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Abstract. We propose adaptively secure attribute-based encryption (ABE)
schemes for boolean formulas over large universe attributes from the de-
cisional linear (DLIN) assumption, which allow an arbitrary number of
attribute reuse in an available formula without the previously employed
redundant multiple encoding technique. Based on the key-policy (KP-
)ABE scheme, we have an adaptively secure communication-efficient non-
interactive verifiable computation (NI-VC) from DLIN. While any previ-
ous adaptive NI-VC from a static assumption has multiplicatively depen-
dent communication cost on the input variable multiplicity, we remove
the dependency. For achieving the results, we develop a new encoding
method for access policy matrix for ABE, by decoupling linear secret
sharing (LSS) into its matrix and randomness, and partially randomiz-
ing the LSS shares in simulation. The new techniques are of independent
interest and we expect it will find another application than ABE.
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1 Introduction

1.1 Backgrounds

Attribute-based encryption (ABE) introduced by Sahai and Waters [27] presents
an advanced vision for encryption and provides more flexible and fine-grained
access control in sharing and distributing sensitive data than traditional sym-
metric and public-key encryption as well as recent identity-based encryption. In
ABE systems, either one of the parameters for encryption and secret key is a
set of attributes, and the other is an access policy (structure) over a universe of
attributes, e.g., a secret key for a user is associated with an access policy and
a ciphertext is associated with a set of attributes. A secret key with a policy
can decrypt a ciphertext associated with a set of attributes, iff the attribute set
satisfies the policy. If the access policy is for a secret key (resp. for encryption),
it is called key-policy ABE (KP-ABE) (resp. ciphertext-policy ABE (CP-ABE)).

All the existing practical ABE schemes have been constructed by (bilinear)
pairing groups, and the largest class of relations supported by the ABE schemes
is (non-monotone or arithmetic) span programs [16, 17, 10, 3] (or (non-monotone)
span programs with inner-product relations [22]). While general polynomial size
circuits are supported [15,9] recently, they are much less efficient than the
pairing-based ABE schemes and non-practical when the relations are limited



to span programs. Hereafter, we focus on pairing-based ABE with span program
access structures. An example of such span program predicate over attributes is
given by (Institute = Univ. A) AND ((Department = Biology) OR (Position =
Professor)), which we simply denote by X; A (X2 V A3) where X} := Univ. A,
X5 := Biology and X3 := Professor. We define attribute-multiplicity & for a
predicate as the maximum number of appearances of attribute variables, i.e.,
k = 2 for predicate (X3 A Xa) V (X1 A X3) V (X A X)) since Xy and Xy ap-
pear twice and others appear just once. Our aim is to achieve short ciphertexts
(resp. keys), in particular, short size independent of the attribute-multiplicity in
an access policy in expressive (adaptively secure) KP-ABE (resp. CP-ABE). ABE
with unbounded attribute-multiplicity is called “multi-use” ABE scheme in the
literatures ([18,22] etc.).

Adaptive security for ABE is the standard and realistic, and then desirable
security notion. Previously, either efficiency or security is sacrificed for achieving
the multi-use property in adaptively secure ABE. See adaptively secure ABE
given in Table 1 (and Table 2).

In previous static assumption based schemes [18,22,10], for allowing arbi-
trary reuse of attributes in a policy in the adaptive security setting, for example,
in KP-ABE, multiple ciphertext components whose number is linear in the at-
tribute multiplicity k for available policies are necessary, which leads to a very
long ciphertext. More precisely, the same information representing attribute set
I is duplicated over multiple ciphertext components depending on the multiplic-
ity k. (See OT10 and CGW15 KP-ABE schemes in Table 1.)

Lewko-Waters [20] first constructed adaptively-secure CP-ABE and KP-ABE
schemes for span programs with allowing arbitrary reuse of attributes in a policy
without the above redundant multiple encoding technique. While Lewko-Waters’s
(CP-)ABE scheme ([20] and subsequent work [2, 3] in Table 1) shows an inter-
esting approach to allowing arbitrary reuse of attributes in a policy, the security
is proven only based on ¢-type assumptions with ¢ the maximum number of
attribute-multiplicities in access structures. However, the assumptions (and also
the associated schemes) suffered a special attack which was presented by Cheon
[12] at Eurocrypt 2006, which leads to inefficiency. Consequently, it is very de-
sirable that the g-type assumption should be replaced by a static (non-gq type)
assumption with keeping compact ciphertexts.

Moreover, we note that there exist no multi-use CP-ABE scheme with short,
i.e., non-redundant, secret keys even in the selective security setting from a static
assumption (Table 2). Now, an important open question is:

Is there an adaptively secure KP-(resp. CP-)ABE scheme from a static
(standard) assumption whose ciphertext (resp. secret key) size does not
depend on the mazximum attribute-multiplicity k of available policies ?

This work makes a significant step for addressing the problem.

Recently, non-interactive verifiable computation (NI-VC) for ensuring correct
delegated computation of a (boolean) function F has been extensively studied,
and several approaches exist. One interesting approach is a generic conversion



Table 1. Comparison with the existing pairing-based multi-use KP-ABE schemes,
where PK, SK, CT stand for public key, secret key, ciphertext, respectively, and n’
represents the number of attributes in CT, n the max of n’, ¢ the number of rows in
access matrix in SK, r the max of the number of columns in access matrix in SK, k
(the max of) the “attribute-multiplicity” of an access matrix in SK, respectively. The
fourth row describes the warm-up scheme in Section 5.3.

‘ || Security Assump. || PK size | SK size | CT size |
GPSWO06[16]||  selective DBDH Om)|G| | OWI|G| | O(n)|G]
Tak14 [28] ||semi-adaptive DLIN O(n)|G| |O(n)|G]| O®1)|G|
(Warm-up) 0|6 | O)|G]
0T10[22] DLIN O)|G| | OW)|G| | O(kn)|G|
LW12 [20] | adaptive é‘é’;l;lﬁa) om)|G| | 0G| | om)|G|
m ] [Emaie] oo Jows] one
CGW15 s-Lin O(m) (G| | 0G| | O(kn")[G|
[10] for Vs fors=2 |fors=2]| fors=2

’ Proposed || adaptive DLIN ||O(n + r)|G|| o0)|G| |O(n + 7“)|G\|

to NI-VC (in the pre-processing model) from KP-ABE [26,11]. An important
security requirement is soundness against a malicious server. So, the security
should reflect the adversary’s adaptive selection of the target function F. How-
ever, since all previous KP-ABEs have the above mentioned drawback, no NI-
VC constructions achieve adaptively secure communication-efficient (i.e., inde-
pendent from the input variable multiplicity k) NI-VC from a static (standard)
assumption, where the input variable multiplicity k is defined for each function
Fieg, F=(X NXy) V (X AN AXs) V (X A Xy) has k = 2 as for KP-ABE.
We address the following open question affirmatively.

Is there an adaptively secure NI-VC' (with pre-processing) from a static
(standard) assumption whose communication cost does not depend on
the maximum input multiplicity k of available functions ?

1.2 Our Results
We obtain the following results.

— We propose an adaptively secure multi-use KP-ABE construction for boolean
formulas over large universe attribute matching predicates with short cipher-
texts from the DLIN assumption (in Section 5). The size of a ciphertext for
attributes does not (multiplicatively) depend on the attribute multiplicity k
i available access structures, but has only an additive dependence on some
size parameter r of access structures. For comparison with existing ones,
refer to Table 1.



Table 2. Comparison with the existing pairing-based multi-use CP-ABE schemes,
where PK, SK, CT stand for public key, secret key, ciphertext, respectively, and n’
represents the number of attributes in SK, n the max of n/, £ the number of rows in
access matrix in CT, r the max of the number of columns in access matrix in CT, k
(the max of) the “attribute-multiplicity” of an access matrix in CT, respectively.

| || Security Assump. H PK size | SK size | CT size ‘
Wat11[30] V-BDHE omIe | otm)Gl | ows
Scheme 2
11
Watl1[30] || joctive|  DBDH 0G| | okn’ + 1G] | 0(2)[G|
Scheme 3
AT PR (a2 (6] | O((m0)A2)E] | OWIG
[4] terized
OT10 [22] DLIN O(n)|G| O(kn")|G| O(0)|G]
(-Parallel
LW12 [20 dapti O(n)|G oG o) |G
20] | adapiive | S | omel | omniel | owne
CGW15 s-Lin O(n) |G| O(kn")|G| O(0)|G]
[10] for Vs for s =2 for s =2 for s =2
| Proposed || adaptive | DLIN H O(n+)|G| | O(n+r)|G| | O0(0)|G| ‘

— We also propose an adaptively secure multi-use CP-ABE construction for the
same access structures as the above KP-ABE with short keys from DLIN.
The CP-ABE scheme is obtained from the above KP-ABE by the natural
dual conversion, in particular, the keys do not depend on the attribute mul-
tiplicity in available access structures. We note that it is the first multi-use
CP-ABE construction with short keys from a static assumption even in-
cluding the selective secure schemes (Table 2). For the concrete scheme, see
Appendix E.

— We obtain an adaptively secure communication-efficient NI-VC (with pre-
processing) from a static assumption, i.e., DLIN, which is obtained by con-
verting our KP-ABE to NI-VC (see Remark 3 in Section 6.2). The commu-
nication cost does not depend on the maximum input multiplicity k, which
addresses the above open problem. For comparison of our NI-VC and existing
(pairing-based) ones, refer to Table 3 in Section 6.2.

We used two techniques, decoupling of linear secret sharing (LSS) into two (dual)
components, i.e., span program matrix and randomness, and the partial random-
ization of LSS. A new sparse matrix machinery (Section 4) underlies them. The
techniques can be extended naturally to arithmetic span programs (ASP), then,
our results can be extended to ASP based ABE proposed by Ishai and Wee [17].

! Since k < ¢, the size of secret keys of the AHY15 scheme [4] is very large compared
with others. Also, in [1], a selective-secure constant-size ciphertext, but, large secret
keys CP-ABE scheme was proposed, recently.



1.3 Key Techniques

Our results are related to KP- and CP-ABESs, however, for simplicity, we mainly
treat on KP-ABE, since it is a base scheme for NI-VC. According to a new
framework introduced by Attrapadung, doubly selective security (i.e., selective
and co-selective) leads to achieving adaptive one. Since selective security is easily
obtained in KP-ABE, we should concentrate on achieving co-selectively secure
KP-ABE below.

Based on the technique in [5, 28], we have DLIN-based, multi-use and semi-
adaptively secure KP-ABE with short ciphertext size. We give the underlying
scheme in Section 5.3 (as a warm-up), and extend it to our adaptive one. Here,
access structure S is given by £ x r matrix M and each row M; € F of the matrix
is associated to an attribute value by a map p, i.e., labeled with attributes v; :=
p(i). An attribute set I" satisfies S iff 1 € span(M; |v; € I') for a fixed special
(all-one) vector 1. First, to achieve short ciphertexts in the underlying KP-ABE,
attributes I' :== {x;} =1, are encoded in an n-dimensional (with n > n’/ +1)
vector i := (y1,...,Yn) such that Z;:Ol Y2 = 271 H;L,:l(z — ;). Each
(non-zero) attribute value v; (for ¢ = 1,...,¢) associated with a row of access
), s0 - U =

structure matrix M (in S) is encoded as ¥; := (v}

v?_l_"/ H?;l(vi — x;), and the value of inner product is equal to zero if and
only if v; = x; for some j, i.e., v; € I'. Here, the relation between S and I is
determined by the multiple inner product values i - v; for one vector i which
is equivalent to I'. As in previous works (e.g., [5,28]), a ciphertext element ¢;
is encoded with wy (for random w), and key elements k; are encoded with o;
and shared secret values M, - f (i = 1,...,0) for a central secret 1 - f with
uniformly random f, respectively. We change the encoding method for our new
proof method as indicated below.

Basic Idea: Decoupling of LSS matrix from randomness Secret keys
in all previous KP-ABE schemes contain shared secret values sg := I ]? and
sq = M;- ﬁ which means that randomness f is fixed at the key generation phase.
Moreover, since, for pre-challenge queried keys (in simulation), the challenge
is not yet revealed to the challenger, i.e., simulator, at the query phase, we have
never had a co-selective simulation strategy for achieving compact ciphertexts
together with multi-use leaf attributes v; in the queried access matrix.

For addressing the problem, we change an encoding method of LSS (Fig. 1).
First, we decouple LSS encoding into LSS matrix and randomness, and random-
ness is encoded on the ciphertext side. (Then, the simulation of the randomness
is delayed until the challenge phase.) Precisely, in the secret key, concatenated
Vi == (0,0;,EM;) € F;” are encoded in the i-th component k; for i = 1,..,¢
with random 6;,£. We note that the key component k; has no randomness for
LSS (except for connecting randomness ¢), instead, LSS matrix M := (M;)¢_, is
directly encoded in {k}}. In ciphertext, Y := (w7, f) € F7*7" is encoded. Hence,
in decryption, inner-product values are

Y Vi=wli (7)) + EM; - f = wb (7 T;) + Es; fori=1,...,4,
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Fig. 1. Decoupling of LSS matrix from randomness and partial LSS randomization in
semi-functional parts. Here, (M = (M;), p) is an access structure, uniformly random
FeFy €€.6,0, < Fy,§ = (y1,...,yn) such that Y77y ;27 = 2" 71" H;il(z—
x;), and ¥; := (v, .. i, 1) for v i= p(d).

therefore, if /- ¥; = 0, secret share £s; for central secret £sg is obtained, and if
iy U; #£0, s; is totally hidden from the decryptor since 6; is freshly random.

New Proof Techniques: Partial LSS randomization in simulation and
new underlying lemma At the top level of strategy of the security proof, we
follow the dual system encryption methodology proposed by Waters [29]. The
above change of encoding enables the simulator to simulate the randomness of
LSS depending on both of the h-th queried access structure S := (M, p) and
attributes I' := {x;} (equivalently, vector ). We use the simulated randomness
dp, which is not fully random in F;, but satisfies M; - dp, = 0 if v; € I' and

T-ap = 0. Such a vector exists since I" does not satisfy S, and it has been used for
security in previous works, for example, in [16]. In ciphertext, the concatenated
vector Y/ := (W', dp) € F+" is encoded in the semi-functional space. And, in
the semi-functional space of the h-th queried key, V/ := (0.4;,'M;) € IF;”T are
encoded in the i-th component k; for i = 1,..,¢. Since V/ is independent of I,

it can be simulated for the pre-challenge key. Then,

0 if - v, =0,

/ I ipl (= = N
YV =05 M= L ) s oana g 20

fori=1,...,0 Here, if §-7; #0, Y’ -V/ is uniformly random and independent
from other variables since 6 are freshly random. Let V;" := (6;7;,§{M;) € F2*"




with uniformly random &} which are independent of each other for i =1,...,¢.

/ " nl (= = / = 0 if?j'ﬁizoy
R {w’eé(ﬂ-ﬁi) +EM; - di, i T A0,
fori=1,...,0. Again, if - ¢; # 0, Y- V/ is uniformly random and independent
of other variables. That is, Y’ - V/ and Y’ - V" are equivalently distributed.
Therefore, we can conceptually change V;/ which contains variable & to V" with
no & (Lemma 8) by using the pairwise independence lemma (Lemma 3) as in the
previous dual system encryption proofs. We stress that V; are also independent
of the challenge attributes I', and then can be used in the pre-challenge key
simulation. In this way, we can sequentially eliminate the randomness £’ from all
key components, kI for i = 1,..,¢, except for k§, and finally, £’ remains only in
the central element kg, and the inner-product of the semi-functional parts of k
and the corresponding ciphertext component is uniformly random value f’f- an
since 1 - @y, # 0. So, the proof proceeds successfully (See Section 5.5 for proof
outline).

We extend the sparse matrix technique on dual pairing vector spaces (DPVS)
developed in [24, 28] for achieving compact ciphertexts. Refer to Section 5.1 for
the details.

1.4 Notations

When A is a random variable or distribution, y &£ A denotes that y is randomly

selected from A according to its distribution. When A is a set, y & A denotes
that y is uniformly selected from A. We denote the finite field of order ¢ by
Fy, and Fy \ {0} by F<. A vector symbol denotes a vector representation over
Fy, e.g., y denotes (y1,...,yn) € Fy'. For two vectors § = (y1,...,yn) and
7= (v1,...,0,), §-U denotes the inner-product >, y;v;. The vector 0 is abused
as the zero vector in F " for any n. X T denotes the transpose of matrix X. A bold
face letter denotes an element of vector space V, e.g., x € V. When b; € V (i =
1,...,n), span(by,...,b,) C V (resp. span{Zy,...,Z,)) denotes the subspace
generated by by, ..., b, (resp. T1,...,Z,). For bases B := (by,...,by) and B* :=
(b1,...,b6%), (z1,...,zN)B = Zf\il b, and (y1,...,yN)B = Zivzl y;bl. €}
j—1 n+r—j
=
denotes the canonical basis vector (0---0,1,0---0) € ]F;“”” for positive integers
n and r. GL(n,F,) denotes the general linear group of degree n over F,.

2 Dual Pairing Vector Spaces (DPVS)

In this paper, for simplicity of description, we will present the proposed schemes
on the symmetric version of dual pairing vector spaces (DPVS) [21] constructed
using symmetric bilinear pairing groups given in Def. 1. Owing to the abstraction
of DPVS, the presentation and the security proof of the proposed schemes are
essentially the same as those on the asymmetric version of DPVS.



Definition 1. “Symmetric bilinear pairing groups” (q,G,Gr,G,e) are a tuple
of a prime q, cyclic additive group G and multiplicative group Gr of order q,
G # 0 € G, and a polynomial-time computable nondegenerate bilinear pairing
e:GxG — Gr ie, e(sG,iG) = e(G,G)*" and e(G,G) # 1. Let Gppg be an
algorithm that takes input 1 and outputs a description of bilinear pairing groups
(¢,G,Gr, G, e) with security parameter A.

“Dual pairing vector spaces (DPVS)” of dimension N by a direct product of
symmetric pairing groups (q¢,G,Gr, G, e) are given by prime q, N-dimensional

N

—
vector space V := G x --- x G over Fy, cyclic group Gr of order q, and pairing
e: VXV — Gr. The pairing is defined by e(x,y) = Hil e(Gi, H;) € G where
x = (Gy,..., Gny) € Vand y :== (Hy,...,Hy) € V. This is nondegenerate
bilinear i.e., e(sx,ty) = e(x,y)*" and if e(z,y) =1 for ally € V, then = 0.

3 Definitions of KP-ABE

3.1 Span Programs and Access Structures

Definition 2 (Span Programs [7]). U (C {0,1}*) is a universe, a set of
attributes, which is expressed by a value of attribute, i.e., v € F*(:= F, \ {0}).
A span program over Fy is a labeled matriz S := (M, p) where M is a (¢ x r)
matriz over Fy and p is a labeling of the rows of M by literals from {v,v’,...}
(every row is labeled by one literal), i.e., p : {1,..., £} — {v,v',...}. A span
program accepts or rejects an input by the following criterion. Let I' be a set of
attributes, i.e., I' := {x;}1<j<ns (xj € F ). The span program S accepts I if
and only if 1 € span((M;) p(i)y=v,er), i-e., some linear combination of the rows
(M;) piyer gives the all one vector I.

No row M; (i = 1,...,£) of the matrix M is 0. We now construct a secret-
sharing scheme for a (monotone) span program.

Definition 3. A secret-sharing scheme for span program S := (M, p) is:

1. Let M be £ x v matriz. Let column vector f = (fry. s fr) A F;. Then,
s :=1- f: > ko1 fr is the secret to be shared, and §:= (s1,...,s0)T =
M - fT is the £ shares of the secret so and the share s; belongs to p(i).

2. If span program S := (M, p) accepts I', i.e., Te span((M;),(ier), there exist
constants {a; € Fy | i € I} such that I C {i € {1,...,¢} | p(i) € I'} and
> icr @isi = so. Furthermore, these constants {a;} can be computed in time
polynomial in the size of the matrixz M.

3.2 Key-Policy Attribute-Based Encryption (KP-ABE)

In key-policy attribute-based encryption (KP-ABE), encryption (resp.a secret
key) is associated with attributes I' (resp.access structure S). Relation R for
KP-ABE is defined as R(S, I") = 1 iff access structure S accepts I



Definition 4 (Key-Policy Attribute-Based Encryption: KP-ABE). 4
key-policy attribute-based encryption scheme consists of probabilistic polynomial-
time algorithms Setup, KeyGen, Enc and Dec. They are given as follows:

Setup takes as input security parameter 1%, a bound n on the number of at-
tributes per ciphertext and a bound r on the number of columns of an access
matriz in o secret key. It outputs public parameters pk and master secret key
sk.

KeyGen takes as input public parameters pk, master secret key sk, and access
structure S := (M, p). It outputs a corresponding secret key sks.

Enc takes as input public parameters pk, message m in some associated message
space msg, and a set of attributes, I == {z; };L/:l It outputs a ciphertext ctp.

Dec takes as input public parameters pk, secret key sks for access structure S,
and ciphertext ctp that was encrypted under a set of attributes I'. It outputs
either m’ € msg or the distinguished symbol L.

A KP-ABE scheme should have the correctness: for all (pk, sk) i Setup(1*,n, 1),
all access structures S, all secret keys skg & KeyGen(pk, sk, S), all messages m,

all attribute sets I', all ciphertexts ctp X Enc(pk,m, I"), it holds that m =
Dec(pk, sks, ctr) if S accepts I'. Otherwise, it holds with negligible probability.

Definition 5 (Adaptive Security). The model for defining the adaptively
payload-hiding security of KP-ABE under chosen plaintext attack is given by
the following game:

Setup In the adaptive security, the challenger runs the setup,

(pk, sk) &K Setup(1*,n,7), and gives public parameters pk to the adversary.

Phase 1 The adversary is allowed to adaptively issue a polynomial number of
key queries, S, to the challenger. The challenger gives skg & KeyGen(pk, sk, S)
to the adversary.

Challenge The adversary submits two messages m®, m(), and a challenge
attribute set, I', provided that mo S queried to the challenger in Phase 1
accepts I'. The challenger flips a coin b A {0,1}, and computes ctgf) &
Enc(pk, m® ). It gives ctgf) to the adversary.

Phase 2 Phase 1 is repeated with the restriction that no queried S accepts chal-
lenge I'.

Guess The adversary outputs a guess b’ of b, and wins if b’ = b.

The advantage of adversary A in the adaptive game is defined as Advi§T BE(\) :=

Pr[A wins]—1/2 for any \. A KP-ABE scheme is adaptively payload-hiding secure
if all poly-time adversaries have at most a negligible advantage in the game.

Remark 1 The challenge I" is declared by the adversary just before Phase 1
(resp. before Setup) in the semi-adaptive (resp.selective) game, and the corre-
sponding security notions are defined in the similar manner as above.



4 Special Matrix Subgroups

Let n > 2 and 7 := n + r. Lemmas 1-3 are key lemmas for the security proof
for our KP- and CP-ABE schemes.

We start by a motivational argument for introducing our new sparse matrix
technique. Previous sparse matrices in DPVS [24, 28] are given by the form in
Eq. (21) (in Appendix B.2), whose diagonal element except for the first one is
the same denoted by w. For achieving our information theoretical change from
(Y, V) to (Y', V") described in Section 1.3, we use one more randomness in
diagonal elements, i.e., two random w1 and us, as given in Eq. (1). More precisely,
random U 2 H(n,r,Fq) acts on IF(;’“ =F; x F; by using different scalars u;
and uz on the first F;' and the second F, respectively. The new sparse matrix
action is the key fact for proving Lemmas 3 and 8.

For positive integers n and r, let

u
/
uh w
z ™ uy, ug,u) € Fy
: . forl=1,....n4+mr,
H(n,r,Fq) = ul, Uy a blank element , (D)
Uy iy U9 in the matrix
. denotes 0 € F,
’u’{n+r Uz

and H(n,r,Fy)* :=H(n,r,F;) N GL(R,Fy).

Lemma 1. H(n,r,F,)* is a subgroup of GL(n,F,), where i :=n + 7.

Lemma 1 is directly verified from the definition of groups. 0
Let
Hij
!/
Hi g2 Hig1
: : € H(n,r,Fy)
Xij = U;,j,n Wi g1 for i,j = (2)
1 jint1 i j,2 1,...,5
Higanr i j.2

and using X; ;, we define

X171 X175 Xi,j
L.nmFy) =4 X o= | || £HrEI A G R (3)

for i,j =
X51 - Xs5 1,...,5

Lemma 2. £(5,n,r,F,) is a subgroup of GL(5n,F,).

10



Lemma 2 is given in a similar manner as Lemma 2 in the full version of [24]. For
the proof, see Appendix B.1.
Next is a generalization of Lemma 6 in [24].
J
Lemma 3. Leté&; :=(0,...,0,1,0,...,0) € F/"". For all¥ = (v1,...,v,,0,...,0) €
span{€y, .., en) \ span(e1), K = (0,...,0,K1,...,Kr) € span{€pi1,.., Entr) and
m ey, let

Wi.zm = {(W, Z) € (span(ey, 7, R) \ span(€1)) X (Fq’”r\span(é’l)L) | @- 2=}

For all (U, R, ¥) € (span(€1, .., &) \ span(€1)) xspan (€, 41, .., Eppr) X (B2 \ span(ey)t),

and U <& H(n,r,F)*, Z = (U, the pair (v + R)U,ZZ) is uniformly dis-
tributed in Wy g (74r).z evcept with negligible probability.

For the proof, see Appendix B.2.

5 Adaptively Secure Multi-Use KP-ABE Scheme with
Short Ciphertexts

5.1 Key Ideas in Constructing the Proposed KP-ABE Scheme

We extend the techniques developed in [28], where the author presented a semi-
adaptively secure KP-ABE with constant-size ciphertexts by using sparse matrix
DPVS approach. An underlying construction of our proposed one is given in Sec-
tion 5.3, which is a dual form of the scheme in [28] since the 5n x 5n sparse basis
matrix is used in a dual manner. Hence, while [28] scheme has size O(1) cipher-
texts and size O(¢n) keys, the underlying one has size O(n) ciphertexts and size
O(¥) keys (Table 1), where £, n are the number of rows in access structure matrix
M and the max of the number of attributes in I", respectively. In other words,
the dual conversion of the scheme in [28] to the underlying scheme increases
ciphertext size O(n)-times and then decreases key size O(n)-times.

As mentioned in Introduction, the top level idea of our construction is the
decoupling technique of LSS encoding. The underlying scheme has a usual en-
coding of LSS, i.e., encoding a central secret sy and shares s;. Therefore, the
comprehension of the construction idea of the underlying one is necessary for
understanding our proposed one. In this section, we will explain key ideas of con-
structing the underlying and our KP-ABE schemes. First, we will show how size
O(n) ciphertexts and size O(¢) keys can be achieved in the underlying scheme,
where the IPE scheme given in [24] is used as a building block. Here, we will use
a simplified (or toy) version of the underlying KP-ABE scheme, for which the
security is no more ensured in the standard model under the DLIN assumption.

A ciphertext in the simplified KP-ABE scheme consists of two vector ele-
ments, (cg,c1) € G® x G™, and er € Gp. A secret key consists of £ + 1 vec-
tor elements, (k§,k7,....k;) € G5 x (G™)* for access structure S := (M, p),
where the number of rows of M is ¢ and k} with ¢ > 1 corresponds to the
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i-th row. Therefore, to achieve shorter secret keys, we have to compress k} €
G" to a constant size in n. We now employ a special form of basis genera-

I
. . Ha e
tion matrix, X := o € H(n,0,F,) of Eq.(1) in Section 4, where
Hr, 2
By Iy ooy i, i F, and a blank in the matrix denotes 0 € F,. The master se-
by G
: noG pG
cret key (DPVS basis) is B* := : = . ) . Let the i-th

b wnG uG
component of a secret key associated with S := (M := (M;)_,, p) consists
of kf == (0wl " + si, 0072, 005,005 = (0,071 4 5,)bt + 0;(v] b5 +
by +07) = (02 o) jMJ)JrSle)G V20,6, iuG),where
v; = p(i),0; & Fq,f£ Fy and s; :== M; - f Then, kf can be compressed to
only two group elements (K;l = <9 OIEIA /1]) + sz,ul) G, Ky =0, ,uG)

as well as v;, since k can be obtained by (K}, v;"" 2K1*2, cos Uil 9, K ) (note
that ngi*Q = vgﬁi,uG for j = 0,...,n — 2). That is, the i-th component of a
secret key (excluding v;) can be just two group elements, or the size is constant

in n, then (k})‘_, can be compressed into size O(¢).

Let B := (b;) be the dual orthonormal basis of B* := (b)), and B be
the public key in the simplified KP-ABE scheme. We specify (¢, k, cr) such

that e(co, k) = g% €0 and ep = g%m € Gr with sg is a center secret of
shares {s;}i=1,. ¢ associated with access structure S, which are embedded into
{k!}iz1,..¢as mdlcated above. We also set a ciphertext for I" := {x1,..., 2, } as

¢ := (wy)p where ¥ := (y1, ..., yn) such that ijo Yn—jzd =271 n H?Zl(z—
xj), and w J F,. From the dual orthonormality of B and B*, if S accepts r,

there exists a system of coefficients {a;},)er such that e(ci, k") = gT , where

k= Zp( her @ik} . Hence, a decryptor can compute gg  if and only if S ac-

cepts I, i.e., can obtain plaintext m. We can extend the simplified KP-ABE
to a semi-adaptively secure KP-ABE scheme under the DLIN assumption just
by enlarging the dimension of the underlying vector space, which is shown in
Section 5.3. The security proof is based on the Waters’s dual system technique
and given in a similar manner to [28]. The provably secure scheme has the same
asymptotic sizes of keys and ciphertexts, i.e., O(¢)-sized keys and O(n)-sized
ciphertexts.

Our goal is to construct an adaptively secure KP-ABE with a compara-
ble asymptotic data sizes, i.e., O(f)-sized keys and O(n + r)-sized ciphertexts,
from the underlying one. We use a decoupling technique of LSS matrix from
randomness for achieving the goal. First, we enlarge the space from O(n) to
O(n 4 r) dimension. As described in Fig. 1, a uniformly random vector f € Fy
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for LSS is encoded on the ciphertext component ¢;. In the simplified scheme,
¢ = (wy, JF)[B € G™*" where § € [}, is defined as above. For encoding each row
M; of access matrix M on k7, the above matrix X is extended to a (n+7)x (n+r)
matrix in H(n,r,F,) (Eq. (1)), then the master secret key is given by

b mG
. ILLIQG HflG
B = | b2 |:=| pG mG where g1, pi2, ph; - - -
n+1 fin 1 G p2G
b;kLJrr M;z+rG MzG

T J F,. Here, note that two independent diagonal elements i, o are
used for the first n-dimension and the second r-dimension. (Refer to the ar-
gument given in the beginning of Section 4.) Hence, kI is given by k} :=
(0;U;,EM;)p~. We note k; is compressed to three group elements as before, i.e.,
Ky o= (00000 of ) + €00 Miany ) Gy Ky = 0in G, Kis = EuaG
for i = 1,..,¢, and the secret key size is O(¢). The pairing value of ¢; and k;
is e(cy, k}) = gs’qaigﬁﬁEMi'f = g%oig'ﬁﬁgsi where s; := M; - f. These values are
equivalent to the previous underlying scheme. Therefore, the decryption algo-
rithm is the same as before.

We then explain how our full KP-ABE scheme is constructed on the above-
mentioned simplified KP-ABE scheme. The target of designing the full KP-ABE
scheme is to achieve the adaptive security under the DLIN assumption. Here, we
adopt and extend a strategy initiated in [22], in which the dual system encryption
methodology is employed in a modular or hierarchical manner. That is, three
top level assumptions, the security of Problems 1-3, are directly used in the dual
system encryption methodology and the assumptions are reduced to a primitive
assumption, the DLIN assumption.

To meet the requirements for applying to the dual system encryption method-
ology and reducing to the DLIN assumption, the underlying vector space is
five times greater than that of the above-mentioned simplified scheme. For ex-
ample, kf = ( 0,0;, EM;, 0°"F27 a0, i M;, 0" ). for p(i) = v;, €1 =

Xiq1-- Xus

(wF, f, 0272 0"+ @) g with @) < FPH and X o= | S =
X510 X555

L(5,n,7m,Fy) of Eq.(3) in Section 4, where each X;; is of the form of X €
H(n,r,Fy) in the simplified scheme. The vector space consists of four orthogo-
nal subspaces, i.e., real encoding part, hidden part, secret key randomness part,
and ciphertext randomness part. The simplified KP-ABE scheme corresponds to
the first real encoding part.

A key fact in the security reduction is that L(5,n,7,F,) is a subgroup of
GL(5(n+r),F,) (Lemma 2), which enables a random-self-reducibility argument
for reducing the intractability of Problems 1-3 to the DLIN assumption. For
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the reduction, see [24]. We employ a new simulation technique in dual system
encryption using random vector f in ¢;. For the details, refer to the proof outline
in Section 5.5.

5.2 Dual Orthonormal Basis Generator

We describe random dual orthonormal basis generator gjfbp below, which is used
as a subroutine in the proposed KP-ABE scheme.

gfbp(1&5, (n,7)) : paramg := (¢,G,Gr,G,e) R gbpg(l/\), No:=5, Ny :=5(n+r),
paramy, := (q, V¢, Gr, Ay, e) := gdp\,s(l)‘, Ny, paramg) for t =0,1,

P Y Fqﬂ gr = e(G, G)w, param,, ,y = ((n,r), {Paramvt}t:o,lv gr),
Xo = (X0,i5)ij=1,..5 M GL(No,F,), X, Y L(5,n,r,F,), hereafter,

/o ii=1,,50=1,2 . . .
Lo G s b2y denotes non-zero entries of X; as in Eq. (2),
5 )
b5, 7= (X0,i,1, - X0,0.5)a = 251 X0,2,j@; for i =1,...5, B := (851, -, b 5),

B}, = pij.G, B, =G forij=1,....50=1,21=1,....,n+r,

¢

for t = 0,1, (Vrij)ij=1,. N, =1 (X)),

N .
bei = (Vt,i,1, - Vti,n ) = D250 Vrijaj for i =1,. Ny, By i= (bea, .., ben,),

« g i,j:l,...,5;/,:1,2)

«
return (param(n,r),BmBo,Bh{Bz,j,u Bl I=1,...,ntr

Remark 2 Let sparse block matrix

b;,(i—l)(n-&-r)-‘rl

:(Xz71GXZ,5G) fOI"L:L,57 (4)
bT,i(n—&-r)

and By := (b7 1,...,b] 5010))

where X ;-G means the componentwise multiplication. B; is the dual orthonor-
mal basis of BY, i.e., (b1, b7 ;) = gr and e(b1;,b7 ;) = 1 for 1<i#j<5(n+7r).

5.3 Warm-Up: Underlying Semi-adaptively Secure Construction

As a warm-up, we describe a semi-adaptively secure KP-ABE scheme, which is
a dual construction of [28] whose secret keys are compressed by using a sparse
matrix while [28] scheme has compressed ciphertexts. Namely, we use the sparse
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matrix in a dual manner of [28]. We refer to Section 1.4 for notations on DPVS.

Setup(1*, n): /% No:=5, Ny :=5n %/

* * * i, j=1,...,5; 1= R
(paramnaB07B0aB17 {Bi,j,w Bz{,j,l};il,‘l‘i,nﬁ, ‘ 1’2) o gé(bP(lA’ 2, (TL, O>)7
Bo := (bo,1,b0,2,b05), Bg := (b5 1,852, b0.4),

B, := (b11,-.010, b1 441, -, b15n)s
return pk := (1%, param,,, {I@t}t:m), sk :=
KeyGen(pk, sk, S:=(M,p)) : f£ Fy, s0:=
kg = (17 50, Oa 7o, 0)387
fori=1,...,¢,
. . . _ > U
if p(i) = v, U= (vig)jey o= (0P, w5, 1), s 0= M- f, 0,0, m; < Fy,
forj=1,...,5, KZL]' = Zlnzl ’Uu(eiBﬁj’l + wiBgfjJ) + SiBﬁj,l + ningj,la
Ko = 0iB1 1 +iB5 1,
return sks := (S, kg, {K,Zl,j,K,ZQ’j}izl ,,,,, Gi=1,..5)-
Enc(pk, m, I':={z1,... 20 |z; € F),n' <n—1}):

7 := (y1,...,yn) such that Z;:Ol Yn_ 2 = 21 [T (z — z5),

* * 1% i=1,4;5=1,...,5
0> {Bi,j,u Bi,j,l}b:l,Q; l:l,..‘,n)'
g U

’fa UOHqu

U - U
w7S007C — an P1 — F(T;7 Cy = (Ca W, 07 07 300)]13307

n 2n n n
—_—— N ————
C1 = ( wg, 0277,7 Ona SEl )]Bl

cr = g%m, ctr := (I, ¢, c1,c7), return ctr.

i=1,....¢

Dec(pk, sks := (S, kg, {K;Lj,KZ&j}j:l vvvvv 5),ctr == (I',co,c1,07)) :
If S:= (M, p) accepts I', then compute I and {«; };ecr such that
1= Y icr @iM;, where M; is the i-th row of M, and
IC{ied{l,....0} (i) =v; N v el }.
foric I, if p(i) =v;, U= (vig)ley = (.. v, 1),

n n

ki = ( K7y, vigKYs s vinK g, K750 vipK o5, 0in Ko 5 )s

n 2n n n
—_—— —————
that iS, kzk = ( 92172 + Siél, 02n7 ’Q[Jﬂ_}'l + ﬁi€17 o )BI’

k™ =3 ik, K :=e(co,kg) - e(ci, k™), return m' :=cr/K.

[Correctness] If S:= (M,p) accepts I', K = e(co, k) - e(c1, k™) =
g;wso+Cg;Zielaisi = g% where sg :=1 - j?, s = M; - ffor i=1,...,0

We note that secret key skg consists of 5¢ 4+ 5 group elements and ciphertext
ctr consists of 5n + 5 group elements (and one G element).

The standard DLIN assumption is defined in Appendix A.
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Theorem 1. The proposed multi-use KP-ABE scheme is semi-adaptively payload-
hiding against chosen plaintext attacks under the DLIN assumption.

Theorem 1 is proven in a similar manner as in [28].

In the semi-adaptive security model, the challenge attribute set I" is declared
by the adversary at the start of the game, but after receiving the public key pk
from the challenger. Therefore, for each key query S := (M, p), the challenger
can determine whether p(i) € I' or not for i = 1,...,£. The challenger in the
security proof makes use of this information to simulate a component k! of a
queried key for each ¢ = 1,...,¢ in a refined dual system encryption proof. The
main part of the game sequence is similar (but not equal) to the Game 3 sequence
in the proof of Theorem 2 below.

5.4 Proposed Adaptively Secure Construction

By decoupling LSS coefficients s; := M; - fe F, to M; € F in the key side and
f € F; in the ciphertext side of the underlying scheme, we obtain our proposed
adaptively secure KP-ABE scheme.

Setup(1*, (n,7)): /% No:=5, Ny :=5(n+r) */
* * * i,j=1,...,5; =1, R
(param(n,r)a BOvBOaBlv {Bi,j,u le’,j,l ;:jl,.l.‘,nirL ! 2) — gct(bp(l)\a 5a (nv T)),
IB0 = (b0,17b0,27b0,5)7 sz) = (b3717ba27b8,4)7

Bl = (bl,la .oy bl,n-‘rm b1,4(n+7')+17 <oy bl,5(n+7’))7

o > i=1,4;5=1,...,
return pk := (1%, param,, .y, {Bi }i=0,1), sk = (Bg,{B;j”,ng;J}j:;:?;Jl:;”;M.

KeyGen(pk, sk, S:=(M.p)):  &mo <= Fy, k= (L, & 0, mo, 0)s;,
fori=1,...,0, if p(i) = v;, ¥ := (viy)py = (V'L 00, 1), 00,95, & F,,
forj=1,...,5,
Ky =20 via(0iBy  + 0B ) + 30 Mig(§BY 0 + 1B )
Ky :=0;B] ;1 +¢iB5 ., Kl :=E&B],,+nB; o,
return sks 1= (S, kg, {K71;, K2 Ki5 } i=1,. 65=1,.5)

Enc(pk, m, I':={z1,..., x|z €F) 0 <n—1}):
7 := (y1,...,yn) such that Z?;Ol Ynj2) = 2 [[=(z = z)),

7 U u - U - P
f(_]F(;7 wa‘)DO)C(_FlN ©1 (_FZ+T7 Cp ‘= (C? 1f7 07 07 @O)Buy

n+r 2n+2r n+r n+r
——— N —
ci=( wy f N f1 B

or = g%m, cty = (I, ¢co,c1,c7), return ctp.
* i=1,...,0
DeC(Pk,SkS = (S, kSa {Ki*,l,jaKi,Z,jvKZS,j};=1,.A.,5)7CtF = (F, Co,Clch)) :
If S := (M, p) accepts I, then compute I and {a;};cr such that
1= > icr @M, where M; is the i-th row of M, and
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IC{ie{l,....¢} | [pti))=v; N v; €T}
foric I, if p(i) =v;, U= (vi))ley = (" .. v, 1),
n+r

* -—_ * . * . * . * . * e
k; = ( K‘,1,1v Uz,2Ki,2,1a-~7Uz,nKi,2,1a Ml,lKi,S,l’"’Ml,TKi,S,l’

K2

* * * * *
Ki,1,5» Ui,2Kz‘,2,5v-~v”i,nKi,2,57 Mi,lK@‘,&sw-aMi,er',&s )s

that iS7 kfzk ::( 91"(_)2‘, fMl, 02n+27" 1/}7,517 niMi> On+7. )IBI?
k™ =3 ki, K :=e(co,kg) - e(ci, k™), return m' :=cr/K.

[Correctness] If S:= (M,p) accepts I', K = e(co, kj) - e(e1, k™) =
g;ésﬁcgéZiE’msi = g% where sg :=1 - f, 8i = M; - ffor 1=1,...,L

We note that secret key skg consists of 5¢ + 5 group elements and ciphertext
ctp consists of 5(n + 1) + 5 group elements (and one G element).

While our adaptively secure KP- and CP-ABE schemes have the maximum
of size r as one of public parameters, they allow several useful class of access
structures. According to the explicit construction of span programs from boolean
formulas (e.g., Appendix of [19]), while appending AND gate gets r (and ¢)
larger, appending OR gate gets only ¢ larger. Therefore, for example, available
access structures for our adaptive ABE include any r-CNF formula with any
arbitrarily long disjunctions (for a bounded ), i.e., length r conjunctions of

length t1,...,t, disjunctions for arbitrarily large ¢1,...,t, like (X3 V - -- V
rb. lon

Xe) AN AN (21 V TR Z;,), where unbounded multi-use of attributes for

X, Xy, 21,00, 2, is allowed. The j-th column of the LSS matrix M
Zf;; t, tj

. . —— — . r .
is given by (0,...,0,1,...,1,0,...,0)" with length £ =3""_ ¢, for j=1,...,r
when the target is all 1 vector Te Fy.

5.5 Security of the Proposed KP-ABE
The standard DLIN assumption is defined in Appendix A.

Theorem 2. The proposed multi-use KP-ABE scheme is adaptively payload-
hiding against chosen plaintext attacks under the DLIN assumption.

Let vy (resp. v2) be (the maximum of ) the number of pre-challenge (resp. post-
challenge) key queries, and v := 11 4 v the total number of key queries. ¢ is the
maximum of the number of rows in access matrices (of key queries).

Outline of the Proof of Theorem 2 At the top level strategy of the security
proof, the dual system encryption by Waters [29] is employed, where ciphertexts
and secret keys have two forms, normal and semi-functional. The real system uses
only normal ciphertexts and normal secret keys, and semi-functional ciphertexts
and keys are used only in subsequent security games for the security proof.
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To prove this theorem, we employ Game 0 (original adaptive security game)
through Game 4. Games proceed as follows:

Game 0
for h=1,...,11, /* Game 1 sequence */
Game 1-h-1 — Game 1-h-2
forp=1,...,¢, /* Game 1-h-3 sequence */
Game 1-h-3-p-1 — Game 1-h-3-p-2 — Game 1-h-3-p-3
Game 1-h-4
Game 2
for h=11+1,...,v(=v1 +12), /* Game 3 sequence */
Game 3-h-1
forp=1,...,¢, /* Game 3-h-2 sequence */
Game 3-h-2-p-1 — Game 3-h-2-p-2 — Game 3-h-2-p-3
Game 3-h-3 — Game 3-h-4
Game 4

The security games consist of two main parts, Game 1 sequence for pre-challenge
keys and Game 3 sequence for post-challenge keys. We follow the approach ini-
tiated by Lewko-Waters [20] and extended by Attrapadung [2, 3], namely, two
different semi-functional forms for keys and ciphertexts are used in the two re-
spective sequences, called selective-policy semi-functional and selective-attributes
semi-functional.

Normal forms are given by Eq. (7) for ciphertexts and Egs. (5) and (6) for
keys. Notable properties of these forms are: LSS matrix M := (M;) is directly
encoded in keys {k;}¢_, and randomness for the LSS, f, is encoded in ciphertext
Ci.

Game 1 sequence (for pre-challenge keys) The Game 1 sequence is parametrized
by the pre-challenge key index h = 1,...,v4.

The simulator is first given access structure S := (M, p) for the h-th key query
from the adversary, then given attributes I" := {x;} for the challenge query. The
key task of the simulator is to embed S := (M, p), i.e., encoded vector ¥; and
rows M; of M, into the challenge ciphertext appropriately. Since the policy S is
first revealed to the simulator, we use selective-policy semi-functional keys and
ciphertext in the sequence.

A selective-policy semi-functional ciphertext is given by Eq. (8) and selective-
policy semi-functional key is given by Egs. (9) and (6). Temporary form keys are
given by Egs. (10)—(13). Notable properties of these forms are:

— A selective-policy semi-functional key given by Egs. (9) and (6) and all tem-
porary form keys in the Game 1 sequence, Egs. (10)—(13), are all independent
from the challenge attribute set I.

— (Partial) randomness for LSS matrix, d@j, in the challenge ciphertext is se-
lected depending on access structure S := (M, p) in the h-th queried key
(and challenge attributes I') such that dj & {an € F | M; -an, = 0 if
vi:=p(i) e foralli=1,...,0 and I -a, # 0}.
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— Randomness ¢’ in Eq. (9) for ki and {), 5?:1 in Egs. (12) and (13) for {k;}
are independently and uniformly distributed in F,. Moreover, the variable ¢’
is independent from all the other variables, and this is the goal of the Game
1 sequence.

Game 3 sequence (for post-challenge keys) The Game 3 sequence is parametrized
by the post-challenge key index h = vy +1,...,v.

The simulator is first given attributes I" := {z;} for the challenge query from
the adversary, then given access structure S := (M, p) for the h-th key query.
The key task of the simulator is to embed I" := {x;}, i.e., encoded vector g, into
the reply to the h-th key query, appropriately. Since the attributes I" are first
revealed to the simulator, we use selective-attributes semi-functional keys and
ciphertext in the sequence.

A selective-attributes semi-functional ciphertext is given by Egs. (14) and
(15), and selective-attributes semi-functional key is given by Eqgs. (18) and (6).
Temporary form ciphertext is given by Eq.(17). Notable properties of these
forms are:

— A selective-attributes semi-functional cipheretxt given by Egs. (14) and (15)
and the temporal form cipheretxt, Eq. (17), are all independent from the h-th
(and all) queried key policy S.

— Ounly key components kj in the h-th queried key with v, := p(p) € I' are

additionally randomized by using a new 9;)' 2 F, (in Game 3-h-2-p-3), which
is determined by the h-th access structure S and challenge attributes I

— Uniformly distributed randomness ¢” € F, in Eq. (18) for k§ is independent
from all the other variables, and this is the goal of the Game 3 sequence.

In Game 4, the challenge ciphertext is changed to non-functional form, com-
ponent cr is independently distributed from other components (cp,¢1). In the
final game, the advantage of the adversary is zero. As usual, we prove that
the advantage gaps between neighboring games are negligible, using computa-
tional problems, Problems 1-3 and information-theoretical game changes. We
have shown that the intractability of (complicated) Problems 1-3 is reduced to
that of the DLIN Problem through several intermediate steps, or intermediate
problems, as in [22, 24, 28].

Proof of Theorem 2 To prove Theorem 2, we consider the following (3¢ +
3)(v1 + v2) + 3 games. In Game 0, a part framed by a box indicates positions
of coefficients to be changed in a subsequent game. In the other games, a part
framed by a box indicates coefficients which were changed in a game from the
previous game.

Game 0 : Original game. That is, the reply to a key query for S := (M, p) with
¢ x r matrix M = (M;) is:

ka = ( 17 57 @7 Mo, 0 )]BS7 (5)

for i = 17' "7£a k;k = ( eiﬁia nga a wzﬁza 77iMi7 07L+T )]Bi‘) (6)
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n—1

where ¥; == (v, .., v, 1) if p(2) = vs, & 10,7, 05, Y & F,. The challenge ci-

phertext for plaintexts (m(®, mW) and I' := {@1,..,xn |2; € F 0 <n— 1}

is:
Co _(a T f: @ O ©Yo ]B(n cr ::g’g“m(b)7
(wi, . [02r] 0747, 61 ),

where 7 := (y1,...,yn) such that Z?;Ol Yozl = 21 H;l/:l(z — xj), and
b <_U {07 1};<7Wa¢0 <_U ]qu]?(_u }qua‘ﬁl <_U F(;L+T~

Game 1-h-1 (h = 1,...,v1) : Game 1-0-4 is Game 0. Same as Game
1-(h — 1)-4 except that ¢ and ¢ in the challenge ciphertexts for I' := {z;} are

(C _' .]F 7 07 @O)Bov

—

Cy : (w f

(7)

(8)

OnJrr’ 951)[31 )

aha W' ya ah

where w’ < F,, the h-th key query is for S := (M, p) with ¢ xr matrix M = (M;)
and @, < {@, € F | M; -G, =0if 6 - §=0for all i = 1,...,4, and 1- @, # 0},
and all the other variables are generated as in Game 1-(h — 1)-4.

Game 1-h-2 (h=1,...,v1) : Game 1-h-2 is the same as Game 1-h-1 except
all kI in the h-th queried key for S := (M, p) with ¢ x r matrix M = (M;) are:

= ( 17 57 7 o, 0 )B67 (9)
for i = 1,..,6, kf := (005, €My, [0/, & M|, 077,45y, miM;, 0" ), (10)

where 6/, ¢’ & F, and all the other variables are generated as in Game 1-h-1.
Game 1-h-3-p-1 (h=1,...,v15p=1,...,£) : Game 1-h-3-0-3 is Game
1-h-2. Game 1-h-3-p-1 is the same as Game 1-h-3-(p — 1)-3 except k;, in the h-th
queried key for S := (M, p) with ¢ x r matrix M = (M;) is:

k; = ( epgpa fMpv On+ra ‘91,96;07 glM s ’l/)pvpa anzn 0" tr ) i (11)

where all the variables are generated as in Game 1-h-3-(p — 1)-3.

Game 1-h-3-p-2 (h=1,...,v15p=1,...,£) : Game 1-h-3-p-2 is the same
as Game 1-h-3-p-1 except k; in the the h-th queried key for S := (M, p) with
¢ x r matrix M = (M) is:

(0 vpv EMy, OTH_T G/Upa gé;Mp ) wpﬁp» npMp, 0n+T)IB’{a (12)

where &, & F, and all the other variables are generated as in Game 1-h-3-p-1.
Game 1-h-3-p-3 (h=1,...,v15p=1,...,£) : Game 1-h-3-p-3 is the same
as Game 1-h-3-p-2 except k;; in the h-th queried key for S := (M, p) with £ x r
matrix M = (M;) is:

k; = ( 9;017177 fM;lN 01/77‘7})? géjM[)a 0n+'r’ ) w[)ﬁfh anpa On+r>ﬂ¥’fa (13)
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where all the variables are generated as in Game 1-h-3-p-2.
Note that in Game 1-h-3-¢-3, the uniformly distributed variable ¢’ in kj
(Eq. (9)) is independent from all the other variables.

Game 1-h-4 (h =1,...,v1) : Game 1-h-4 is the same as Game 1-h-3-¢-3
except k; (i =1,...,¢) in the h-th queried key for S := (M, p) with £ x r matrix
M = (M;) are:

fori=1,... ¢,
k:;k = ( eiﬁh €M17 7 On+ra wi{fia nlM’u On+r)]E’{7 (: Eq (6))

where all the variables are generated as in Game 1-h-3-¢-3.
Game 2 : Game 2 is the same as Game 1-v1-4 except the challenge ciphertext
is:

co=(¢ T-F [T-F1 0, 9o ), (14)

C = ( wga .]E: W/ZU, na OJ ZU, . On+r _’ Blv (15)

where f7 & F; and all the other variables are generated as in Game 1-v1-4.
Game 3-h-1 (h=v1+1,...,v): Game 3-1-4 is Game 2. Game 3-h-1 is
the same as Game 3-(h—1)-4 except that all the h-th queried key for S := (M, p)
with £ x r matrix M = (M;) is:

=(1 ¢, 7 n0s 0 B,
for i =1, 0, ki = (05, EM;, |05, € M; | 0" by mi M, 07+ )

where &', 0/ J F,, and all the other variables are generated as in Game 3-(h—1)-
4.

Game 3-h-2-p-1 (h=v1+1,...,v5p = 1,...,£) : Game 3-h-2-0-3 is
Game 3-h-1. Game 3-h-2-p-1 is the same as Game 3-h-2-(p — 1)-3 except k) in
the reply to the h-th key query for S := (M, p) with ¢ x r matrix M = (M,) is:

if @ T 0, k= (0,0, EMy, |07, 005,, &M, |, 1Ty, 1pMp, 0" "),

where all the variables are generated as in Game 3-h-2-(p — 1)-3.

Game 3-h-2-p-2 (h=v1+1,...,v5p = 1,...,£) : Game 3-h-2-p-2 is
the same as Game 3-h-2-p-1 except k,, in the reply to the h-th key query for
S:= (M, p) with ¢ x r matrix M = (M;) is:

if @, #0,
Iy = ( Oy, €My, 077, (0], 6,5,7%, € My, 45y0mp My, 07 ),

where 9 & Fy, U _'p>2 = (072 o, 1) € IF;‘_I is the last n — 1 entries of 7,

for v, = p( ), and all the other variables are generated as in Game 3-h-2-p-1.
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Game 3-h-2-p-3 (h=v1+1,...,v5p = 1,...,£) : Game 3-h-2-p-3 is
the same as Game 3-h-2-p-2 except k;, in the reply to the h-th key query for
S:= (M, p) with ¢ x r matrix M = (M;) is:
if ¥, -y # 0,
k= (0,05, My, |01, 0,5,22, &M, 0"F7 | ahpty, mp My, 0" )z, (16)

where all the variables are generated as in Game 3-h-2-p-2.

Game 3-h-3 (h =wv1+1,...,v): Game 3-h-3 is the same as Game 3-h-2-¢-3
except that ¢; in the challenge ciphertext for I" := {z;}, and (k;);=" in the reply
to the h-th key query for S := (M, p) with £ x r matrix M = (M;) are:

e = (wy, f, |, 0m1 2| 0" By )y, (17)
kg = (1, &, 7 0, ¢o )B; (18)
fori=1,...,0, if@-G=0,

ki = (0,0, €My, | S M- f1 | 05,72, € My, 0" 4y, m; M, 0" gy, (19)

where £” & Fo, 7 & ]F;“”” and all the other variables are generated as in Game
3-h-2-£-3.

Game 3-h-4 (h=v;+1,...,v) : Game 3-h-4 is the same as Game 3-h-3
except that ¢; in the challenge ciphertext for I" := {x;}, and (k}){_, in the reply
to the h-th key query for S := (M, p) with ¢ x r matrix M = (M;) are:

e = (wi, fo |7, &g, f1l 0", @)y, (= Eq.(15))
fori=1,...,¢,

kP = (0,5, €M, 0747 ] 07 i, m My, 077 Yge, (= Eq. (6))

where all the variables are generated as in Game 3-h-3.
Game 4 : Game 4 is the same as Game 3-v-4 except that ¢y in the challenge
ciphertext for S := (M, p) with ¢ x r matrix is:

Co ::(a Tf: T.f?7 7o, O)Boa

where ¢’ Q2 F, (i.e., independent from all the other variables, in particular, from

¢ & F,), and all the other variables are generated as in Game 3-v-4.
We show lemmas that evaluate the gaps between pairs of the advantages of
neighboring games. This completes the proof of Theorem 2. O

Lemmas We will show lemmas for evaluating advantage gaps between neigh-
boring games. Intermediate problems, Problems 1-3, whose intractability is re-
duced to that of DLIN (Lemmas 22-24), are used below. Problem 1 (resp.2) is
a standard decisional subspace problem for ciphertexts (resp. keys) side [22] and
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Problem 3 swaps coefficients in the 27-dimensional semi-functional space (i.e.,
Problem 2 in [28]). All the problems are given in Appendix C.

Proofs of several key lemmas are given in Appendix D. In particular, information-
theoretical changes treated in proofs of Lemmas 8 and 14 are based on our new
Lemma 3 in crucial manners, respectively, and the proof of Lemma 16 uses an
interesting proof technique given in (the full version of) [23].

Lemma 4. For any adversary A, there exists a probabilistic machine By, whose
running time is essentially the same as that of A, such that for any security pa-
rameter A, |AdvE§))(A)—Ade_1'1)()\)| < Advzi (N)+€(N), where e(X) is a negligible
function.

Proof. Lemma 4 is proven in a similar manner to Lemma 4 in [22] by using a
Problem 1 instance. In Game 0, all the queried keys are normal. As in a usual
dual system encryption proof, we can transform a normal ciphertext to a semi-
functional form Eq. (8) by using Problem 1. It is because, since all the queried
keys are normal, a non-zero coefficient vector of the semi-functional part in the
challenge ciphertext can be changed information-theoretically to any non-zero
vector by using a random base change except with negligible probability. Full
proof of Lemma 4 is given in Appendix D.1. a

Lemma 5. For any adversary A, for any security parameter X,
\Advg'(h_lm)()\)—Advfj'h'l)()\ﬂ < €(N) for2 < h < vy, where e(X) is a negligible
function.

Proof. In Game 1-(h — 1)-4, semi-functional parts of all key components kg
are uniformly random or zero and k} for ¢ > 1 are zero. Therefore, the semi-
functional part of the challenge cipheretxt cg,c; can be conceptually changed
to any vector except for negligible probability. Therefore, we obtain cg, c; as in
Eq. (8). Full proof of Lemma 5 is given in Appendix D.2. a

Lemma 6. For any adversary A, there exists a probabilistic machine Ba, whose
running time is essentially the same as that of A, such that for any security
parameter \, |Adv5i'h_1)()\) - Advfj_h'm V)] < Advgi(/\) +e(A) for1 < h <y,

where €(\) is a negligible function.

Proof. Lemma 6 is proven in a similar manner to Lemma 5 in [22] by using a
Problem 2 instance. a

Lemma 7. For any adversary A, there exists a probabilistic machine Bs, whose
running time is essentially the same as that of A, such that for any security
parameter A, |Advfi_h'3'(p_l)'3)(/\) - Advi_h_S'p_l)()\)| < Advz:; (N) +€(A) for1 <
h<wvy and1 <p</{, where e(\) is a negligible function.

Proof. Lemma 7 is proven in a similar manner to Lemma 8 in [28] by using a
Problem 3 instance. Problem 3 is used for swapping coefficient vectors of key kj
in the first block in the semi-functional part to the second block. Therefore, by
using Problem 3, we can change k; in Eq. (10) to that in Eq. (11). Full proof of
Lemma 7 is given in Appendix D.3. O
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Lemma 8. For any adversary A, for any security parameter X, |Adv§‘h'3'p'1) (\)—
Adv(j'h'g""Q)(/\)l <e€(N) for 1 <h<w and 1 <p <L, where e(X\) is a negligible
function.

Lemma 8 is a basis for our new proof techniques, which are demonstrated
in Introduction (Section 1.3). In the introduction’s notation, coefficient vector
V= (0,0,,§'My,) € F2*7 (vesp. V' := (0,0, &,M),) € Fi*") is encoded on the
p-th key component for the h-th key query in Game 1-h-3-p-1 (resp. 1-h-3-p-2).
Note that the variables ¢’ and &, differ in the expressions. The proof of this
lemma gives an information-theoretical change between these two vectors. Full
proof of Lemma 8 is given in Appendix D.4.

Lemma 9. For any adversary A, there exists a probabilistic machine By, whose
running time is essentially the same as that of A, such that for any security
parameter X, |Adv§“h'3'p'2)()\) fAdin_h_g_p_S) (M) < Advigg(A) +e(N) for 1 < h <
vy and 1 < p < ¢, where e(X\) is a negligible function.

Proof. Lemma 9 is proven in a similar manner to Lemma 7 by using a Problem
3 instance. ad

Lemma 10. For any adversary A, there exist probabilistic machines Bs.1, ...,
Bs.3 whose running time is essentially the same as that of A, such that for any
security parameter A, |Advi'h'3'€'3)()\) - Advfi'h"l)()\)\ < Zle(AdvlF;i_i_l()\) +

Advzi_i_z(/\) + Advl,Pgi_i_3 (N)+€e(N) for 1 < h <wy, where Bs_iy(-) := Bs.(i,-) and
€(A) is a negligible function.

Proof. We can change Game 1-h-3-£-3 to 1-h-4 by tracing the reverse transfor-
mations from Game 1-h-3-¢-3 to Game 1-h-1 with the one exception that kg
remains unchanged (Eq. (9)). Therefore, by combining Lemmas 9-5 in a reverse
order, we obtain Lemma 10. O

Lemma 11. For any adversary A, for any security parameter A, |Advs'yl_4)()\)—
Advf)()\)\ < €(N), where €(\) is a negligible function.

Proof. Lemma 11 is proven in a similar manner to Lemma 5. O

Lemma 12. For any adversary A, there exists a probabilistic machine Bg, whose
running time is essentially the same as that of A, such that for any security pa-
rameter \, |Adv§’_(h71)_4)()\)—Advf_h_l)(/\)| < AdVZ (N +e(A) forvi+1 < h <v,

where €(\) is a negligible function.

Proof. Lemma 12 is proven in a similar manner to Lemma 6 by using a Problem
2 instance. U

Lemma 13. For any adversary A, there exists a probabilistic machine B7, whose
running time is essentially the same as that of A, such that for any security
parameter A, |Advfj’_h_2'(p_1)_3)()\) — Advf'h_2_p_1)(/\)| < Advgi(/\) + €(N\) for
r+1<h<vandl <p<{ where e(\) is a negligible function.
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Proof. Lemma 13 is proven in a similar manner to Lemma 7 by using a Problem
3 instance. 0

Lemma 14. For any adversary A, for any security parameter \, |Adv§"h_2'p_l) (N)—
Advf-h-z_p-z)(/\” <e€A) forvi+1<h<vandl <p<L{, wheree(N) is a negli-
gible function.

Lemma 14 is proven in a similar manner to Lemma 8 by using Lemma 3. Full
proof is given in Appendix D.5.

Lemma 15. For any adversary A, there exists a probabilistic machine Bg, whose
running time is essentially the same as that of A, such that for any secu-

rity parameter X, |Advf’h'2'p'2)()\) - Advfj"h'Q_p'S)()\)| < Advgz()\) + €(A) for
n+1<h<vandl <p</{ where e(\) is a negligible function.

Proof. Lemma 15 is proven in a similar manner to Lemma 7 by using a Problem
3 instance. O

Lemma 16. For any adversary A, for any security parameter A, |Adv§§"h_2_z_3) (N)—
AdVE B (V)] < e(N) for vn +1 < h < v, where e(\) is a negligible function.

Lemma 16 is proven in a similar manner to Lemma 9 in the full version of
[23] by using the technique called “one-dimensional localization of inner-product
values”. Full proof is given in Appendix D.6.

Lemma 17. For any adversary A, there exists a probabilistic machine Bg_1, . ..,
Bg.3, whose running time is essentially the same as that of A, such that for

any security parameter \, |Adv§"h_3)()\) — Advf'h_4)(/\)| < Ele(Adef)_i_l(/\) +
Advlpgiw()\) + Advgziii3 (AN)+e(N) forvy +1 < h <wv, where By (+) := Bo.(i,-)
and €(\) is a negligible function.

Proof. We can change Game 3-h-3 to 3-h-4 by tracing the reverse transforma-
tions from Game 3-h-3 to Game 3-(h — 1)-4 with the one exception that kj
remains unchanged (Eq. (18)). Therefore, by combining Lemmas 16-12 in a re-
verse order, we obtain Lemma 17. O

Lemma 18. For any adversary A, for any security parameter X, |Advf_u'4) (N)—
Adv%)()\)\ < €(N), where €(\) is a negligible function.

Lemma 18 is proven in a similar manner to Lemma 7 in [22]. The full proof
of Lemma 18 is given in Appendix D.7.

Lemma 19. For any adversary A, for any security parameter A, Advff) (\) =0.

Proof. The value of b is independent from the adversary’s view in Game 4. Hence,
AdviP(\) = 0. O
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6 Publicly Verifiable Computation from Our KP-ABE

6.1 Definitions

Definition 6 ([13,26]). A publicly verifiable computation protocol for function
class F (with preprocessing) consists of five-tuple of probabilistic polynomial-time
algorithms (Setup, KeyGen, ProbGen, Compute, Verify):

Setup(1*) R, (PK,MSK): The randomized setup algorithm takes as input a
security parameter 1°, and outputs a short public key PK and master secret
key MSK.

KeyGen(MSK, F') R, EKg: The randomized key generation algorithm takes as
input a secret key MSK and a function F' € F, and outputs a public evalua-
tion key EKg, which will be used for the evaluation of the function F.

ProbGen(PK, x) R, (04, VK,): The problem generation algorithm uses the public
key PK to encode the function input x € Dom(F) as a public value o, which
s given to the worker to compute with, and a public value VK., which is
used for verification.

Compute(EKp, o) R, Oout: The worker algorithm uses the evaluation key EKp
together with the value o, to compute a value Toyt.

Verify(VK,, oout) R, y: The verification algorithm uses the verification key VK,
and the worker’s output ooy to compute a string y € {0,1}* U L. Here, the
special symbol L signifies that the verification algorithm rejects the worker’s
answer oyt -

Correctness. A publicly verifiable computation protocol is correct for a class
of functions F if for any (PK,MSK) <& Setup(1}), any F € F, any EKp <
KeyGen(MSK, F'), any « € Dom(F), any (0., VK,) i ProbGen(PK, x), and any

Oout & Compute(EK g, 0, ), the verification algorithm Verify on input VK, and
Oout OUtpULS ¥ := F(x).

Security There are three notions of security (soundness) for publicly verifiable
computation, depending on the level of adaptivity the client has in choosing the
challenge instance z* with respect to PK and EKg [11]:

— the weakest notion requires that z* be chosen independently of (PK,EKg).
This is the notion achieved in [13] based on a selectively secure KP-ABE.

— an intermediate notion requires that x* by chosen independently of EKg,
but may potentially depend on PK. This is the notion achieved in [11] based
on a semi-adaptively secure KP-ABE.

— the strongest notion allows z* to depend on both PK and EKg. It can be
achieved based on an adaptively secure KP-ABE.

In [11], they mention that it is important that they allow client’s input z*
to depend on PK in order to achieve any meaningful notion of security, on the
other hand, it seems reasonable to consider relaxed scenarios where the clients
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input does not depend on the server’s private evaluation key EKg, since EKp is
only known to the server carrying out the computation. However, the soundness
should be considered against malicious server possessing evaluation keys. There-
fore, we consider semi-adaptive notion of soundness [11] is just a weak guarantee
for the security of public VC, hence, our aim is to achieve adaptive soundness.

Efficiency A VC protocol needs to compute two functions ProbGen and Verify
(asymptotically) faster than the function F itself. More precisely, Chen-Wee [11]
defines the efficiency requirement.

For the explicit description of adaptive soundness and efficiency requirement
for NI-VC, see Appendix G.

6.2 Conversion to Adaptively Secure NI-VC from Our KP-ABE [26]

Below, we consider boolean function class F, F : {0,1}"™ — {0,1}, for n := n(X).
Let F(x) := 1 iff F(z) = 0 and class F := {F|F € F}. We construct public
key VC protocol from ABE := (ABE.Setup, ABE.KeyGen, ABE.Enc, ABE.Dec) for
class F U F. Let attribute set [n] := {1,...,n}.

Setup(1*): For attribute set [n] and a bound for row number 7, generate two in-

dependent master key pairs: (pk, msko) & ABE.Setup(1*,n,7), (pky, msky) &
ABE.Setup(1*, n,7), then set PK := (pk,, pky, H) where H is a one-way func-
tion, and MSK := (mskg, msk;). Output (PK, MSK).

KeyGen(MSK, F): Generate secret keys for I and F: sk X ABE.KeyGen(pk, msko,

F), skp & ABE.KeyGen(pk;, msky, F') then output evaluation key EKp :=
(Skp, SkF).

ProbGen(PK, z): Sample two messages mg, m; with the same length randomly.
Generate ciphertexts: cty o & ABE.Enc(pkg, z,mg), Cty1 & ABE.Enc(pk,,
x,my). Output preprocessed value o, := (cty,Ct; 1) and verification key
VK := (H(mg), H(m1)).

Compute(EKp, 0,): Decrypt two ciphertexts o, = (cty0,Cty 1) using EKp :=
(skz,skp): mg & ABE.Dec(pkg, sk, cty0), m} & ABE.Dec(pky, sk, cty 1),
and output the result ooy := (mf, mj).

Verify (VK,, oout): Take verification key VK, := (H(my), H(m1)) and the result
Oout := (m{, m}) as input, if H(mg) = H(my,), output 0, if H(m) = H(m}),
output 1, otherwise, output L.

Correctness: When compute keys, preprocessed data and result, correctly, if
F(z) = 0, it holds m{, = my, and if F(xz) = 1, it holds m} = my and m{ # my
except for negligible probability, we see the correctness of the VC scheme.

Efficiency: ProbGen encrypts x and Verify computes the one-way function. For
most KP-ABE schemes including one in Section 5, there exists a function F €
F for each security parameter A, whose calculation time is more than polynomial
p(n, A) of n = n(\), A. It means the efficiency requirement of the above VC. In
particular, we note that Verify is very fast (one-way function evaluation).
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Table 3. Comparison with existing pairing based (semi-)adaptively secure public key
NI-VC schemes. PHGR13 deals with NC class. The others are obtained from KP-ABE
using generic transformation given in Section 6.2, and deal with NC!. In the table,
|G| represents size of G, X security parameter, n (the maximum of) input size of a
boolean function F, ¢ size of F', k maximum input multiplicity in available F'| respec-
tively. DLIN, KEA, s-Lin stand for Decisional LINear and Knowledge of Exponent
Assumption, s-Linear, respectively.

Securit Assum Order IEK x| Comm. Worker’s
Y p- of G a cost in bits | complexity
semi- non-para- .

14 [11 t Y4 A J4
CW14 [11] adaptive | metrized composite || O(ln) |G| | n+ O(N) O(fn)
Tak14 [28] DLIN prime || O(n)|G|| n+ O(N) O(¢n)
OT10 [22] DLIN | prime || O() |G| | O(kn\) 0(0)
PHGR13 . f-param. .

(14, 25) adaptive & KEA prime OW) |G| | n+0O(N) o)
Attl5 (-para- .
Y4 A J4
2,3] metriged | PTITE O(n) |G| | n+0O(N) O(fn)
CGW15 s-Lin Lime o) |G| O(knX) o)
[10] for Vs P fors=2| fors=2 for s =2
| Proposed || adaptive ‘ DLIN | prime || o) |G| |O((n +7)A) | O(l(n+r)) |

Corresponding to three types of security for VC, three types of security for
KP-ABE are defined: selective, semi-adaptive, adaptive security. In this paper,
we focus adaptive security, and we mention the theorem below.

Theorem 3. If KP-ABE scheme ABE is adaptively secure, the above VC' pro-
tocol is adaptively secure (sound).

The proof is a straightforward extension of Theorem 2 in [26].

Remark 3 While our KP-ABE supports only monotone span programs, since it
supports a large universe as underlying equality relations, it is enough to realize
all boolean formula class by restricting the large universe to the n-element small
universe, [n], in an arbitrary manner. That is, our KP-ABE is enough to obtain
an adaptively secure communication-efficient NI-VC by the above conversion.

We show a comparison table with our NI-VC and existing ones (Table 3).
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A Decisional Linear (DLIN) Assumption

Definition 7 (DLIN: Decisional Linear Assumption [8]). The DLIN prob-
lem is to guess B € {0, 1}, given (paramg, G,£G, kG, 06G, okG, Sg) & gﬂDL'N(lA),
where QEL'N(l’\) : paramg = (¢,G,Gr,G,e) K Gopg (1Y), 5,6, &, 0 &L F,, Sy :=
(6 4+ 0)G, 51 A G, return (paramg, G, £€G, kG, (G, 0kG, Sg), for [ & {0,1}.
For a probabilistic machine &£, we define the advantage of £ for the DLIN prob-
lem as: AdvEN()) := ’Pr {5(1’\, 0)—1 ‘g <—Rg(')3L'N(1’\)} —Pr [S(IA, 0)—1 ‘g R

ngL'N(l)‘)H . The DLIN assumption is: For any probabilistic polynomial-time

adversary £, the advantage AdvE-"(\) is negligible in .

B Proofs of Lemmas 2 and 3 in Section 4

B.1 Proof of Lemma 2

For a positive integer x, let [z] :={1,...,x}.
Lemma 2. £(5,n,r,F,) is a subgroup of GL(57,F,), where 1 :=n + r.

Proof. Based on the block partition on X € F;ﬁx‘r‘ﬁ with submatrices X; ; €
X1 Xis

]Fqﬁ”‘, ie., X = (Xij)ijep) = : : , we will define a permutation
X551 X555
matrix /1. Since X;; € F;‘Xﬁ, each row of X is indexed by a pair (i, k) with
i € [5] and k € [n], which corresponds to the ((i — 1)+ k)-th row. The swapping
of the index pair (i, k) — (k,7) leads to a permutation 7 on the set [57n)] as,
T [57] — [57]
w w (20)
(i—-Dia+k — (k—1)-5+i
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with ¢ € [5] and k € [n]. We denote the corresponding permutation matrix by IT,
i.e., the left multiplication by IT is equivalent to the permutation 7 on rows (of
X). It holds that IT-% = ITT since IT is a permutation matrix, and we see that
the right multiplication by I1~! is equivalent to the permutation 7 on columns
(of X).

Let the conjugate set P(5,n,r,F,) := IT - L(5,n,7,F,) - II~'. Since the rows
and columns are permuted by =, for X = (X;;); jes) € L£(5,n,7,F,) with

:U';,j,l
Mija Higl
Xij = | #ijn i1 , Y :=1II-X-II7!is given as
Hi g1 fhij.2
M;,j,n+r i 5,2
Yy
Yl v
. M1, 1,50
Y = Y, Y, , where Y} := : : for l = 1,2
/
Yo Ya M5,1,0 " M55,
Yri+r Y2
N/1,1,k N/Ls,k
and Y, := for k € [n]. Therefore, since £(5,n,r,F,) C
Mg,l,k Né,s,k
GL(5n,F,),
Yy
Y; Y
: . Y{,Y1,Y2 € GL(5,F,),
; ’ Y], ...,Y' €eF>>
— — / 2 y 4T q
P(5,n,7,Fq) v Y},/” " v a blank element in the
il 2 matrix denotes 0 € F,
Yvi—i-r Yo

We see that P(5,n,r,F,) is a subgroup of GL(57,F,). So, L(5,n,r,F,) =I""-
P(5,n,r,Fy) - IT is also a subgroup of GL(57,F,). This completes the proof of
Lemma 2. o

B.2 Proof of Lemma 3

J
Lemma 3. Let &; := (0,...,0,1,0,...,0) € F*". Forall ¥ = (v1,...,0,,0,...,0) €
span{€y, .., e,) \ span{e1), & = (0,...,0,K1,...,K;) € span(€nt1,.., Entr) and
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Wi,z = {(W, Z) € (span{e1, v, k) \ span(€1)) x (F;” \ span(é))t) | @ - Z = 7}

For all (7, &, Z) € (span(€1, .., ) \ span(€1)) xspan (€11, .., Enpr) x (F2 T\ span(ey) ),

and U < H(n,r,F,)*, Z = (U 1)T, the pair (7 + §)U,ZZ) is uniformly dis-
tributed in Wy & (71#).z except with negligible probability.

Proof. For the proof of Lemma 3, we define a subset of H(n,r,Fy),

" u,u; € Fy
uh w forl=1,..,n+r,
H(n+r,0,F,) = . ) a blank element C H(n,r,F,),(21)
: K in the matrix
Uiy U/ | denotes 0 € F,

and H(n +7,0,F)* :=H(n+70,F;) N GL(n+1rF,) (C H(n,r,Fg)™).
For the subgroup H(n +r,0,F,)*, a sparse matrix version of pairwise inde-
pendence lemma was obtained in the following form [24].

Lemma 20 (Lemma 6 in [24], Adapted). Let &) := (1,0,...,0) € F*".
For all ¥ € T2+ \ span(é1) and w € Fy, let

Wi == {(@,2) € (span(ey, o) \ span(e)) x (F;*" \ span(e1)™) | - 2=}

For all (7,%) € (F7* \'span(€1)) x (Fy2*" \span(é1)t), and U’ & Hn +
r,0,Fy)*, 2" := (U'™)T, the pair (VU',ZZ') is uniformly distributed in W}
except with negligible probability.

— ——
We also define a diagonal subgroup K := {D,, :=diag(L,...,1,%,...,7) |y €
Fx} C H(n,r,Fy)*.

Lemma 21. For n > 2, there is a natural bijection: let K- H(n +r,0,F,)* =
{D,-U"|D, € KU € H(n+r,0,F,)*}, then, it holds that H(n,r,F,)*
K-H(n+r0,F,)*.

More precisely, the above is a semi-direct product: H(n,r,F,)* = H(n +
r,0,F,)* x K. However, we do not need the fact.

Proof of Lemma 21. Let ¢ : K x H(n + r,0,F,)* > (D,,U’) — D, -U" €
H(n,r,F,)*. Surjectivity of ¢ is trivial. We will show that ¢ is injective. Let U’
be given as in Eq. (21). If D, -U’ = I,,,, then u = 1 in U’ since n > 2, and thus
v(=wy) =1, ie., Dy = I4,. Then, U’ = I,4,. That is, ¢ is injective. O

We can prove Lemma 3 by using the product structure given in Lemma 21.
Proof of Lemma 3. From Lemma 21, U = D, - U’ is generated as < F and

U H(n+7,0,F;)*. Then, Z = (U')" = D,-1-Z" where Z’ := (U'"')T. Let
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¥ = T + ¥ where &, € span(€y, .., €,) and Ty € span{€,11, .., €ntr). We obtain
/%') U = (U+R)-(Dy-U)=(U+7R)-U and ¥- Z = (1 +Z2) - Dy1 - Z' =

L#,) - Z'. By applying Lemma 20 to (7 := ¢ + &, &’ = T1 + v ')
and (U’ Z"), we see that the pair ((17—+— i) - U, (Z1 + v~ 1%2) - Z') is uniformly
distributed in Wi, o 5 - withy & F ¢ since (0+47R)- (#1477 1) = (+R)-&
It is equivalent to that the pair is unlformly distributed in Wy i (54#).2 except
with negligible probability. We completes the proof of Lemma 3. O

T+
(71 +

C Problems 1-3 for the Proof of Theorem 2

Definition 8 (Problem 1). Problem 1 is to guess (3, given
(paramy;, {BL,@f}L:O,l, {es,i}i=0,...n+r) & Qpl(l’\ ), where i := (n,r) and

GE*(1%,7) : (paramy, Bo, B, B, { B, Bl bl ™) < G (1%, 5,7),
By := (b7 1, -+, b 5(41p) is calculated from {B” Bl

* * * * * * * * *
IBO E (b0,17b0,27b0,47b0,5)= IEB1 E (b1,17 "7b1,n+r7 1,2(n+r)+1 1,5(n+r))7

u U
W, Yo ]Fqu T — qu7 €0,0 := (0,&170,0, SDO)B(N €10 = (O,W,’T, 07 800)15307

. - i— i - U
fori=1,...,n4+r & ::=(0"11,0""" Z)EF;+T, ('07;<—F5+T,
n4+r 2n+42r n4+r n4+r
———
e > 2 2 =
€0, = ( weq, 0 nt 7"’ 0n+r7 2% )]317

6171' = ( W€i7 T€i7 On—H“’ 0n+7’7 951 )B17

return (parame {BM ET}L:O,D {eﬁ,i}i:0,~~,n+r)’

for B & {0,1}. For a probabilistic adversary B, we define the advantage of B as
the quantity

AdVEE(N) = ‘Pr [3(1&9) 1o & ggl<1k,ﬁ)} - Pr[zs’m,g) 1o R gfl(ﬂ,ﬁ)] \ .

Lemma 22. For any adversary B, there exists a probabilistic machine F, whose
running time are essentially the same as that of B, such that for any security
parameter X, Advig (\) < Adv2™N(\) + 5/q.

Lemma 22 is proven in a similar manner to the security proof for Basic
Problem 1 in [24], i.e., combination of proofs of Lemmas 16 and 17 in [24]. The
paper [24] established the sparse matrix DPVS technique as a basic tool, and
then we can adapt the above proofs in [24] to our Lemma 22 while there exist
a few technical (not essential) differences as their dimensions and ways to use
the sparse basis matrices (i.e., short key elements in Problem 1 versus short
ciphertext elements in Basic Problem 1 [24]). O
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Definition 9 (Problem 2). Problem 2 is to guess (3, given (param,, {@L,Bf}bzm,

* R - o
{hjitizo,...ntrs {€i im0, 2n42r) < QEz(lk,n), where i := (n,r) and

— * * * i,j=1,...,51= R —
gﬁp2(1>\7n) : (paramﬁ7B07BOvBlu {Bi,j,u Bz{,j,l}lil,.l.’.,n’—is-;" 1)2) — ggbp(:l)\v 57”)7
B} := (b7 1, -+, b] 5(,1p) is calculated from {B;; , B/},
By = (bo,1, b2, bo,4, bo5), By = (B7,15 - BT o BT 2ty 110+ BT 5 (ngr)):
u U * *
W, 67 900760 — Fq» pP qua h0,0 = (076707 607 0)15387 1,0 = (07 67 P, 607 0)]]3367

€0 = (Oa w,T,0, (PO)[Boa

fori=1,...,n+r &:=(0"11,0"" ) e Fr, 6, L F,, F L FIHT
n—+r 2n-+2r n+r n+r
————
hy,=( oG, g2n+2r, 5id, 0" g
h>1k7i = ( 5(?1, pé*i’ 0n+r, 6151, On+r )IB;‘
€; = ( wej, TE;, 0n+r’ 0n+r7 951 )1317

Entrii = Tb1,2n+2r+i7

return (paramg, {]@L, By }i=0,1,{h5 i }i=0,...n+r> {€i Fi=0,... 2n+2r)s

for g A {0,1}. For a probabilistic adversary B, the advantage of B for Problem
2, Adle32()\), s similarly defined as in Definition 8.

Lemma 23. For any adversary B, there exists a probabilistic machine F, whose
running time are essentially the same as that of B, such that for any security
parameter X, AdviZ(\) < Adv2™N(\) +5/4.

Lemma 23 is proven in a similar manner to the security proof for Basic
Problem 2 in [24], i.e., combination of proofs of Lemmas 16 and 19 in [24]. The
paper [24] established the sparse matrix DPVS technique as a basic tool, and
then we can adapt the above proofs in [24] to our Lemma 23 while there exist
a few technical (not essential) differences as their dimensions and ways to use
the sparse basis matrices (i.e., short key elements in Problem 2 versus short
ciphertext elements in Basic Problem 2 [24]). O

Definition 10 (Problem 3). Problem 3 is to guess (3, given (paramg,Bg, B,

* ™ * * * R - .
aneOvBluBh{fi }i:l,...,2(n+r)v{hgjivei}izl,.“,njtr) — gg3(1)\,77/)7 where n =
(n,7) and

- N IR R -
QES(1>‘,n) : (paramy, By, By, By, { B} Bif},z}?il L...,55e 1’2) — goKbP(l/\,5,n),

i oA

B} := (b7 1,.--,b] 5(,1p) 18 calculated from {B;; , Bi% 1}

@1 = (b1,1, -y bl,n+r;b1,3(n+r)+1v ~~ab1,5(n+r))v

T, p & FJ, fo:=pbys, eo:=7bos, fi :=pbi 4.y fori=1,.2(n+r),

fOI' P = 1’ e ,’I’L+’I“; é;f = (Oi—l’ 1’07L+T—i) S IFqn-i_r7 (51' £ an
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n+r 2n—+2r n+r n+r

——
h‘s,i = ( 07l+7“7 pé;_? 0n+r’ (51-6_;-, 0n+r )]B{
h;,i p— ( On+r7 On+r, Pgi,, 51,51,’ ontr )BI
e,:= (07, TE;, TE;, onrr, 0"t g,

return (paramﬁa BOa B87 .f(; €p, BlaB? {fi*}izl,...,Q(n+r)7 {hg’ia ei}i:l,‘..,nJrr),

for g A {0,1}. For a probabilistic adversary B, the advantage of B for Problem
3, Adle33()\), 1s similarly defined as in Definition 8.

Lemma 24 (Lemmas 6 in [28], Adapted). For any adversary B, there exist
probabilistic machines Fy1 and Fa, whose running times are essentially the same
as that of B, such that for any security parameter X, Advlp33()\) < Adv_'i—'l‘lN()\) +

Adv%'N()\) +10/q.

Lemma 24 is proven in a similar manner to Lemmas 6 in the full version of
[28]. Since Problem 3 and the problem in [28] differ in only a few technical (not
essential) details, i.e., their dimensions (n + r versus n) and ways to use the
sparse basis matrices (short key elements in Problem 3 versus short ciphertext
elements in [28]), we can adapt the proof in [28] to our Lemma 24. O

D Proofs of Lemmas in Section 5.5

We give proofs of Lemmas 4, 5, 7, 8, 14, 16 and 18. As for other lemmas,

1. Lemmas 6 and 12 use Problem 2 as a decisional subspace problem in a usual
manner (as in Lemma 5 in [22]) and have routine proofs,

2. Lemmas 9, 13 and 15 have similar forms to Lemma 7 and the proofs are also
almost similar,

3. Lemma 10 (resp. 17) deals with a combination of reverse transformations of
Lemmas 9-5 (resp. 16-12) with the one exception that kj remains unchanged
(Eq. (9) (resp. Eq. (18))) and then the proof is also the combination,

4. Lemma 11 has a similar form to Lemma 5 and the proof is also almost
similar.

D.1 Proof of Lemma 4
Lemma 4. For any adversary A, there exists a probabilistic machine 31, whose
running time is essentially the same as that of A, such that for any security pa-

rameter \, |Adv52) (/\)—Advfi_l_l)(/\)\ < Advz (A)+€(N), where €()) is a negligible
function.

Proof. To prove Lemma 4, we will show distribution (param(mr), {I@t}t:m,
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{Skéj)*}jzl,“.7y7ct]") in Games 0 and 1-1-1 are equivalent. For that purpose, we
define an intermediate game, Game 0, as

Game 0’ : Game 0 is the same as Game 0 except that ¢y and ¢; in the
challenge ciphertexts for I" := {z;} are:

where w’ <2 F,, the 1-st key query is for S := (M, p) with £ x r matrix M = (M)
and @ < A= {@ € FJ|M; @ = 0if 7 -§=0forall i = 1,..../, and
T a@ # 0}, and all the other variables are generated as in Game 0.

Claim 1 For any adversary A, there exists a probabilistic machine By, whose
running time is essentially the same as that of A, such that for any security

parameter \, \/—\dvg‘))(}\) - Adv&(‘)/)()\ﬂ < Advgi (N).

Proof of Claim 1. In order to prove Claim 1, we construct a probabilistic machine
B against Problem 1 using an adversary A in a security game (Game 0 or 0)
as a black box as follows:

1. By is given a Problem 1 instance, (param(nm, {B,, I?Bf}bz()’l, {€es.i}i=0,...n+r)-

2. By plays a role of the challenger in the security game against adversary A.

3. By provides A a public key pk := (1%, param,, .y, {B}}¢=0,1) of Game 0 (and
07), Where Bé = (boJ7 boyg, b0’5) and Bll = (b1,17 ey b17n+7«, b1,4(n+7')+17 ey
b1 5(n+r)), that are obtained from the Problem 1 instance.

4. When a (pre-challenge) key query is issued for access structure S := (M, p),
By answers normal key (kg, ..., k}) with Egs. (5) and (6), that is computed
using {@f};g,l of the Problem 1 instance.

5. When B; receives an encryption query with challenge plaintexts (m(o), m(l))
and challenge attributes I' := {x1,...,z,} from A, By calculates y :=

(Y1, -, yn) such that Sy, 20 = znlon' . HT;l(z — x;). Then, with

a uniformly random bit b s {0, 1},

co:=Cboy + (1-d1)eso+ (1 ') by +mnobos, cr = g%m(b),

c1=3"  yes.+ >0 (a1€sn40+ FIB1nrd) + 30 ML a1

U - 7 U -
Where Ca770 — IE‘q7 a; = (a1,15-~-7a1,’r)7 f/ = (f{?mf';) — FZ) m =

(MAse s ntr) & Fp+" and (es,.}i=o,....n+r> Bo, B, are a part of the Prob-
lem 1 instance.

6. When a key query is issued by A after the encryption query, B; executes the
same procedure as that of step 4.

7. A finally outputs bit o'. If b =/, By outputs 3’ := 1. Otherwise, By outputs
6 :=0.
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We show that the view of A is equivalent to that in Game 0 (resp.0’) when
B =0 (resp. 8 = 1). Since the public key pk and secret keys sks answered by A
are distributed as in Game 0 and 0’, we consider the distribution of challenge
ciphertext ctp := (I, cp, €1, C7).

When § = 0, ciphertext ct; generated in step 5 is

—

co=Cbo1+ (1-a@1)epo+ (1 ) bo 2 + vobo s
= (¢ I (war+ ), 0, 0, ¢ )5,

C1 = 27:1 Y.€0,, + Z::1 (al,LeOm—&-L + f:bl,nﬂ) + Z?ilr 771,Lb1,4(n+r)+L
= (wf. war + f1, 0", 0" B sy,

where vector f = wdy + f7 are uniformly distributed and independent of other

variables since f’ < [y, and g, F; are uniformly and independently distributed
since 7y := (11,,) is so. Therefore, generated ctp and skg have the same distri-
bution as in Game 0.

When (= 1, ciphertext ctp generated in step 5 is

— -

co=Cbo1+ (T-a@1)ero+ (1-f)boa+ pobos
= ( Ca T (wal +f})7 T'lea 07 906 )Bo = ( Cv T]?v Ta’l? Oa ()OE) )Bov
cr =30 e, + 0 (@it + flbintd) + 0 bt a4
=/

= ( wg} wal +f/7 T:J, 7'61, On+r, ©1 )]El

:(Wga f7 7']], C_illa OnJrTa Qb‘ll )BN

where vector f = wdy + ]57 are uniformly distributed and independent of other
variables since f7 < [y, @) := 7d; are uniformly distributed in A and indepen-

dent of other variables since @; < A and 7 < F, (therefore nonzero random
except for negligible probability), and ¢, ¢} are uniformly and independently

distributed since 77, := (11,,) is so. Therefore, generated ctp and sks have the
same distribution as in Game 0’.
This completes the proof of Claim 1. O

We will show that the distribution in Game 0’ and that in Game 1-1-1 are
equivalent. We will consider the distribution in Game 0’. We define new dual
orthonormal bases (ID1,D7) of V;. First, we set n:=n + r, and

di i1 b1 s+1 — b1 2541 di o1 Lat1 T 07 0511
. _ : , . _ : 7
di 25 b127 — b1 3 137 1on T blsn
Dy = (b1,1,---, b1 i1, - -5 di2n, byt - b1 50),
]D)T = ( Y,lﬁ"' 7by1‘,2ﬁ’dylf,2ﬁ+1a'"7dT,3ﬁ7bT,3ﬁ+1""’ T,Sﬁ)'

Then, D; and D} are dual orthonormal bases. Since all the key components k;
are normal form, there are no effects from the above transformation, and the
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challenge ciphertext ¢; is expressed as

_ - 7 Ea— n-+r n+r =
Cl—(CL)Z/, f7wy7afl70 aO 7()01)31

= (wfj, f, ¥, @, W'§, @, 0", G)p,.
Therefore, ¢; is distributed as given in Game 1-1-1 over the basis D, and the
distribution (param(,w), {@t}tzojl, {Skéj)*}j:17___7y,ct]") is the same as in Game
1-1-1 since the above changed basis vectors di 741 - - di 25 are not included in
I@l. Thus, we obtain Lemma 4 from Claim 1. a

D.2 Proof of Lemma 5
Lemma 5. For any adversary A, for any security parameter \,

Advl P () —Adv{ TV (V)] < €(A) for 2 < B < vy, where €()) is a negligible
function.

Proof. To prove Lemma 5, we will show distribution (param,, ., {I@t}t:m,
{Skéj)*}jzl,“.7y7ct]") in Games 1-(h — 1)-4 and 1-h-1 for h > 2 are equivalent.
For that purpose, we define an intermediate game, Game 1-(h — 1)-4’; as

Game 1-(h—1)-4> (h=1,...,v1) : Game 1-(h—1)-4" is the same as Game
1-(h — 1)-4 except that cg, c; in the challenge ciphertexts for I' := {z;} are:

Cy = ( C7 If; 7 07800 )]Boa
Ci = ( (4):17, f_l; a On+ra QBI)]BN

u ~ U 2
where g9 < Fg,& 2 F2mt)

Game 1-(h — 1)-4.

, and all the other variables are generated as in

Claim 2 The distribution (param(nvr),{@t}tzoyl,{skéj)*}jzlj_“,l,,ctp) in Game
1-(h—1)-4" and that in Game 1-(h—1)-4 (resp. 1-h-1) are equivalent except with
negligible probability.
Proof of Claim 2. We will show that the distribution in Game 1-(h — 1)-4 and
that in Game 1-(h — 1)-4’ are equivalent. The other equivalence between Game
1-h-1 and Game 1-(h — 1)-4’ is shown in a similar manner.

We will consider the distribution in Game 1-(h — 1)-4. We define new dual
orthonormal bases (Dg, D§) of Vo and (D1, D7) of V.

First, we generate u & F and set dos := ubys,dy; = u~'bjz and
DQ = (bo’l, bO’Q, do’g, b0’4, b0’5), ]D)S = (bg,lﬂ b5,27 d8’3, b814, b8,5). Then, we gen-

erate matrix Uy, Us 2 H(n,r,Fg)*, An:=n+r,and U := (Ul 0ﬁ>,

05 Ua
3 *

di 541 b1 st di ;i1 bl 71

. = UT . , = (]_1 . ,

dy 3 b13n di s bl s,

Dy == (b1,1,---, b1 dift1s .- di3a, bisigt, -, b1 si),
D = (b* * * * * *

1 - ( 1,1y Y1l ns ¥l n+lr- ™ 1,300 Y1,3n+1s- "> 1,51”1)'
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Then, (Dg,D§) and (Dy,DF) are dual orthonormal bases.

The component ¢y in the challenge ciphertext and key component kS(L) for
the t-th key query (: = 1,...,v) are expressed as

Co = ( Cv Tﬁ T'dh—h 07 ®o )Bo = ( Cv Tﬁ uil(f'dh—l)a Oa ®o )Dm
if ¢ S h — 1a kS(L) = ( 17 f(L)a g/(L)a 77(()”7 0 )IBS = ( 17 €(L)a uﬁ/(b)v néb)v 0 )]D)(;a

if 0>h, kg™ =(1, €9, 0, 45 08 = (1, €9, 0, 5, 0)ps,

where gg := v (1 @p_1), " := u¢’® for t < h — 1 are uniformly distributed
and independent of other variables.

Since all the key components k} (i > 0) are normal form, there are no effects
from the above transformation, and the challenge ciphertext ¢, is expressed as

C1 = ( wg7 fT; w/gj', a:hm wlg7 C_’:hm On+ra QBI)Bl
= ( wg’ fa (w/ga dh) 'Zla (w/ga dh) 'ZQ, 0n+r7 (ﬁl)ﬂh = ( UJ:IJ, ﬁ 5, On+r7 @1

where Z; := (U{l)T for j = 1,2 and &:= ((W'g, @) Z1, (W'Y, @n)-Z2) € F} is
uniformly distributed and independent of others since 71, Z5 s H(n,r, ]F‘q)T N
GL(n+r,Fy) and (w'y, dp) is nonzero except with negligible probability from
Lemma 3. Therefore, (k:(b))bzlp_”u, (co,c1) are distributed as given in Game
1-(h — 1)-4" over the bases (Do, Dg), (D1,D7), and the distribution (param,, ,,
{B¢}i=01, {skg)*};l,m,y, ctr) is the same as in Game 1-(h—1)-4’ since the above
changed basis vectors dg 3,d1 7+1 - - di 357 are not included in By, B, .

This completes the proof of Claim 2. O
Thus, we obtain Lemma 5 from Claim 2. ]

D.3 Proof of Lemma 7

Lemma 7. For any adversary A, there exists a probabilistic machine Bz, whose
running time is essentially the same as that of A, such that for any security
parameter A, |Adv§“h'3'(p_1)'3)()\) - Advfi'h'?"p'l)(/\)\ < Adv;i()\) +e(N) for 1 <
h <wvp and 1 <p < ¢, where €()\) is a negligible function.

Proof. In order to prove Lemma 7, we construct a probabilistic machine B3
against Problem 3 using an adversary A in a security game (Game 1-h-3-(p—1)-
3 or 1-h-3-p-1) as a black box as follows:

1. B is given indices (h,p) and a Problem 3 instance, (param,, ..y, Bo, Bg, £, eo,
By, B, {f Yz, 2(nar)s {RG s €1 Fim1, )

2. Bz plays a role of the challenger in the security game against adversary A.

3. Bs provides A a public key pk := (1%, param,, ., {Bt}t=0,1) of Game 1-h-3-
(p — 1)-3 (and 1-h-3-p-1), where @6 = (bo,1,b0.2,b0,5) and B = (b11,.--,
b1 ntrs b1 a(ngr)+15 - -+ D1,5(n4r)), that are obtained from the Problem 3 in-
stance.
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4. When the (-th (pre-challenge) key query for access structure S, := (M, p) is
issued, first set 0; := (v?‘l, ooy, 1) for v = p(i) (i =1,...,¢), then
(a) if ¢ < h, B3 generates key components {k; },=o... ¢ asin Eq.(9) for i =0
and as in Eq. (6) fori =1,...,¢.

(b) if ¢« = h, B3 generates key components {k;},—o.. ¢ as follows:

i. if 7 = 0, kg is generated as kj := ki"™ + fi, where ki™™ is a
normal form given by Eq. (5) and f; is obtained from the Problem
3 instance.

ii. if 0 < ¢ < p, kj is generated as k; :
& Gt Mi 03,4y Where 07,
given by Eq. (6).

iii. if i = p, k; is generated as kj = k"™ + 0,3 v, hj +

*knorm / n *
k; +0; Z]‘:1 Vi iby oy

Fy, k™™ is a normal form

Te i

> e My bl o, where 0] & Fg, k5"™ is a normal form given
by Eq. (6) and hj; ; are obtained from the Problem 3 instance.

n

iv. if i > p, ki is generated as ki = k;"™ + 0; 30, v ;br, L+

> ey M frj, where 6; & F,, k"™ is a normal form given by
Eq. (6) and f;, ; are obtained from the Problem 3 instance.
(c) if « > h, Bs generates normal key components {k;};—o....¢ as in Eq. (5)
for i =0 and as in Eq. (6) fori=1,...,¢.
Bs sends the key sks, := (S,, {k] }i=0,...¢) to A.
5. When Bs receives an encryption query with challenge plaintexts (m(?), m(1))
and challenge attributes I" := {z;} from A, Bs selects (challenge) bit b &
{0,1}. B3 computes the challenge ciphertext (¢, ¢y, cr) such that

co = CbO,l + (I f} b072 + (T Jh) ep + (PObO,5,
e =30 yi(whj +w'es) + 35y (Fibint + anjents) + 2501 ¢1ib1ants,

cr = g%m(b),

where w,w', G, o < By, [ < Fy, @y < {@n € Fj | M; - = 0 if v; := p(i)
I for all i = 1,...,¢, and 1-a, # 0} for the h-th queried S := (M, p),
— n—1 ; n—1-—n' n’ —
Y = (y1,...,yn) such that 3. 5 yn_;z) = 2z ! [[[=1(z —25), ¢1 =
(¢1,5) L IE‘;”‘T, and (eg,{e,}.=1.. . ntr), BO,@l are a part of the Problem 3
instance.

6. When a (post-challenge) key query is issued by A after the encryption query,

B3 executes the same procedure as that of step 4c, i.e., returns a normal key.
7. A finally outputs bit o'. If b =/, B3 outputs 3’ := 1. Otherwise, B3 outputs

6 :=0.
When § = 0 (resp. 8 = 1), the view of A is equivalent to that in Game 1-h-3-
(p — 1)-3 (resp. 1-h-3-p-1) by Claim 3.

Claim 3 The distribution of the view of adversary A in the above-mentioned
game simulated by Bs given a Problem 3 instance with 3 € {0,1} is the same
as that in Game 1-h-3-(p — 1)-8 (resp. Game 1-h-3-p-1) if 3 =10 (resp. B =1)
except with negligible probability.
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Proof. The distribution of the public key and secret keys except for the h-th
queried one in the above-mentioned game simulated by B3 is the same as that
in Game 1-h-3-(p — 1)-3 (and Game 1-h-3-p-1). Therefore, we examine the dis-
tribution of the h-th queried key and the challenge ciphertext below.

The h-th queried key is given as

ifi=0, ki=ki""+f5 =01 & p, no, 0)s;,
if0<i<p, Ki:=Kk"™+0;5" vibh & Migbs,
= ( 0:7;, EM;, 003, &My, 0", G, i M, 04 s,
if i =p, kyi=kym 0,5 v, 5kl + 3 My ki,
{: (Op0y, EMy, 0,3, pM,,, 0", thy 0y, mp My, 0" ) when =0,
= (0,7, EMy, 077, 015, pMy, Ty, 1My, 0747 )a: when = 1,
if i >p, K=k 0, b Y M f
= (005, EM;, 070, pM;, 0"F7, aps i, My, 0"F" s,

where 0;,&, 0}, & 2 F, and random p € [, is given in the definition of Problem

79

3. The challenge ciphertext cg, c; is given as

¢o :=Cbo1 + (T J?) bo2 + (I an) €o + pobo 5
= (¢ T-f, T-7dn, 0,00 ),
cri= Y yi(wbi +w'e) + T (fibint + anjents) + 2021 9101 an,
= (wy, f, 7§, T@n, WG, T, 0", B )b, ,
where random 7 € I is given in the definition of Problem 3, and 74, is uniformly
distributed in {@y, € Fj | M; - dp = 0 if v; := p(i) € I" for all i = 1,...,¢, and
T-dy, # 0} for the h-th queried S := (M, p).

Therefore, the distribution is the same as that in Game 1-h-3-(p — 1)-3 (resp.
Game 1-h-3-p-1) if 8 =0 (resp. 8 = 1) except with negligible probability. O

This completes the proof of Lemma 7. O

D.4 Proof of Lemma 8

Lemma 8. For any adversary A, for any security parameter \, |Adv§“h'3'p ) (N)—
Adv(j'h'g""Q)(/\)l <e€(N) for 1 <h <w; and 1 <p < /¢, where €(\) is a negligible
function.

Proof. To prove Lemma 8, we will show distribution (param(mr), {I?Bt}t:OJ,
{skéj)*}jzl,“.’;/7ct[‘) in Games 1-h-3-p-1 and 1-h-3-p-2 are equivalent. For that
purpose, we define an intermediate game, Game 1-h-3-p-1’, as

Game 1-h-3-p-1° (h=1,...,v13p = 1,...,£) : Game 1-h-3-p-1" is the
same as Game 1-h-3-p-1 except k; in the h-th queried key for S := (M, p) with
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¢ x r matrix M = (M;) and the challenge ciphertext ¢; are:

= ( 9;0171” gMpa 0n+r7 7 ql)pﬁpy anpv On+T)]B1‘7
C1 = ( w?ja fa w/ga dha 7 0n+r’ 951)]317

where @, == (7, 0"), M}, := (0", M,) and if § - @, = 0, then (i, 2) < W,
{(w,2) € span(é1, v, M) x Fp+" | - 2 = 0}, and if -4, # 0, (w,Z)
(span(er, v, M) x FH0) \ Wy

Te i

Claim 4 The distribution (param(nvr),{@t}t=0717{Skéj)*}jzl,_“’,/7ct[‘) in Game
1-h-8-p-1 and that in Game 1-h-3-p-1’ are equivalent except with negligible prob-
ability.

Proof of Claim 4. We will consider the distribution in Game 1-h-3-p-1. We
define new dual orthonormal bases (D1,D7) of V;. First, we generate matrix

U H(n,r,Fy;) NGL(n +r,F,), and set 7 :=n + 7,

£ E3
di 2741 b1 2741 di ont1 bl 241
. = U—l ) . , . = UT . E s
di 35 b1 37 disn bl sn
Dy == (b1,1,---,b125, d1 2541, - - -, d1,35, b1 37415 - - -, b1 57),
* * * * * * *
]D)l T ( 1,101 20 1 2n+1 - > 1,3ﬁ’b1,3ﬁ+17"'7 1,51”1)'

*

Then, D; and D} are dual orthonormal bases. k;, in the h-th queried key for
S := (M, p) with ¢ x r matrix M = (M;) and the challenge ciphertext ¢; is
expressed as

OpTy, EMp, 07, 0,0, & My, PyUy, 1My, 0" )p:

pUps EMp, On+ra ( p_}ﬂ fMp)'Za YpUp, Mp My, 0"t T)D{a (22)

<y

= (
(6
(W .}F /g a: w/?ja a:fu On+ra @1)]31

(w f g 6 (W/g, 6}1) 'Ua OnJrTa 551)@1 (23)

where Z := (U~1)T. From Lemma 3, the pair of coefficients (i, 2) := ((w'¥, an)-
U, (0,0, &' M,) - Z) is uniformly distributed in

War g x = {(0,2) € (span(éy, v, M, )\span(el>)x(F;‘*T\span<é’1>J‘) | -2 =m}

except with negligible p]robability7 where 7 = W0’ (171, §) + &My - dp, T =

(Up, 0") and M, := (0", M,). In partlcular if v, -y #0, then m is indepen-
dently and uniformly distributed Smce 01’, i F,, and (), 2) is independently and
uniformly distributed in (span(ét, v, M) x F;+7) \ W{ (except with negligible
probability). If @, - ¥ = 0, then Mp dp = 0, and (, %) is independently and
uniformly distributed in Wy
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When 1 < # p </, the i-th component of the h-th queried key k is

if 1 < D, k;k = ( 97177, SMZ, 9;’[77, f;Mu On+r’ .. )BI
- ( 9,-17,', §M27 eggh §;M27 On+r’ .. ')DI’

if 7> D, kf;< = ( Oiﬁi, fMi, 9;1_}’,‘, flMi, On-&-r’ )BT
- ( ei{}’ia €M’La 9;17“ glMia On—H"’ .. )]D)’l‘

(24)

In the light of the adversary’s view, (ID;,D7) is consistent with public key
pk := (14, paramg,, ..y, {]@t}t:071). Moreover, since the RHS of Eqgs. (22), (23) and
(24) are in the same forms in those in Game 1-h-3-p-1’, namely, Game 1-h-
3-p-1 can be conceptually changed to Game 1-h-3-p-1’ except with negligible
probability. O

Claim 5 The distribution (param(n’rw{@t}tzo’h{skg)*}jzlw’wctp) i Game
1-h-3-p-2 and that in Game 1-h-3-p-1’ are equivalent except with negligible prob-
ability.
Proof of Claim 5. Claim 5 can be proven in a similar manner to Claim 4. Namely,
we show that Game 1-h-3-p-2 can be conceptually changed to Game 1-h-3-p-1’
except with negligible probability. In the proof, we consider a pair of coefficients
(0, 2) = (W'Y, an) - U, (0,0}, &,Mp) - Z) where a new randomness &, is used
instead of ¢ in Claim 4. Lemma 3 shows the pair is uniformly distributed in
Wi ay,- with the inner product value 7 := w'0}, (5, - §) + &, M, - @, except with
negligible probability. Then, the same technique in Claim 4 is used in the rest
of the proof of Claim 5. 0
From Claims 4 and 5, the distribution (param(nwr), {]Et}tzowl, {skéj)*}jzlw,l,,
ctr) in Game 1-h-3-p-1 and that in Game 1-h-3-p-2 are equivalent except with
negligible probability. This completes the proof of Lemma 8. O

D.5 Proof of Lemma 14

Lemma 14. For any adversary A, for any security parameter A, |Advf’h_2'p -1) (N)—
Advfi"h_2_p_2)(/\)| <e(A) for vy +1<h<vand1l<p</{ where e()\) is a negli-
gible function.

Proof. To prove Lemma 14, we will show distribution (param(nyr)7 {I@t}t:(),l,

{Skéj)*}jzl,“.ﬂ,,ct[‘) in Games 3-h-2-p-1 and 3-h-2-p-2 are equivalent. For that
purpose, we define an intermediate game, Game 3-h-2-p-1’, as

Game 3-h-2-p-1’ (h=v1+1,...,v5p=1,...,£) : Game 3-h-2-p-1’ is
the same as Game 3-h-2-p-1 except kj in the h-th queried key for S := (M, p)
with ¢ x r matrix M = (M;) and the challenge ciphertext ¢; are:

C1 = ( Wg7 .]?7 wlg'7 f/7 a 0n+7“7 @1)]]3317
i3, A0, kb= (0,0, EM,, 0", [@], iy, nyM,, 0" )g:,

where @, := (7, 07), M}, := (0", M,) and if 7, - § # 0, then (@, 2) < W, =

{(w, 2) € span(é1, 7, M) x Fp+" |0 - Z # 0}
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Claim 6 The distribution (param(n7r),{@t}t:0717{skéj)*}j:1,_4.7y7ct[‘) in Game
3-h-2-p-1 and that in Game 3-h-2-p-1’ are equivalent except with negligible prob-
ability.

Proof of Claim 6. We will consider the distribution in Game 3-h-2-p-1. We
define new dual orthonormal bases (D1,D7) of V;. First, we generate matrix
U Y H(n,r,Fy) NGL(n +r,F,), and set 7 :=n + 7,

di 27+1 b1 27+1 di 2it1 bl 2it1
: —yT. : : : =U"". : ;
d1 37 b1 3 di i b 35
Dy := (bi1,...,b127,d1 2541, - d1 37, b1 3341, - -, b1 50),
Dik = (bT,lv AR bT,2ﬁ» d)lk,2ﬁ+17 et dT,Sﬁv bT,BﬁJrl’ ] bT,Eyﬁ)'

Then, D; and D} are dual orthonormal bases. k;, in the h-th queried key for
S = (M,p) with ¢ x r matrix M = (M;) and the challenge ciphertext ¢; is
expressed as

if 617 g #0,
k; = ( OpUy, EM,, 0, 9;)17177 glMpa YpUp, Mp My, 0”+7-)BT
= (OpTp, EMyp, 0", (0,0, §'M,) - U, ptp, npMy, 0" M)py,  (25)
er=(wf, f, W'g, [, 7, 0", G,
=(wi, f. &' ' @5 )2, 0", G, (26)
where Z := (U~1)T. From Lemma 3, the pair of coefficients (7, 2) := (W', f/)-

Z, (0,0, {'Mp)-U) is uniformly distributed in

Wiy o= {(@,2) € (span<€1,{)’1§,Mp’>\span<é'1>)x(]F;””'\span(é'l}L) |07 =7}
except with negligible probability, where 7 := W', (4, - 7) + &' M, - 7, vy =
(U, 0") and M, := (0", M,). In particular, if %, - 4 # 0, then 7 is indepen-
dently and uniformly distributed since 9; Q2 F,, and (), 2) is independently and

uniformly distributed in W. ;20 (except with negligible probability).
When 1 <7 # p </, the i-th component of the h-th queried key k is

if i <p, ki=(0;T;, EM;, 0F, 0577, &M, 0"+, .. )ps
= (0;5;, EM;, 0, 0072, € M;, 077, L )ps,
if i > p, kv* = ( 0;v;, EM;, 9:17“ f/Mi, O"J'_r, )]Bi«
= ( 9217“ fM,“ 9;172, flMi, On—HI, )DI

(27)

In the light of the adversary’s view, (ID;,D7) is consistent with public key
pk := (1?4, paramg,, ..y, {]@t}t:071). Moreover, since the RHS of Eqgs. (25), (26) and
(27) are in the same forms in those in Game 3-h-2-p-1’, namely, Game 3-h-
2-p-1 can be conceptually changed to Game 3-h-2-p-1’ except with negligible
probability. O
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Claim 7 The distribution (param(n7r),{@t}t:0’17{skéj)*}j:1,_4.7y7ct[‘) in Game
3-h-2-p-2 and that in Game 3-h-2-p-1’ are equivalent except with negligible prob-
ability.

Proof of Claim 7. Claim 7 can be proven in a similar manner to Claim 6. Namely,
we show that Game 3-h-2-p-2 can be conceptually changed to Game 3-h-2-p-1’
except with negligible probability. In the proof, we consider a pair of coefficients
(W, 2) := (W', f')-Z, (0],0,052, &' M,)-U) where a new randomness 0 is used
instead of Gé,vp’l in Claim 6. Lemma 3 shows the pair is uniformly distributed in
Wi - with the inner product value 7 := w'0)) + w’9§,(17§2 G2+ M) - f
except with negligible probability since y; = 1. Since 9;,’ is uniformly distributed,
then 7 is also uniform, and the same technique in Claim 6 is used in the rest of
the proof of Claim 7. O

From Claims 6 and 7, the distribution (param,, ., {I@t}tzovl, {skéj)*}jzl v

.....

ctr) in Game 3-h-2-p-1 and that in Game 3-h-2-p-2 are equivalent except with
negligible probability. This completes the proof of Lemma 14. O

D.6 Proof of Lemma 16
Lemma 16. For any adversary A, for any security parameter X, |Adv§"h_2'z'3) (N)—

Advf’h'g)()\ﬂ < €(N) for 1 +1 < h < v, where €(\) is a negligible function.

Proof. To prove Lemma 16, we will show distribution (param(n,r),{@t}tzo’l,

{skéj)*}jzl,w,,,ctp) in Games 3-h-2-f-3 and 3-h-3 are equivalent. For that pur-
pose, we define new subbases d1 ntri1,- -, d13(ntr) and dy g, d’ig(

n+r)
of V as follows: The first component of the target vector 4 := (y1,...,yy) in the
challenge ciphertext is y; = 1. Then, we set p} := 1,4, := —y, for v = 2,...,n,
Ly
1
oy, i=—(w) " f forv=1,...,7, and Z; := _ e Fitrx(ntr),
1

and Uy < H(n,r,F,)*. Then we set 1 :=n+r,

di it b1 71 di ;i bl 71
: =zt : : : =77 : . (28)
di 25 b1 o5 di 5 bl o5
di 2541 by 2741 di ont1 bl 2541
: =Uy - : : : =U; " : ,
di 35 by3n di 5 b 35
Dl = (bl’l,...7b1’ﬁ7d17ﬁ+17...7d1_’3ﬁ,b1’3ﬁ+1,...,b1,5ﬁ), Dik = (bil""’bi’ﬁ’
di i1 di 37,07 37415+ -5 b1 55). We then easily verify that Dy and D7 are

dual orthonormal, and are distributed the same as the original bases, B; and B7.
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We have (W', f') - Z1 = (w',0"F"~1), and since Z; is regular,

£

!
(0305, € M;) - (Z71) = (2 M; - 0w &My i G-y =0 (29)

(07, 0572, €M) - (Zy ) = (6", 6;577, €M,) if ;-5 #0,  (30)

where 0/ = 0/ + 0l7>2 . G7% + i—l,MZ . f" and 6/ is uniformly random and
independent from other variables since 6 s F,. Here, the first entry of the

right hand side of Eq. (29) is determined by ratio of the inner product (w'%, f’ )-

’l}z, "M ,Mi - f" and &', and the rest of entries are the same in both sides
’
by deﬁmtlon.

Clearly, 2’ := ( y" f ) - (Uy 1T is independently and uniformly distributed

in IF"*T since Uy H(n,r,Fq)* and all the corresponding coefficients in keys
are zero

The challenge ciphertext in Game 3-h-2-¢-3 is expressed over bases B; and
D as follows.

The i-th component of the h-th queried key {k:}¢_, in Game 3-h-2-£-3 is ex-
pressed over bases B} and D7 as follows. Using Egs. (29), (30) and (28), we have,
fori=1,...,¢,

if 70, =0, ki=(0:0;, EM;, 0;5;, &M, 0™, @, n;M;, 0" )p:

= ( oilf}‘h ngv %MZ 'f/ ) 91/,177,227 glM% On+ra wiﬁ’ia nlev On+7‘) I

if -0 #£0, ki =(0:0;, EM;, 07, 0577, ¢ M,;, 0", i@, M, 0" )px
= (0., My, [07'], 0077, &M, 077, it miMy, 0" )y, (31)

where 6/ is defined after Eq. (30). Therefore, we have Eq. (19) if 7+ ¥; = 0. And,
the right hand side of Eq. (31) is distributed equivalently to Eq. (16).

We have only M, - f’ for 4 when v; - ¥ = 0. From the security of linear secret
sharing, the central secret sg := I ];7 is (uniformly distributed and) independent
from information {M; - f’ for i when @; - § = 0}. Since s is the third coefficient
of ¢y, the corresponding coefficient of k( also becomes uniformly distributed
and independent from all the other variables by the one-dimensional coordinate
change. That is, we have Eq. (18).

Therefore, the distribution (param(n’r), {]ﬁ)t}t:(),l, {skéj)*}jzlﬁ,,,,l,, ctr) is equiv-
alent to that in Game 3-h-3. This completes the proof of Lemma 16. O
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D.7 Proof of Lemma 18

Lemma 18. For any adversary A, for any security parameter A, |Adv52'y_4) (\)—
Adv%)(/\)\ < €(N), where €()) is a negligible function.

Proof. Lemma 18 is proven in a similar manner to Lemma 7 in [22]. In Game 3-
v-4, the 0-th components of all keys, k(()h)* for h =1,...,v, are given by k:(()h)* =
(1,0 grh) n(gh), 0)m; with independent randomness €™ and the 0-th compo-
nent of the challenge ciphertext is given by ¢o = (¢, Tf, I f’, 0, o)B,- By setting
di 1 = bj 1 +0bf 3, do3 == by 3—0bg 1 and D := (bg 1,b02,do3,b0.4,b05), D* :=
(dg.1, b5 5, b55), we obtain kS = (1,60 &™) — g9 0)p: and ¢y =
(C+ 01 - f', T f, I ]?7,07@())@0. Since (" := ¢ + 601 - ]‘:7 is uniformly random and
independent from all the others, we obtain the distributions in Game 4. O

E Adaptively Secure Multi-Use CP-ABE Scheme with
Short Secret Keys

E.1 Definition of CP-ABE

Definition 11 (Ciphertext-Policy Attribute-Based Encryption : CP-
ABE). A ciphertext-policy attribute-based encryption scheme consists of four
algorithms.

Setup takes as input security parameter. It outputs the public parameters pk
and a master key sk.

KeyGen takes as input a set of attributes, I' := {x;}1<j<n’, pk and sk. It outputs
a decryption key.

Enc takes as input public parameters pk, message m in some associated message
space msg, and access structure S := (M, p). It oulputs the ciphertext.

Dec takes as input public parameters pk, decryption key skp for a set of at-
tributes I', and ciphertext cts that was encrypted under access structure S.
It outputs either m’ € msg or the distinguished symbol L.

A CP-ABE scheme should have the following correctness property: for all
(pk, sk) & Setup(1*), all attribute sets I, all decryption keys sk & KeyGen(pk, sk, I'),

all messages m, all access structures S, all ciphertexts ctg X Enc(pk,m,S), it
holds that m = Dec(pk, skp, cts) with overwhelming probability, if S accepts I

Definition 12. The model for proving the adaptively payload-hiding security of
CP-ABE under chosen plaintext attack is:

Setup The challenger runs the setup algorithm, (pk,sk) X Setup(1*), and gives
the public parameters pk to the adversary.

Phase 1 The adversary is allowed to issue a polynomial number of queries, I,
to the challenger or oracle KeyGen(pk,sk,-) for private keys, skp associated
with .
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Challenge The adversary submits two messages m'®, m) and an access struc-
ture, S := (M, p), provided that the S does not accept any I’ sent to the
challenger in Phase 1. The challenger flips a random coin b A {0,1}, and

computes ctéb) & Enc(pk, m(®),S). It gives ctéb) to the adversary.

Phase 2 The adversary is allowed to issue a polynomial number of queries, I,
to the challenger or oracle KeyGen(pk, sk, -) for private keys, skr associated
with I', provided that S does not accept I'.

Guess The adversary outputs a guess b’ of b.

The advantage of an adversary A in the above game is defined as Adv;P_ABE’PH()\) =
Pr[t) = b] — 1/2 for any security parameter \. A CP-FE scheme is adaptively
payload-hiding secure if all polynomial time adversaries have at most a negligible
advantage in the above game.

E.2 Dual Orthonormal Basis Generator

We describe random dual orthonormal basis generator ggb" below, which is used
as a subroutine in the proposed CP-ABE scheme, where g}be is defined in Section

5.2.
Gy (11,5, (n, 7)) :
* * * 86,7=1,...,55=1, R
(param(nﬂ")’ ID)O’ ]D)O’ Dlv {Di,j,U Dgyj,l}lil,.ln,nir ! 2) — gfbp(l)\v 5v (TL, T))a
By :=Dyg, By :=Dg, B} :=Dy, B, ;, = D;‘W, g,j,l = D;’fj’l for all 1,7,1,¢,

I /o ig=1,.5u=1,2
return (param(n,r)7BO7BO7B17{Biaj’L’Bz}j,l}l:l ..... n—+r )

E.3 Construction

Setup(1*, (n,r)): /% Ny:=5, N :=5(n+r) */

(paramy,, ). Bo, By, BT, {Bijo, By Ji2 2 ™) & G (12,5, (n, ),

Bo == (bo,1,bo2,boa), Bj = (b1, b54.b55),

@T = ( T,1a-~-7 >1k,n+rab’f,3(n+r)+1a-~-v >1k,4(n+7‘))7

return pk:= (1%, param, . Bo, {Bij, Bl 1} Zyaio1er)s sk = {Bf Jemo,1-
KeyGen(pk, sk, I":={z1,...,zp |z; €F,n' <n—1}):

¥ := (y1,...,Yn) such that Z?;Ol Yn 2l = Znm i H;il(z — ),

JF<—U]F;7 w00 < Fy, G <—U]F;+r7

ki =1, I-f, 0, o),

n+r 2n+2r n4+r n-—+r
————
ki=( wy f, 02nt2r. ot S ey



skp = (I ki, k7). return skp.
Enc(pk, m, S:= (M7 P)) : <a§7n0 <_U qu Cp = (Ca 57 07 Mo, O)]Boa

n—1

fori=1,....¢, if p(i) = v, U = (vig)jeg = (V) 7,05, 1), 0,40, & F,,
forj=1,...,5,
Cing =2 vi(0:By ;, +viBy ) + PO M; (EBY s + 0B j pit)s
Cioj:=0:;B11+viByji1, Cizj:=EB1j2+nBajo,
cr = g%m, return cts := (S, co, {CM’]-,C’w_,j,C’Lg’j}éill”f_'_’é,CT).
Dec(pk, skr == (I, kj, k), cts = (S, c0,{Ci1,j,Ci2j, Cizg}imy 5 c1)) -
If S := (M, p) accepts I', then compute I and {«; };es such that
1= > ier @M, where M; is the i-th row of M, and
IC{ie{l,....0} | pli)eI }.
foric I, if p(i)=wv;, U= (vig)iey = ("1 v, 1),
n+r

ci:=( Cii1, vi2Ci21,.,vinCioi, Mi1Cisa,..,M;Cisq,
Cins, vi2Ci25,.0inCias, Mi1Ciss,...M; v Cizs ),

n+r 2n+2r n+r n+r
—_—————A—

that is, ¢; == ( 0;0;, My, 020 o, n; M;, ontr )B1

c' =3 craici, K:=e(co ky)-e(c’ kT), return m':=cr/K.

[Correctness] If Ffatisﬁes S, K#: e(co, k) -e(c’, k) = g%gso+<gézie’ R
g% where sg:=1-f, s;:=M;- ffori=1,... ¢

E.4 Security

Theorem 4. The proposed multi-use CP-ABE scheme is adaptively payload-
hiding against chosen plaintext attacks under the DLIN assumption.

Theorem 4 is similarly proven to Theorem 2.

F Comparison with the Existing Multi-Use ABE

We compare our KP-ABE scheme with existing pairing-based schemes (Table 1)
and our CP-ABE scheme with existing pairing-based ones (Table 2). In particu-
lar, Table 2 shows that even considering selectively secure CP-ABE, our scheme
is the first to realize multi-use compact secret keys from a static assumption.

Attrapadung-Yamada [6] propose a generic conversion between KP-ABE and
CP-ABE, using the conversion, we have a dual ABE (e.g., CP-ABE) from some
primal ABE (e.g., KP-ABE) with some properties. However, in both KP- and
CP-ABE schemes, our schemes are the first to break one-use barrier, so, the
above conversion made a step orthogonal to our contribution.
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G Definitions for NI-VC

Definition 13 (Adaptive soundness). Let a publicly verifiable computation
scheme (Setup, KeyGen, ProbGen, Compute, Verify) be for a class of functions F,

and let A = (A1, Az, A3) be a stateful adversary. Consider the experiment
PubVC

Exp "~ (] below:
Expi®C[\] : (PK, MSK) < Setup(1*),
(F*,state;) <X A;(PK), EKp- < KeyGen(MSK, F*),
(z*, statesy) & As(stater, PK,EKp+),  (04+, VKy+) & ProbGen(PK, ™),

o i As(stateg, 0.+, VK+),  Verify(VKy, 05,:) R, ",
if y* £ 1L A y* #£ F*(2%), output 1,  otherwise, output 0.

The advantage of an adversary A is defined to be Pr[EXpE\“bVC [A] = 1]. A publicly
verifiable computation protocol is adaptively secure for a class of functions F if
all ppt adversaries A = (Ay, Aa, A3) achieve at most a negligible advantage in
the above security game.

Efficiency A VC protocol needs to compute two functions ProbGen and Verify
(asymptotically) faster than the function F itself. More precisely, Chen-Wee [11]
defines the following efficiency requirement.

Definition 14 (Efficiency). A publicly verifiable computation protocol is effi-
cient for a class of functions F that act on n = n(X) bits if there is a polynomial
p such that
— the running time of ProbGen and Verify together is at most p(n, \), the rest
of the algorithms are probabilistic polynomial-time, and
— there exists a function F' € F whose running time is w(p(n, \)).
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