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Abstract

Authenticated encryption schemes guarantee both privacy and integrity, and have become
the default level of encryption in modern protocols. One of the most popular authenticated
encryption schemes today is AES-GCM due to its impressive speed. The current CAESAR
competition is considering new modes for authenticated encryption that will improve on existing
methods. One property of importance that is being considered more today – due to multiple
real-life cases of faulty sources of randomness – is that repeating nonces and IVs can have
disastrous effects on security. A (full) nonce misuse-resistant authenticated encryption scheme
has the property that if the same nonce is used to encrypt the same message twice, then the
same ciphertext is obtained and so the fact that the same message was encrypted is detected.
Otherwise, full security is obtained – even if the same nonce is used for different messages.

In this paper, we present a new fully nonce misuse-resistant authenticated encryption scheme
that is based on carefully combining the GCM building blocks into the SIV paradigm of Ro-
gaway and Shrimpton. We provide a full proof of security of our scheme, and an optimized
implementation using the AES-NI and PCLMULQDQ instruction sets. We compare our per-
formance to the highly optimized OpenSSL 1.0.2 implementation of GCM and show that our
nonce misuse-resistant scheme is only 14% slower on Haswell architecture and 19% slower on
Broadwell architecture. On Broadwell, GCM-SIV encryption takes only 0.92 cycles per byte,
and GCM-SIV decryption is exactly the same as GCM decryption taking only 0.77 cycles per
byte. In addition, we compare to other optimized authenticated-encryption implementations
carried out by Bogdanov et al., and conclude that our mode is very competitive. Beyond being
very fast, our new mode of operation uses the same building blocks as GCM and so existing
hardware and software can be utilized to easily deploy GCM-SIV. We conclude that GCM-SIV
is a viable alternative to GCM, providing full nonce misuse-resistance at little cost.

1 Introduction

Authenticated encryption. A symmetric encryption scheme achieves authenticated encryption
if it provides both privacy and integrity. Informally, such a scheme provides the guarantee that no
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adversary can generate a ciphertext that decrypts to a valid value, and that encryptions of plaintexts
are indistinguishable from each other. Classically, authenticated encryption was achieved via the
“encrypt-then-authenticate” paradigm that states that one should first encrypt and then apply a
message authentication code to the obtained ciphertext [5, 13]. This methodology is sound, but
is often inefficient. A more general study of composition methods, considering multiple different
options and security goals, was carried out in [18]. However, in many cases, dedicated modes
of encryption have been proposed that are optimized for high performance. One of the most
popular such modes used today is GCM, and it has very fast performance on the latest Intel
architectures. For example, it achieves performance of 0.77 cycles per byte (C/B hereafter) on the
architecture codename Broadwell.1 Many authenticated encryption modes have been proposed,
and the CAESAR competition currently being run is considering some of them.

IV and nonce misuse resistance. For a long time, authenticated encryption was considered
the highest level of security for symmetric encryption schemes. Indeed, with respect to adversarial
capabilities, this is the case. However, it has been observed that in many cases, something can
go wrong in the encryption procedure. For example, when random IVs are needed and encryption
is carried out on devices with weak randomness (like mobile phones), the IV may repeat with
high probability. This same problem arises on strong devices, where the random source is buggy.
Likewise, in nonce-based encryption schemes (where the requirement is just that a unique nonce is
used every time), the repetition of a nonce happens in practice and compromises security.2 In order
to see why repeating IVs or nonces can have disastrous results, consider the case that the counter
is repeated in counter-mode encryption. In this case, all security is lost (an attacker can easily
detect that this is the case, and can just XOR the ciphertexts in order to obtain the XOR of the
plaintexts). In another example, in GCM encryption, if the initial counter is repeated, then this
also completely compromises the integrity property and an attacker who views the two encryptions
can generate as many forgeries as it wishes in the future.

These observations prompted Rogaway and Shrimpton in a breakthrough work to define the
notion of nonce misuse-resistant authenticated encryption [20]. An encryption scheme with this
property provides an extraordinarily high level of security. If the same nonce is used to encrypt
the same message, then this will be detected by the adversary (since the same output will be
obtained both times). Otherwise, full security will be obtained. This means that encrypting
different messages with the same nonce will reveal nothing whatsoever (except for the fact that the
messages were different). Such an encryption scheme can be used comfortably in scenarios where
devices cannot be trusted to generate good quality randomness. Indeed, it is advisable to always
use misuse resistant encryption, since low quality randomness has shown up multiple times due to
software bugs. Unfortunately, nonce misuse-resistant authenticated encryption is inherently less
efficient since it requires two passes over the data.

We remark that a weaker notion of nonce misuse-resistance has been proposed, where some
more information is allowed to be revealed in the case of a nonce repeating. Specifically, if a nonce
repeats between two messages that have a common prefix, then this fact is revealed, along with the
length of the common prefix [6]. This definition allows for achieving support for online encryption,
where the encryptor does not need to hold the entire plaintext at any time (this is impossible to

1Broadwell (and similarly Haswell) is an Intel Architecture Codename of a very recently announced micro-architecture.
Broadwell is the 5th Generation Intel R© Core Processor, and Haswell is the 4th Generation Intel R© CoreTM Processor. They
can have different configurations in different products. Hereafter, for short, we refer to them simply as Broadwell and Haswell
(or BDW/HSW).

2In this paper, we refer to IVs as values that must be randomly chosen, whereas nonces must simply be non repeating.
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achieve under the more stringent notion of [20]). In this paper, we adopt the stronger notion.

Our contributions. In this paper, we present a new fast mode of encryption that achieves nonce
misuse-resistant authenticated encryption. Our mode of encryption is based on the GCM mode
of encryption, and a careful combination of the building blocks used in GCM together with the
SIV construction paradigm of [20]; we call this mode GCM-SIV. Our mode of operation works by
first applying GHASH (the GCM authenticator) to the plaintext and any associated authenticated
data, and then applying a pseudorandom function to the result XORed with the IV. We show that
this is a pseudorandom function over the nonce, plaintext and associated data, and thus the result
can be used as the IV in CTR mode. Therefore, this is a highly efficient instantiation of the IV
misuse resistance mode proven in [20] (and further abstracted in [18]).

Beyond a full specification of the scheme and proof of security, we provide optimized implemen-
tations of GCM-SIV and compare their performance to GCM on the Haswell and Broadwell Intel
architectures. We compare our performance to the highly optimized OpenSSL (v.1.0.2) implemen-
tation of GCM on the same architectures, and provide exact cycle counts. (We argue that such a
detailed study is essential to truly understand the efficiency of new modes of encryption.)

The advantages of our construction are:

1. Ease of deployment: Our construction uses the same building blocks as GCM. Therefore,
existing code bases (and hardware implementations) can be used to implement GCM-SIV.
This is an important consideration when adopting new modes of operation. In addition, our
construction only uses AES encryption (and not its inverse).

2. Encryption performance on Intel architectures: Encryption under GCM-SIV is not
far from the performance of GCM. For encryption, GCM-SIV is only 14% (resp., 19%) slower
than GCM on Haswell (resp., Broadwell). This difference is due to the fact that using the
Intel AES-NI and PCLMULQDQ instructions, the GHASH and AES operations can be run
in parallel in GCM, but must be computed one after the other in GCM-SIV.

Concretely, our implementation runs at 1.17 cycles per byte on the Haswell architecture,
and 0.92 cycles per byte on the recent Broadwell architecture. Thus, we obtain full nonce
misuse-resistance on the latest Intel architecture with encryption costing less than one cycle
per byte!

3. Encryption performance on other architectures: GCM-SIV is fast on every architec-
ture that has support for AES-NI and carry-less multiplication, in some form. The current
trend is that such support is offered on most (if not all) the new 64-bit architectures. Some ex-
amples are AMD (Bulldozer) and NVidia (Denver), ARM little core (A53) and big core (A57),
and Apple (A7/A8). With this ubiquitous support, AES-GCM (and hence our GCM-SIV)
would enjoy the best performance on most modern platforms.

We remark that on architectures where AES-NI is not available (and a single thread is used),
the cost of GCM-SIV is the same as GCM alone. This is due to the fact that the operations
carried out in GCM-SIV are almost identical to that of GCM, and on such architectures the
computation of GCM cannot be parallelized with a single thread.

4. Decryption performance: Decryption of GCM-SIV has the exact same cost as decryption
of GCM. This is due to the fact that they have the same operations and in decryption they
can both be parallelized. Both achieve rates of 0.77 cycles per byte on Broadwell.
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5. Encryption of short messages: For short messages (up to 32 bytes), GCM-SIV is actually
more efficient than GCM. Thus, it is preferable for key wrapping and in settings were many
short messages are sent.

In summary, GCM-SIV achieves full nonce misuse-resistant authenticated encryption at an ex-
tremely low cost. It has a proof of security, and a full implementation to validate its true cost.
Finally, it is easily deployable due to existing hardware support on a wide range of processors.

Comparison to other full nonce-misuse resistant schemes. We compare GCM-SIV to other
schemes that provide the same level of nonce-misuse resistance. Clearly, GCM-SIV is much faster
than the original SIV of [20] since it uses CMAC which is not parallelizable. Therefore, on a
platform using AES-NI, the performance is dominated by the latency of the AES-NI (7 cycles on
Broadwell/Haswell), and is 4.44 cycles per byte. Therefore, the performance of the original SIV
scheme would be at least 5 cycles per byte on Broadwell/Haswell.

The HBS and BTM modes of operation [14, 15] have a similar theoretical complexity to our
implementation. However, our scheme is far simpler, on small messages our mode is faster, and
importantly we can reuse GCM software and hardware which are already widely deployed. Finally,
we have a fully optimized implementation to validate our claims of efficiency, whereas we are not
aware of such results for HBS and BTM.

Of the CAESAR competition candidates, the only three that achieve full nonce misuse-resistance
are AEZ [12], Julius [2] and HS1-SIV [16]; see also [1]. On Broadwell, AEZ can achieve (for long
messages) a throughput of 0.7 C/B [12]. This relative performance advantage of AEZ over GCM-
SIV exists for encryption only, and not decryption. In addition, AEZ meets a slightly stronger
form of security, called robust authenticated encryption. However, this comes at the cost of relying
on a nonstandard security assumption; specifically, AEZ internally uses AES with just 4 rounds
and so is not a full block cipher operation. Julius (ECB/CTR) requires 1 AES computation plus 2
field multiplications per block. An optimized software implementation of Julius using the AES-NI
instruction set was carried out by [3] as discussed below. As can be seen in Table 1, it is significantly
slower than GCM-SIV.

HS1-SIV takes a different approach, and is targeted at achieving good performance on platforms
that do not have the AES-NI/PCLMULQDQ instructions (e.g., embedded systems). ChaCha20/
Poly1305 is another authenticated encryption scheme that targets performance on CPUs that have
no AES-NI/PCLMULQDQ. It is gaining popularity on small-device client platforms. However, on
platforms with AES-NI/PCLMULQDQ (e.g., servers that service such connections and the latest
mobile devices that do have strong CPUs with these instructions), ChaCha20/Poly1305 (stream
cipher and authenticator) is outperformed by GCM-SIV (and AES-GCM) due to the dedicated
hardware support. Optimized ChaCha20 (i.e., encryption alone) consumes approximately 1.04
cycles per byte on Broadwell, and the fastest Poly1305 implementations we are aware of performs
at 0.67/ 0.66 C/B on HSW/BDW.This is significantly slower than GCM-SIV on these platforms.

In addition to the above, [19] recently presented a nonce misuse-resistant version of OMD. Their
scheme requires 2 AES operations per block, and so would cost at least 1.3 cycles per byte using
optimized code and AES-NI.

Comparison to nonce-misuse AE modes on HSW. In a recent publication [3], Bogdanov et
al. report on optimized AES-NI implementations of authenticated-encryption modes of operation
on Intel Haswell architecture. In Table 1, we show the results for the nonce misuse-resistant
schemes and compare them to ours. We note that amongst these modes, only Julius receives full
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Message length (bytes)

Mode 128 256 512 1024 2048

single message

McOE-G 7.77 7.36 7.17 7.07 7.02
COPA 3.37 2.64 2.27 2.08 1.88
POET 5.30 4.93 4.75 4.68 4.62
Julius 4.18 4.69 3.24 3.08 3.03

# msgs. multiple messages

McOE-G 7 1.91 1.76 1.68 1.64 1.62
COPA 15 1.62 1.53 1.48 1.46 1.45
POET 8 3.24 3.24 2.98 2.79 2.75
Julius 7 2.53 2.27 2.16 2.09 2.06

single message

GCM-SIV 2.20 1.66 1.41 1.28 1.22

Table 1: Performance comparison of GCM-SIV (bottom row) to the AES-NI optimized implemen-
tations of nonce misuse-resistant schemes, reported in [3] (top rows). The measurements are on a
Haswell processor and are in cycles per byte.

nonce misuse-resistance; the others achieve online encryption and thus the weaker notion of misuse
resistance. The optimized implementations by [3] are for a single message and for multiple messages
processed in parallel; see Table 1.

Observe that GCM-SIV is faster than Julius for all message sizes, and even when considering
the speed for parallel multiple messages for Julius versus a single message for GCM-SIV. The fastest
mode shown by [3] is COPA [4]. Observe that GCM-SIV is significantly faster than COPA for all
message sizes when processing a single message. In addition, for large messages (of size greater
than 512 bytes), GCM-SIV outperforms COPA, even when comparing parallel multiple messages
for COPA to a single message for GCM-SIV. (In contrast, for short messages COPA is up to 25%
faster for multiple messages. However, recall that GCM-SIV achieves a higher level of security than
COPA, and COPA is only faster when processing multiple messages in parallel.)

This comparison sheds significant light on the efficiency of GCM-SIV since it compares it to
highly optimized implementations of analogous modes on exactly the same architecture.3

Organization. We use the notions of CPA-secure IV-based encryption (ivE), nonce-based authen-
ticated encryption (nAE), and nonce misuse-resistant authenticated encryption (mrAE), as defined
in [20, 18]. These definitions are repeated in Appendix A for the sake of completeness. In Section 2
we describe the abstract SIV scheme of Rogaway and Shrimpton [20], and in Section 3 we present
and prove the security of our specific instantiation based on any XOR universal hash function and
any pseudorandom function. Our proof includes a concrete analysis and bounds. In Section 4,
we describe the final concrete scheme that uses the GHASH universal hash function (from GCM)
and AES. Finally, in Section 5 we provide an in-depth analysis of the performance of our scheme.

3We stress that McOE-G, COPA and POET do not achieve full misuse resistance, and only achieve a weaker notion called
“online authenticated encryption”. However, they do enable online encryption with a single pass and constant memory, unlike
any full misuse-resistant scheme. Nevertheless, the comparison is helpful to understanding the performance of GCM-SIV.
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Our analysis includes an exact operation count, along with a description of our empirical results.
We provide actual cycle counts for different size messages on Haswell and Broadwell, and compare
them to the actual cycle counts of the optimized OpenSSL (v.1.0.2) implementation of GCM.

2 The Abstract SIV Encryption
Scheme

In [18], a number of constructions for authenticated encryption were considered. The construction
called A4 is a generalisation of the SIV mode of operation [20] that has been proven to be nonce-
misuse resistant. In this section, we describe this abstraction.

Let FK1 : {0, 1}∗ → {0, 1}n be a pseudorandom function and let (Gen,Enc,Dec) be a CPA-
secure IV-based encryption scheme. For simplicity, we assume that all keys are of length n. Let k
be a parameter such that the maximum message length is 2k · n bits.

Let Encode be a function that outputs a unique encoding of its (multiple) inputs as a string.
Thus Encode(x, y) fully determines the pair of inputs x and y. We remark that simply concatenating
x with y is not a unique encoding, since this would imply that Encode(x, y) = Encode(x‖y1, y2)
where y = y1‖y2 and ‖ denotes concatenation.

Construction 2.1

• Key generation: K1,K2 ∈ {0, 1}n chosen uniformly and independently at random

• Encryption of M with associated data A and nonce N :

1. Compute T = FK1(Encode(N,A,M))

2. Let IV be the n− k most significant bits of T ,4 and compute C = EncK2(IV,M)

3. Output: (N,A,C, T )

• Decryption of (N,A,C, T ):

1. Let IV be the n− k most significant bits of T .

2. Compute M = DecK2(IV, C)

3. Compute T ′ = FK1(N,A,M)

4. Output: If T ′ = T then output (A,M); else output ⊥

Security. In [18], the following is proven (this construction is called A4 in [18]).

Theorem 2.2 (Proven in Section A.3 of [18]) If (Gen,Enc,Dec) is a secure IV-based encryp-
tion scheme and F is a pseudorandom function, then Construction 2.1, denoted Π, is a secure
nonce-based authenticated encryption scheme.

4This is not necessary in the abstract SIV scheme, but we will use this later on.
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Concretely, [18, Section A.3] proves that the nAE advantage of any adversary A for this con-
struction is:

AdvnAE
Π (A) ≤ Advprf

F (B(A)) + AdvivE
Enc(D(A)) +

qd
2n

with the following parameters. Let n be the output length of the pseudorandom function. Let A
ask qE queries to its encryption oracle, and qd queries to its decryption oracle, with q = qE + qd.
The encryption queries have total length Le, and the decryption queries have total length Ld, with
L = Le + Ld. Let tA be the running time of A, given this total number and length of queries, let
tF (L) be the running-time to compute the pseudorandom function F on inputs of length L, and
likewise tEnc(L) for the underlying ivE encryption. Then reduction B has running time at most
tA + 2tF (L) + tEnc(L), asks at most 2(qE + qd) queries to its oracle, with total length at most L.
Reduction D has running time tA + tF (L) + tEnc(Le), asks at most qE queries to its oracle, with
total length at most Le.

Theorem 2.2 considers nonce-based authenticated encryption. However, we have to prove nonce
misuse-resistant authenticated encryption. In order to see that this holds, note that the security of
the nonce-based authenticated encryption holds as long as the input to the pseudorandom function
is different each time, since this guarantees pseudorandom output each time (up to the probability
of a collision). In the nonce-based encryption setting this is guaranteed by always using a different
nonce. However, since the pseudorandom function is applied to entire triple (N,A,M) in this
construction, it receives a different input each time as long as the same (N,A,M) is not used twice.
However, this is exactly what happens in the nonce misuse-resistant setting. Thus, we conclude
that the exact same security and bounds are achieved in this setting. We conclude:

Corollary 2.3 If (Gen,Enc,Dec) is a secure IV-based encryption scheme and F is a pseudoran-
dom function, then Construction 2.1, denoted Π, is a secure nonce misuse-resistant authenticated
encryption scheme. In addition,

AdvmrAE
Π (A) ≤ Advprf

F (B(A)) + AdvivE
Enc(D(A)) +

qd
2n

where B, D, qd and n are as above.

3 The Universal-SIV Instantiation

In this section, we describe our Universal-SIV construction, which is an instantiation of the abstract
construction provided in Section 2 as follows:

• The pseudorandom function applied to the data (associated authentication data as well as
plaintext) is constructed by computing a universal hash function on the data, XORing in the
nonce, and then applying a pseudorandom function to the result.

• The encryption scheme used is CTR mode, where the initial counter is n − k bits long and
the remaining k bits in the block are used for counters for a message with at most 2k blocks
of length n. Note that this method ensures that as long as the same initial counter is not
used twice, no counter in any block is reused.
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3.1 The Universal-SIV Specification

The scheme uses the following primitives:

• An ε-XOR universal hash function HK1 : {0, 1}∗ → {0, 1}n. Formally, a hash function is
ε-XOR universal if for every x, y, z ∈ {0, 1}∗ it holds that PrK1 [HK1(x)⊕HK1(y) = z] ≤ ε(n),
where the probability is over the choice of K1. For simplicity, we assume that the key length
is n.

• A pseudorandom function FK2 : {0, 1}n → {0, 1}n; for simplicity, we assume that the key
length is n.

• A parameter k < n, where 2k · n is the maximum message length.

• The GCM encoding function Encode(x, y). This encoding works by adding an additional
block of 128 bits, where the 64-bits contains the length of x and the second 64-bits contains
the length of y.

Construction 3.1 (The Universal-SIV scheme for block length n):

• Key generation: K1,K2,K3 ∈ {0, 1}n chosen uniformly and independently at random

• Encryption of M with associated data A and n-bit nonce N :

1. Step 1: Compute h = HK1(Encode(A,M))

2. Step 2: Compute T = FK2(h⊕N)

3. Step 3: Encrypt M with CTR mode using the pseudorandom function F with key K3.
The initial counter is taken to be the n − k most significant bits of T followed by k
zeroes. Denote the initial counter by I1‖I2 where I1 ∈ {0, 1}n−k and I2 = 0k; stated
otherwise, the initial counter equals I1 · 2n−k + I2. The jth counter is defined to be
I · 2n−k + [(I2 + j) mod 2k] for j = 0, . . . , 2k − 1.

Denote the resulting ciphertext by C

4. Output: (N,A,C, T )

• Decryption of (N,A,C, T ):

1. Step 1: Decrypt C with CTR mode using F with key K3, and using the n − k most
significant bits of T as the initial counter; denote the resulting plaintext by M .

2. Step 2: Compute h = HK1(Encode(A,M))

3. Step 3: Compute T = FK2(h⊕N)

4. Output: If T ′ = T then output (A,M); else output ⊥.5

We remark that for standard nonce-based authenticated encryption, it would suffice to take
T = h ⊕ FK2(N). However, if T is computed in this way and a nonce N is repeated for two
different messages with hash results h, h′ then it is possible to XOR the two tags together and
obtain h ⊕ h′ (since the mask FK2 disappears). In this case, the adversary obtains two messages
and their hash, and can forge messages (since this suffices to learn the key K1 for H). For this
reason, we compute the tag as T = FK2(h ⊕ N). Formally, it is required that T be computed by
applying a pseudorandom function to (N,A,M), as described in Construction 2.1.

5A constant-time comparison function must be used here.
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3.2 Proof of Security of Universal-SIV

Notation. We provide a concrete analysis of security, counting the running time of the adversaries,
the number of oracle queries that they make, and their advantage. For an adversary A we denote
by t(A) its running time, and by q(A) the number of oracle queries it makes. For the sake of
clarity, we differentiate between different types of oracle queries and denote by qE(A) the number
of oracle queries to the encryption oracle (where such an oracle is given), by qD(A) the number of
oracle queries to the decryption oracle (where such an oracle is given), and by qf (A) the number of
oracle queries to the function oracle (for adversaries distinguishing a pseudorandom function from
a random one). Finally, for a function F , we denote by tF (L) the time taken to compute F on
overall inputs of length L.

Proof of security. By Corollary 2.3, in order to prove security we need to show that

FK1,K2(N‖M)
def
= FK2(HK1(M)⊕N)

is a pseudorandom function from {0, 1}n → {0, 1}n, when H is an ε-XOR universal hash function
from {0, 1}∗ → {0, 1}n. (Note that M here includes an encoding of both the associated data and
plaintext message used in the encryption process. We removed the explicit reference to A for
clarity.)

Before proving that F is indeed a pseudorandom function, we define security for pseudorandom
functions via the following experiment:

Experiment ExptbA,F

1. If b = 0 then choose K at random and set O = FK .

Else, if b = 1, set O to be a truly random function f : {0, 1}∗ → {0, 1}n.

2. b′ ← AO(·)

3. Output 1 if and only if b′ = b

Definition 3.2 A family of functions F is a (t, qf , δ)-pseudorandom function if for every adversary
A running in time at most t and asking at most qf queries to its oracle it holds that,

Advprf
F (A)

def
=
∣∣Pr[Expt0A,F = 1]− Pr[Expt1A,F = 1]

∣∣ ≤ δ.
Recall that tH(L) denotes the time to compute the universal hash function H on overall input

of length L, that t(A) denotes the running time of algorithm A, and that qf (A) denotes the number
of queries made by A to its function oracle. We use the following lemma:

Lemma 3.3 Let F be a family of pseudorandom functions from {0, 1}n to {0, 1}n, and let H
be a family of ε-XOR universal hash functions from {0, 1}∗ to {0, 1}n. Define FK1,K2(N‖M) =
FK2(HK1(M) ⊕ N). Then, F is a family of pseudorandom functions from {0, 1}∗ to {0, 1}n, and
there exists an adversary A1 such that for every adversary A:

Advprf
F (A) ≤ Advprf

F (A1) + ε ·
(
qf (A)

2

)
where t(A1) = t(A) + tH(L) · qf (A), qf (A1) = qf (A), and the overall length of message sent by A
to its oracle is L.
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Proof: Before beginning the proof, we rewrite the pseudorandom function experiment using our
specific scheme:

Experiment ExptbA,F (1n)

1. If b = 0 then choose K1,K2 ← {0, 1}n, and set O = FK2 ◦HK1 .

Else, if b = 1, set O to be a truly random function f : {0, 1}∗ → {0, 1}n.

2. b′ ← AO(·)(1n)

3. Output 1 if and only if b′ = b

We first change the experiment to ExptA,f,H(1n) whereK1 is chosen as above, but a truly random
function f : {0, 1}n → {0, 1}n is used instead of FK2 in the case of b = 0 (and so O = f ◦ HK1

when b = 0). A straightforward reduction to the pseudorandomness of F yields that for every
adversary A1, ∣∣Pr[Expt0A,F = 1]− Pr[ExptA,f,H = 1]

∣∣ ≤ Advprf
F (A1). (1)

The adversary A1 attacking the underlying pseudorandom function invokes A, chooses K1 itself
and answers every oracle query M‖N of A by first computing HK1(M) ⊕ N and then sending
the result to its oracle. If A1 received a truly random function as an oracle, then this perfectly
simulates ExptA,f,H ; in contrast, if A1 received the pseudorandom function F as its oracle, then

this perfectly simulates Expt0A,F . The running time of A1 is exactly that of A plus qf computations
of H, and the number of queries made by A1 to its oracle is exactly the same number made by A.
Thus, t(A1) = t(A) + tH(L) · qf (A), and qf (A1) = qf (A).

Next, we prove that for every adversary A making qf queries to its oracle,

∣∣Pr[ExptA,f,H(1n) = 1]−Pr[Expt1A,F (1n) = 1]
∣∣ ≤ ε · ( qf (A)

2

)
. (2)

In order to see this, consider first the event coll which equals 1 if and only if there exist two queries
M‖N,M ′‖N ′ with M‖N 6= M ′‖N ′ made by A such that HK1(M)⊕N = HK1(M ′)⊕N ′. Then, it
holds that

Pr[ExptA,f,H(1n) = 1 | ¬coll] = Pr[Expt1A,F (1n) = 1].

This holds because when HK1(M) ⊕ N 6= HK1(M ′) ⊕ N ′ for every pair of distinct M‖N,M ′‖N ′
queried by A to the oracle, the inputs to f in Expt are all distinct. Thus, the output distribution
over f(HK1(M)⊕N) in Expt is the same as the output distribution over f(M‖N) in Expt1. Since

Pr[ExptA,f,H(1n) = 1]

= Pr[ExptA,f,H(1n) = 1 | ¬coll] · Pr[¬coll]
+ Pr[ExptA,f,H(1n) = 1 | coll] · Pr[coll]

≤ Pr[ExptA,f,H(1n) = 1 | ¬coll] + Pr[coll]

it remains to prove that

Pr[coll] ≤ ε ·
(
qf
2

)
.

In order to see this, observe that A never receives HK1(M)⊕N , but rather receives f(HK1(M)⊕N)
where f is a truly random function. Thus, A learns nothing about K1. Intuitively, this means that
there will be a collision on the queries made by A with the same probability that there will be a
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collision if all the queries are first made and then K1 is chosen at random. In order to prove this
formally, we modify ExptA,f,H(1n) so that in the ith query, the output f(i) is given (we assume
without loss of generality that A never makes the same query twice to the oracle.) Then, at the
end of the experiment, K1 is chosen at random and HK1(M) ⊕ N is computed on all the values
M‖N queried to the oracle. As long as no collision takes place, the distribution over the outputs
that A receives is identical in both experiments. Furthermore, if a collision occurs, then it has
already occurred and it makes no difference what happens to A’s view afterwards (since a collision
already occurred and we are only interested in the question of whether collisions occur). Thus, the
collision probability in both experiments is identical.

In this latter experiment, for a series of qf distinct queries M1‖N1, . . . ,Mqf ‖Nqf to the oracle,
we have that

Pr[coll] = Pr [∃i, j ∈ [qf ] : HK1(Mi)⊕Ni = HK1(Mj)⊕Nj ]

=

qf−1∑
i=1

qf∑
j=i+1

Pr[HK1(Mi)⊕HK1(Mj) = Ni ⊕Nj ]

=
(
qf
2

)
· ε.

where the probability is taken over the choice of K1 (that specifies the concrete hash function H).
Note that the last equality is obtained since H is an ε-XOR universal hash function.

Combining Equations (1) and (2), we have that

Advprf
F (A) =

∣∣Pr[Expt0A,F = 1]− Pr[Expt1A,F = 1]
∣∣

≤
∣∣Pr[Expt0A,F = 1]− Pr[ExptA,f,H = 1]

∣∣
+
∣∣Pr[ExptA,f,H = 1]− Pr[Expt1A,F = 1]

∣∣
≤ Advprf

F (A1) + ε ·
(
qf (A)

2

)
and this completes the proof.

The security of counter mode based on a pseudorandom function is well known. Here we provide
the bounds for encryption of messages with at most 2k − 1 blocks, and where the initial counter
is of length n − k bits. This ensures that as long as the initial counters are all different, then the
pseudorandom function is applied to a different input each time. Since we consider the case of

random initial counters, it follows that the probability that a counter repeats is at most qE(A)2

2n−k ,
where qE(A) is the number of queries made by adversary A to the encryption oracle. The reduction
to security is very straightforward, with the adversary for the pseudorandom function just querying
all the appropriate counters to its oracle. We therefore conclude:

Lemma 3.4 Let F : {0, 1}n → {0, 1}n be a pseudorandom function. Then, there exists an adver-
sary A2 making such that for every adversary A:

AdvivE
Enc(A) ≤ Advprf

F (A2) +
qE(A)2

2n−k
.

where t(A2) = t(A) + Le(A) and qf (A2) = Le(A)
n , with qE being the number of queries made by A

to its encryption oracle, Le(A) being the total length of all plaintexts queried by A to its encryption
oracle, and qf being the number of queries made by A2 to its function oracle.

11



We are now ready to state the main theorem that provides the security bounds for our con-
struction (we use Π to denote Construction 3.1):

Theorem 3.5 Let F be a pseudorandom function, and let H be an ε-XOR universal hash function.
Then, Construction 3.1 is a nonce misuse-resistant authenticated encryption scheme, and there
exists an adversary A′ for F such that for every A attacking Construction 3.1:

AdvmrAE
Π (A) ≤ 2 ·Advprf

F (A′) + ε ·
(
qE(A)

2

)
+
qE(A)2

2n−k
+
qd(A)

2n
.

(The running time and oracle query complexity of A′ is given in the proof.)

Proof: By Corollary 2.3, we have that:

AdvmrAE
Π (A) ≤ Advprf

F (B(A)) + AdvivE
Enc(D(A)) +

qd(A)

2n

where F is the pseudorandom function used that combines the universal hash and underlying
pseudorandom function F . By Lemma 3.3 we have that there exists an adversary A1 such that

Advprf
F (A) ≤ Advprf

F (A1) + ε ·
(
qf (A)

2

)
and by Lemma 3.4 we have that there exists an adversary A2 such that

AdvivE
Enc(A) ≤ Advprf

F (A2) +
qE(A)2

2n−k
.

Now, adversary B(A) is a PRF adversary who runs it time at most t(A) + 2tF (L) + tEnc(L)
(where L is the total length of the values queried to oracles by A) and asks at most 2(qE(A)+qd(A))
queries to its oracle, and A1(B(A)) runs in time t(B(A)) + tH(L) · qf (B(A)) and asks qf (B(A))
queries to its oracle. Thus, A1 is an adversary for the pseudorandom function who runs in time
t(A) + 2tF (L) + tEnc(L) + tH(L) · 2(qE(A) + qd(A)) and asks qf (A1) = 2(qE(A) + qd(A)) queries to
its oracle.

Furthermore, adversary D(A) is an ivE encryption adversary who runs in time t(A) + tF (L) +
tEnc(L) and asks at most qE(A) queries to its oracle. Thus, A2 is an adversary for the pseudorandom
function who runs in time t(A) + tF (L) + tEnc(L) +Le(A) ≈ t(A) + tF (L) + tEnc(L) (we can ignore
the Le(A) factor since it is just the length of the plaintext, whereas tEnc(L) is the actual cost of

encryption which is greater), and asks qf (A2) = Le(A)
n < L

n queries to its oracle.
Take A′ to be the adversary that incorporates A1 and A2. Then, we have that there exists

an adversary A′ for the underlying pseudorandom function so that for every adversary A for the
mrAE setting:

• A′ runs in time

[t(A) + 2tF (L) + tEnc(L) + tH(L) · 2(qE(A) + qd(A))]

+ [t(A) + tF (L) + tEnc(L)]

= 2 ·
(
t(A) + tF (L) + tEnc(L) + tH(L) · (qE(A) + qd(A))

)
Observe that the running time of A′ is essentially linear in the running time of A (under

the very reasonable assumption that the cost of applying the pseudorandom function to the
plaintexts queried by A and encrypting them, is not more than the running time of A itself).
It is reasonable to therefore writhe that t(A′) ≤ 6 · t(A).
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• The number of queries made by A′ to its function oracle is at most 2qE(A) + 2qd(A) + L
n

• The advantage of A in the mrAE setting, when reducing to the underlying pseudorandom
function F , is

AdvmrAE
Π (A) ≤ Advprf

F (A′) + Advprf
F (A′) (3)

+ε ·
(
qE(A)

2

)
+
qE(A)2

2n−k
+
qd(A)

2n
.

This completes the proof.

4 The GCM-SIV Instantiation

In this section, we describe our concrete instantiation of the universal-SIV construction that uses
GHASH, which is a part of the GCM specification. Thus, this construction uses the exact same
components as GCM in a slightly different way, with the result being nonce misuse resistance.
Throughout this section, we use the following lemma, that states the GHASH is indeed a XOR
universal hash function:

Lemma 4.1 (Lemma 2 in [17]) The GHASH function is an ε-XOR universal hash function with
ε = dLn + 1e · 2−t, where L is an upper bound on the length of the input, n is the length of the block,
and t is the length of the output.

4.1 Theoretical 3-Key Instantiation

In this instantiation, we simply use the GHASH universal hash function in Construction 3.1. This
hash function works by first concatenating zeroes to each of A and M to make them of length that
is a multiple of the block length n. Then, an additional block that contains the lengths of both A
and M is concatenated (where the length of A is given in the first n/2 bits of the block, and the
length of M in the last n/2 bits). Finally, a polynomial is evaluated over this result.

Observe that GHASH requires a key, the pseudorandom function applied to the output of
GHASH requires a key, and finally the pseudorandom function used in counter mode requires a
key. Thus, this instantiation requires three separate keys. Although this is a perfectly reasonable
instantiation, 3 keys would typically be considered too much for real world usages; we therefore
refer to this as a “theoretical instantiation”. Later, we present 2-key and 1-key instantiations.

When plugging GHASH directly into Construction 3.1, all that is required is to plug in the
value of ε given in Lemma 4.1 into the bounds of Theorem 3.5.

Theorem 4.2 (3-Key GCM-SIV) Construction 3.1 with the pseudorandom function F and the
hash function GHASH is a nonce misuse-resistant authenticated encryption scheme. Furthermore,
there exists an adversary A′ for F such that for every A attacking Construction 3.1 making qE
encryption queries and qd decryption queries of overall length L:

AdvmrAE
Π (A)

< 2 ·Advprf
F (A′) +

(
dLn e+ 1

)
· qE(A)2 + qd(A)

2n
+
qE(A)2

2n−k

where t(A′) ≤ 6 · t(A) and qf (A′) ≤ 2qE(A) + 2qd(A) + L
n .

13



Proof: We take t = n in Lemma 4.1 and so obtain ε = dLn + 1e · 2−n. Plugging this into Eq. (3)
in the proof of Theorem 3.5, we obtain:

AdvmrAE
Π (A)

≤ 2 ·Advprf
F (A′) + ε ·

(
qE(A)

2

)
+
qE(A)2

2n−k
+
qd(A)

2n

≤ 2 ·Advprf
F (A′) +

dLn + 1e
2n

·
(
qE(A)

2

)
+
qE(A)2

2n−k
+
qd(A)

2n

< 2 ·Advprf
F (A′) +

(
dLn e+ 1

)
· qE(A)2 + qd(A)

2n
+
qE(A)2

2n−k

≤ 2 ·Advprf
F (A′) +

2qE(A)2

2n−k
+
qE(A)2 + qd(A)

2n

where the last inequality holds since L ≤ 2k ·n and so dL/ne2n ≤ 1
2n−k . The running time and number

of oracle queries are taken directly from the proof of Theorem 3.5.

In the specific AES instantiation with n = 128 and k = 32, we conclude:

AdvmrAE
Π (A) <

2 ·Advprf
F (A′) +

qE(A)2

295
+
qE(A)2 + qd(A)

2128
.

Note that setting k = 32 limits the number of blocks to be 232 and so the maximum length message
that can be encrypted is 64GB. This is standard and is used in typical implementations of GCM.

4.2 Two-Key GCM-SIV

In this instantiation, the same key is used for the pseudorandom function applied to the output
of GHASH and for the counter mode encryption (i.e., we take K2 = K3). There are two possible
ways of doing this. The first is to simply bound the probability that the output of GHASH collides
with a possible counter. However, this will result in an additional birthday degradation. The other
possibility is to force the output from GHASH to always be different from the counters used in
the encryption. This is achieved by truncating the output of GHASH to n − 1 bits and using an
n− 1-bit nonce. Then, the most significant bit of the input to the pseudorandom function in order
to generate T is always zero. Furthermore, the initial counter is taken to be the n − k − 1 most
significant bits of T followed by k zeroes, and the most significant bit is set to 1. This ensures that
the counter never overlaps with the input to the pseudorandom function for generating T . From a
security perspective, this means that the same key can be reused with no affect on security at all
(a single reduction for the pseudorandom function suffices).

This variant yields the following bounds (obtained as in the 3-key case while changing the exact
parameters due to the single bit):

Theorem 4.3 (2-Key GCM-SIV) Consider the above variant of Construction 3.1 with one key
for the pseudorandom function F and one key for the hash function GHASH. Then, the result is
a nonce misuse-resistant authenticated encryption scheme, and there exists an adversary A′ for F
such that for every A attacking Construction 3.1 making qE encryption queries and qd decryption
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queries of overall length L:

AdvmrAE
Π (A)

< 2 ·Advprf
F (A′) +

qE(A)2

2n−k−2
+
qE(A)2 + qd(A)

2n−1

where t(A′) ≤ 6 · t(A) and qf (A′) ≤ 2qE(A) + 2qd(A) + L
n .

4.3 Single-Key GCM-SIV

In this final instantiation, we take a single key K0 and derive two keys K1 and K2 by computing
K1 = AESK0(0128) and K2 = AESK0(0127‖1). We then proceed as in the two-key case. The bounds
for here almost identical (with an additional reduction for a single query to the pseudorandom
function, which is not significant here).

5 The Performance of GCM-SIV

In this section, we provide a detailed performance analysis of our GCM-SIV construction together
with experimental results of an optimized software implementation, measured on the latest high end
processors with architecture codenames Haswell (HSW) and Broadwell (BDW). The performance
of GCM-SIV depends on the message length. We measure the length of the message |M | and the
length of the associated data |A| in bytes.

5.1 Encryption Operations

The computational cost of computing GCM-SIV is the following sum:

GCM-SIV Encryption

= Key Derivation + GHASH + Tag Generation

+ CTR INPUT Generation + CTR ENCRYPTION

We discuss each component separately.

Key Derivation: Derivation is required only with the one-key GCM-SIV variant (to derive K1,
K2 from the input key K0). This derivation requires expanding one AES key and using it to encrypt
2 blocks.

GHASH: This requires a field multiplication in GF (2128) for every 16-byte block or part thereof
(in the plaintext message M and associated data A), plus a block containing the data length. Thus,

the number of field multiplications equals ` =
⌈
|M |+|A|

16

⌉
+ 1.

Tag Generation: Generating the authentication tag from the output of GHASH involves exe-
cuting AES key expansion with K2, and using it to encrypt a single block (the cost of XORing
with IV , and forcing the top bit to 1, is negligible).

CTR INPUT Generation: This involves preparing the input blocks to AES in the counter-
mode encryption. The cost of forcing the top bit to 0, and incrementing the 32-bit counters (in the
least significant quarter of the counter block) is negligible.

CTR ENCRYPTION This is the cost of
⌈
|M |
16

⌉
AES operations on preprepared input. (Note

that the key used has already been expanded when preparing the tag.)

15



Full No Init
Cycles Cycles

HSW/BDW GCM-SIV GCM-SIV AES-GCM GCM-SIV GCM-SIV AES-GCM
# bytes Two keys One key Two keys One key

16 149 / 136 297 / 241 1289 / 1263 133 / 121 133 / 121 178 / 172
32 198 / 171 318 / 284 1277 / 1318 178 / 153 178 / 153 219 / 217
64 322 / 281 444 / 417 1292 / 1335 319 / 278 319 / 278 236 / 238
128 516 / 440 645 / 568 1415 / 1371 282 / 262 282 / 262 293 / 266
256 674 / 566 800 / 694 1558 / 1417 426 / 401 426 / 401 421 / 385
512 966 / 796 1093 / 930 1808 / 1730 722 / 626 722 / 626 760 / 651

1,024 1566 / 1252 1695 / 1385 2312 / 2108 1315 / 1085 1315 / 1085 1252 / 989
1,536 2159 / 1713 2274 / 1843 2816 / 2416 1907 / 1544 1907 / 1544 1714 / 1305
2,048 2751 / 2171 2869 / 2300 3372 / 2842 2498 / 1996 2498 / 1996 2287 / 1765
4,096 5118 / 4005 5244 / 4136 5332 / 4354 4867 / 3837 4867 / 3837 4296 / 3243
8,192 9862 / 7666 9994 / 7782 9521 / 7388 9611 / 7498 9611 / 7498 8399 / 6289

C/B C/B
8,192 1.2/0.94 1.22/0.95 1.16/0.9 1.17/0.92 1.17/0.92 1.03/0.77

Table 2: GCM-SIV encryption performance for different message lengths, on the Haswell and Broadwell (HSW/BDW)
architectures. Comparison to the performance of AES-GCM (OpenSSL 1.0.2) is provided. The numbers are in cycles, except
for the last row which reports the performance in C/B.

5.2 Implementation Optimizations

Software implementations on high end Intel processors use the AES-NI and the PCLMULQDQ
instructions. There exist optimizations that improve the performance significantly, compared to
straightforward implementations. We briefly describe these optimizations.

1. The key derivation (required only for one-key GCM-SIV) can be reduced by a new software
optimization that pipelines the instructions efficiently. We were able to execute this derivation
in 84 cycles (on HSW/BDW architectures).

2. When the message includes more than 8 blocks, then GHASH can be optimized by: (1)
Preparing a lookup table with “powers” of H, (2) Interleaving the polynomial multiplications,
and (3) Deferring the reduction moduloQ(x) (the field polynomial) to take place only once per
8 blocks [10, 11]. See also [8]for an analysis and an improved reduction method. Effectively,
this reduces the cost of GHASH to ` polynomial multiplications + 1

8` reductions, instead of `
field multiplications. We were able to compute GHASH using this method at the asymptotic
performance of 0.56 and 0.3 cycles per byte (C/B) on HSW and BDW, respectively (for an
8KB message).

3. For long enough messages, the encryption can operate on 8 blocks in parallel, interleaving
AESENC/AESENCLAST instructions [7, 9]. We were able to encrypt at the asymptotic
performance of 0.63 C/B on both HSW and BDW.

Remark 5.1 For long messages the setup cost is small, and the differences between one key and
two keys become negligible. From the above data, we can predict the performance (for long messages)
to be the sum of GHASH and encryption, which is 1.19 C/B for HSW, and 0.93 C/B for BDW.
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5.3 Theoretical Comparison to AES-GCM

AES-GCM uses CTR mode for encryption, and GHASH for the authentication. It uses a single
key, and involves a derivation step: H = AESK(0128) and MASK = AESK(·).6

When counting the number of operations, GCM and GCM-SIV have roughly the same perfor-
mance. In fact, GCM-SIV is slightly cheaper due to a simpler counter incrementing. However, for
encryption, the main difference between GCM and GCM-SIV is in the possible order of operations.
By definition, GCM-SIV can start AES-CTR encryption only after the authentication tag has been
computed. By contrast, GCM can interleave the AES and GHASH computations (for the message;
not for the AAD). This enables GCM encryption to be faster than GCM-SIV.

Note, however, that for decryption GCM-SIV can also interleave the AES and GHASH compu-
tations, and so its performance is identical to that of GCM.

5.4 Experimental Results

For our study, we prepared an optimized software implementation of GCM-SIV, and measured it
on the Haswell and Broadwell (HSW/BDW) architectures. The results are summarized in Table
2. The table provides the cycles count for GCM-SIV for various message lengths, to illustrate the
performance characteristics. They are compared to the optimized AES-GCM implementation of
OpenSSL (1.0.2). We note that the cost of the “Init” step in OpenSSL is approximately 1,100 cycles.
This includes, among other operations the preparation of a lookup table, keys setup, and more.
Therefore, to facilitate a more detailed comparison, Table 1 also shows the AES-GCM performance
without the Init step, as well as GCM-SIV without the initialization (this neutralises the fact that
OpenSSL carries out more operations in its Init than we do in our implementation). Needless to
say, the two-key and one-key variants are identical after Init, as can be seen in the table.

The last row of the table shows the performance in C/B, for a long message. Note that the
measured performance matches the predictions of Remark 5.1.

The methodology used for carrying out these measurements is as follows (and is the same for
GCM-SIV and AES-GCM). The following process was repeated 30 times: compute the operation
500 times for a ”warmup” (e.g., to place code/data in the caches). Then, compute and clock
the operation 500 times, and take the average result. The output appearing in the table is the
minimum value over the 30 runs. The reason that we take the minimum is to neutralize noise
caused by interrupts to the operating system.

All the runs were carried out on a system where the Intel R© Turbo Boost Technology, the Intel R©

Hyper-Threading Technology, and the Enhanced Intel Speedstep R© Technology, were disabled.
The results show that up to 32 bytes (including), GCM-SIV with 2 keys is faster even than GCM

without Init. Therefore, for key wrap, GCM-SIV is an excellent choice. It is also very efficient for
scenarios that encrypt many short messages with the same key (since the key derivation is carried
out only once here and so the cost is like without Init).

For long messages, as expected, we see only a very small difference between the 2-key and 1-key
versions of GCM-SIV, in the “full” implementation. This allows for choosing the more cost effective
variant (i.e., 1 key) from the network traffic viewpoint. We observe that on the latest Broadwell
architecture, the cost of GCM-SIV encryption falls below 1 cycle per byte.

6The mask is XOR-ed with the GHASH result, to make it a MAC tag. Here, · denotes the first counter block used in
AES-GCM.
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For encryption, Table 2 shows that GCM-SIV is 14% slower than AES-GCM on Haswell, and
19% slower than AES-GCM on Broadwell. The reason for this difference is that the optimized
AES-GCM software is able to interleave AES and GHASH computations, while GCM-SIV cannot.
Recall that nonce misuse-resistance provably requires two passes, and thus there is an inevitable
cost incurred. However, we point out that for decryption, optimized AES-GCM and GCM-SIV
would have the same performance because the AES and GHASH operations can be interleaved.

We comment about the performance of GCM-SIV without initialization for 64 and 128 bytes
messages. Our optimized GHASH code prepares a lookup table to aggregate 8 block multiplications
before the reduction step. Of course, this becomes relevant only when the message length is at least
128 bytes. If the cost of the setup is not (including the preparation of the table), then this leads to
the seeming anomaly in Table 2 where 128-byte GCM-SIV takes less time than 64-byte GCM-SIV.
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A Definitions

We use the following definitions taken from [20, 18]. We begin by defining CPA-secure IV-based
encryption and nonce-based authenticated-encryption. The difference between IV-based and nonce-
based encryption is that in the former a random IV is used, whereas in the latter a unique nonce
is provided as input in every encryption. The guarantee of nonce-based encryption is security
is maintained as long as the nonce used is different each time. Beyond that, we consider CPA
security for IV-based encryption and authenticated encryption for nonce-based encryption. We
do this since this is what we need for our construction. We adopt the definition of authenticated
encryption from [20, 18] who replace the encryption oracle with a random function, and mandate
that the decryption oracle always outputs ⊥. Observe that this means that the adversary – who is
given oracle access to either the pair of oracles EncK ,DecK or a random function and ⊥ – is not
allowed to query the output of an “encryption” query to its “decryption” oracle. This is because
when given EncK ,DecK the decryption query will return the plaintext queries to EncK , whereas
when given a random function and ⊥ the decryption query will return ⊥. Thus, it will be trivial
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to distinguish. Nevertheless, this restriction is without loss of generality since any adversary who
makes such queries can be converted to an adversary who does not make such queries and succeeds
with exactly the same probability (if such a query is asked, just return the plaintext it was generated
from).

CPA-secure IV-based encryption (ivE). Let Π = (Gen,Enc,Dec) be an IV-based encryption
scheme, and let the space of IVs be IV. Encryption involves choosing IV ← IV uniformly at
random, and then computing the deterministic function EncK(IV,M). Consider the following
oracles:

• Oracle EncK : upon input M ∈ {0, 1}∗, it chooses IV ← IV at random and computes
C = EncK(IV,M). The output is IV ‖C.

• Oracle $K : upon input M ∈ {0, 1}∗, it chooses IV ← IV at random and computes C =
EncK(IV,M). The output is a random string of length |IV ‖C|.

The advantage of an adversary A against an IV-based encryption scheme is defined to be:

AdvivE
Π (A) =

∣∣∣PrK

[
AEncK(·) = 1

]
− PrK

[
A$K(·) = 1

]∣∣∣
We say that Π is a CPA-secure IV-based encryption scheme if for every probabilistic-polynomial time
adversary A there exists a negligible function µ such that AdvivE

Π (A) ≤ µ(n).

Secure nonce-based authenticated encryption (nAE). Let Π = (Gen,Enc,Dec) be a nonce-
based encryption scheme. Encryption is a deterministic function receiving a key K, nonce N ,
associated data A and plaintext message M , and is denoted C = EncK(N,A,M). We denote
decryption by DecK(N,A,C). Consider the following oracles:

• Oracle $K : upon input (N,A,M), it computes C = EncK(N,A,M). If C = ⊥ then the
output is ⊥; otherwise, the output is a random string of length |C|.

• Oracle ⊥: upon any input, returns ⊥.

The advantage of an adversary A against a nonce-based authenticated encryption scheme is defined
to be:

AdvnAE
Π (A) =

∣∣∣PrK

[
AEncK(·,·,·),DecK(·,·,·) = 1

]
−PrK

[
A$K(·,·,·),⊥(·,·,·) = 1

]∣∣∣
where A may not make two queries (N,M,C), (N,M ′, C ′) to Enc with the same first component
(nonce), and may not make any decryption query for a value (N,A,C) that was obtained as output
from some query to Enc. We say that Π is a secure nonce-based authenticated encryption scheme if
for every probabilistic-polynomial time adversary A there exists a negligible function µ such that
AdvnAE

Π (A) ≤ µ(n).

Secure nonce misuse-resistant authenticated encryption (mrAE). We define a notion of
misuse resistance for nonce-based encryption. Specifically, we define nonce misuse-resistance where
full security is guaranteed to hold as long as the same nonce is not used for the same message and
associated data. Since nonce-based encryption is deterministic, when the same nonce is used for
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the same message and associated data, the same ciphertext is obtained. Thus, the only information
revealed to the adversary is that the same message was encrypted. It is immediate that nonce-based
misuse-resistant encryption implies IV misuse-resistant encryption by simply using a random IV
(and noting that for q encryptions the probability that an IV repeats is q2/2` where ` is length of
the IV).

Let Π = (Gen,Enc,Dec) be a nonce-based encryption scheme. Encryption is a deterministic
function receiving a key K, nonce N , associated data A and plaintext message M , and is denoted
C = EncK(N,A,M). We denote decryption by DecK(N,A,C). Consider the following oracles:

• Oracle $K : upon input (N,A,M), it computes C = EncK(N,A,M). If C = ⊥ then the
output is ⊥; otherwise, the output is a random string of length |C|.

• Oracle ⊥: upon any input, returns ⊥.

The advantage of an adversary A against a nonce-based authenticated encryption scheme is defined
to be:

AdvmrAE
Π (A) =

∣∣∣PrK

[
AEncK(·,·,·),DecK(·,·,·) = 1

]
−PrK

[
A$K(·,·,·),⊥(·,·,·) = 1

]∣∣∣
where A may not make two identical queries to Enc (with the same nonce, associated data and
message), and may not make any decryption query for a value (N,A,C) that was obtained as
output from some query to Enc. We say that Π is a secure nonce misuse-resistant authenticated
encryption scheme if for every probabilistic-polynomial time adversary A there exists a negligible
function µ such that AdvnAE

Π (A) ≤ µ(n).
Nonce misuse-resistant authenticated encryption is the same as nonce-based authenticated en-

cryption with the except that if a nonce is reused then the only damage is that an adversary can
know if the AD and plaintext message in two messages with the same nonce are the same or differ-
ent, but nothing more. This is because Enc is deterministic and so a nonce reused with exactly the
same associated data and plaintext message will give the same ciphertext, whereas by the definition
above whenever either the nonce or the associated data or the plaintext message is different, the
result is completely different (and indistinguishable from random). We do not allow A to make
two identical queries since the $ oracle always returns a fresh random string and so this is a trivial
(but meaningless) distinguisher.
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