0, 1}. Length of M in bits is denoted by
|M |. When |M | mod b 6= 0, we pad 10d to M to make |M | mod b = 0 where
d = n− 1− |M | mod b and b denotes the block length of M . M1||M2|| . . . ||Ml

denotes the partition of message M after M is being padded, where each Mi ∈
{0, 1}b and l denotes the number of blocks of M . ` denotes the maximum number
of blocks in a message. By a q-set or a q-tuple x := (xi : i ∈ I) for an index set
I, we mean a set or a tuple of size q. When all elements x′is are distinct we write
x ∈ distq.



Random Functions. Let Func(A,B) denote the set of all functions from A
to B. A random function F is a function which is chosen from Func(A,B)
following some distribution, not necessarily uniform. In particular, a function ρn
is said to be a uniform random function, if ρn is chosen uniformly at random from
the set of all functions from a specified finite domain D to {0, 1}n. Throughout
the paper we fix a positive integer n.

We will specify a uniform random function by performing lazy sampling. In
lazy sampling, initially the function ρ is undefined at every point of its domain.
We maintain a set Dom(ρ) that grows dynamically to keep the record of already
defined domain points of ρ. Dom(ρ) is initialized to be empty. If x /∈ Dom(ρ)

then we will choose y
$←− {0, 1}n and add x in Dom(ρ). In this regard, x is said

to be fresh. On the other hand, if x ∈ Dom(ρ) (i.e x = x′) then y ← f(x′). In
this regard x is said to be covered.

2.2 Security Definitions

We consider that an adversary A is an oracle algorithm with access to its oracle
O(·) and outputs either 1 or 0. Accordingly, we writeAO(·) = 1 or 0. The resource
of A is measured in terms of the time complexity t which takes into account the
time it takes to interacts with its oracle O(·) and the time for its internal com-
putations, query complexity q takes into account the number of queries asked to
the oracle by the adversary, data complexity ` takes into account the maximum
number of blocks in each query.

Pseudo-random function. We define distinguishing advantage of an or-
acle algorithm A for distinguishing two random functions F from G as

AdvA(F ; G) := Pr[AF = 1]− Pr[AG = 1].
We define prf-advantage of A for an n-bit construction F by

Advprf
F (A) := AdvA(F ; ρn).

We call A a (q, `, t)-distinguisher if it makes at most q queries with at most

`-blocks in each query and runs in time at most t. We write Advprf
F (q, `, t) =

maxAAdvprf
F (A) where maximum is taken over all (q, `, t)-distinguisher A. In

an information theoretic situation we also ignore the time parameter t. We call a
keyed construction F is (q, `, ε)-prf if Advprf

F (q, `) ≤ ε. Informally, if ε is negligible
then F is said to be a secure PRF.

Collision-free and Cover-free. Now we define some other information-
theoretic security advantages (in which there is no presence of an adversary).
Let H be a random function which outputs two n bit blocks, denoted by (Σ,Θ) ∈
({0, 1}n)2. For a q-tuple of distinct messages M = (M1, . . . ,Mq), we write
H(M i) = (Σi, Θi). For a q-tuple of pairs (Σi, Θi)i, we say that

1. A tuple (Σi, Θi)i is collided if ∃i, j ∈ [q] such that Σi = Σj and Θi = Θj

for some j 6= i. Otherwise the tuple is said to be collision-free.
2. A tuple (Σi, Θi)i is covered if ∃i, j ∈ [q] such that Σi = (M j

α)n and Θi =
Y jα−1 where α ∈ [li] or α ∈ [lj ] and j could be equal to i, M j

α denotes the



αth block of jth message M j and Y jα−1 ∈ {0, 1}n. Otherwise the tuple is said
to be cover-free.

Definition 1. We define (q, `)-collision advantage and (q, `)-cover-free advan-
tage as

Advcoll
F (q, `) = maxM∈distq Pr[(Σi, Θi)i is not collision-free].

Advcf
F (q, `) = maxM∈distq Pr[(Σi, Θi)i is not cover-free].

Clearly, Advcoll
F (q, `) ≤ q2

2 Advcoll
F (2, `). Similarly, Advcf

F (q, `) ≤ q2

2 Advcf
F (2, `).

So it would be sufficient to concentrate on a pair of messages while bounding
collision free or cover-free advantages. We say that a construction F is (q, `, ε)-
xxx if Advxxx

F (q, `) ≤ ε where xxx denotes either collision-free or cover-free.

2.3 Structure Graphs

In this section, we briefly revisit the structure graph analysis [5, 14].
Consider a cascaded construction with a function f , where f is a uniform

random function, that works on a message M = M1||M2|| . . . ||Ml of length l
blocks as follows:

Y0 = 0, and Yi = f(Yi−1,Mi) for i = 1, . . . , l.
Informally, for a set of any two fixed distinct messages M = {M1,M2} and a
uniformly chosen random function f , we construct the structure graph Gf (M)
with {0, 1}n as the set of nodes as follows. We follow the computations for
M1 followed by those of M2 by creating nodes labelled by the values yi of
the intermediate chaining variables Yi with the edge (yi, yi+1) labelled by the
block Mi+1. In this process, if we arrive at a vertex already labelled, while not
following an existing edge, we call this event an f -collision. The sequence of
alternating vertices and edges corresponding to the computations for a message
M j is called an M j-walk, denoted by Wj . A more formal discussion on structure
graph appears in Appendix A.

Let G(M) denote the set of all structure graphs corresponding to the set of
messagesM (by varying f over a function family). For a fixed graph G ∈ G(M),
let fColl(G) denote the set of all f -collisions in G. We state the following known
results.

Proposition 1. [14, Lemma 2] For a fixed graph G, Prf [Gf (M) = G] ≤
2−n|fColl(G)|.

Proposition 2. [14, Lemma 3] Pr[G
$←− G(M) : |fColl(G)| ≥ 2] ≤ 4τ4

22n , where
τ is the total number of blocks of the messages in M.

It is to be noted that for CBC-MAC analysis [5], f(α, β) is taken as π(α⊕β) and
for the NI-MAC analysis [14], f(α, β) is taken as ρ(α||β), where π is a random
permutation over n bits and ρ is a random function from b + n bits to n bits,
where b is the message block-length and n is the length of the chaining variable
as well as the tag.



3 Proposed Construction of NI+ for Beyond-Birthday
Secure MAC

We present the schematic diagram of NI+ in Fig. 3.1 followed by the description
in Algorithm 1. Let fK1

: {0, 1}b+n → {0, 1}n be a keyed function from b+n bits

fk1 fk1 fk1 fk1 fk10n

Y1 Y2 Y3 Yl−1 Yl

⊕ ⊕ ⊕ ⊕⊕0n

Σ

Θ

c||Σ

⊕

fk1 T

M1 M2 M3 Ml ⊕Mi

. . .

Fig. 3.1: Construction of NI+ MAC

Input: fK1 : K1
$←− K, M ← {0, 1}∗ , c← 10b−n−1

Output: T ∈ {0, 1}n
M1||M2|| . . .Ml ←M ||10∗; //l is the number of message blocks in M1

Z ← 0n; Y ← 0n;2

for i = 1 to l do
Y ← fK1(Mi, Y ); Z ← Z ⊕ Y ;3

end

CS ← ⊕l
i=1Mi;4

Y ← fK1(CS, Y ); Z ← Z ⊕ Y ;5

Σ ← Y ; Θ ← Z;6

T ← fK1(c||Σ,Θ);7

Return T ;8

Algorithm 1: Algorithm for NI+ MAC

to n bits where b > n. Recall that b refers to the block length of a message block
and n refers to the output length in bits. Let M ∈ {0, 1}bl. So we can write M =
(M1,M2, . . . ,Ml) where each Mi ∈ {0, 1}b. We define a checksum block CS =
⊕li=1Mi. We denote CascfK1 (M) := fK1

(. . . (fK1
(fK1

(0,M1),M2), . . . ,Ml). Out-
put of CascfK1 (M) and the checksum block CS is passed through the same
function fK1

and the output is denoted as Σ. We obtain Θ by xoring all the
intermediate chaining values (i.e ⊕li=1Yi ⊕Σ). We concatenate a fixed b− n bit
string c = 10b−n−1 with the 2n bit string Σ||Θ to match the input size of fK1

and then the entire concatenated b bit string (i.e c||Σ||Θ) is passed through fK1

and finally outputs the tag T . We sometimes denote CS by Ml+1.
Note that, NI+ is similar to that of NI upto CascfK1 (M) except the following
differences.



(a) In NI construction, b-bit encoding of |M | and the last message block output
Yl is passed through a different keyed compression function fK2

. In NI+, we
substitute the b-bit length encoding by the checksum block CS. Moreover,
CS and Yl is passed through the same keyed compression function.

(b) NI is a two fixed-keyed compression function based MAC. NI+ is a single
fixed-keyed compression function based MAC.

(c) NI provides only birthday bound (lq2/2n) security. NI+ provides beyond
birthday bound security (q2l4/22n).

3.1 Design Rationale

We mention here that beyond birthday security is not possible to achieve if we
just keep the original structure of NI-MAC and output Σ as the last block output
(i.e Σ = fK2

(|M |, Yl)) and Θ as the sum of all intermediate chaining variables
(i.e Θ = ⊕li=1Yi ⊕Σ). This is justified by the following attack.

Let us assume that the adversary A makes q many queries of fixed number
of blocks l where the second message block is different in each query. The prob-
ability of Y i2 = Y j2 for 1 ≤ i 6= j ≤ q is 1

2n . Given that the event Y i2 = Y j2 occurs,
Σi = Σj and Θi = Θj would be a trivial event which implies the collision in

output. Therefore, for any adversary the collision probability would become q2

2n .
Note that we keep all the queried message length same. To resist this attack, we
introduce a checksum block which is processed through the same function after
all the message blocks are processed. We mention two important properties of
checksum :1

(i) Difference in a single block of two distinct messages makes the different check-
sum value.
(ii) Difference in at least two blocks of two distinct messages may equalize the
checksum value.
Now due to property (i) the above attack cannot make a trivial match in Σ .
Moreover, due to property (ii) if differences in two message blocks of two dis-
tinct messages (ath block and bth block), (M i

a 6= M j
a) and (M i

b 6= M j
b ) makes

the checksum value equal, we are still guaranteed to obtain two output blocks
for which Θi and Θj will not have a trivial match.

4 Security Analysis of NI+-MAC

Gaži et. al in [14] have shown that the advantage of NI-MAC is bounded above by
q2

2n

(
l + 64l4

2n

)
. In this section we analyse the advantage of our construction NI+-

MAC and show that the advantage of NI+-MAC achieves beyond birthday bound
security; better than that of NI-MAC. Thus we have the following theorem.

1 All the two properties are followed from Hamming distance of checksum is 2.



Theorem 1. Let f : {0, 1}k × {0, 1}b × {0, 1}n → {0, 1}n be a (ε, t, q) secure

PRF. Then NI+ be a
(
ε
′
, t

′
, q, l

)
secure PRF, where

ε
′
≤ ε+

q

2n
+

2q2l2

22n
+

4q2l4

22n
,

such that t = t
′
+ Õ (lq).

Proof. Let A be a adaptive PRF-adversary against NI+ running in time t and
asking at most q queries, each of length at most ` blocks. NI+ uses a single keyed
function f . Now if we replace f by a uniformly distributed random function r

such that r
$←− Func({0, 1}b×{0, 1}n , {0, 1}n) and call the resulting construction

NI+r , then using the standard reduction from information theoretic setting to
complexity theoretic setting we have,

Advprf

NI+
≤ ε+ Advprf

NI+r
.

Therefore to prove Theorem 1, we only need to prove

Advprf

NI+r
≤ q

2n + 2q2l2

22n + 4q2l4

22n .

Consider the following Game as shown in Algorithm 2 where the adversary
A queries to oracle O with distinct messages M i and obtains the response T i.
Note that Game G0 truly simulates a uniform random function and G1 simulates
the actual construction NI+r . Therefore using the fundamental lemma of game-
playing technique [7], we have the following:

Advprf

NI+r
=
∣∣Pr[AG1 = 1]− Pr[AG0 = 1]

∣∣
≤ Pr[AG1 sets badsigma ∨ AG1 sets bad]

≤ Pr[AG1 sets badsigma] + Pr[AG1 sets bad]. (1)

Therefore, we evaluate now the probability Pr[AG1 sets bad]. To evaluate this,
let us define a double block function Hf (M) := (Σ,Θ) with respect to a uniform
random function f . Recall that the tuple Hf (M i) := (Σi, Θi)i, ∀i ∈ [q] is said to
be collision-free if ∀i, either Σi 6= Σj or Θi 6= Θj or both ∀j ∈ [i− 1]. Similarly,
the tuple (Σi, Θi)i is said to be cover-free if ∀i, either Σi 6= (M j

α)|n or Θi 6= Y jα−1
or both ∀j ∈ [i]. Therefore, it is then easy to see that,

Pr[AG1 sets bad] ≤ Advcoll
H (q, `) + Advcf

H (q, `)

≤ q2

2
(Advcoll

H (2, `) + Advcf
H (2, `)). (2)

Now we state the following four lemmas, proof of which is deferred until next
section. The first two lemmas (i.e Lemma 1 and 2) bounds the collision-free
advantage and the last two lemmas (Lemma 3 and 4) bounds the cover-free
advantage of function Hf (·).

Lemma 1. For any two distinct messages M i and M j, each of length at most
` blocks,

Pr[Σi = Σj ∧Θi = Θj ∧ |fColl(G)| = 0] ≤ 1
22n .



initialize : badsigma, bad← false;1

On the jth query M j ;2

M j
1 ||M

j
2 || . . .M

j
l ←M j ||10∗ ← Partition(M j), Y0 = 0;3

for i = 1 to l ;4

if ((M j
i , Y

j
i−1) ∈ Dom(f)) Yi ← f(M j

i , Y
j
i−1);5

Else Y j
i ← {0, 1}

n;6

f(M j
i , Y

j
i−1)← Y j

i ;7

Dom(f)← Dom(f) ∪ {M j
i , Y

j
i−1};8

if ((⊕l
i=1M

j
i , Y

j
l ) ∈ Dom(f)) Y j

l+1 ← f(⊕l
i=1M

j
i , Y

j
l );9

Else Y j
l+1 ← {0, 1}

n;10

f(⊕l
i=1M

j
i , Y

j
l )← Y j

l+1 ;11

Dom(f)← Dom(f) ∪ {⊕l
i=1M

j
i , Y

j
l };12

Σj ← Y j
l+1, Θj ← ⊕l+1

i=1Y
j
i ;13

if (Σj = 0) badsigma← true;14

T j $←− {0, 1}n;15

if ((Σj , Θj) = (Σi, Θi) for some i ∈ {1, 2, . . . , j − 1}, or (c||Σj , Θj) =16

(M∗
s , Y

∗
s−1) such that s ∈ [li + 1] or s ∈ [lj + 1], ∗ ∈ {i, j});

if (¬bad);17

Coll(i, j)← true, bad← true;18

if ((Σj , Θj) = (Σi, Θi)) T j ← f(Σi, Θi) ;19

Else T j ← f(M∗
s , Y

∗
s−1) ;20

Return T j ;21

Algorithm 2: Game G0 is without boxed statement and G1 is with
boxed statement.

Lemma 2. For any two distinct messages M i and M j, each of length at most
` blocks,

Pr[Σi = Σj ∧Θi = Θj ∧ |fColl(G)| = 1] ≤ l2

22n .

Lemma 3. For any two distinct messages M i and M j, each of length at most
` blocks, and a particular n bit constant x,

Pr[Σi = x ∧Θi = Y ts ∧ |fColl(G)| = 0] ≤ 1
22n .

Lemma 4. For any two distinct messages M i and M j, each of length at most
` blocks, and a particular n bit constant x,

Pr[Σi = x ∧Θi = Y ts ∧ |fColl(G)| = 1] ≤ l2

22n .

Resume the proof of Theorem 1: Now we have all the materials to prove
Theorem 1 which is given in the following.



We have the following results,

Advcoll
H (2, `) ≤ 2`2

22n
+

4`4

22n
. [From Lemma 1 and 2]. (3)

Advcf
H (2, `) ≤ 2`2

22n
+

4`4

22n
. [From Lemma 3 and 4]. (4)

Substituting Equation (3) and (4) into Equation (2) we obtain

Pr[AG1 sets bad] ≤ 2q2l2

22n
+

4q2l4

22n
.

Moreover it is easy to see that Pr[AG1 sets badsigma] ≤ q
2n . Therefore, substi-

tuting these two probability expressions back to Equation (1) will give

Advprf

NI+r
≤ q

2n
+

2q2l2

22n
+

4q2l4

22n
. ut

4.1 Proof of Pr[Σi = Σj ∧Θi = Θj ∧ |fColl(G)| = 0] ≤ 1
22n .

In this section we will prove the following lemma.

Lemma 1. For any two distinct messages M i and M j , each of length at most
` blocks,

Pr[Σi = Σj ∧Θi = Θj ∧ |fColl(G)| = 0] ≤ 1

22n
.

Proof. We prove the lemma using the structure graph. After fixing two distinct
messages M i and M j and choosing a function f uniformly at random from the
set of all functions over {0, 1}b × {0, 1}n → {0, 1}n, we analyse the structure
graph G := Gf (M i,M j). In particular, we analyse the probability of the event
Σi = Σj∧Θi = Θj in view of the number of collisions |fColl(G)| = 0 occurred in
the corresponding structure graph G. Let W denotes the event Σi = Σj ∧Θi =
Θj .
Case a. Let us considerM i is not a prefix ofM j andM j is not a prefix ofM i. Let
p be the longest common prefix (lcp) of M i and M j . That means M i

p+1 6= M j
p+1

and M i
α = M j

α where 1 ≤ α ≤ p. Therefore, Y iα = Y jα and Y iβ 6= Y jβ where

p+ 1 ≤ β ≤ min{li, lj} as |fColl(G)| = 0. Moreover, if li > lj then all Y iβ would
have been distinct as |fColl(G)| = 0 where lj + 1 ≤ β ≤ li. Note that, it is also

true that Y ili 6= Y jlj . Therefore, we have,

Pr[W ∧ |fColl(G)| = 0] = Pr[Θi = Θj ∧ |fColl(G)| = 0|Σi = Σj ] · Pr[Σi = Σj ]

It is obvious that Pr[Σi = Σj ] ≤ 1
2n−2` and the event Θi = Θj ∧ |fColl(G)| = 0

conditioned on the event Σi = Σj implies a non trivial equation on Y as we will
obtain some Y ip+1 and Y jp+1 for which Θi ⊕ Θj = 0 would become non-trivial.

Thus, Pr[Θi = Θj ∧ |fColl(G)| = 0|Σi = Σj ] ≤ 1
2n . Therefore,

Pr[Σi = Σj ∧Θi = Θj ∧ |fColl(G)| = 0] ≤ 1

22n
.



Case b. Let us consider that either of the two messages is a prefix of other
(w.l.o.g M j is a prefix of M i). Since li > lj therefore, p = lj . Since |fColl(G)| =
0, Y ip+1, . . . Y

i
li

are all distinct with each other and with Y i1 , . . . , Y
i
lj

. This implies

that Y ili 6= Y jlj as depicted in Fig. 4.1. Therefore, the probability of Θi = Θj ∧
|fColl(G)| = 0 conditioned on the event Σi = Σj will be O(1/2n) as we will
obtain two random variables Y ili and Y jlj for which Θi ⊕ Θj = 0 would become

non-trivial. Moreover, Pr[Σi = Σj ] ≤ 1
2n . Therefore again,

Pr[Σi = Σj ∧Θi = Θj ∧ |fColl(G)| = 0] ≤ 1

22n
.

ut

Fig. 4.1: Structure Graph of accident 0

4.2 Proof of Pr[Σi = Σj ∧Θi = Θj ∧ |fColl(G)| = 1] ≤ l2

22n .

In this section we will prove the following lemma.

Lemma 2. For any two distinct messages M i and M j , each of length at most
` blocks,

Pr[Σi = Σj ∧Θi = Θj ∧ |fColl(G)| = 1] ≤ l2

22n
.

Proof. Again we prove the lemma using the structure graph analysis. We fix two
distinct messages M i and M j and a uniformly chosen function f from the set
of all functions over {0, 1}b × {0, 1}n → {0, 1}n. Then we analyze the structure
graph G := Gf (M i,M j). In particular, here we will analyze the probability of
the event Σi = Σj ∧ Θi = Θj in view of number of collisions |fColl(G)| = 1
occurred in the corresponding structure graph G. Let W denotes the event Σi =
Σj ∧Θi = Θj .

We analyze the probability of the above event in two subcases. a) We con-
sider all those structure graphs G having |fColl(G)| = 1 with respect to M :=
{M i,M j} where none of Wi and Wj , where Wi and Wj is the walk of message
M i and M j in structure graph G, contains a loop. It essentially implies that Wi

and Wj are path which are denoted as Pi and Pj respectively. b) We consider
all those structure graphs where either of Wi or Wj contains a loop.

Let G denote the set of all structure graphs G with |fColl(G)| = 1. With-
out loss of generality, let li and lj be the lengths of the messages M i and M j

respectively, with li ≥ lj . Let G1 ⊂ G be the set of all structure graphs such that
the M i,M j-path does not contain any loop. The G2 = G \ G1 is the set of the
remaining structure graphs.



a) Analysis of G1. It is to be noted that if M j is a proper prefix of M i then
|G1| = 0, as in that case |fColl(G)| = 0. So without loss of generality, lets
assume that M j is not a prefix of M i. Suppose the first p blocks constitute
the longest common prefix of M i and M j . Therefore, Y iα = Y jα , 1 ≤ α ≤ p.
As number of collision is 1 therefore, let the colliding pair is (Y iβi

, Y jβj
), where

p+ 1 ≤ βi ≤ li, p+ 1 ≤ βj ≤ lj .

Case 1. Let βi = βj = p + 1 and li = lj and after the collision Y iβ = Y jβ , for

p + 2 ≤ β ≤ li. In this case, it is clear that checksum block of ith message CSi

and checksum block of jth message CSj would not be equal due to property (i)
stated in Section 3.1 and hence, even if Y ili = Y jlj , the event Σi = Σj would not

be trivial. Therefore, even though Pr[Θi = Θj |Σi = Σj ∧ |fColl(G)| = 1] = 1,
but the required randomness will be obtained from the following two equations
: (i) Y ip+1 ⊕ Y

j
p+1 = 0, (ii) Σi ⊕ Σj = 0 such that the rank of the system of

equations is 2.
Case 2. Let βi = βj = p + 1 and li = lj and after the collision Y iβ 6= Y jβ , for

p + 2 ≤ β ≤ li. Then we will always obtain Y ik and Y jk′ such that Θi = Θj is
non-trivial for some k, k′. Therefore in this case we have,

Pr[Θi = Θj ∧ |fColl(G)| = 1|Σi = Σj ] ≤ 1

2n
.

Case 3. Let βi = βj = p+ 2 and li = lj and Y iβ = Y jβ , for p+ 3 ≤ β ≤ li, then

Θi = Θj would imply Y ip+1 = Y jp+1; creates one more collision which violates the
condition that the structure graph has only one collision.

Therefore, in general, we assume that the colliding pair is (Y iβi
, Y jβj

), where
p+ 1 ≤ βi ≤ li, p+ 1 ≤ βj ≤ lj . Since the number of collision allowed in G is 1,
after the collision point either Pi and Pj follow the same path or they will get
bifurcated right from the collision point and will never meet again. If Pi and Pj
follows the same path, then for Case 1 we have shown that we can ensure to get
the probability O(1/2n). If not, then except Case 3 where βi = βj = p + 2, we

will obtain two random variables Y ik and Y jk′ such that equation Θi ⊕ Θj = 0
becomes non-trivial. If Pi and Pj gets bifurcated right after the collision point,
then the equality of Θ becomes non-trivial for two random variables Y ip+1 and

Y jp+1 as depicted in Fig. 4.2 and Fig. 4.3. Note that it is easy to follow that we
will always obtain two such random variables.

p [[t∗]]

Fig. 4.2: Structure Graph of type G1Case 4. Finally, if βi = li and βj = lj then one can easily find out two ran-

dom variables from the set {Y ip+1, . . . , Y
i
li−1} ∪ {Y

j
p+1, . . . , Y

j
lj−1} such that the

equation on Θ becomes non-trivial.



p

Fig. 4.3: Structure Graph of type G1; M i path has no loop

Since the structure graph involving only one collision is determined by the
collision point, |G1| ≤ l2 and for each of this graph we have seen that the prob-
ability of desired event is O(1/22n). Therefore,

Pr[W ∧ |fColl(G)| = 1] =
∑
G∈G1 Pr[W ∧ |fColl(G)| = 1] ≤ l2

22n .

b) Analysis of G2. Recall that G2 is the set of all structure graphs with respect
toM such that the number of collision is 1 and containing a loop. Without loss of
generality we assume that Wi contains a loop. That means Y iα = Y iα+c for c ≥ 1.
Here c denotes the loop size. Note that, the loop actually creates a collision and
therefore, neither (i) Wj or Wi makes another different loop, nor (ii) Wj collides
with Wi as in both of the cases number of collisions will increase to 2. Thus,
the only possibilities are either (1) Wj completely lies on Wi, or (2) Wj could
follow Wi but after a point Wj and Wi gets bifurcated and never meets. We
will analyze the probability of the event Σi = Σj ∧ Θi = Θj ∧ |fColl(G)| = 1
separately for each of the above cases.

Case 1. Let us assumeWi = Y i1 || . . . ||Y iα−1||(Y iα|| . . . ||Y iα+c−1)k||Y iα+c+1|| . . . ||Y ili
and Wj = Y j1 || . . . ||Y

j
α−1||(Y jα || . . . ||Y

j
α+c−1)k

′ ||Y jα+c+1|| . . . ||Y
j
lj

where k′ ≥ 0.
Now we have the following cases:

Case 1.1. As Wj lies on Wi, it is easy to see that if k′ = 0 then Wj be a
subsequence of Y i1 || . . . ||Y iα−1 and therefore one can ensures the non-triviality of

equation Θi = Θj which holds with probability 1
2n . Moreover, Y ili 6= Y jlj and thus

Σi = Σj also holds with probability 1
2n and therefore Pr[W ∧ |fColl(G)| = 1] ≤

1
22n .

Case 1.2. If k′ ≥ 1, then it is obvious that Y j1 || . . . ||Y
j
α−1 = Y i1 || . . . ||Y iα−1. Now

if we assume that the length of the tail of Wi (i.e Y iα+c+1|| . . . ||Y ili) is same as
that of Wj then it must have been the case that k 6= k′ and without loss of

generality we can assume that k > k′. Since Y ili = Y jlj , depending on the equality

of CSi and CSj we have Pr[Σi = Σj | |fColl(G)| = 1] = 1. Therefore,

Pr[W ∧ |fColl(G)| = 1] = Pr[Θi = Θj |Σi = Σj ∧ |fColl(G) = 1]

· Pr[Σi = Σj | |fColl(G)| = 1] · Pr[|fColl(G) = 1]

As k > k′ therefore, it is obvious to see that there must be at least two random
variables Y is and Y is′ for which Θi = Θj would become non-trivial as depicted in
Fig. 4.4. Thus in the above equation, Pr[Θi = Θj |Σi = Σj ∧ |fColl(G) = 1] ≤

1
2n and Pr[|fColl(G)| = 1] ≤ 1

2n . Therefore, Pr[W ∧ |fColl(G)| = 1] ≤ 1
22n .



[[t∗]] = p∗x

y

z

Fig. 4.4: Structure Graph of type G2

Moreover, if we assume that the tail length of Wi and Wj are not same
(w.l.o.g tail(Wi) > tail(Wj)) then we have either k = k′ or k 6= k′. The case of

k = k′ has already been taken care of. If k 6= k′ then Y ili 6= Y jlj and therefore,

Θi ⊕ Θj = 0 would become non-trivial for the random variable Y ili and Y jlj .

Moreover, Pr[Σi = Σj ] ≤ 1
2n . Thus,

Pr[W ∧ |fColl(G)| = 1] ≤ 1

22n
.

Case 2. In this case Wj bifurcates from Wi right after some point X. This

condition necessarily implies that Y ili 6= Y jlj . Now it is to be noted that if Wj

completely lies on Wi (as in head(Wi) = head(Wj) and k = k′) and bifurcates

right from the point X = Y ili−1, then Θi = Θj would imply Y ili = Y jlj , introduces
one more collision and hence the number of collision would increase. Therefore,
even if head(Wi) = head(Wj) either k 6= k′ or Wj must get bifurcated from Wi

from some earlier point of Y ili−1. In both of these cases one should obtain at
least two random variables (either from portion of loop or from portion of tail)
Y is and Y is′ for some s and s′ that ensures the non-triviality of equation on Θ as
depicted in Fig. 4.5.

[[t∗]] = p∗x

y

Fig. 4.5: Structure Graph of type G2; M i,M j both path contain a loop

Moreover as Y ili 6= Y jlj this ensures that Pr[Σi = Σj ] ≤ 1
2n . Hence, Pr[W ∧

|fColl(G)| = 1] ≤ 1
22n .

Note that in all of these cases we have seen that the probability of the de-
sired event becomes 1

22n and |G2| ≤ l2 as the structure graph G is completely
determined by the size of the loop which is formed by choosing any two Y values
in
(
l
2

)
ways. Therefore,



Pr[W ∧|fColl(G)| = 1] =
∑
G∈G2 Pr[W ∧|fColl(G)| = 1] ≤ l2

22n . ut

4.3 Proof of Pr[Σi = x ∧Θi = Y t
s ∧ |fColl(G)| = 0] ≤ 1

22n .

In this section we will prove the following lemma.

Lemma 3. For any two distinct messages M i and M j , each of length at most
` blocks, and a particular n bit constant x,

Pr[Σi = x ∧Θi = Y ts ∧ |fColl(G)| = 0] ≤ 1

22n
.

Proof. We again prove the lemma using structure graph where we fix two distinct
messages M i and M j and a function f uniformly at random from the set of all
functions over {0, 1}b×{0, 1}n → {0, 1}n, we construct the structure graph G :=
Gf (M i,M j) such that there is no accidental collision (i.e. f -collision) in G. Then
we analyze the probability of the event denoted by W := Σi = x ∧ Θi = Y ts in
view of the number of f -collisions |fColl(G)| = 0 occurred in the corresponding
structure graph G where x is any non-zero n bit constant.

We analyse the probability of the event W ∧ |fColl(G)| = 0 in two separate
subcases when (a) None of M i,M j is a prefix of each other and (b) either of
M i,M j is a prefix of the other.

Case a. Let us consider M i is not a prefix of M j and M j is not a prefix of M i.
Let p be the longest common prefix (lcp) of M i and M j . Therefore, Y iα = Y jα
where 1 ≤ α ≤ p and Y iβ 6= Y jβ where p+ 1 ≤ β ≤ min{li, lj} as |fColl(G)| = 0.

Moreover, if li > lj then all Y iβ would have been distinct as |fColl(G)| = 0 where

lj + 1 ≤ β ≤ li. Note that, it is also true that Y ili 6= Y jlj . Therefore, we have the
following set of equations:

Y ili+1 = x, (5)

Y i1 ⊕ Y i2 ⊕ . . .⊕ Y ili+1 + Y st = 0, (6)

where s could be either i or j and t ∈ [li+1] or t ∈ [lj+1]. For each of these cases
one can easily check that the above system of equation has rank 2. Therefore,
Pr[W ∧ |fColl(G)| = 0] ≤ 1

22n .

Case b. W.l.o.g let us consider that M j is a prefix of M i. Since li > lj therefore,
p = lj . Since |fColl(G)| = 0, Y ip+1, . . . Y

i
li

are all distinct with each other and

with Y i1 , . . . , Y
i
lj

. This implies that Y ili 6= Y jlj as depicted in Fig. 4.1. Therefore,

the set of equations (Equation (5) and (6)) has the full rank. Therefore, again
we have, Pr[W ∧ |fColl(G)| = 0] ≤ 1

22n .

Therefore, combining Case a and b we have,

Pr[Σi = x ∧Θi = Y st ∧ |fColl(G)| = 0] ≤ 1
22n

for any non-zero n bit constant x. ut



4.4 Proof of Pr[Σi = x ∧Θi = Y t
s ∧ |fColl(G)| = 1] ≤ l2

22n .

In this section we will prove the following lemma.

Lemma 4. For any two distinct messages M i and M j , each of length at most
` blocks, and a particular n bit constant x,

Pr[Σi = x ∧Θi = Y ts ∧ |fColl(G)| = 1] ≤ l2

22n
.

Proof. We prove this lemma using the structure graph analysis. The primary
concern of this proof will be to analyze the probability of the event W := Σi =
x ∧ Θi = Y st in view of number of collisions |fColl(G)| = 1 occurred in the
corresponding structure graph G where G := Gf (M i,M j).

We analyze the probability of the event W ∧ |fColl(G)| = 1 in two separate
subcases. a) When we consider all structure graphs G with respect to M :=
{M i,M j} such that |fColl(G)| = 1 and none of Wi and Wj , where Wi and Wj

is the walk of message M i and M j in structure graph G, contains a loop. It
implies that Wi and Wj are path which are denoted as Pi and Pj respectively.
b) When we consider all those structure graphs where either Wi or Wj contains
a loop.

As before, let G denote the set of all structure graphs G with |fColl(G)| = 1.
Without loss of generality, let li and lj be the lengths of the messages M i and
M j respectively, with li ≥ lj . Let G1 ⊂ G be the set of all structure graphs such
that the Wi,Wj does not contain any loop. The G2 = G \ G1 is the set of the
remaining structure graphs.

a) Analysis of G1. As before M i or M j could not be a prefix of each other.
Let p be the lcp of M i and M j and let the colliding pair is (Y iβi

, Y jβj
), where

p+1 ≤ βi ≤ li, p+1 ≤ βj ≤ lj . In this case, it is easy to check that the following
system of equations will have rank 2.

Y ili+1 = x,

Y i1 ⊕ Y i2 ⊕ . . .⊕ Y ili+1 + Y st = 0.

Therefore, we have Pr[W ∧ |fColl(G)| = 1] ≤ 1
22n .

Note that |G1| is l2 as the graph is uniquely determined by the accident point

and the set of messages M. Therefore, Pr[W ∧ |fColl(G) = 1|] ≤ l2

22n .

b) Analysis of G2. As before let us assume that Wi contains a loop of size c
such that Y iα = Y iα+c for c ≥ 1. Since the loop creates a f -collision, neither (i)
Wj or Wi makes another different loop, nor (ii) Wj collides with Wi as in both of
the cases the number of collisions will increase to 2. Thus we have the following
two possibilities.

(1) Wj coincides with Wi

(2) Wj could follow Wi but after a point Wi and Wj departs and never meets
again.



We analyze the probability of the event W ∧ |fColl(G)| = 1 separately for each
of the two above cases. In particular, in each of the following analysis our main
concern will be to show the rank of the set of equations as defined earlier (i.e
Equation (5) and (6)) to be 2, that is it achieves full rank in each of the following
subcases.

Case 1. Let k denotes the number of iterations in the loop of Wi and k′ be the
number of iterations in the loop of Wj . Now irrespective of the value of k and k′,
the system of equations (Equation (5) and (6)) will have rank 2 and therefore, we
can upper bound the probability of our desired event to 1

22n . Note that G ∈ G2
is uniquely determined by the size of the loop c and hence, |G2| ≤ l2, Thus,

Pr[W ∧ |fColl(G)| = 1] ≤ l2

22n
. (7)

Case 2. The analysis for this case would be similar to Case 1. Here Wi and Wj

bifurcates from a certain point say X and li − X, lj − X 6= 0. Therefore, it is
trivial to see that the set of equations (i.e Equation (5) and (6)) will have full
rank. Again, as we have shown in the previous case that |G2| ≤ l2 and therefore
Equation (7) will also hold in this case.

Combining the probability bound of the event W ∧|fColl(G)| = 1 from each

of the two above subcases, we have derived Pr[W ∧ |fColl(G)| = 1] ≤ l2

22n . ut

5 Conclusion

In this paper, we have proposed a variant of NI-MAC, which we call as NI+-MAC
and have shown that NI+-MAC achieves BBB security. We have also shown that
keeping the original structure of NI as discussed in Section 3.1 cannot achieve
BBB security. Moreover, our non-tweaked proposed construction is better than
Yasuda’s proposed single-fixed key compression function based MAC construc-
tion that uses an extra tweak. NI+ is also efficient than NI-MAC in terms of
number of keys and providing better security.
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A Formal Discussion on Structure Graph

Let for two distinct messages M1 and M2 of l1 and l2 blocks respectively, where
M1 = M1

1 ||M1
2 || . . . ||M1

l1
and M2 = M2

1 ||M2
2 || . . . ||M2

l2
,

and the corresponding Y -values be given by
y10 , y

1
1 , y

1
2 , . . . , y

1
l1

and y20 , y
2
1 , y

2
2 , . . . , y

2
l2

respectively. Let τ = l1 + l2. We use the notation Mi where 1 ≤ i ≤ τ to refer to
the block M1

i , when i ≤ l1, otherwise refer to the block M2
i−l1 . Similarly, let Yi

to refer to 0 when i = 0; Y 1
i , when 1 ≤ i ≤ l1; and Y 2

i−l1 , when l1 + 1 ≤ i ≤ τ .
Now, we give a few definitions.

Definition 2. We define two mappings [[·]] and [[·]′ on {0, . . . , τ} as follows:
(1) [[i]] , min {j : Yi = Yj}, and

(2) [[i′]] , [[i]] for i 6= l1 except that [[l1]]′ = 0.

Definition 3. For any fixed f and any two distinct messages M = {M1,M2},
we define the structure graph Gf (M) as follows:
Gf (M) , (V,E, L), where V = {[[i]] : 0 ≤ i ≤ τ}, E = {([[i− 1]]′, [[i]]) : 1 ≤ i ≤ τ},
and L((u, v)) = {Mi : [[i− 1]]′ = u and [[i]] = v} is an edge-labeling.

Definition 4. For the computation of M1, the sequence 0, ([[0]]′, [[1]]), [[1]],
([[1]]′, [[2]]), . . ., [[l1]] of alternating vertices and edges is called an M1-walk. (An
M2-walk is defined analogously).

Let (Vi, Ei, Li) be the graph obtained after processing only the first i out of τ
blocks of M. We define a collision event as follows.

Definition 5. (i, [[i]]) is an f -collision if [[i]] < i and Mi /∈ Li−1([[i− 1]]′, [[i]]).

Note that the last condition on Mi implies that collision occurred due to parallel
edges with the same message label is not considered.


