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Abstract

Transaction processing speed is one of the major considerations in cryptocurrencies that are
based on proof of work (POW) such as Bitcoin. At an intuitive level it is widely understood that
processing speed is at odds with the security aspects of the underlying POW based consensus
mechanism of such protocols, nevertheless the tradeo� between the two properties is still not
well understood.

In this work, motivated by recent work [9] in the formal analysis of the Bitcoin backbone
protocol, we investigate the tradeo� between provable security and transaction processing speed
viewing the latter as a function of the block generation rate. We introduce a new formal property
of blockchain protocols, called chain growth, and we show it is fundamental for arguing the
security of a robust transaction ledger. We strengthen the results of [9] showing for the �rst time
that reasonable security bounds hold even for the faster (than Bitcoin's) block generation rates
that have been adopted by several major �alt-coins� (including Litecoin, Dogecoin etc.). We then
provide a �rst formal security proof of the GHOST rule for blockchain protocols. The GHOST
rule was put forth in [14] as a mechanism to improve transaction processing speed and a variant
of the rule is adopted by Ethereum. Our security analysis of the �GHOST backbone� matches
our new analysis for Bitcoin in terms of the common pre�x property but falls short in terms of
chain growth where we provide an attack that substantially reduces the chain speed compared
to Bitcoin. While our results establish the GHOST variant as a provably secure alternative
to standard Bitcoin-like transaction ledgers they also highlight potential shortcomings in terms
of processing speed compared to Bitcoin. We �nally present attacks and simulation results
against blockchain protocols (both for Bitcoin and GHOST) that present natural upper barriers
for the speed-security tradeo�. By combining our positive and negative results we map the
speed/security domain for blockchain protocols and list open problems for future work.

1 Introduction

The capability for fast transaction processing is a major consideration in any payment system and
a litmus test for its potential to scale at a global level. For �blockchain� based protocols such as
bitcoin [12] the current picture is rather grim: some reported1 current rates for Bitcoin processing
speed is 7 transactions per second (tps) while Paypal handles an average of 115 tps and the VISA
network has a peak capacity of 47,000 tps (though it currently needs 2000-4000 tps). It goes without
saying that improving transaction processing of cryptocurrencies is one of the major considerations
in the research of payment systems like Bitcoin, cf. [3].

Bitcoin relies on the distributed maintenance of a data structure called the blockchain by a set
of entities called miners that are anonymous and potentially dynamically changing. The protocol
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1See https://en.bitcoin.it/wiki/Scalability
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that maintains the blockchain relies on proofs of work (POW) for ensuring that miners converge
to a unique view of this data structure. The blockchain can be parsed as a ledger of transactions
and assuming that the adversarial parties collectively constitute less than half of the network's
computational power (also referred to as hashing power since the main computational operation
is hashing) it is ensured that all parties have the same view of the ledger. The transactions in
the blockchain are organized in blocks and each block is associated with a POW. The number of
transactions that �t inside each block is bounded (and is currently restricted by a 1MB cap).

Beyond the obvious engineering factors that a�ect transaction processing speed of blockchain
protocols (such as network speed and computational power needed to verify transactions) the two
main factors are the size of blocks and the rate that blocks are generated. The current 1MB cap
on transactions is heavily debated and proposals for a 20-fold increase have been recently made2.
Regarding the block generation rate recall that the original parameter setting for Bitcoin stabilizes
it at 1 block per 10 minutes. This is achieved by suitably calibrating the hardness of the POW
instances that are solved by the miners. At an intuitive level, the POW di�culty is an intrinsic
feature for security as it prohibits the adversary from �ooding the network with messages and gives
the opportunity to the honest parties to converge to a uni�ed view.

A useful unit of time to measure the block generation rate is a round of full information propa-
gation. Indeed, the e�ect that the speed of information propagation may have on security is widely
understood at least informally and the e�ect of the former on the latter was predicted by [7]. In
[9] a formal relation between the two was proven: it was observed that security can be formally
shown if the parameter f , expressing the expected number of POW solutions per complete round
of information propagation, is close to 0. In that work it was shown that as f gets closer to 0 the
maximum adversarial hashing power that the protocol can withstand approximates 50%, Bitcoin's
claimed theoretical limit; on the other hand, as f gets larger the security bound gets worse and it
completely vanishes when f = 1, i.e., the rate of expected 1 block per round.

In [7] it is argued that for blocks of reasonable sizes (including those currently used), the block
size is linearly dependent in the time it takes for a full communication round to be completed. From
this one can argue that round duration is linearly related to block size. Furthermore, transaction
processing speed is proportional to block size and also proportional to block generation rate per
unit of time (say seconds). Given that we measure time in rounds of full communication we can
express the following intuitive relation for transaction processing speed (measured in Kb/sec):

transaction processing speed ∝ block size× f

round duration

As a result, since doubling the block size also doubles the round duration, if we keep the same
value of f , the transaction speed remains constant. Hence, the dominant factor for improving
transaction processing speed, is not block-size, but rather the block generation rate (per round)
represented by f . Given the security critical nature of this parameter it is important to understand
how large it can be selected while maintaining the security of the system.

Interestingly, a number of alternative cryptocurrencies (alt-coins) that are based on Bitcoin have
tinkered with the block generation rate of Bitcoin (see Figure 1) to achieve faster processing without
however providing any formal arguments about the security implications of such choices.

Given the above motivation the fundamental question we seek to answer is the following:

For a given block generation rate expressed as the expected number of blocks per round

2See e.g., [6, 15, 13] and http://gavintech.blogspot.gr/2015/01/twenty-megabytes-testing-results.html
3Currently the Ethereum Frontier reports an average of about 17 seconds, cf. https://etherchain.org; the 12

seconds rate was discussed by Buterin in [5].
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Cryptocurrency block gen. rate (sec) f (blocks/round) 1/f

Bitcoin 600 0.021 47.6

Litecoin 150 0.084 11.9

Dogecoin 60 0.21 4.76

Flashcoin 6− 60 0.21-2.1 0.476-4.76

Fastcoin 12 1.05 0.95

Ethereum3 12 1.05 0.95

Figure 1: A list of the di�erent block generation rates various altcoins have chosen and the cor-
responding f, 1/f values assuming one full communication round takes 12.6 seconds (this is the
average block propagation time as measured in [7]). Notice Bitcoin's conservative choice. The value
f is the expected number of POW's per communication round. The value 1/f is also given which
is roughly the expectation of rounds required to obtain a POW.

(parameter f), what is the maximum adversarial hashing power that can be provably

tolerated by a population of honest miners?

The above question may be posed for the core of the Bitcoin transaction ledger protocol (the
Bitcoin �backbone� protocol as de�ned in [9]) but also for other similar protocols that attempt to use
POW's to maintain a blockchain distributively notably the GHOST rule suggested by Sompolinsky
and Zohar [14] and adopted by Etheurem.

Our Results. In this work, we investigate speed-security tradeo�s in blockchain protocols as a
relationship between block generation rate f and the bound on the hashing power of the adversary.
Speci�cally, our results are as follows.

� We introduce a new property for blockchain protocols, called chain growth that is cast in
the model of [9] and complements the two properties suggested there (common pre�x and
chain quality). We argue that chain growth is a fundamental property of backbone protocols
independent of the other two. We illustrate this by showing that a backbone protocol satisfying
all three properties implements a �robust transaction ledger� in a black-box fashion (something
that we observe to be not true if one relies on just common pre�x and chain quality � the two
properties by themselves are insu�cient to imply a robust transaction ledger4 ). Furthermore,
chain growth is a property of interest from an attacker's point of view as it is fundamentally
linked to the transaction processing speed and can constitute an adversarial goal in its own
right: it captures the class of adversaries that are interested in slowing down processing time.

� We propose a new analysis framework for backbone protocols focusing on trees of blocks
as opposed to chains as in [9]. We illustrate the power of our framework by substantially
improving the security analysis of the bitcoin backbone protocol and proving for the �rst time
that security can still be attained even at expected rates of f below 1 block per round. At the
same time, we substantially improve the level of security for higher rates and in this way we
prove security for bounds close to 50% for important (in terms of their market capitalization5)
alternative cryptocurrencies (including Litecoin and Dogecoin) that have opted for much faster
block creation rates compared to Bitcoin. See Figures 3 and 4 for graphs showing our improved
security analysis.

4This does not suggest an error in [9] but rather points to the fact that the proof given there regarding the
implementation of a robust transaction ledger by the bitcoin backbone is not black-box on the two properties of
common pre�x and chain quality.

5See http://coinmarketcap.com/
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� Using our framework we also provide a �rst formal security proof of the GHOST rule for
blockchain protocols. The GHOST rule was put forth in [14] as a mechanism to improve
transaction processing speed. We formalize the rule as the GHOST backbone protocol and
provide a security analysis in our framework that matches our new analysis for the Bitcoin
backbone in terms of the common pre�x property. Even though we prove chain quality and
chain growth as well, contrary to the Bitcoin backbone, we show that the GHOST backbone
is susceptible to a chain growth attack. While the analysis presented in [14] suggests that
GHOST is as good as Bitcoin in terms of chain growth, our attack, rather surprisingly, shows
the contrary and in fact Bitcoin's chain growth is substantially faster than GHOST, cf. Fig-
ure 6, when under attack. Our work also highlights the importance of provable security in
the exploration of the design space for Bitcoin-like blockchain protocols; for instance, while at
�rst one may see the GHOST-rule as being superior to Bitcoin's �longest-chain wins� simple
rule, the enhanced rule opens new opportunities for adversarial manipulation that need to be
accounted for in the security proof.

� We �nally present simulation results and attacks against blockchain protocols (both for the
Bitcoin and GHOST backbone) that present natural upper barriers in the speed-security
domain. Interestingly, for common pre�x the attacks do not di�erentiate between GHOST
and Bitcoin even for settings of f that correspond to high processing times (the area of
the parameter domain where supposedly GHOST was particularly well suited for): both
protocols lose security approximately for the same parameter settings, cf. Figure 5. An
intuitive explanation for the rather unexpected similarity is the fact that in the GHOST
backbone, the chain selection rule permits the use of old blocks, while in Bitcoin the attacker
is forced to use recent blocks.

Limitations and directions for future research. Our analysis is in the standard cryptographic
model where parties fall into two categories, those that are honest (and follow the protocol) and
those that are dishonest that may deviate in an arbitrary (and coordinated) fashion as dictated by
the adversary. It is an interesting direction for future work to consider speed-security tradeo�s in
the rational setting where all parties wish to optimize a certain utility function. Designing suitable
incentive mechanisms is a related important consideration, for instance see [10] for a suggestion
related to the GHOST protocol. The analysis we provide for both Bitcoin and GHOST is in the
static setting, i.e., we do not take into account the fact that parties change dynamically and that the
protocol calibrates the di�culty of the POW instances to account for that; we note that this may
open the possibility for additional attacks, [1], and hence it is an important point for consideration
and future work. Our notion of round (borrowed from [9]) assumes complete information propa-
gation between all honest parties; in practice information propagation is a random variable that
depends on the peer to peer network topology and some parties learn faster than others the messages
communicated. Finally, the positive and negative results we present between speed and security
still have a gray area in which it is unknown whether the protocols are secure or there is an attack
that breaks security (for instance, while we show the chain growth of the GHOST backbone to be
worse than Bitcoin's by providing an upper bound via an attack, the lower bound we prove for chain
growth of GHOST is not tight to the attack upper bound and hence the true chain growth speed of
GHOST lies somewhere in this interval). While the above four points are limitations (and suggest
interesting directions for further research in the area) our model and analysis can be extended to
account for such stronger settings and hence our results may serve as the basis for further exploring
the tradeo� between transaction processing speed and provable security. Another important aspect
is privacy in the transaction ledger (cf. [2, 11]) which our analysis, being at a �lower� level in the
blockchain protocol does not interact with directly.
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Organization. In section 2 we overview the model that we use for expressing the protocols and
the theorems regarding the security properties. In section 3 we introduce the chain growth property
as well as our new tree-based framework. In section 4 we present our improved analysis for the
Bitcoin backbone protocol. Then, in section 5 we present our security analysis of an abstraction
of the GHOST protocol that demonstrates it is a robust transaction ledger in the static setting.
Finally, in section 6 we present our attacks against the common pre�x and chain growth properties
for both GHOST and Bitcoin as well as we graph the speed-security domain in terms of attack and
provable security bounds.

2 Preliminaries

2.1 Model

For our model we adopt the abstraction proposed in [9]. Speci�cally in their setting, called the
q-bounded setting, synchronous communication is assumed that allows each party q queries to a
random oracle. The network supports an anonymous message di�usion mechanism that is guaran-
teed to deliver messages of all honest parties in each round. The adversary is rushing and adaptive.
The model is ��at� in terms of computational power in the sense that all honest parties are assumed
to have the same computational power while the adversary has computational power proportional
to the number of players that it controls.

The total number of parties is n and the adversary is assumed to control t of them. Obtaining
a new block is achieved by �nding a hash value that is smaller than a di�culty parameter D. The
success probability that a single hashing query produces a solution is p = D

2κ where κ is the length
of the hash. The total hashing power of the honest players is α = pq(n − t), the hashing power of
the adversary is β = pqt and the total hashing power is f = α+ β.

In [9] a lower bound to the probabilities of two events, that a round is successful or that is
uniquely successful (de�ned bellow), was established and denoted by γu = α− α2. While su�cient
for the setting of small f in [9], here we will need to use a better lower bound to the probability of
these events (see Appendix) and to the probability of a round being leading branch (see section 3.2).
We will de�ne this bound as γ = αe−α. Observe that γ > γu.

The only di�erence from the model of [9] is that if an honest player in a given round mines one
block, then he continues until all of his queries are spent. So he may �nd more than one solutions
in a round, and thus extend the longest chain by more than one blocks. A number of de�nitions
that will be used extensively are listed below.

De�nition 1. [9] (divergence) Two chains diverge at a given round if the last block of their common
pre�x was computed before that round.

(successful round) A round is called successful if at least one honest player computes a solution
in this round.

(uniquely successful round) A round is called uniquely successful if exactly one honest player
computes a solution in this round.

De�nition 2. (extends) We will say that a chain C extends another chain C′ if a pre�x of C′ is a
su�x of C.

(recent) By recent(s) we denote the set of blocks that were computed at round s and afterwards.

2.2 Backbone Protocols

In order to study the properties of the core Bitcoin protocol, the term Backbone Protocol was
introduced in [9]. On this level of abstraction we are only interested on properties of the blockchain,
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independently from the data stored inside the blocks. In the same work the Bitcoin backbone
protocol is described in a quite abstract and detailed way. The main idea is that honest players, at
every round, receive new chains from the network and pick the longest valid one to mine. Then, if
they mine a block, they broadcast their chain at the end of the round. For more details we refer
to [9, Subsection 3.1].

The same level of abstraction can also be used to express the GHOST protocol. The GHOST
backbone protocol as presented in [14] is based on the principle that blocks that do not end up in
the main chain, should also matter in the chain selection process. In order to achieve this, players
store a tree of all mined blocks they have heard, and then using the greedy heaviest observed subtree
(GHOST) rule they peak which chain to mine.

Algorithm 1 The function that �nds the �best� chain. The input is a block tree T .

1: function GHOST(T )
2: B ← GenesisBlock
3: if childrenT (B) = ∅ then
4: return C = (GenesisBlock, ..., B)
5: else

6: B ← argmaxc∈childrenT (B)|subtreeT (c)|
7: end if

8: go to 3
9: end function

At every round players update their tree by adding valid blocks sent by other players. The same
principle as Bitcoin applies, but now for a block to be added to the tree it su�ces to be a valid child
of some other tree block. The adversary can add blocks anywhere he wants in the tree, as long as
they are valid. Again, as on Bitcoin, players try to extend the chains they choose by one or more
blocks. Finally in the main function, a tree of blocks is stored and updated at every round. If a
player updates his tree he broadcasts it to all other players.

2.3 Security Properties of the Backbone protocols

In [9, De�nitions 2&3] two crucial security properties of the Bitcoin backbone protocol were consid-
ered, the common pre�x and the chain quality property. The common pre�x property ensures that
two honest players have the same view of the blockchain if they prune a small number of blocks
from the tail. On the other hand the chain quality property ensures that honest players chains' do
not contain long sequences of adversarial blocks.

De�nition 3 (Common Pre�x Property). The common pre�x property Qcp with parameter k ∈ N
states that for any pair of honest players P1, P2 maintaining the chains C1, C2 in viewH(·)

Π,A,Z(κ, q, z),
it holds that

C⌈k1 ⪯ C2 and C
⌈k
2 ⪯ C1.

De�nition 4 (Chain Quality Property). The chain quality property Qcq with parameters µ ∈ R
and ℓ ∈ N states that for any honest party P with chain C in view

H(·)
Π,A,Z(κ, q, z), it holds that for

any ℓ consecutive blocks of C the ratio of adversarial blocks is at most µ.

These two properties were shown to hold for the Bitcoin backbone protocol. Formally, in [9,
Theorems 9&10] the following were proved:
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Theorem 5. Assume f < 1 and γu ≥ (1 + δ)λβ, for some real δ ∈ (0, 1) and λ ≥ 1 such that

λ2−fλ−1 ≥ 0. Let S be the set of the chains of the honest parties at a given round of the backbone

protocol. Then the probability that S does not satisfy the common-pre�x property with parameter k
is at most e−Ω(δ3k).

Theorem 6. Assume f < 1 and γu ≥ (1+δ)λβ for some δ ∈ (0, 1). Suppose C belongs to an honest

party and consider any ℓ consecutive blocks of C. The probability that the adversary has contributed
more than (1− δ

3)
1
λℓ of these blocks is less than e−Ω(δ2ℓ).

2.4 Robust public transaction ledgers

In [9] the robust public transaction ledger primitive was presented. It tries to capture the notion of
a book where transactions are recorded, and it is used to implement Byzantine Agreement in the
honest majority setting.

A public transaction ledger is de�ned with respect to a set of valid ledgers L and a set of valid
transactions T , each one possessing an e�cient membership test. A ledger x ∈ L is a vector of
sequences of transactions tx ∈ T . Each transaction tx may be associated with one or more accounts,
denoted a1, a2, . . . Ledgers correspond to chains in the backbone protocols. An oracle Txgen is
allowed in the protocol execution that generates valid transactions (this represents transactions
that are issued by honest parties). For more details we refer to [9].

De�nition 7. A protocol Π implements a robust public transaction ledger in the q-bounded syn-
chronous setting if it satis�es the following two properties:

Persistence: Parameterized by k ∈ N (the �depth� parameter), if in a certain round an honest
player reports a ledger that contains a transaction tx in a block more than k blocks away from
the end of the ledger, then tx will always be reported in the same position in the ledger by any
honest player from this round on.

Liveness: Parameterized by u, k ∈ N (the �wait time� and �depth� parameters, resp.), provided
that a transaction either (i) issued by Txgen, or (ii) is neutral, is given as input to all honest
players continuously for u consecutive rounds, then there exists an honest party who will report
this transaction at a block more than k blocks from the end of the ledger.

These two properties were shown to hold for the ledger protocol build on top of the Bitcoin
backbone protocol. Formally, in [9, Lemma 15&16] the following were proved:

Lemma 8 (Persistence). Suppose f < 1 and γu ≥ (1 + δ)λβ, for some real δ ∈ (0, 1) and λ ≥ 1
such that λ2 − fλ− 1 ≥ 0. Protocol ΠPL satis�es Persistence with probability 1− e−Ω(δ3k), where k
is the depth parameter.

Lemma 9 (Liveness). Assume f < 1 and γu ≥ (1 + δ)λβ, for some δ ∈ (0, 1), λ ∈ [1,∞) and let

k ∈ N. Further, assume oracle Txgen is unambiguous. Then protocol ΠPL satis�es Liveness with

wait time u = 2k/(1− δ)γu and depth parameter k with probability at least 1− e−Ω(δ2k).

3 Chain Growth and Trees of blocks

In this section we introduce our new security property, called chain growth, and a new analysis
framework based on tress of blocks.
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3.1 Chain Growth

In addition to the two security properties of the Bitcoin backbone protocol mentioned in Section 2.3,
and inspired from the comparative analysis of Bitcoin and GHOST, we de�ne a new property called
chain growth. This property aims at expressing the minimum rate at which the chains of honest
players grow. It is motivated by an attacker that has objective to slow down the overall transaction
processing time of the blockchain system. The common pre�x and chain quality properties do not
explicitly address this issue, and this can be seen from the fact that both properties can hold even
if honest players' chains do not grow at all.

De�nition 10. (Chain Growth Property) The chain growth property Qcg with parameters τ ∈ R
(the �chain speed� coe�cient) and s ∈ N states that for any round r > s, where honest party P has

chain CP1 at round r and chain CP2 at round r − s in view
H(·)
Π,A,Z(κ, q, z), it holds that minP |CP1 | −

minP |CP2 | ≥ τ · s.

Bitcoin. For the Bitcoin backbone protocol this property is satis�ed with parameter τ equal to γ
and with overwhelming probability in s. Since all honest players choose the longest chain they see,
and successful rounds happen with rate γ, their chains will grow at least at this rate. The worst
the adversary can do is not participate, so this is a tight bound.

Theorem 11. The Bitcoin protocol satis�es the chain growth property with speed coe�cient (1−δ)γ
and probability at least 1− e−Ω(δ2s), for δ ∈ (0, 1).

Proof. Let r, s ∈ N and base(r) denote the minimum length chain that an honest player mines at
round r. Suppose that at round r − s, base(r) = l. We are going to show that at round r, base(r)
is at least l + (1− δ)γs with probability 1− e−Ω(δ2s).

It holds that if some round r′ is successful: base(r′+1) ≥ base(r′)+1, because the honest player
that mined the new solution at round r′ was mining a chain of size at least base(r′). Inductively if
between rounds r and r − s there are k successful rounds, base(r) ≥ base(r − s) + k.

But notice that γ is a lower bound on successful rounds. From the Cherno� bound at least
(1− δ)γs such rounds will occur between rounds r− s+1 and r with probability 1− e−Ω(δ2s). Thus
base(r + s) ≥ base(r) + (1− δ)γs with probability 1− e−Ω(δ2s).

The importance of chain growth as a fundamental property of the backbone protocol that is of
the same caliber as common pre�x and chain quality can be seen in the fact that the liveness of
the ledger essentially depends on it. We elaborate: in [9, Lemma 16] the liveness property was not
proved in a black box manner given the chain quality and common pre�x properties. Interestingly,
by introducing the chain growth property as a prerequisite together with the other two, a simple
black box proof can be derived. As expected, the con�rmation time parameter u of the liveness
property is tightly connected to the chain speed coe�cient τ .

Lemma 12 (Liveness). Let protocol Π satisfy the chain quality and chain growth properties with

overwhelming probability on l, s and parameters µ, τ . Further, assume oracle Txgen is unambiguous.

Then protocol Π satis�es Liveness with wait time u = 2
τ ·max(k, 1

1−µ) rounds and depth parameter

k with overwhelming probability in k.

Proof. We prove that assuming all honest players receive as input the transaction tx for at least
u rounds, there exists an honest party at round r with chain C such that tx is included in C⌈k.
From the chain growth property after u rounds the chain of all honest players has grown by at least
τu(≥ 2k) blocks with overwhelming probability on k. From the chain quality property there exist
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at least τu
2 (1 − µ)(≥ 1) honest blocks in the length-k su�x of C⌈k with overwhelming probability

on k. Thus tx is included in these blocks and the lemma follows with overwhelming probability on
k.

GHOST. In the GHOST backbone we will prove that the chain growth property is more nuanced
and it is in fact possible for the adversary to mount a non-trivial attack against it. We defer the
details of the analysis and attack for section 6.2.

3.2 Trees of blocks

We introduce next our new analysis framework for backbone protocols that is focusing on trees of
blocks . In this model every player stores all blocks he hears on a tree starting from the Genesis (or
vroot) block. This is the model where GHOST is normally described. Bitcoin, and other possible
backbone variants, can also be seen in this model and thus a uni�ed language can be built.

We �rst de�ne block trees (or just trees) that capture the minimal and maximal knowledge of
honest players regarding the block tree on every round.

De�nition 13. T ∀
r (resp. T ∃

r ) is the tree formed by blocks s.t. ∀(resp. ∃)p ∈ honest players: p
has received block b at the beginning of round r. Similarly, T tot

r is the tree that contains T ∃
r and

also includes all blocks mined by honest players at round r. Also we denote by TP
r the tree that is

formed from the blocks that player P has received until the beginning of round r and by T ∗
r (b) the

subtree of T ∗
r rooted on b where ∗ ∈ {∀, ∃, tot, P}.

Blocks in T ∀
r have been received by all players, and at least one honest player has received the

blocks in T ∃
r . So for every honest player P it holds that:

T ∀
r ⊆ TP

r ⊆ T ∃
r ⊆ T tot

r

Intuitively, heavier trees represent more proof of work. But there are more than one ways to
de�ne what is a �heavy� tree. For example, in Bitcoin a heavy tree is a long one. But for GHOST
a heavy tree is one with many nodes. To capture this abstraction we condition our de�nitions on a
norm g de�ned on trees. This norm will be responsible for deciding what is heavy, and thus favored
by the chain selection rule. We choose to omit g from the notation since it will always be clear from
the context which norm we use.

De�nition 14. For each round r of the protocol we de�ne the following three functions on the
nodes of T tot

r under a norm g de�ned on forests (sets of trees).

� |v|rold : If v ∈ T ∃
r then |v|rold = g(T ∃

r (v)), otherwise |v|rold = 0.

� |v|rtot : |v|rtot = g(T tot
r (v)).

� |v|rnew : Let F be the forest formed by blocks mined by honest players at round r that are
descendants of v (possibly including v). Then |v|rnew = g(F ).

Let siblings(v) denote the set of nodes in T ∃
r that share the same parent with v. Then node v

is d-dominant at round r w.r.t. f ∈ {old, new, tot} i�

domr
f (v, d)⇔ |v|rf ≥ d ∧ ∀v′ ∈ siblings(v) : |v|rf ≥ |v′|rf + d
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The Bitcoin protocol can be described using the notion of the d-dominant node. Let g be the
length of the longest tree in the forest. Each player p, starting from the root of his T p

r tree, greedily
decides on which block to add on the chain by choosing one of its 0-dominant children and continuing
recursively. Interestingly GHOST can also be described this way by setting g to be the number of
nodes of the forest. Thus we have a uni�ed way for describing both protocols. Building upon this
uni�ed language we can describe the paths that fully informed honest players may choose to mine
in a quite robust way, thus showcasing the power of this notation.

De�nition 15. (Paths sets)

- Paths(T ) is the maximal set of root-leaf paths of tree T

- HonestPaths(r, b) is the maximal subset of Paths(T ∃
r (b)) s.t.

∀p = v0v1..vk ∈ HonestPaths(r, b) ∀i ∈ {1, .., k} domr
old(vi, 0)

Having established the necessary nomenclature we introduce a new technical tool, the notion of
leading branch rounds. Intuitively, a leading branch round can be thought of as a round that gives
the opportunity for honest players to consent. The idea is that leading branch rounds will throw o�
balance the tree, and mining paths on the following round will become concentrated on one branch
of the tree. The adversary can try to balance the tree, so that a fork will be created, but he has to
pay for it by mining blocks on the weak branch.

A unique dominating path exists every time a leading branch round happens pointing to the
subtree where honest players will mine in the next round (unless the adversary interferes). We
de�ne both leading branch rounds and the dominating path formally as follows.

De�nition 16. (LB(s, d) rounds and plb(r, s)) We call round r Leading Branch with respect to

round s and di�erence d ≥ 1 if and only if at that round, d is the maximum value s.t. the following
set is non-empty:

{p = vrootv1..vk |p ∈ Paths(T tot
r ) ∧ ∃i : vi ∈ recent(s)∧

∀i (parent(vi) ̸∈ recent(s))⇒ domr
new(vi, d)}

The common pre�x up to the �rst node that was computed at round s or afterwards of all paths in
this set (for the maximum value of d), if it exists, is denoted by plb(r, s).

Note that leading branch rounds as de�ned here, constitute a generalization of the uniquely
successful rounds of [9]. Uniquely successful rounds are de�ned independently of the history, but
this is not the case for leading branch rounds, as they depend on T ∃

r . Observe that every round
r that is uniquely successful, is also a LB(r, 1) round both for Bitcoin and GHOST. Additionally
leading branch rounds have the extra parameter s, that is related to how deep the imbalance on the
tree is, in terms of rounds. For example suppose no fork exists on T ∃

r (i.e., T ∃
r is a chain) and honest

miners have mined new blocks. Then this round is leading branch for every s. If a round is leading
branch for s1, then it will also be for all s2 that are smaller than s1. However, the reverse does not
always hold. Suppose honest miners only mine two new blocks, on top of two sibling nodes. Then
for s larger than the round that their common ancestor was mined, this is not a leading branch
round, but for smaller s it is.

Notice that uniquely successful rounds happen less and less often as the expected number of
rounds per block6 1/f decreases. By focusing on the di�erence of the number of new solutions on

6 Expected number of rounds per block is approximately 1
f
. The random variable described follows a negative

binomial distribution with parameter (1− p) and thus the expectation is ⌈ 1
f
− p

f
⌉, where p is the probability that a

query on the hash oracle will be successful (which is very small compared to 1).

10



Figure 2: Illustration of the setting when round r is in LB(s, 1). In the left side (Bitcoin - the g
norm measures maximum height), |v2|rnew = 2 while |v1|rnew = 1, hence v2 is 1-dominant. In the
right side (GHOST - the g norm measures number of nodes), |v2|rnew = 2 while |v1|rnew = 3, hence
v1 is 1-dominant and |v3|rnew = 2 while |v4|rnew = 1, hence v3 is 1-dominant.

di�erent branches, and not on their absolute number, we manage to describe a class of �good� events
that happen with a non-negligible probability even for 1/f < 1.

Remark 1. For Bitcoin, g is chosen to be the length of the longest tree in the forest and leading
branch rounds are represented by LBmax. For GHOST, g is chosen to be the total number of nodes
on the forest, and leading branch rounds are represented by LBsum.

Remark 2. For the Bitcoin and GHOST backbone protocols it holds that if, at round r, a block b
is d1-dominant w.r.t. to old and d2-dominant w.r.t. to new and for any player P that mines some
of the new blocks TP

r (b) = T ∃
r (b), then b is (d1 + d2)-dominant w.r.t. to tot.

4 Bitcoin

4.1 A better bound for the common pre�x property

In this section we present a better security bound than the one in [9] regarding the common pre�x
property of the Bitcoin backbone protocol. The bound of [9] is derived by the observation that (in
our terminology) the adversary should produce a block for all rounds that are silent and leading

branch. With this, it is shown that γu ≥
f+
√

f2+4
2 β is su�cient for security; observe that in general

the coe�cient
f+
√

f2+4
2 > 1 for any f > 0. Here we show that γ ≥ β is su�cient thus we eliminate

entirely the dependence on f in the coe�cient of β (also recall γ ≥ γu). This improvement in the
bound has a signi�cant impact in terms of provable security as shown in Figures 3,4.

Our main tool to derive this is a proof that all leading branch rounds have to be compensated by
the adversary (and not just those that are silent). To show this we have to perform a more delicate
analysis that requires some additional terminology. Next we introduce the notion of an m-Uniform
round.

De�nition 17. (m-Uniform rounds) We call a roundm-Uniform if, at that round,m is the minimum
value such that for all chains C1, C2 that any two honest parties initially invoke the pow algorithm

11



Figure 3: The level of provable security comparing the results of [9] and our improved results for
Bitcoin. Under the curves the common pre�x property provably holds. The respective block-rate
values chosen for two altcoins are depicted on the graph.

with, it holds that ||C1| − |C2|| ≤ m.

Let base(r) denote the length of the shortest chain than an honest player at round r chooses to
mine. From the de�nition of the m-uniform round it follows that on the next round, honest players
will mine chains of size at least base(r) + m. The size of these chains must also grow at least as
much as the maximum number of solutions a single honest player has found at round r (recall that
according to De�nition 14 this is equal to |vroot|rnew), because these solutions will be known to all
players at round r + 1. More compactly:

Observation 18. For every m-uniform round r it holds that

base(r) + max{|vroot|rnew,m} ≤ base(r + 1)

As it was discussed earlier, LB rounds are �bad� for the adversary, because they help honest
players consent on a single blockchain in the following round. On the other hand, m-Uniform
rounds are �good�, since some honest players mine on shorter chains and thus waste their hash
queries. Unfortunately for the adversary, this type of rounds does not happen naturally in the
system and he must mine and publish blocks of his own to make a round non-uniform (m-uniform
with m > 0). Independently of uniformity, the adversary must still compensate for all leading
branch rounds as shown in the next lemma.

Lemma 19. Suppose C1 and C2 are the chains of two honest parties at round r that diverge at round
s ≤ r. Also suppose that rounds r1, .., rt are leading branch rounds such that ri ∈ LBmax(s, di) and
ri ∈ [s, .., r−1]. Then, the adversary must have mined and published at least

∑t
i=1 di di�erent blocks

until round r.

Proof. For the mi-uniform round ri (i ∈ {1, .., t}), let li = base(ri) and ki = |vroot|rinew. For every
such round, we prove that the adversary must have published at least di blocks and place them in
speci�c positions in the respective chains, in order for the fork to be maintained. Formally we show
the following.

12



Figure 4: Similar to �gure 3 but for larger values of 1/f . Under the curves the common pre�x
property provably holds. The respective block-rate values chosen for two popular altcoins are
depicted on the graph. Bitcoin is in the far right (recall from table 1 that for Bitcoin it holds
1/f ≈ 47).

Claim 1. Let r be a LBmax(s, d) round that is m-uniform, with s ≤ r, then:

1. if m ≥ 1, there exists a chain C such that blocks at positions

base(r) + 1, ..., base(r) +m

are mined by the adversary.

2. if m < d, at the end of round r and onwards and for all pairs of honest players' chains C1, C2
that diverge at round s, in each of the following positions there exists at least one adversarial

block (in one of the two chains, as long as both chains have su�cient length):

base(r) +m+ (|vroot|rnew − d) + 1, ..., base(r) + |vroot|rnew

Proof of Claim. The �rst point follows from the fact that all honest players mine a chain of size at
least base(r). So for the round to be m-Uniform a chain of size at least base(r) + m must exist.
But honest players, at the start of round r, have mined blocks on chains of at most size base(r).
Otherwise no honest player would choose to mine a chain with length base(r). So blocks at positions
base(r) + 1, ..,base(r) +m of the aforementioned chain must have been mined by the adversary.

For the second point, let C be a chain that an honest player extends by |vroot|rnew blocks at
round r. By de�nition C by the end of the round has length at least base(r) + |vroot|rnew. From the
de�nition of the leading branch rounds we know that all honest players at round r, that extend a
chain that diverges with C at round s, �nd at most |vroot|rnew − d solutions. Thus, by the end of
the round, their chains have length at most base(r) +m+ |vroot|rnew − d. And so, all chains at the
end of round r that have at least one honest block on the positions mentioned on the second point,
do not diverge with C at round s (as they are longer than the upper bound we just established).
And since no honest player is going to mine blocks in these positions in any following round, this
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also holds for every round after r. It follows that any honest players' chain that diverges at round
s with C has adversarial blocks at the positions mentioned.

Consider the chains C1, C2 of two honest players' at the end of round r and onwards that diverge
at round s. For the sake of contradiction, assume that there is one position among those mentioned
that both chains have blocks produced by honest players. In this case C1, C2 do not diverge with C
at round s and thus they cannot diverge with each other at round s. This concludes the proof of
the claim. ⊣

It remains to show that the blocks that the adversary must publish for every di�erent leading
branch round must be in distinct positions.

If mi ≥ di, from the previous claim, item 1, the adversary has published a chain where he
has mined blocks at positions li + 1, .., li + di. On the other hand, if mi < di then, since C1 and
C2 diverge at round s, and they have size greater or equal than li + ki, the blocks at positions
li+mi+ ki− di+1, .., li+ki cannot be both mined by honest players (due to the claim above, item
2). Moreover, there exists a chain where the adversary has mined blocks at positions li+1, .., li+mi

(due to claim above, item 1). Recall that ki ≥ di hence these positions are disjoint and thus a total
of di = (ki − (mi + ki − di + 1) + 1) +mi blocks at least must have been mined and published by
the adversary in the range li + 1, .., li + ki.

Finally, from Observation 18 it holds that li+max({ki,mi} ≤ li+1, and therefore all these blocks
are on distinct positions on the chains they belong. Thus the lemma follows.

Given the above core lemma we can now easily prove the improved bound for the common-pre�x
property following the same proof strategy as in [9]. Namely, it can be shown that the adversary
cannot use very old solutions to compensate for recent leading branch rounds, and thus by suitably
limiting his power he will be unable to produce enough solutions to compensate for every leading
branch round, as it is required by the core lemma (proof in the Appendix).

Lemma 20. Assume γ ≥ (1 + δ)β, for some real δ ∈ (0, 1) . Suppose C1 and C2 are the chains of

two honest parties at round r. Then, for any s ≤ r, the probability that C1 and C2 diverge at round

r − s is at most e−Ω(δ3s).

Theorem 21. Assume γ ≥ (1 + δ)β, for some real δ ∈ (0, 1). Let S be the set of the chains of the

honest parties at a given round of the backbone protocol. Then the probability that S does not satisfy

the common-pre�x property with parameter k is at most e−Ω(δ3k).

5 GHOST

In this section, we prove that the GHOST backbone protocol is su�cient to construct a robust
transaction ledger. Whenever notation from De�nition 14 is used, it is assumed that g(F ) is the
total number of nodes of the forest F .

5.1 Common Pre�x and Chain Quality

In the previous section, it was shown that the e�ort that leading branch rounds impose on the
adversary is cumulative. A similar idea is developed here but a di�erent approach is needed. The
reason that the previous analysis cannot be used for GHOST, is that the blocks that the adversary
mines to compensate for leading branch rounds, are not uniquely associated with a speci�c height
in the chain, as it was the case for Bitcoin. Moreover, in GHOST, honest players can choose to
mine smaller chains than the ones that they were mining previously hence the length of the chain
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is not monotonically increasing. To re�ect these facts, we introduce a new notion, that of a path
that all of its nodes are dominant up to a certain value.

De�nition 22. (pdom(r, d)) For d > 0, pdom(r, d) is the longest subpath p = vrootv1 . . . vk in T tot
r

s.t.

p ̸= vroot ∧ ∀i : domr
tot(vi, d)

If no such path exists pdom(r, d) = ⊥.

In the next lemma, we show that for any sequence of m leading branch rounds starting at some
round r′, no matter the strategy of the adversary, there will be at least one honest block at round
r in pdom(r,m − k) where k is the number of adversarial blocks that have been released during
rounds [r′, r − 1]. This establishes the robustness of pdom in the sense that only adversarial blocks
can decrease it and they do so in a linear fashion at worst.

Lemma 23. Let rounds r1, .., rm be uniquely successful rounds from round r′ until round r. If the

adversary publishes k < m blocks from round r′ until round r, then there exist blocks b1, .., bm−k

mined by honest players at the uniquely successful rounds where (1) bi is in pdom(r, i) and (2) if

i < j then bi is a descendant of bj.

Proof. We are �rst going to prove two preliminary claims that show the e�ect of a uniquely successful
round to pdom. The �rst claim shows that if a uniquely successful round s is not compensated
accordingly by the adversary, a newly mined block will be forced into pdom(s, 1).

Claim 2. Let round s be a uniquely successful round and b be the honest block mined at round s. If
the adversary does not publish any block at round s− 1 then b ∈ pdom(s, 1).

Proof of Claim. First notice that since the adversary does not publish any block it holds that
T ∃
s = T ∀

s . Therefore, all nodes in the path from vroot to b are at least 0-dominant w.r.t. to old. For
any uniquely successful round it holds that all nodes up to the newly mined block are 1-dominant
w.r.t. new. Thus it follows that b ∈ pdom(s, 1). ⊣

The second claim shows the e�ect of a uniquely successful round s to an existing pdom(s− 1, d)
path. Notice that if the adversary publishes less than d blocks the same nodes continue to be at
least 1-dominant in the following round.

Claim 3. Let round s be a uniquely successful round, b be the honest block mined at round s and

pdom(s− 1, d) ̸= ⊥. If the adversary publishes (i) k < d blocks at round s− 1 then pdom(s− 1, d) ⊆
pdom(s, d + 1 − k), (ii) k = d blocks at round s − 1 then either b ∈ pdom(s, 1) or pdom(s − 1, d) ⊆
pdom(s, 1).

Proof of Claim. There are two cases. In the �rst case suppose the adversary publishes k < d blocks.
Then with these blocks the adversary can lower the dominance of nodes in pdom(s−1, d) by k. Thus
pdom(s− 1, d) will be a pre�x of all the chains in HonestPaths(s, vroot). But because s is a uniquely
successful round the dominance of all nodes in pdom(s− 1, d) w.r.t. tot at round s will increase by
one. Therefore pdom(s− 1, d) ⊆ pdom(s, d+ 1− k).

In the second case suppose the adversary publishes k = d blocks. If he does not publish all
of these blocks to reduce the dominance of nodes in path pdom(s − 1, d), then pdom(s − 1, d) will
be a pre�x of all the chains in HonestPaths(s, vroot) and as in the previous case, pdom(s − 1, d) ⊆
pdom(s, d+ 1− k).
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Otherwise the adversary will reduce the dominance of at least one node in pdom(s − 1, d) to
zero. If b is a descendant of the last node in pdom(s− 1, d), then all nodes in pdom(s− 1, d) will be
1-dominant w.r.t. tot and pdom(s− 1, d) ⊆ pdom(s, 1) = pdom(s, d+ 1− d). If b is not a descendant
of the last node in pdom(s−1, d), then for the player P that mined this block it holds that TP

s = T ∃
s ,

because he would have not mined a chain that does not contain pdom(s−1, d) at round s otherwise.
Therefore, P at round s was mining a chain that belonged to HonestPaths(s, vroot) and thus all
nodes in the chain are at least 0-dominant w.r.t. old. But because s is a uniquely successful round
the dominance of all nodes in the chain will increase by one and b ∈ pdom(s, 1). ⊣

Let bi denote one of the blocks mined by honest players at round ri. Let us assume that r = rm.
We are going to prove the lemma using induction on the number of uniquely successful rounds m.

For the base case suppose m = 1. The adversary does not publish any block until round r1 and
from the �rst claim b1 ∈ pdom(r1, 1). Thus the base case is proved. Suppose the lemma holds for
m− 1 uniquely successful rounds and let k1 be the number of blocks published by the adversary in
the round interval [r′, rm−1 − 1]. We have two cases.

(First case) k1 = m − 1 and the adversary publishes no blocks in the rest of the rounds. From
the �rst claim it follows that bm ∈ pdom(rm, 1).

(Second case) k1 < m − 1 and from the induction hypothesis there exist blocks b′1, ..., b
′
m−1−k1

mined by honest players at the uniquely successful rounds r1, .., rm−1 where b′i ∈ pdom(rm−1, i). If
the adversary publishes m − 1 − k1 new blocks before round rm − 1, then from the �rst claim,
bm ∈ pdom(rm, 1). If the adversary publishes k2 < m − 1 − k1 before round rm − 1, then from the
second claim, at round rm − 1, b′i ∈ pdom(rm − 1, i− k2) for i in {k2 + 1, ...,m− 1− k1}.

Let k3 be the number of blocks the adversary publishes at round rm−1. If k3 = m−1−k1−k2 then
from the second claim either bm ∈ pdom(rm, 1) or b′m−1−k1

∈ pdom(rm, 1). If k3 < m − 1 − k1 − k2
then again from the second claim at round rm − 1, b′i ∈ pdom(rm−, i − k2 − k3 + 1) for i in
{k2 + k3 + 1, ...,m − 1 − k1} and either b′k2+k3

is in pdom(rm, 1) or bm is in pdom(rm, 1). This
completes the induction proof.

We proved that if k4 < m is the number of blocks the adversary has published until round
r = rm, then there exists honest blocks b′1, .., b

′
m−k4

s.t. b′i is in pdom(rm, i). Now in the case r > rm,
let k5 < m − k4 be the number of blocks the adversary publishes in the remaining rounds. The
lemma follows easily from the second claim.

In the next lemma we prove that after a �xed amount of consecutive rounds, one honest block
mined on these rounds, is permanently inserted in the chain that every honest player chooses to
mine thereafter with overwhelming probability on s.

Lemma 24. Assume γ ≥ (1 + δ)β, for some real δ ∈ (0, 1). For any sequence of s consecutive

rounds that happen before some round r, there exists a block mined by an honest player during these

rounds that is contained in the chain which any honest player chooses to mine after round r with

probability 1− e−Ω(δ2s).

Proof. Let random variable Zr′ denote the number of blocks the adversary produces during r′

rounds, and random variable Xr′ denote the number of rounds that are uniquely successful during
r′ rounds. Then from the Cherno� bounds we have:

Pr[Zr′ ≥ (1 +
δ

5
)βr′] ≤ e−Ω(δ2s), for δ ∈ (0, 1)

Pr[Xr′ ≤ (1− δ

4
)γr′] ≤ e−Ω(δ2s), for δ ∈ (0, 1)
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It follows that with probability at least 1− e−Ω(δ2s):

Xs > (1 +
δ

2
)Zs

and thus from Lemma 23 at round s one honest block b will be in pdom(s,Xs−Zs) with probability
at least 1− e−Ω(δ2s).

Next we show that as long as for any round r′ > s the adversary has produced less blocks than
the number of uniquely successful rounds pdom(s,Xs − Zs) ⊆ pdom(r

′, Xr′ − Zr′).

Claim 4. Let rounds r1, .., rm be uniquely successful rounds in the round interval [r′ + 1, r] and
pdom(r

′, d) ̸= ⊥. If for all uniquely successful rounds ri it holds that the adversary has published

ki < i+ d blocks and the adversary publishes at most k < m+ d blocks from round r′ until round r,
then pdom(r

′, d) ⊆ pdom(r,m+ d− k).

Proof of Claim. As long as the nodes in pdom(r
′, d) are at least 1-dominant, all honest players

will work on chains containing pdom(r
′, d) and thus uniquely successful rounds will increase their

dominance. On the other hand the adversary can at worst reduce the dominance of these nodes by
the number of blocks he publishes. But from the assumptions made in the statement the number of
the blocks the adversary publishes is always less than the number of uniquely successful rounds plus
d. Therefore in all rounds the nodes in pdom(r

′, d) are at least 1-dominant and the claim follows. ⊣

Notice that for all subsequent rounds r′ after s it will hold with probability at least 1− e−Ω(δ2s)

that

Xr′ > (1 +
δ

2
)Zr′

Thus b will stay in the chains of honest players permanently after round s, since b ∈ pdom(r
′, 1) for

any r′ > s, with probability 1− e−Ω(δ2s).
We can use this argument inductively for every round of the form s · k where k ∈ N. Suppose

that block bk has been added permanently to the chains of honest players at round s · k. Then for
all uniquely successful rounds after s · k, the path to the newly mined block contains bk and thus
Lemma 23 holds for the subtree under bk. Everything stated in the proof of the base cases holds for
the round interval [s · k, s · (k + 1)] also. Therefore another block bk+1 will be added permanently
to the chains of honest players at round s · (k + 1) and the lemma follows by induction.

From Lemma 24 it follows that the density in terms of rounds of honest blocks in any chain that
an honest player chooses to mine is at least 1

s with probability 1 − e−Ω(δ2s). Since in s rounds the
adversary can compute only a limited number of blocks the chain quality property follows (proof in
the Appendix).

Theorem 25. Assume γ ≥ (1 + δ)β, for some real δ ∈ (0, 1). Suppose C is the chain of an honest

party at round r. Then it holds that for any l consecutive blocks of C, there exists at least one honest
block with probability 1− e−Ω(δ2l).

From Lemma 24 again it follows that all honest players at round r will share in the chains they
choose to mine a block computed at worst at round r − s with probability 1− e−Ω(δ2s). Since in s
rounds all players can compute only a limited number of blocks the common pre�x property follows.
The proof is the same as the one that was presented in the Appendix for theorem 21.

Theorem 26. Assume γ ≥ (1 + δ)β, for some real δ ∈ (0, 1). Let S be the set of the chains of the

honest parties at a given round of the GHOST backbone protocol. Then the probability that S does

not satisfy the common-pre�x property with parameter k is at most e−Ω(δ2k).
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5.2 Chain Growth

In this section we prove that GHOST satis�es the Chain Growth property. However, in comparison
with Bitcoin, the speed coe�cient of GHOST is a lot weaker. This re�ects the fact that honest
players in GHOST may be lead by the adversary to adopt shorter chains and hence honest players'
chains are not monotonically increasing (cf. Section 6.2 where we describe a chain growth attack
against GHOST).

Theorem 27. Assume γ ≥ (1 + δ)β, for some real δ ∈ (0, 1). The GHOST backbone protocol

satis�es the chain growth property at least with parameters τ = 1
k(k+1) , s = k(k+1) with probability

at least 1− e−Ω(δ2k).

Proof. We prove that after k · (k + 1) rounds the block chain of every player will have grown by at
least one block. Let C1 be the chain of player p at round r and C2 at round r + k(k + 1).

From theorem 26 it follows that the pre�x C
⌈k
1 of C1 will be also a pre�x for C2 with probability

1−e−Ω(δ2k). Also, from lemma 24 it follows that for all round intervals of the form [r+ik, r+(i+1)k]
for i ∈ {0, k}, there exists at least one block in chain C2 that was computed on this interval by an
honest player with probability at least 1 − e−Ω(δ2k). By an application of the union bound with

probability 1− e−Ω(δ2k) there are a total of k + 1 new blocks in C2 and C
⌈k
1 is a pre�x of C2. Thus

|C2| − |C1| ≥ 1 ≥ 1
k(k+1)k(k+1) and the GHOST protocol satis�es the chain growth property with

probability 1− e−Ω(δ2k).

5.3 Robust public transaction ledger

It was proved on the previous subsections that the GHOST backbone protocol satis�es all three
security properties: Common Pre�x, Chain Quality and Chain Growth. As it was shown in [9]
and further discussed on lemma 12, using arbitrary protocols that satisfy these properties one can
implement in a black box manner a robust public transaction ledger through protocol ΠPL. Thus
the GHOST backbone protocol can be used to implement a robust transaction ledger. The security
parameters under which the ledger works are described in the next two lemmas.

Lemma 28 (Persistence). Suppose γ ≥ (1 + δ)β, for some real δ ∈ (0, 1). Protocol ΠPL satis�es

Persistence with probability 1− e−Ω(δ2k), where k is the depth parameter.

Lemma 29 (Liveness). Assume γ ≥ (1 + δ)β, for some δ ∈ (0, 1) and let k ∈ N. Further, assume

oracle Txgen is unambiguous. Then protocol ΠPL satis�es Liveness with wait time u = 2k2(k + 1)
rounds and depth parameter k with probability at least 1− e−Ω(δ2k).

Theorem 30. The GHOST backbone protocol can be used to implement a robust transaction ledger.

6 Transaction Speed - Security Tradeo�s

In [8] an attack (sel�sh mining) against the chain quality property of Bitcoin was demonstrated.
In [9] it was shown that (for the case of a rushing adversary7) it is optimal since it matches the
bounds of the security theorem for chain quality. However little is known regarding optimal attacks
on the common pre�x and chain growth properties. For instance, it is known that a �51% attacker�
can break the common pre�x with an arbitrarily long fork. However long forks have been predicted

7As argued in [8] this is a plausible attack strategy, we refer to their paper for more details.
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to be feasible even for attackers with below 50% of the hashing power in case f is large. In this
section, we explore two attacks on these two properties in an experimental way (through computer
simulations) providing some interesting insights on the optimality of the theoretical results that we
have proven. Both of the attacks a�ect transaction speed in di�erent ways. The �rst attack, targets
security when f is large, and thus prohibits the increase of the block generation rate in order to
increase the transaction speed. The second attack, targets chain growth and thus e�ectively it will
increase the time that a certain transaction may appear in the blockchain.

6.1 Attack on Common Pre�x

Figure 5: The level of insecurity in terms of the hashing power of the adversary as a function of
1/f . Above the two (almost identical) curves our attack breaks common pre�x with a fork that is
100 blocks deep with probability of success at least 1%. The respective block-rate values chosen for
two altcoins are depicted on the graph.

In this subsection we do experimental analysis on attacks targeting the common pre�x property
of the Bitcoin and GHOST protocols. The two protocols seem quite robust against these attacks
when f < 1. However, their security deteriorates as f grows bigger and taking advantage of these
attacks an adversary can e�ectively cause deep forks to appear. Graphs on how various cryptocur-
rencies' (that use di�erent parameterizations of the Bitcoin and GHOST backbone protocols) fare
in terms of the attacks are also presented.

The idea of the attacks is the following: when a fork of depth 1 naturally happens, the adversary
splits its hashing power, as well as the honest players' power, on the two branches. In our model
this is possible because we consider the adversary to be rushing.

On Bitcoin, when an honest player in one of the two branches publishes a new solution, then the
adversary also publishes one of its solutions (if he has any) on the other branch. If honest players
extend both branches by the same length in the same round, then the adversary just reschedules
the messages so again players are split in half. Otherwise, if possible, the adversary lengthens the
chain that is behind by the same amount of blocks, to keep the fork running. Additionally, even
if players modi�ed the backbone protocol to use ��ip a coin� in order to resolve ties, cf. [8], they
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would have 0.5 probability to go in one of the two branches, so adding randomness does not seem
to help against this attack.

The GHOST attack proceeds in the same way with two big di�erences. First, the adversary
has to pay for the absolute di�erence of the total number of solutions released on the two branches
by the honest players in each round (instead of the max that he paid for Bitcoin). Secondly, the
solutions that are produced by the adversary are never invalid. He just mines the �rst nodes after
the common pre�x of the two branches and the blocks that are produced cannot be invalidated. In
contrast, solutions that are produced for Bitcoin must always extend the head of any of the two
diverging chains to be useful. Thus, the blocks used by the adversary must be recent.

Most interestingly these two attacks have almost the same e�ectiveness on both protocols as
shown in �gure 5. For f < 1 both protocols tolerate this type of attack and achieve an almost
optimal level of security. But when f grows larger than 1, security deteriorates in a surprisingly
similar rate. This result suggests that paying for the di�erence of the sum of new blocks in the
two branches and paying for the di�erence between the maximum chains on the two branches with
recent blocks seems to be equally hard for the adversary.

In the graphs we also present the speci�c choices made by various altcoins that were reported in
table 1. It is interesting to point out that for the choice made in Ethereum8 (f = 1) our provable
security bound is around 35% while for Dogecoin and Litecoin our improved analysis brings the
provable security bound to a relatively satisfactory level of over 47%. Extreme choices such as
Flashcoin cannot be supported at all by the security analysis, while Bitcoin on the other end of
the spectrum opts for the safest choice that enables a near optimal provable security bound of
about 49%. We remark that the original proposal for GHOST for a 1 sec per block [14] yields an
1/f = 1/12 which is in a completely precarious region of the speed-security domain (note it was
subsequently amended to f = 1).

6.2 Attack on Chain Growth

Chain growth is closely related to transaction processing speed. Slow chain growth implies a low
number of transactions per second. Also as proved in lemma 12, chain growth is closely related to
the con�rmation time of transactions.

In this subsection an attack on the chain growth of GHOST is presented and experimentally
tested. This attack exploits the fact that in GHOST, thin and long trees may have the same or
less weight than short and wide trees. The goal of the adversary is to mine, in secret, a subtree
of height two that is heavier than the naturally longer subtree that the honest players are mining
by themselves. If the adversary's subtree gets heavier it can publish it and following the GHOST
rule force the honest players to switch to a shorter main chain. By doing this repeatedly, every
time starting from a recently mined block, and by restarting if honest miners get too far ahead, a
concrete reduction of the chain growth speed is achieved as shown in Figure 6, that increases as the
adversaries power increases. An interesting feature of the attack is that it gets better as f becomes
smaller. A short description of the attack is given in Algorithm 2.

On the other hand we observe that the optimal attack for Bitcoin is quite trivial (see Section 3.1)
and much less e�ective. Since GHOST under this attack is slower than Bitcoin under an optimal
attack, we conclude that the chain growth parameter for GHOST should be smaller than that of
Bitcoin's, and thus GHOST is sub-optimal in terms of the chain growth property (also note that
our provable lower bound is also worse than that of Bitcoin, cf. Theorem 5.2). This conclusion

8Note that Ethereum is not yet in production stage and several variants of GHOST have been implemented. Our
results refer to the original proposal of [14], but with 12 seconds block generation rate as discussed by Buterin in [5].
Our framework can be used to further explore design alterations of the original GHOST rule.
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Figure 6: Chain speed from experimental analysis for f = 1. Note that as the hashing power of the
adversary increases both Bitcoin and GHOST speed decrease. However, Bitcoin is clearly favorable
to GHOST (upper graph) and in fact the ratio of Bitcoin to GHOST chain speed increases (lower
graph).

debunks the suggestion of [14] that the di�erence of GHOST chain speed compared to Bitcoin is
relatively small (cf. Figure 4 of [14] where it is suggested that the di�erence in speed between the
two is small based on experiments without adversarial interference), and hence sheds light to a �rst
noticeable shortcoming of the GHOST backbone in terms of chain growth.

Together with the attack on common pre�x, we have attacks in the whole range of the spectrum
for the GHOST backbone: for small values of f , chain growth can be made almost 10% less than
that of Bitcoin (cf. Figure 6), while for bigger values of f security can be broken in terms of the
common pre�x (cf. Figure 5), for attackers with less that 35% of the total computation power.

7 Conclusion

In this paper we presented a new framework for analyzing backbone protocols based on trees and
we showed its power by substantially improving the security bounds of the Bitcoin backbone, [9],
and analyzing the GHOST backbone protocol (that we extract and formalize herein). Within
this framework we presented a formal treatment of transaction processing speed of blockchain-
based protocols focusing on the Bitcoin and GHOST backbone. With our chain growth de�nition
we introduced a measure of speed, called the chain speed coe�cient, and we showed that the
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Algorithm 2 The algorithm of the adversary on the chain growth attack.

1: ⟨tH , tA⟩ ← ⟨0, 0⟩ ▷ The weight of the competing trees.
2: Update the block tree
3: C ← argminC∈HonestPaths|C|
4: Mine head(C)
5: if |blocks mined| = 0 then
6: go to 1
7: else

8: b← newly mined block ▷ The head of the short tree.
9: Mine b
10: end if

11: while tH < 6 do
12: Update the block tree
13: ⟨tH , tA⟩ ← ⟨tH + new honest blocks, tA + new adversarial blocks⟩
14: if (tA > tH) and (length of honest subtree ≥ 3) then
15: Broadcast subtree(b)
16: ⟨tH , tA⟩ ← ⟨0, 0⟩
17: go to 1
18: end if

19: Mine b
20: end while

chain growth property (with a non-zero coe�cient) is a fundamental security property of a robust
transaction ledger.

Quantifying over all possible adversaries, transaction processing speed can be equated to the rate
of blocks mined by honest players that are inserted on the common chain, since malicious blocks
are not guaranteed to contain any honest transactions. We proved that as long as the common
pre�x property holds, this rate is proportional to the product (1−µ)τ , where µ is the chain quality
parameter (as de�ned in [9]) and τ is our chain speed coe�cient. Further we prove that a minimum
transaction processing speed is guaranteed for both Bitcoin and GHOST.

Our formalization and study of the chain growth property yields a number of concerns about
GHOST transaction processing speed compared to Bitcoin, contrary to some extensively cited claims
to the contrary (see e.g. [4]). On the Bitcoin backbone, the chain speed coe�cient τ is guaranteed
to be at least γ (cf. Section 2 for the de�nition of this parameter), and as a result transaction
processing speed is at least γ − β (since, due to sel�sh mining, the chain quality parameter µ can
be as big as β/γ and thus γ(1 − β/γ) = γ − β). However, regarding the GHOST backbone, the
coe�cient τ is not as large as γ. In fact, we have presented an attack that demonstrates that the
GHOST chain speed coe�cient is strictly smaller than that of Bitcoin's and in this way an adversary
can achieve a signi�cant reduction to GHOST transaction processing speed by mounting it. We
note that there is still a gray area in determining the exact transaction processing speed of GHOST
(as our lower bounds for both chain quality and the chain speed coe�cient are not tight) and hence
future work in determining GHOST's transaction processing speed should take into account both
properties. Our work lays the theoretical foundation for such study.
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A Probability of Leading branch rounds

Lemma 31. For p < 0.1 and a ∈ (p, 2k) : e−a−kp ≤ (1− p)
a
p
−k ≤ e−a+kp

Proof. The second inequality is well studied and holds for p > 0. For the �rst inequality by solving
for a we get a ≤ k ln(1−p)

1+
ln(1−p)

p

which holds for p < 0.1 and a ∈ (p, 2k).

Let γ be a lower bound on the probability of a uniquely successful round (a round where only
one block is found). From the event where (n− t) players throw q coins each and exactly one coin
toss comes head γ is at most:

(n− t)qp(1− p)q(n−t)−1 ≥ ae−a−p ≥ γ

This is also a lower bound for the event that at least one honest party computes a solution in a
round, and also that either for GHOST or bitcoin a leading branch round happens, since uniquely
successful rounds are also leading branch rounds. So γ = ae−a−p.

B Proofs

B.1 Lemma 20

Proof. We de�ne three bad events, A, B and C, which we show to hold with probability exponen-
tially small in s. We conclude the proof by showing that if none of these bad events happens, then
there cannot exist C1 and C2 diverging at round r − s.

The bad event A occurs if, at some round r′ ≥ r − s, the adversary broadcasts a chain C with
the following properties. (1) C is returned by the function maxvalid of an honest party; (2) the block
head(C) was computed by the adversary before round r − (1 + δ

8)s.

We now give an upper bound on the probability that event A occurs. Let r∗ ≤ r−(1+ δ
8)s be the

latest round at which a block of C was computed by an honest party (if none exists, then r∗ = 0),
and let ℓ denote the length of the chain up to that block. If any other block computed by an honest
party exists among the blocks from length ℓ up to len(C), then such block was computed in rounds
r − (1 + δ

8)s up to r′, and it follows that the probability that the adversary's block can extend it
at round r′ is negligible in (κ− logD). Therefore, we infer that with overwhelming probability the
adversary has computed all the blocks from length ℓ to len(C), and done so during the rounds r∗ to
r′. Let Z denote the total number of solutions the adversary obtained in r′ − r∗ rounds. Let also
X denote the total number of successful rounds for the honest parties in r′ − r∗ rounds. We have

Z ≥ len(C)− ℓ ≥ X.

The �rst inequality was argued above and the second one follows from [9, Lemma 5]. Finally, note
that, by Lemma [9, Lemma 6], the event Z ≥ X has measure exponentially small in the number of
rounds r′ − r∗. Since that number satis�es r′ − r∗ ≥ δs/8, we conclude that Pr[A] ≤ e−Ω(δ3s).

The second bad event occurs if the adversary has obtained a large number of solutions during
(1 + δ

8)s rounds. Speci�cally, let Z denote the number of successful calls to the oracle by the

adversary, for a total of (1 + δ
8)s rounds. De�ne B to be the event Z ≥ (1 + δ

9)(1 + δ
8)βs. An

application of Cherno� bounds gives

Pr[Z ≥ (1 + δ
9)(1 +

δ
8)βs] ≤ e−Ω(βδ2s).
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The third bad event occurs when not enough leading branch rounds occur. Consider any number,
say, s′ of rounds, and denote by X ′ the number of them that were leading branch. We have

Pr[X ′ ≤ (1− δ
4)γs

′] ≤ e−Ω(γδ2s′).

From now on we assume that none of the events A, B and C occurs. From lemma? , it is easy to
see that the adversary has to compute at least

∑k
i=1 di solutions, where r1, ..., rk are LBmax(s, di)

rounds such that s ≤ ri ≤ r. Since a round is LBmax(s, d) with probability γ, from the negation of
the third bad event we expect at least (1− δ

4)γs such rounds.
Note that, since A does not occur, the adversary may not use solutions computed before round

r− (1+ δ
8)s with probability at least 1− e−Ω(δ3s). The negation of the second bad event bounds the

number of solutions the adversary can obtain. Thus from lemma 19 it has to hold with probability
at least 1− e−Ω(δ3s):

(1− δ
4)γs ≤ (1 + δ

9)(1 +
δ
8)βs⇔

(1− δ
4)γ ≤ (1 + δ

9)(1 +
δ
8)β ⇒

(1− δ
4)(1 + δ)β ≤ (1 + δ

9)(1 +
δ
8)β ⇒

(1− δ
4)(1 + δ) ≤ (1 + δ

9)(1 +
δ
8)

But the last inequality does not hold for δ ∈ (0, 1). We conclude that if A ∪ B ∪ C does not
occur, then C1 and C2 cannot diverge at round r− s. Finally, an application of the union bound on
A ∪B ∪ C implies that the adversary can successfully maintain such C1 and C2 with probability at
most exponentially small in s and the statement of the lemma follows.

B.2 Theorem 21

Proof. If there is only one chain in S then the property is satis�ed trivially. Consider two chains C1
and C2 in S and the least integer k∗ such that

C⌈k
∗

1 ⪯ C2 and C⌈k
∗

2 ⪯ C1. (1)

We need to show that the event k∗ ≥ k happens with probability exponentially small in k.
Let r be the current round and let r − s be the round at which the last common block of C1

and C2 was computed. The length of the chains cannot be greater than the number of solutions Y
obtained from the oracle in s rounds. By the Cherno� bound,

Pr[Y ≥ (1 + δ)fs] ≤ e−δ2fs/3.

It follows that, with probability 1−e−δ2fs/3, s > k∗/((1+δ)f). Thus, if k∗ ≥ k, we have a sequence
of s = Ω(k) consecutive rounds with chains C1 and C2 diverging, and the theorem follows from
Lemma 20

B.3 Theorem 25

Proof. Let r−s be the round that the last honest block b0 in C was computed and l∗ be the number
of blocks from b0 until the head of C. The number of blocks in C after b0 cannot be greater than
the number of solutions Y obtained from the oracle in s rounds. By the Cherno� bound,

Pr[Y > (1 + δ)fs] ≤ e−δ2fs/3
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It follows that, with probability 1− e−δ2fs/3, s > l∗/((1 + δ)f). Thus, if l∗ ≥ l, we have a sequence
of s = Ω(l) consecutive rounds where no honest block in C has been computed during these rounds
with probability 1− e−Ω(δ2l), which is a contradiction to Lemma 24.

The same argument can be used for the last honest block b1 before b0 with the same probability.
In this way a sequence of blocks mined by honest players b0, b1, ..., bk is de�ned with the property
that any l consecutive blocks of C contain at least one of these blocks. By applying the union-bound
on the set of events where, for i < k, the sequence of blocks from bi+1 until bi (or the head of C for
i equal to zero or vroot for i equal to k) has length more than l, each happening with probability
e−Ω(δ2l), the theorem follows.

C The GHOST protocol

Algorithm 3 The proof of work function, parameterized by q, D and hash functions H(·), G(·).
The input is (x, C, T ).

1: function pow(x, C, T )
2: ⟨s′, x′, ctr′⟩ ← head(C)
3: s← H(ctr′, G(s′, x′))
4: ctr ← 1
5: B ← ε
6: h← G(s, x)
7: while (ctr ≤ q) do
8: if (H(ctr, h) < D) then ▷ Proof of work succeeded
9: B ← ⟨s, x, ctr⟩
10: C ← CB ▷ Extend chain
11: ⟨s′, x′, ctr′⟩ ← head(C)
12: s← H(ctr′, G(s′, x′))
13: h← G(s, x)
14: end if

15: ctr ← ctr + 1
16: end while

17: T ← update(T, C as separate blocks) ▷ Add new blocks to the tree
18: return ⟨T, C⟩
19: end function
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Algorithm 4 The GHOST backbone protocol, parameterized by the input contribution function

I(·) and the reading function R(·).

1: T ← GenesisBlock
2: C ← GenesisBlock
3: st← ε
4: round← 0
5: while True do

6: Tnew ← update(T, blocks found in Receive())
7: C̃ ← GHOST(Tnew)
8: ⟨st, x⟩ ← I(st, C̃, round, Input(),Receive()) ▷ Determine the x-value.
9: ⟨Tnew, Cnew⟩ ← pow(x, C̃, T )
10: if C ̸= Cnew or T ̸= Tnew then

11: C ← Cnew
12: T ← Tnew

13: Broadcast(T as separate blocks)
14: end if

15: round← round+ 1
16: if Input() contains Read then

17: write R(xC) to Output()
18: end if

19: end while
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