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Abstract

Present constructions of indistinguishability obfuscation (iO) create obfuscated programs
where the size of the obfuscated program is at least a factor of a security parameter larger
than the size of the original program.

In this work, we construct the first iO scheme that achieves only a constant multiplica-
tive overhead (in fact, the constant is 2) in the size of the program. The security of our
construction requires the existence of sub-exponentially secure iO for circuits (that has any
polynomial multiplicative overhead in the circuit size) and one-way functions.

1 Introduction

The emergence of indistinguishability obfuscation [7] (iO) has revolutionized cryptography.
Since the work of Garg et al. [22] who presented its first candidate construction, iO has been
used to realize numerous advanced cryptographic tasks, such as functional encryption [22]
and deniable encryption [40], that previously seemed beyond our reach. Indeed, by now, iO
has been firmly established as a central hub for cryptography.

The existing mechanisms for general-purpose iO, however, are highly inefficient in terms
of the size of the obfuscated programs that are produced. In particular, all known mech-
anisms for iO yield obfuscated programs of size polynomial in the size of the underlying
program and the security parameter. In other words, they incur a multiplicative overhead
of at least the security parameter. More concretely, prior works on constructing iO can be
divided into the following two categories:

• Obfuscating Circuits: By now, there is a large sequence of works that provide candidate
constructions of iO for general circuits [22, 6, 16, 37, 25, 2, 44, 41, 5]. However, in all
of these works, the obfuscation of a circuit C is of the size poly(λ, |C|), where the size
of the obfuscation grows at least linearly with the security parameter times the size of
the circuit.

• Obfuscating Turing machines: Another body of work has focused on the problem of
obfuscating Turing machines directly [14, 1, 31, 9, 18, 33, 17, 20].1 Moving to the Turing
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1We remark that the works of [9, 18, 17, 20] also study the problem of directly obfuscating RAM programs.
In this work, we restrict our attention to the Turing Machine model.
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Machine model yields significant efficiency improvements over the circuit model since
the size of the Turing Machine may be much smaller than the corresponding circuit size.
Furthermore, working in the Turing Machine model yields the benefit of achieving per-
input running time, as opposed to incurring worst-case running time that is inherent
to the circuit model of computation.

Nevertheless, we note that in all of these works, the size of the obfuscation of a Turing
Machine M is at least poly(λ, |M |), where the size of the obfuscation grows at least
linearly with the security parameter times the size of the Turing Machine description.
In particular, [14, 1, 31] achieve these parameters by relying on (public-coin) differing
inputs obfuscation [7, 31]. In contrast, the works of [9, 18, 33] only make use of iO for
circuits; however, these works are restricted to Turing machines with bounded-length
inputs, and as such incur overhead of poly(λ, |M |, L), where L is the bound on the
input length.2

Thus, in summary, irrespective of the model of the computation, a multiplicative de-
pendence on the underlying program size and the security parameter is inherent to the
obfuscated program size in all the prior works.

Our Goal. In this work, we ask the question:

Is it possible to realize general-purpose iO with
constant multiplicative overhead in program size?

While this question is already meaningful in the circuit model of computation, we will focus
on the Turing Machine model. In particular, we ask the question whether it is possible
to obfuscate bounded-input Turing Machines such that the resulting machine is of size
c · |M |+ poly(λ, L), where c is a universal constant and L is the input length bound.

Achieving constant multiplicative overhead has been a major goal in many areas of com-
puter science, from constructing asymptotically good error correcting codes, to encryption
schemes where the size of the ciphertext is linear in the size of the plaintext. To the best of
our knowledge, however, this question in the context of program obfuscation has appeared
to be far out of reach in the context of basing security on iO itself.3

Bounded-input vs Unbounded-input Turing machines. We note that if we could
build iO for Turing machines with unbounded input length, then the question of constant
overhead in size is moot: indeed, one could simply obfuscate a universal Turing machine and
pass on the actual machine that one wishes to obfuscate as an (encrypted) input. The state
of the art in iO research, however, is still limited to Turing machines with bounded input
length. In this case, the above approach does not work since the size of the obfuscation
for bounded-input TMs grows polynomially in the input length bound which would yield a
polynomial overhead in the size of the Turing machine that we wish to obfuscate.

In a subsequent work, [34] provide a transformation from output compressing randomized
encodings for TMs to iO for unbounded-input TMs. However, no construction (with a
security reduction) is presently known for such randomized encodings. In particular, in the
same work, [34] show that such randomized encodings, in general, do not exist.

2We note that [9, 18], in fact, only work for memory-bounded Turing machines, and hence incur additional
overhead in the maximum memory size of the Turing machine. The work of [33] does not suffer from this
restriction.

3We observe that using (public-coin) differing input obfuscation, a variant of the construction given by [14,
1, 31] where FHE is combined with hybrid encryption, can yield constant multiplicative overhead. However,
the plausibility of differing input obfuscation has come under scrutiny [23], and unlike for indistinguishability
obfuscation [37, 25], there are no known security reductions supporting the existence of differing input obfuscation.
Nor are there constructions of differing input obfuscation from other natural primitives, analogous to recent
constructions of indistinguishability obfuscation from compact functional encryption [3, 10]. Thus, in this work,
we focus only on achieving iO with constant multiplicative overhead from the existence of iO (without constant
multiplicative overhead) itself.
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1.1 Our Results

iO with Constant Multiplicative Overhead. In this work, we resolve the aforemen-
tioned question in the affirmative. We provide a construction of iO for Turing machines with
bounded input length where the size of obfuscation of a machine M is only 2|M |+poly(λ, L),
where L is the input length bound. Our construction is based on sub-exponentially secure
iO (with polynomial blowup) for general circuits and one-way functions.

Theorem 1 (Informal). Assuming sub-exponentially secure iO for general circuits and sub-
exponentially secure one way functions, there exists an iO for Turing Machines with bounded
input length such that the size of the obfuscation of a Turing machine M is 2·|M |+poly(λ, L),
where L is an input length bound.

KLW Simplification. Our approach to establish Theorem 1, in fact, yields a conceptually
simpler variant of the recent work of Koppula, Lewko and Waters (KLW)[33] who gave the
first construction of iO for Turing machines with unbounded memory (but bounded-length
inputs).

In order to obtain their main result, [33] use an intermediate notion of machine-hiding
encodings which in turns uses several novel ideas, in particular, a special hash function
(referred to as positional accumulator) and a “reverse hybrid” proof strategy. They also
consider the weaker notion of message-hiding encodings which still requires the special hash
function but not the reverse hybrid strategy. However, this weaker primitive does not suffice
for their construction of iO for TMs.

At a high-level, the crucial difference between message-hiding encodings and machine-
hiding encodings is that the latter concerns with hiding the computation of a TM while the
former only deals with authentication property. Nevertheless, we show how to achieve iO
for TMs directly from message-hiding encodings. This yields a conceptually simpler variant
of their result with a simpler proof.

Applications. Our result and the techniques used therein can be applied in many applica-
tion scenarios to achieve commensurate efficiency gains. Below we highlight some of these
applications.

I. Functional Encryption with Constant Multiplicative Overhead. Plugging in our iO in the
functional encryption (FE) scheme of Waters [42],4 we obtain the first FE scheme for Turing
machines where the size of a function key for a turing machine M with input length bound
L is only c · |M |+ poly(λ, L) for some constant c. Further, the size of a ciphertext for any
message x is only c′ · |x|+ poly(λ) for some constant c′.5

II. Unbounded input FE. The size of the function keys can be further reduced by leveraging
the recent result of [4] who construct adaptively secure FE for TMs with unbounded length
inputs, based on iO and one-way functions. Instantiating their FE construction with our
iO and the above discussed FE scheme, we obtain the first construction of an (adaptively
secure) FE scheme where the size of a function key for an unbounded length input TM M
is only c · |M |+ poly(λ) for a small constant c.

III. Reusable Garbled Turing Machines with Constant Overhead. By applying the trans-
formation of De Caro et al. [19] on the above FE scheme, we obtain a simulation-secure
FE scheme with constant multiplicative overhead. Next, by applying the transformation of
Goldwasser et al. [27] on the simulation-secure FE scheme, we obtain the first construction
of reusable garbled Turing Machine scheme where both the machine encodings and input
encodings incur only constant multiplicative overhead in the size of the machine and input,
respectively. Specifically, the encoding size of a machine M is c · |M | + poly(λ), while the
encoding size of an input x is c1 · |x|+ c2|M(x)|+ poly(λ) for some constants c, c1, c2.

4[42] presents two FE schemes: the first one only handles post-challenge key queries, while the second one
allows for both pre-challenge and post-challenge key queries. We only consider the instantiation of the first
scheme with our iO.

5The construction of [42] already achieves the second property.
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Previously, Boneh et al. [11] constructed reusable garbled circuits with additive overhead
in either the circuit encoding size, or the input encoding size (but not both simultaneously).

IV. Publicly Verifiable Delegation of Computation with Low Communication. Plugging in our
(reusable) garbled turing machine in the delegation protocol of [18], we obtain a two-round
publicly verifiable delegation of computation protocol where the communication complexity
only incurs a constant multiplicative overhead in the size of the TM whose computation
is being delegated. Very briefly, to delegate the computation of a machine M on an input
x, the delegator samples a key pair (sk, vk) of a signature scheme and sends a garbling of
(M ′, x) to the worker, where machine M ′ computes y = M(x) and outputs (y, Sign(sk, y)).
The result is accepted by the delegator if the signature verifies w.r.t. vk.

From the efficiency of the (reusable) garbled turing machine, it follows that the commu-
nication complexity of the above protocol is only c1 · |M |+ c2 · |x|+ c3 · |M(x)|+ poly(λ) for
some small constants c1, c2, c3. This protocol, in fact, only requires a one-time garbled Tur-
ing machine, and by using a reusable garbled Turing machine and a one-time pre-processing
phase, the communication complexity can be amortized.

1.2 Technical Overview

We start by recalling the common template for constructing iO for Turing machines (TM)
used in the recent works of [9, 18, 33]. We note that all of these works are restricted to TMs
with inputs of a priori bounded length, and we will also consider this restricted setting. For
simplicity of discussion, however, we will ignore this restriction in this section.

Prior work: a two-step approach. [9, 18, 33] reduce the problem of obfuscating Turing
machines to the problem of obfuscating circuits. This is achieved in the following two steps:

1. Randomized encoding for TMs. First, using iO for circuits, they construct a random-
ized encoding (RE) for Turing machines.6

2. From RE to iO. In the second step, RE for TMs is combined with iO for circuits to
obtain iO for TMs.7 Very roughly, the obfuscation of a machine M corresponds to
obfuscation of a circuit CM (that has M hardwired). On input x, CM outputs a RE
of M(x). To recover M(x), the evaluator simply executes the decoding algorithm of
RE.

The above approach, however, is highly problematic in our setting. Recall that our goal is
to construct iO for TMs with constant multiplicative overhead in the size of the TM. Then,
zooming in on the second step, note that even if we start with an RE for TMs with constant
multiplicative overhead in size, in order to achieve our goal, we will need the iO for circuits
used in this step to already satisfy the constant multiplicative overhead property! An even
more serious issue is that we will also require the running time of the RE encode procedure
to have only a constant multiplicative overhead in its input size, namely, |M |+ |x|. Indeed,
ensuring that the running time has only a constant multiplicative overhead in the input size
is in general a hard problem for many cryptographic primitives (see [30] for discussion).

Towards that end, we devise a new approach to achieve our goal. We describe it in the
remainder of this section.

Oblivious Evaluation Encodings (OEE). The protagonist of our construction is a new
primitive that we refer to as oblivious evaluation encodings (OEE). We explain the notion
with a simple illustration: Alice wishes to delegate her computation to Bob. However, she is
undecided whether to delegate the computation of machine M0 on x or delegate computation
of M1 on x. One option for Alice would be that she delegates both the computations.
However in this scenario, Bob learns both M0(x) and M1(x). Oblivious evaluation encodings
offers a solution to this problem. It allows Alice to encode (M0,M1) together and send it
across to Bob. Later when Alice has made up her mind, she can send the encoding of (x, b),

6In [9, 18], the size of the randomized encoding of M(x) for a machine M and input x depends on the amount
of space required in the computation of M(x). The construction of [33] does not have this limitation.

7As noted in [33], it suffices to use the weaker notion of machine hiding encoding in this transformation.
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where Mb is the machine Alice wants Bob to execute. Bob with the help of the encodings
(x, b) and (M0,M1) can recover Mb(x).

The key algorithms in a OEE scheme are described below:

• Setup: Generate a secret key sk.

• Input encoding: On input x and a “choice” bit b, generate an encoding of (x, b).

• Turing machine encoding: On input two Turing machines M0 and M1, generate an
encoding of (M0,M1).

• Decode: On input encodings of (x, b) and (M0,M1), output Mb(x).

An OEE scheme with constant multiplicative overhead is one where the size of the
encoding is |M0|+ |M1|+ poly(λ).

An informed reader might find some similarities between OEE and oblivious transfer
[39, 21]. Indeed, the name for our primitive is inspired by oblivious transfer.

It turns out that for our main result, the above notion itself will not suffice. We aug-
ment it with helper key puncturing algorithms as described below. The exact roles of these
algorithms will become clear later when we describe our construction of iO for TMs with
constant multiplicative overhead using OEE.

• Input puncturing: On input secret key sk (produced by Setup) and input x, it outputs
a secret key skinpx . This punctured secret key allows for the computation of an encoding
of (x′, 0) and (x′, 1) for all inputs x′ 6= x.

• (Choice) bit puncturing: On input secret key sk and bit b, it outputs a secret key skbitb .
This punctured secret key allows to compute an encoding of (x, b) for all x. However,
an adversary should not be able to compute encoding of an input x with choice bit b.

Our main technical contribution is two fold: first, we give a construction of iO for TMs
with constant multiplicative overhead from iO for circuits (with polynomial overhead) and
OEE with constant multiplicative overhead. Our second contribution is the construction of
such an OEE.

iO for TMs from OEE. We give a high level description of the construction. An obfusca-
tion of a machine M consists of two values: (a) An OEE TM encoding of (M,M) generated
using an OEE secret key sk. (b) Indistinguishability obfuscation of a circuit Csk,K that on
input x outputs an OEE input encoding of (x, 0). The circuit Csk,K has hardwired in it the
OEE key sk and a PRF key K to generate the randomness required in the input encoding
procedure. Evaluation on input x proceeds by first computing the encoding of (x, 0) and
then decoding the encodings (x, 0) and (M,M), using the OEE decode algorithm, to obtain
M(x).

Note that unlike the approach of [9, 18, 33] where a fresh RE is computed on-the-fly each
time the user wishes to evaluate the obfuscated program on an input, here, the same TM
encoding is reused for each evaluation. In particular, only the input encoding is computed
on-the-fly. Because of this crucial difference, if we instantiate the above construction with an
OEE scheme with constant multiplicative overhead, then the resulting obfuscation scheme
also satisfies the same property even if the obfuscation of circuit Csk,K has polynomial
overhead in size.

The main remaining challenge is to argue security. Consider two machines M0 and
M1 that are functionally equivalent. We need to argue that obfuscations of M0 and M1

are computationally indistinguishable. We sketch the hybrids in the security proof below,
highlighting the use of the key puncturing properties of OEE.

We start off with the hybrid where an honestly generated obfuscation of M0 is given to
the adversary. Using a sequence of intermediate hybrids described below, we reach the final
hybrid which corresponds to the obfuscation of M1.

1. The secret key sk hardwired in Csk,K is replaced by the punctured key skbit0 . The
functionality of the circuit does not change and hence we can invoke the security of iO
for circuits here.
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2. We change the OEE TM encoding of (M0,M0) to an encoding of (M0,M1). The
indistinguishability of this step follows from the security property associated with the
(choice) bit encoding property.

3. We then define an intermediate sequence of 2n hybrids8: in the ith hybrid, the obfus-
cated circuit computes input encoding of (x, 1) for all x < i and (x, 0) for all x ≥ i.
To switch from ith hybrid to (i + 1)th hybrid, we crucially use the input puncturing
property of OEE.

4. Upon the completion of the 2n intermediate hybrids, we have the obfuscated circuit
producing only input encodings of (x, 1) for all inputs x. We then replace the key in
the obfuscated circuit with the punctured key skbit1 .

5. We can now safely switch the TM encoding of (M0,M1) to (M1,M1), again using the
security property of (choice) bit encoding. This corresponds to the obfuscation of M1.

The only remaining piece in the puzzle is the construction of OEE with constant multi-
plicative overhead.

Construction of OEE from ABE for TMs. The main tool in our construction is a public
key attribute based encryption (ABE) for TMs with constant multiplicative overhead9. ABE
for Turing machines is defined in the same manner as ABE for circuits (see e.g., [29]),
except that the attribute keys are now associated to TMs instead of circuits. The constant
multiplicative overhead property requires that the size of an ABE key of a TM M is c · |M |+
poly(λ), where c is a constant.

We start by giving a construction of OEE from ABE for TMs. Later we will sketch our
construction of ABE from TMs.

At a first glance, it is not apparent how the primitives OEE and ABE are related to
each other. ABE allows for conditional disclosure of messages from ciphertexts whereas
OEE serves the purpose of “delayed” delegation (the choice of which machine needs to be
delegated is delayed). The most basic difference is that in ABE, computation is not hidden
whereas in the case of OEE, the machine and hence the computation needs to be hidden.
But ABE offers a way of authenticating computation that is implicitly required in an OEE
scheme. Indeed we utilize this aspect of ABE to obtain a construction for OEE.

As a starting point, we encode the pair of machines (M0,M1) by first encrypting them
together. Since we perform computation on the machines, the encryption scheme we use
is fully homomorphic [24]. In the input encoding of (x, b), we encrypt the choice bit b
using the same public key. To evaluate (M0,M1) on (x, b), we execute the homomorphic
evaluation function. Notice, however, that the output is in encrypted form. We need to
provide additional capability to the evaluator to decrypt the output (and nothing else).
One way around is that the input encoding algorithm publishes a garbling of the FHE
decryption algorithm. But the input encoder must somehow convey the garbled circuit wire
keys, corresponding to the output of the FHE evaluation, to the evaluator.

This is where ABE for TMs comes to the rescue. Using ABE, we can ensure that the
evaluator gets only the wire keys corresponding to the output of the FHE evaluation. Once
this is achieved, the garbled circuit that is provided as part of the input encoding can then
be evaluated to obtain the decrypted output. We can then show that the resulting OEE
scheme has constant multiplicative overhead if the underlying ABE scheme also satisfies this
property.

This approach of using ABE, FHE and garbled circuits in the above manner is inspired by
the work of Goldwasser et al. [27]. We note, however, that their work used these techniques
in a different context (that of obtaining a succinct single-key FE). Furthermore, there are
differences in the way we use these tools. In particular, in our case FHE parameters are
crucially reused across different encodings, while in their case, a fresh instantiation of FHE
is necessarily used for every execution.

8Here 2n is the total number of inputs to the machines M0 and M1.
9We in fact construct an ABE scheme for TMs with additive overhead. For our main result, however, ABE

for TMs with constant multiplicative overhead suffices.
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While the above high level idea is promising, there are still some serious issues. The first
issue is that we need to homomorphically evaluate on Turing machines as against circuits.
This can be resolved by using the powers-of-two evaluation technique from the work of [28].
The second and the more important question is: what are the punctured keys? The input
puncturing key could simply be the ABE public key and the FHE public key-secret key pair.
The choice bit puncturing key, however, is more tricky. Note that setting the FHE secret
key to be the punctured key will ensure correctness but completely destroy the security. To
resolve this issue, we use the classic two-key technique [36]. We encrypt machines M0 and
M1 using two different FHE public keys. The choice bit puncturing key would just be one
of the FHE secret keys depending on which bit needs to be punctured. For more details, we
refer the reader to the technical sections.

ABE for TMs with Constant Multiplicative Overhead. We now shift gears and focus
on constructing ABE for TMs with constant multiplicative overhead. Our starting point is
the message hiding encoding scheme of Koppula et al. [33]. A message hiding scheme allows
for encoding a secret that is associated to a TM-input pair (M,x) such that the secret is
revealed only if M(x) = 1. While this notion is similar in spirit to ABE, the notion of ABE
is more general than message hiding schemes: (i) ABE has a decomposability property, i.e.,
it allows for encoding M (ABE key of M) and (x, secret) separately while they are encoded
together in a message hiding scheme and (ii) ABE offers reusability: the encoding of M
can be reused for different encodings (encryptions) of (x, secret). Despite these fundamental
differences, we show that the main tools of KLW can still be used to achieve our goal.

We describe the basic idea at a high level and leave the details to later sections. The basic
framework of KLW is as follows: the message hiding encoding comprises of a public storage
tree computed on the input x along with an obfuscated program that computes the next
message function of M . The root of the storage tree is authenticated using a special type of
signature scheme, called splittable signatures. The obfuscated program has hardwired into
it the secret that is revealed only when the accepted state is reached.

To obtain an ABE scheme, we first observe that the encoding of the KLW scheme already
has some form of decomposability – the storage tree along with the authentication on the
root can be thought of as being the input encoding and the obfuscated program can be
thought of as being the TM encoding. However we require that the input and the secret
(part of the obfuscated program) are encoded together but here, the machine and the secret
are coupled together. To solve this, we reverse the roles of the input and the TMs – we now
compute the storage tree on the TM and the obfuscated program contains a universal TM
with the input hardwired into it. This reversal will also buy us efficiency as will be evident
later. The problem of reusability is relatively harder to deal with: the main reason boils
down to the fact that the parameters of the splittable signatures scheme, as guaranteed by
the security of KLW, can be used only for one computation.

Signature Synchornization. We provide a signature synchronization mechanism that
solves the reusability problem. In this mechanism, there is a master signature instantiation
used in producing splittable signatures which forms a part of the ABE key. In every execution
of the encryption algorithm, a fresh instantiation of the splittable signatures is produced –
this ensures that any particular instantiation is not reused. The main issue now is to ensure
that the signatures of the master signature instantiation in the ABE key are synchronized
with the signatures that are part of the ciphertexts. To do this, we introduce a translation
box that transforms signatures w.r.t master instantiation into signatures in the ciphertexts.
We defer the actual implementation of this mechanism to the technical section.

Finally, we need to ensure that the ABE scheme satisfies the constant multiplicative
overhead property. Recall that the ABE key of a machine M comprises of a public storage
tree on M along with an authentication on the root of the tree. We observe that the storage
tree need not be part of the ABE key at all. Indeed, we will simply set our ABE key to be
the root of the storage tree and a signature on it! The evaluator can then reconstruct the
storage tree by itself and then utilize the key as before.
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2 Preliminaries

We assume familiarity of the reader with the standard cryptography notions. In the Ap-
pendix, we recall the notions of Turing machines (Section A.1), puncturable pseudorandom
functions (Section A.2), garbling schemes (Section A.3) and fully homomorphic encryption
schemes (Section A.4).

Indistinguishability Obfuscation. The notion of indistinguishability obfuscation (iO),
first conceived by Barak et al. [7], guarantees that the obfuscation of two circuits are com-
putationally indistinguishable as long as they both are equivalent circuits, i.e., the output
of both the circuits are the same on every input. Formally,

Definition 1 (Indistinguishability Obfuscator (iO) for Circuits). A uniform PPT algorithm
iO is called an indistinguishability obfuscator for a circuit family {Cλ}λ∈N, where Cλ consists
of circuits C of the form C : {0, 1}inp → {0, 1} with inp = inp(λ), if the following holds:

• Completeness: For every λ ∈ N, every C ∈ Cλ, every input x ∈ {0, 1}inp, we have
that

Pr [C ′(x) = C(x) : C ′ ← iO(λ,C)] = 1

• Indistinguishability: For any PPT distinguisher D, there exists a negligible function
negl(·) such that the following holds: for all sufficiently large λ ∈ N, for all pairs of
circuits C0, C1 ∈ Cλ such that C0(x) = C1(x) for all inputs x ∈ {0, 1}inp, we have:∣∣∣Pr [D(λ, iO(λ,C0)) = 1]− Pr[D(λ, iO(λ,C1)) = 1]

∣∣∣ ≤ negl(λ)

We can additionally enforce the size of the obfuscation of a circuit C ∈ Cλ to be c · |C| +
poly(inp, λ), where c is a constant. If an obfuscation scheme satisfies this property then we
term such an obfuscation scheme as iO with constant multiplicative overhead.

This is formally defined below.

Definition 2 (iO for Circuits with Constant Multiplicative Overhead). An indistinguisha-
bility obfuscation scheme, iO, defined for a circuit family {Cλ}λ∈N is said to be iO with
constant multiplicative overhead if there exists a universal constant c, such that for
every security parameter λ ∈ N, for every C ∈ Cλ with inp being the input length of C,

|iO(λ,C)| = c · |C|+ poly(inp, λ)

iO for Turing Machines. Analogous to the case of circuits, we can define indistinguisha-
bility obfuscation for Turing machines (TMs). We work in a weaker setting of iO for TMs,
as considered by the recent works [18, 9, 33], where the inputs to the TM are upper bounded
by a pre-determined value. This definition of iO for TMs is referred as succinct iO. The
security property of this notion states that the obfuscations of two machines M0 and M1

are computationally indistinguishable as long as M0(x) = M1(x) and the time taken by
both the machines on input x are the same, i.e., RunTime(M0, x) = RunTime(M1, x). The
succinctness property ensures that both the obfuscation and the evaluation algorithms are
independent of the worst case running times.

As in the case of circuits, here too we can enforce the size of obfuscation of a Turing
machine M to be k · |M | + poly(λ, L), where k is a constant and L is the upper bound on
the input lengths . A succinct obfuscation satisfying this property is termed as succinct iO
with constant multiplicative overhead. We formally define this below.

Definition 3 (Succinct iO with Constant Multiplicative Overhead). A uniform PPT al-
gorithm SuccIO is called an succinct indistinguishability obfuscator for a class of Turing
machines {Mλ}λ∈N with an input bound L, if the following holds:

• Completeness: For every λ ∈ N, every M ∈Mλ, every input x ∈ {0, 1}≤L, we have
that

Pr [M ′(x) = M(x) : M ′ ← SuccIO(λ,M,L)] = 1
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• Indistinguishability: For any PPT distinguisher D, there exists a negligible function
negl(·) such that the following holds: for all sufficiently large λ ∈ N, for all pairs of
Turing machines M0,M1 ∈Mλ such that M0(x) = M1(x) for all inputs x ∈ {0, 1}≤L,
we have:∣∣∣Pr [D(λ, SuccIO(λ,M0, L)) = 1]− Pr[D(λ, SuccIO(λ,M1, L)) = 1]

∣∣∣ ≤ negl(λ)

• Succinctness: For every λ ∈ N, every M ∈Mλ, we have the running time of SuccIO
on input (λ,M,L) to be poly(λ, |M |, L) and the evaluation time of M̃ on input x, where

|x| ≤ L, to be poly(|M |, L, t), where M̃ ← SuccIO(λ,M,L) and t = RunTime(M,x).

• Constant Multiplicative Overhead: There exists a universal constant c such that
for every λ ∈ N, for every M ∈Mλ, we have |SuccIO(λ,M,L)| = c · |M |+ poly(λ, L).

2.1 Building Blocks of KLW [33]

We recall some notions introduced in the work of Koppula, Lewko, Waters [33]. There are
three main building blocks: positional accumulators, splittable signatures and iterators. We
explain the high level intuition of these three primitives later in the technical sections. The
following definitions are stated verbatim from [33]. We do not state the security properties
of these three primitives since they are never explicitly used in our work. We reduce the
security of our construction in a black box manner to the security of the KLW scheme.

I. Positional Accumulators. A positional accumulator for message space Msgλ consists
of the following algorithms.

SetupAcc(1λ, T )→ (PPAcc, w0, store0) : The setup algorithm takes as input a security pa-
rameter λ in unary and an integer T in binary representing the maximum number of
values that can stored. It outputs public parameters PPAcc, an initial accumulator
value w0, and an initial storage value store0.

EnforceRead(1λ, T, (m1, ind1), . . . , (mk, indk), ind∗)→ (PPAcc, w0, store0) : The setup enforce
read algorithm takes as input a security parameter λ in unary, an integer T in binary
representing the maximum number of values that can be stored, and a sequence of
symbol, index pairs, where each index is between 0 and T − 1, and an additional ind∗

also between 0 and T − 1. It outputs public parameters PPAcc, an initial accumulator
value w0, and an initial storage value store0.

EnforceWrite(1λ, T, (m1, ind1), . . . , (mk, indk))→ (PPAcc, w0, store0) : The setup enforce write
algorithm takes as input a security parameter λ in unary, an integer T in binary repre-
senting the maximum number of values that can be stored, and a sequence of symbol,
index pairs, where each index is between 0 and T − 1. It outputs public parameters
PPAcc, an initial accumulator value w0, and an initial storage value store0.

PrepRead(PPAcc, storein, ind)→ (m,π) : The prep-read algorithm takes as input the public
parameters PPAcc, a storage value storein, and an index between 0 and T−1. It outputs
a symbol m (that can be ε) and a value π.

PrepWrite(PPAcc, storein, ind)→ aux : The prep-write algorithm takes as input the public
parameters PPAcc, a storage value storein, and an index between 0 and T − 1. It
outputs an auxiliary value aux.

VerifyRead(PPAcc, win,mread, ind, π)→ ({True, False}) : The verify-read algorithm takes
as input the public parameters PPAcc, an accumulator value win, a symbol, mread, an
index between 0 and T − 1, and a value π. It outputs True or False.

WriteStore(PPAcc, storein, ind,m)→ storeout : The write-store algorithm takes in the pub-
lic parameters, a storage value storein, an index between 0 and T − 1, and a symbol
m. It outputs a storage value storeout.

Update(PPAcc, win,mwrite, ind, aux)→ (wout or Reject) : The update algorithm takes in
the public parameters PPAcc, an accumulator value win, a symbol mwrite, and index
between 0 and T − 1, and an auxiliary value aux. It outputs an accumulator value
wout or Reject.
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Remark 1. In our construction, we will set T = 2λ and so T will not be an explicit input
to all the algorithms.

Correctness. We consider any sequence (m1, ind1), . . . , (mk, indk) of symbols m1, . . . ,mk

and indices ind1, . . . , indk each between 0 and T − 1. We fix any PPAcc, w0, store0 ←
SetupAcc(1λ, T ). For j from 1 to k, we define storej iteratively as storej := WriteStore(PPAcc,
storej−1, indj ,mj). We similarly define auxj and wj iteratively as auxj := PrepWrite(PPAcc,
storej−1, indj) and wj := Update(PPAcc, wj−1,mj , indj , auxj). Note that the algorithms
other than SetupAcc are deterministic, so these definitions fix precise values, not random
values (conditioned on the fixed starting values PPAcc, w0, store0).

Efficiency. The accumulator and π values should have size polynomial in the security
parameter λ and log(T ), so Verify-Read and Update will also run in time polynomial in
λ and log(T ). Storage values will have size polynomial in the number of values stored so
far.

II. Splittable Signatures. The syntax of the splittable signatures scheme is described
below.

Syntax. A splittable signature scheme SplScheme for message space Msg consists of the
following algorithms:

SetupSpl(1λ) The setup algorithm is a randomized algorithm that takes as input the security
parameter λ and outputs a signing key SK, a verification key VK and reject-verification
key VKrej.

SignSpl(SK,m) The signing algorithm is a deterministic algorithm that takes as input a
signing key SK and a message m ∈ Msg. It outputs a signature σ.

VerSpl(VK,m, σ) The verification algorithm is a deterministic algorithm that takes as input
a verification key VK, signature σ and a message m. It outputs either 0 or 1.

SplitSpl(SK,m∗) The splitting algorithm is randomized. It takes as input a secret key SK
and a message m∗ ∈ Msg. It outputs a signature σone = SignSpl(SK,m∗), a one-
message verification key VKone, an all-but-one signing key SKabo and an all-but-one
verification key VKabo.

SignSplAbo(SKabo,m) The all-but-one signing algorithm is deterministic. It takes as input
an all-but-one signing key SKabo and a message m, and outputs a signature σ.

Correctness. Let m∗ ∈ Msg be any message. Let (SK,VK,VKrej) ← SetupSpl(1λ) and
(σone,VKone,SKabo,VKabo) ← SplitSpl(SK,m∗). Then, we require the following correctness
properties:

1. For all m ∈ Msg, VerSpl(VK,m,SignSpl(SK,m)) = 1.

2. For all m ∈ Msg,m 6= m∗, SignSpl(SK,m) = SignSplAbo(SKabo,m).

3. For all σ, VerSpl(VKone,m
∗, σ) = VerSpl(VK,m∗, σ).

4. For all m 6= m∗ and σ, VerSpl(VK,m, σ) = VerSpl(VKabo,m, σ).

5. For all m 6= m∗ and σ, VerSpl(VKone,m, σ) = 0.

6. For all σ, VerSpl(VKabo,m
∗, σ) = 0.

7. For all σ and all m ∈ Msg, VerSpl(VKrej,m, σ) = 0.

We describe a security property of splittable signatures that will be explicitly used in this
work. This notion, termed as VKone indistinguishability, states that: given a signature on a
message m, an adversary should not be able to distinguish the verification key VK from the
split verification key VKone, that is computed as a result of applying SplitSpl on the signing
key and message m.

We recall the formal definition from KLW, below.
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Definition 4 (VKone indistinguishability). A splittable signature scheme SplScheme for a
message space Msg is said to be VKone indistinguishable if any PPT adversary A has negli-
gible advantage in the following security game:

Expt(1λ,SplScheme,A):

1. A sends a message m∗ ∈ Msg.
2. Challenger computes (SK,VK,VKrej)← SetupSpl(1λ). Next, it computes (σone, VKone,

SKabo, VKabo)← SplitSpl(SK,m∗). It chooses b← {0, 1}. If b = 0, it sends (σone,VKone)
to A. Else, it sends (σone,VK) to A.

3. A sends its guess b′.

A wins if b = b′.

We note that in the game above, A only receives the signature σone on m∗, on which VK
and VKone behave identically.

III. Iterators. The syntax of cryptographic iterators is described below.

Syntax. Let ` be any polynomial. An iterator PPItr with message space Msgλ = {0, 1}`(λ)
and state space SplSchemeλ consists of three algorithms - SetupItr, ItrEnforce and Iterate
defined below.

SetupItr(1λ, T ) The setup algorithm takes as input the security parameter λ (in unary),
and an integer bound T (in binary) on the number of iterations. It outputs public
parameters PPItr and an initial state v0 ∈ SplSchemeλ.

ItrEnforce(1λ, T, ~m = (m1, . . . ,mk)) The enforced setup algorithm takes as input the secu-
rity parameter λ (in unary), an integer bound T (in binary) and k messages (m1, . . . ,mk),
where each mi ∈ {0, 1}`(λ) and k is some polynomial in λ. It outputs public parameters
PPItr and a state v0 ∈ SplScheme.

Iterate(PPItr, vin,m) The iterate algorithm takes as input the public parameters PPItr, a state
vin, and a message m ∈ {0, 1}`(λ). It outputs a state vout ∈ SplSchemeλ.

Remark 2. As in the case of positional accumulators, we set T to be 2λ and not mention
T as an explicit input to the above algorithms.

For simplicity of notation, the dependence of ` on λ will not be explicitly mentioned. Also,
for any integer k ≤ T , we will use the notation Iteratek(PPItr, v0, (m1, . . . ,mk)) to denote
Iterate(PPItr, vk−1,mk), where vj = Iterate(PPItr, vj−1,mj) for all 1 ≤ j ≤ k − 1.

3 1-Key ABE for TMs with Additive Overhead

We adapt the definition of attribute based encryption to the case when the keys correspond
to Turing machines as against circuits. Further, there is no a priori bound placed on either
the lengths of the attributes or the messages. Recall that in a attribute based encryption
scheme, every ciphertext of a messagem is associated to an attribute x such that an evaluator
holding a key of a predicate P can recover m if and only if P (x) = 1.

The concept of ABE for TMs was first studied in the work by Goldwasser et al. [27].
Although unlike Goldwasser et al., we further restrict this to the setting where the adversary
only makes a single key query. We call this a single-key (or 1-key) ABE scheme for Turing
machines. A formal definition of this primitive is provided in Appendix B.

1-Key Attribute Based Encryption for TMs with Additive Overhead. We can
additionally enforce that the 1-key attribute based encryption for TMs scheme satisfies the
following condition: the size of the ABE key of M is essentially |M |, up to an additive factor
of polynomial in the security factor. We term such a notion to be a 1-key attribute based
encryption for TMs scheme with additive overhead. More formally,
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Definition 5. A 1-key attribute based encryption for TMs scheme, 1ABE, defined for a class
of Turing machines M, is said to have additive overhead if |1ABE.skM | = |M | + poly(λ),
where (1ABE.SK, 1ABE.PP)← 1ABE.Setup(1λ) and 1ABE.skM ← 1ABE.KeyGen(1ABE.SK,M ∈
M).

3.1 Construction

There are three main tools that are central to our construction of 1-key ABE for TMs with
additive overhead, namely accumulators, splittable signatures scheme and iterators. These
primitives are imported from the work of Koppula et al. We give a brief description of the
three primitives below. The formal treatment of these primitives are provided in Section 2.

1. Storage accumulators: This is a device used to store authenticated data. It is
associated with a mechanism to update the data along with its authentication. The
authenticated value is short and in particular independent of the size of the storage.
Using the authenticated value it can be checked whether a block of storage is “valid” –
validity here refers to the fact that the storage is computed as per the scheme. A key
property of this primitive is that the parameters can be programmed in such a way
that there does not exist any false proof to validate a maliciously computed piece of
storage.

We use the specific accumulator scheme, based on iO and one-way functions, designed
by KLW in our construction of 1-key ABE. The accumulators scheme that will be used
in the construction of 1-key ABE for TMs is denoted by Acc = (SetupAcc, EnforceRead,
EnforceWrite, PrepRead, PrepWrite, VerifyRead, WriteStore, Update). It is associated
with the message space Σtape with accumulated value of size `Acc bits.

2. Iterators: It allows for maintaining state information that is regularly updated based
on the sequence of messages it receives. The security property allows for programming
the parameters such that there exists a unique sequence of messages that leads to a
particular state value.

The iterators scheme is denoted by Itr =(SetupItr, ItrEnforce, Iterate). It is associated
with the message space {0, 1}2λ+`Acc with iterated value of size `Itr bits.

3. Splittable signatures: As the name suggests, it is a type of a signature scheme that
allows for splitting the signing key-verification key pair into two pairs of signature-
verification keys such that each pair acts upon a unique partition of the message
space. That is, a pair (SK,VK) can be split into two pairs (SKU ,VKU ) and (SKV ,VKV),
where (i) U and V form a partition of the message space, and (ii) (SKU ,VKU ) (resp.,
(SKV ,VKV)) is a signing key-verification key pair that is used to validate only messages
in U (resp., V). Koppula et al. consider the case when one of the partition contains
just one element. We work in the same setting as Koppula et al.

We denote the splittable signatures scheme by SplScheme = (SetupSpl,SignSpl,VerSpl,
SplitSpl,SignSplAbo). It is associated with the message space {0, 1}`Itr+`Acc+2λ.

In addition, we also use a puncturable PRF family denoted by F.

We now describe the scheme 1ABE = (1ABE.Setup, 1ABE.KeyGen, 1ABE.Enc, 1ABE.Dec) be-
low. We use the message hiding encodings construction of KLW as the basic template for our
scheme. Let the scheme 1ABE be associated to the class of Turing machines M. Without
loss of generality, the start state of every Turing machine inM is denoted by q0. We denote
the message space to be MSG.

1ABE.Setup(1λ): On input security parameter λ, it first executes the setup of splittable

signatures scheme, (SKtm,VKtm)← SetupSpl(1λ). It then executes the setup of the accumu-

lator setup to obtain the values, (PPAcc, w̃0, s̃tore0) ← SetupAcc(1λ). It then executes the
setup of the iterator scheme to obtain the public parameters, (PPItr, v0)← SetupItr(1λ).
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It finally outputs the following public key-secret key pair,(
1ABE.PP = (VKtm,PPAcc, w̃0, s̃tore0,PPItr, v0), 1ABE.SK = (1ABE.PP,SKtm)

)
1ABE.KeyGen(SKtm,M ∈M): On input the master secret key 1ABE.SK = (1ABE.PP,SKtm)
and M ∈M, it executes the following steps:

1. It parses the public key 1ABE.PP as (VKtm,PPAcc, w̃0, s̃tore0,PPItr, v0).

2. Initialization of the storage tree: Let `tm = |M | be the length of the machine

M . For 1 ≤ j ≤ `tm, it computes s̃torej = WriteStore(PPAcc, s̃torej−1, j − 1,Mj),

auxj = PrepWrite(PPAcc, s̃torej−1, j − 1), w̃j = Update(PPAcc, w̃j−1,Mj , j − 1, auxj) ,
where Mj denotes the jth bit of M . Finally, it sets the root w0 = w̃`tm .

3. Signing the accumulator value: It generates the signature on the message (v0, q0, w0, 0),
σ0 ← SignSpl(SKtm, µ = (v0, q0, w0, 0)), where q0 is the start state of M .

It outputs the ABE key 1ABE.skM = (M,w0, σtm, v0).

[Note: The key generation does not output the storage tree store0 but instead it just outputs

the initial store value s̃tore0. The evaluator in possession of M , s̃tore0 and PPAcc can re-
construct the tree store0.]

1ABE.Enc(1ABE.PP, x,msg): On input the public key 1ABE.PP = (VKtm,PPAcc, w̃0, s̃tore0,
PPItr, v0), attribute x ∈ {0, 1}∗ and message msg ∈ MSG, it executes the following steps:

1. It first samples a PRF key KA at random from the family F.

2. Obfuscating the next step function: Consider a universal Turing machine Ux(·)
that on input M executes M on x for at most 2λ steps and outputs M(x) if M
terminates, otherwise it outputs⊥. It computes the obfuscation of the program NxtMsg
in 1, namely N ← iO(NxtMsg{Ux(·),msg,PPAcc,PPItr,KA}). At its core, NxtMsg is
essentially the next message function of the Turing machine Ux(·) – it takes as input
a TM M and outputs M(x) if it halts within 2λ else it outputs ⊥. In addition, it
performs checks to validate whether the previous step was correctly computed. It also
generates authentication values for the current step.

3. It computes the obfuscation of the program S ← (SignProg{KA,VKtm}) where SignProg
is defined in Figure 2. The program SignProg takes as input a message-signature pair
and outputs a signature with respect to a different key on the same message.

It outputs the ciphertext, 1ABE.CT = (N,S).

1ABE.Dec(1ABE.skM , 1ABE.CT): On input the ABE key 1ABE.skM = (M,w0, σtm, v0) and

ciphertext 1ABE.CT = (N,S), it first executes the obfuscated program S
(
y = (v0, q0, w0, 0), σtm

)
to obtain σ0. It then executes the following steps.

1. Reconstructing the storage tree: Suppose `tm = |M | be the length of the TM
M . For 1 ≤ j ≤ `tm, it then repeatedly updates the storage tree by computing,
s̃torej = WriteStore(PPAcc, s̃torej−1, j − 1,Mj). Finally, it sets store0 = s̃tore`tm .

2. Executing N one step at a time: For i = 1 to 2λ,

(a) Compute the proof that validates the storage value storei−1 (storage value at (i−
1)th time step) at position posi−1. Let (symi−1, πi−1)← PrepRead(PPAcc, storei−1,
posi−1).

(b) Compute the auxiliary value, auxi−1 ← PrepWrite(PPAcc, store−1, posi−1).

(c) Run the obfuscated next message function. Compute out ← N(i, symi−1, posi−1,
sti−1, wi−1, vi−1, σi−1, πi−1, auxi−1). If out ∈ MSG ∪ {⊥}. output out.
Else parse out as (symw,i, posi, sti, wi, vi, σi).

(d) Compute the storage value, storei ←WriteStore(PPAcc, storei−1, posi−1, symw,i).
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Program NxtMsg

Constants: Turing machine Ux = 〈Q,Σtape, δ, q0, qacc, qrej〉, message msg, Public parameters for
accumulator PPAcc, Public parameters for Iterator PPItr, Puncturable PRF key KA ∈ K.

Input: Time t ∈ [T ], symbol symin ∈ Σtape, position posin ∈ [T ], state stin ∈ Q, accumulator value
win ∈ {0, 1}`Acc , Iterator value vin, signature σin, accumulator proof π, auxiliary value aux.

1. Verification of the accumulator proof:

• If VerifyRead(PPAcc, win, symin, posin, π) = 0 output ⊥.

2. Verification of signature on the input state, position, accumulator and iterator values:

• Let F (KA, t− 1) = rA. Compute (SKA,VKA,VKA,rej) = SetupSpl(1λ; rA).

• Let min = (vin, stin, win, posin). If VerSpl(VKA,min, σin) = 0 output ⊥.

3. Executing the transition function:

• Let (stout, symout, β) = δ(stin, symin) and posout = posin + β.

• If stout = qrej output ⊥.

• If stout = qacc output msg.

4. Updating the accumulator and the iterator values:

• Compute wout = Accumulate(PPAcc, win, symout, posin, aux). If wout = Reject, output ⊥.

• Compute vout = Iterate(PPItr, vin, (stin, win, posin)).

5. Generating the signature on the new state, position, accumulator and iterator values:

• Let F (KA, t) = r′A. Compute (SK′A,VK
′
A,VK

′
A,rej)← SetupSpl(1λ; r′A).

• Let mout = (vout, stout, wout, posout) and σout = SignSpl(SK′A,mout).

6. Output symout, posout, stout, wout, vout, σout.

Figure 1: Program NxtMsg

Program SignProg

Constants: PRF key KA and verification key VKtm.
Input: Message y and a signature σtm.

1. If VerSpl(VKtm, y, σtm) = 0 then output ⊥.

2. Execute the pseudorandom function on input 0 to obtain rA ← F (K, 0). Generate the setup of
splittable signatures scheme, (SK0,VK0)← SetupSpl(1λ; rA).

3. Compute the signature σ0 ← SignSpl(SK0, y).

4. Output σ0.

Figure 2: Program SignProg

This completes the description of the scheme. The correctness of the above scheme
follows along the same lines as the correctness of the message hiding scheme of Koppula et
al. For completeness, we give a proof sketch below.

Lemma 1. 1ABE satisfies the correctness property of an ABE scheme.

Proof sketch. Suppose 1ABE.CT is a ciphertext of message msg w.r.t attribute x and
1ABE.skM is an ABE key of machine M . We claim that in the ith iteration of the de-
cryption of 1ABE.CT using 1ABE.skM , the storage corresponds to the work tape of the
execution of M(x) at the ith time step, denoted by Wt=i

10. Once we show this, the lemma

10To be more precise, the storage in the KLW construction is a tree with the jth leaf containing the value of
the jth location in the work tape Wt=i.
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follows.
We prove this claim by induction on the total number of steps in the TM execution. The

base case corresponds to 0th time step when the iterations haven’t begun. At this point, the
storage corresponds to the description of the machine M which is exactly Wt=0 (work tape
at time step 0). In the induction hypothesis, we assume that at time step i− 1, the storage
contains the work tape Wt=i−1. We need to argue for the case when t = i. To take care
of this case, we just need to argue that the obfuscated next step function computes the ith

step of the execution of M(x) correctly. The correctness of obfuscated next step function in
turn follows from the correctness of iO and other underlying primitives.

Remark 3. In the description of Koppula et al., the accumulator and the iterator algorithms
also took the time bound T as input. Here, we set T = 2λ since we are only concerned with
Turing machines that run in time polynomial in λ.

Additive overhead. Suppose 1ABE.skM = (M,w0, s̃tore0, σtm, v0) be the ABE key gen-
erated as the output of 1ABE.KeyGen(1ABE.SK,M ∈ M). From the efficiency property of

accumulators, we have |w0| and |s̃tore0| to be just polynomials in the security parameter λ.
The signature σtm on the message w0 is also a polynomial in the security parameter. Lastly,
the iterator parameter v0 is also a polynomial in the security parameter. Thus, the size of
1ABE.skM is |M |+ poly(λ).

3.2 Security

To prove the security of our scheme we make use of a theorem proved in Koppula et al. Be-
fore we recall their theorem, we first define the following distribution that would be useful to
state the theorem. This distribution is identical to the output distribution of input encoding
of the message hiding encoding scheme by [33]. We denote the distribution by DM,Ux(·),msg,
where M is a Turing machine, x ∈ {0, 1}∗ and msg ∈ MSG. We define the sampler for the
distribution below. We use the same notation to denote both the distribution as well as its
sampler.

DM,x,msg(1
λ): It first computes (PPAcc, w̃0, s̃tore0) ← SetupAcc(1λ, T ). Let `tm = |M | be

the length of the Turing machine M . It computes s̃torej = WriteStore(PPAcc, s̃torej−1,

j− 1, Mj), auxj = PrepWrite(PPAcc, s̃torej−1, j− 1), w̃j = Update(PPAcc, w̃j−1, inpj , j− 1,

auxj) for 1 ≤ j ≤ `tm. Finally, it sets w0 = w̃`tm and s0 = s̃tore`tm . Next, it computes the
iterator parameters (PPItr, v0)← SetupItr(1λ, T ). It chooses a puncturable PRF key KA ←
F.Setup(1λ). It also computes an obfuscationN ← iO(NxtMsg{Ux(·),msg,PPAcc,PPItr,KA})
where NxtMsg is defined in Figure 1. Let rA = F (KA, 0), (SK0,VK0) = SetupSpl(1λ; rA)
and σ0 = SignSpl(SK0, (v0, q0, w0, 0)).

The distribution finally outputs the following:(
N,w0, v0, σ0, store0, init = (PPAcc, w̃0, s̃tore0,PPItr)

)
[Remark: The values w̃0, widetildestore0 and PPItr are not explicitly given out in the mes-
sage hiding encodings construction of KLW. But in their specific accumulator construction
(which even we are utilizing), w̃0 is set to be ⊥ and s̃tore0 is set to be ⊥. Although not
made explicit, even the iterator public parameters PPItr can be given out in their construc-
tion without any modification in the proof of security. ]

The following theorem was shown in [33].

Theorem 2 ([33],Theorem 6.1). For all TMs M ∈ M, x ∈ {0, 1}∗,msg0,msg1 ∈ MSG
such that M(x) = 0 and |msg0| = |msg1|, we have that the distributions DM,x,msg0 and
DM,x,msg1 are computationally indistinguishable assuming the security of indistinguishability
obfuscators iO, accumulators scheme Acc, iterators scheme Itr, splittable signatures scheme
SplScheme.
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We prove the following theorem in Appendix C.

Theorem 3. The scheme 1ABE for the class of Turing machines M, is weak-selectively
secure assuming the security of indistinguishability obfuscators iO, accumulators scheme
Acc, iterators scheme Itr and splittable signatures scheme SplScheme.

Since the accumulators, iterators and splittable signatures can be instantiated from iO and
one way functions, we have the following corollary.

Corollary 1. There exists a 1-key ABE for TMs scheme assuming the existence of indis-
tinguishability obfuscators for P/poly and one-way functions.

3.3 1-Key Two-Outcome ABE for TMs

Goldwasser et al. [27] proposed the notion of 1-key two-outcome ABE for circuits as a variant
of 1-key attribute based encryption for circuits where a pair of secret messages are encoded
as against just one secret message. Depending on the output of the predicate, exactly one
of the messages is revealed and the other message is hidden. That is, the encryption is
performed on a single attribute x and two messages (msg0,msg1). The decryption on input
an ABE key TwoMsgABE.skM and ciphertext TwoMsgABE.CT(x,msg0,msg1)

outputs msg0 if
M(x) = 0 and outputs msg1 if M(x) = 1. The security guarantee then says that if M(x) = 0
(resp., M(x) = 1) then the pair (TwoMsgABE.skM ,TwoMsgABE.CT(x,msg0,msg1)

), reveal no
information about msg1 (resp., msg0).

We adopt their definition but in the case when the predicates are implemented as Turing
machines instead of circuits. We give a formal definition and a simple construction of this
primitive in Appendix D.

4 Oblivious Evaluation Encodings

The main building block in our construction of iO with constant multiplicative overhead is
the notion of oblivious evaluation encodings (OEE). This is a strengthening of the notion of
machine hiding encodings (MHE) introduced in [33]. Recall that machine hiding encodings
are essentially randomized encodings (RE) for Turing machines, except the fact that in
MHE, the machine needs to be hidden whereas in RE, the input needs to be hidden. That
is, a MHE scheme has an encoding procedure that encodes the output of a Turing machine
M and an input x. The encoding procedure is much “simpler” than actually computing M
on x. There is a decode procedure that decodes the output M(x). The security guarantee
now states that the encoding does not reveal anything more than M(x). We make several
changes to this definition to obtain our definition of OEE.

Firstly, we encode the machine and the input separately. Secondly, the machine encod-
ing takes as input two Turing machines (M0,M1) and outputs a joint (or dual) encoding.
Correspondingly, the input encoding now also takes as input a bit b in addition to the actual
input x, where b indicates which of the two machines M0 or M1 needs to be used. In terms
of security, we require the following two properties to be satisfied:

• Any PPT adversary should not be able to distinguish encodings of (M0,M0) and
(M0,M1) (resp., (M1,M1) and (M0,M1)) even if the adversary is given a punctured
input encoding key that allows him to encode inputs of the form (x, 0) (resp., (x, 1)).

• Any PPT adversary is unable to distinguish the encodings of (x, 0) and (x, 1) even
given an oblivious evaluation encoding (M0,M1), where M0(x) = M1(x) and another
type of punctured input encoding key that allows him to generate input encodings of
(x′, 0) and (x′, 1) for all x′ 6= x.

4.1 Definition

Syntax. We describe the syntax of a oblivious evaluation encoding scheme OEE below. The
class of Turing machines associated with the scheme is M and the input space is {0, 1}∗.
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Although we consider inputs of arbitrary lengths, during the generation of the parameters
we place an upper bound on the running time of the machines which automatically puts an
upper bound on the length of the inputs.

• OEE.Setup(1λ): It takes as input a security parameter λ and outputs a secret key
OEE.sk.

• OEE.TMEncode(OEE.sk,M0,M1): It takes as input a secret key OEE.sk, a pair of

Turing machines M0,M1 ∈M and outputs a joint encoding ˜(M0,M1).

• OEE.InpEncode(OEE.sk, x, b): It takes as input a secret key OEE.sk, an input x ∈
{0, 1}∗, a choice bit b and outputs an input encoding (̃x, b).

• OEE.Decode( ˜(M0,M1), (̃x, b)): It takes as input a joint Turing machine encoding ˜(M0,M1),

an input encoding (̃x, b), and outputs a value z.

In addition to the above main algorithms, there are four helper algorithms.

• OEE.puncInp(OEE.sk, x): It takes as input a secret key OEE.sk, input x ∈ {0, 1}∗ and
outputs a punctured key OEE.skx.

• OEE.pIEncode(OEE.skx, x
′, b): It takes as input a punctured secret key OEE.skx, an

input x′ 6= x, a bit b and outputs an input encoding (̃x′, b).

• OEE.puncBit(OEE.sk, b): It takes as input a secret key OEE.sk, an input bit b and
outputs a key OEE.skb.

• OEE.pBEncode(OEE.skb, x): It takes as input a key OEE.skb, an input x and outputs

an input encoding (̃x, b).

Correctness. We say that an OEE scheme is correct if it satisfies the following three prop-
erties:

1. Correctness of Encode and Decode: For all M0,M1 ∈M, x ∈ {0, 1}∗ and b ∈ {0, 1},

OEE.Decode(OEE.TMEncode(OEE.sk,M0,M1),

OEE.InpEncode(OEE.sk, x, b)) = Mb(x),

where OEE.sk← OEE.Setup(1λ).

2. Correctness of Input Puncturing: For all M0,M1 ∈M, x, x′ ∈ {0, 1}∗ such that x′ 6= x
and b ∈ {0, 1},

OEE.Decode
(

˜(M0,M1), (̃x′, b)
)

= Mb(x
′),

where OEE.sk ← OEE.Setup
(
1λ
)
; ˜(M0,M1) ← OEE.TMEncode(OEE.sk,M0,M1) and

(̃x′, b)← OEE.pIEncode(OEE.puncInp(OEE.sk, x), x′, b).

3. Correctness of Bit Puncturing: For all M0,M1 ∈M, x ∈ {0, 1}∗ and b ∈ {0, 1},

OEE.Decode
(

˜(M0,M1), (̃x, b)
)

= Mb(x),

where OEE.sk ← OEE.Setup
(
1λ
)
, ˜(M0,M1) ← OEE.TMEncode(OEE.sk,M0,M1) and

(̃x, b)← OEE.pBEncode (OEE.puncBit (OEE.sk, b) , x).

Efficiency. We require that an OEE scheme satisfies the following efficiency conditions.
Informally, we require that the Turing machine encoding (resp., input encoding) algorithm
only has a logarithmic dependence on the time bound. Furthermore, the running time of
the decode algorithm should take time proportional to the computation time of the encoded
Turing machine on the encoded input.

1. The running time of OEE.TMEncode(OEE.sk,M0 ∈ M,M1 ∈ M) is a polynomial in
(λ, |M0|, |M1|), where OEE.sk← OEE.Setup(1λ).
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2. The running time of OEE.InpEncode(OEE.sk, x ∈ {0, 1}∗, b) is a polynomial in (λ, |x|),
where OEE.sk← OEE.Setup(1λ).

3. The running time of OEE.Decode( ˜(M0,M1), (̃x, b)) is a polynomial in (λ, |M0|, |M1|, |x|, t),
where OEE.sk← OEE.Setup(1λ), ˜(M0,M1)← OEE.TMEncode(OEE.sk,M0 ∈M,M1 ∈
M), (̃x, b) ← OEE.InpEncode(OEE.sk, x ∈ {0, 1}∗, b) and t is the running time of the
Turing machine Mb on x.

Indistinguishability of Encoding Bit. We describe security of encoding bit as a multi-stage
game between an adversary A and a challenger.

• Setup: A chooses two Turing machines M0,M1 ∈M and an input x such that |M0| =
|M1| and M0(x) = M1(x). A sends the tuple (M0,M1, x) to the challenger.

The challenger chooses a bit b ∈ {0, 1} and computes the following: (a) OEE.sk ←
OEE.Setup(1λ), (b) machine encoding ˜(M0,M1) ← OEE.TMEncode(OEE.sk,M0,M1),

(c) input encoding (̃x, b)← OEE.InpEncode(OEE.sk, x, b), and (d) punctured key OEE.skx ←
OEE.puncInp(OEE.sk, x). Finally, it sends the following tuple to A:(

˜(M0,M1), (̃x, b),OEE.skx
)
.

• Guess: A outputs a bit b′ ∈ {0, 1}.
The advantage of A in this game is defined as advPMHE = Pr[b′ = b]− 1

2 .

Definition 6 (Indistinguishability of encoding bit). An OEE scheme satisfies indistin-
guishability of encoding bit if there exists a neglible function negl(·) such that for every PPT
adversary A in the above security game, advPMHE = negl(λ).

Indistinguishability of Machine Encoding. We describe security of machine encoding as a
multi-stage game between an adversary A and a challenger.

• Setup: A chooses two Turing machines M0,M1 ∈ M and a bit c ∈ {0, 1} such that
|M0| = |M1|. A sends the tuple (M0,M1, c) to the challenger.

The challenger chooses a bit b ∈ {0, 1} and computes the following: (a) OEE.sk ←
OEE.Setup(1λ), (b) ˜(TM1,TM2)← OEE.TMEncode(OEE.sk,TM1,TM2), where TM1 =
M0,TM2 = M1⊕b if c = 0 and TM1 = M0⊕b,TM2 = M1 otherwise, and (c) OEE.skb ←
OEE.puncBit(OEE.sk, c). Finally, it sends the following tuple to A:(

˜(TM1,TM2),OEE.skc
)
.

• Guess: A outputs a bit b′ ∈ {0, 1}.
The advantage of A in this game is defined as adv = Pr[b′ = b]− 1

2 .

Definition 7 (Indistinguishability of machine encoding). An OEE scheme satisfies indis-
tinguishability of machine encoding if there exists a negligible function negl(·) such that for
every PPT adversary A in the above security game, advPMHE2

= negl(λ).

OEE with Constant Multiplicative Overhead. The efficiency property in OEE dictates that
the output length of the Turing machine encoding algorithm is a polynomial in the size of
the Turing machine. We can restrict this condition further by requiring that the Turing
machine encoding is only linear in the Turing machine size. We term the notion of OEE
that satisfies this property as OEE with constant multiplicative overhead.

Definition 8 (OEE with constant multiplicative overhead). An oblivious evaluation encod-
ing scheme for a class of Turing machinesM is said to have constant multiplicative overhead
if its Turing machine encoding algorithm OEE.TMEncode on input (OEE.sk,M0,M1) out-

puts an encoding ˜(M0,M1) such that | ˜(M0,M1)| = c · (|M0|+ |M1|) + poly(λ), where c is a
constant > 0.
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4.2 Construction

To construct a oblivious evaluation encoding scheme, we require the following ingredients.
We denote the class of Turing machines associated with oblivious evaluation encoding to be
M. We make the following notational simplifications: M consists of only single-bit output
Turing machines. In every machine M in M, there is a special location on the worktape in
which the output of the Turing machine (0 or 1) is written. Until the termination of the
Turing machine, this location contains the symbol ⊥. We use the notation M(x) to denote
the value contained in this special location.

1. A 1-key two-outcome ABE for TMs scheme defined for a class of Turing machinesM,
represented by (TwoMsgABE.Setup,TwoMsgABE.TMEncode,TwoMsgABE.InpEncode,
TwoMsgABE.Decode).

2. A fully homomorphic encryption scheme for circuits with additive overhead (Section 2),
represented by FHE = (FHE.Setup,FHE.Enc,FHE.Eval,FHE.Dec).

3. A garbling scheme GC, represented by GC = (Garble,EvalGC).

We denote the oblivious evaluation encoding scheme to be OEE = (OEE.Setup,OEE.InpEncode,
OEE.TMEncode,OEE.Decode). We denote the additional auxiliary algorithms to be (OEE.puncInp,
OEE.pIEncode,OEE.puncBit,OEE.pBEncode). The construction of OEE is presented below.

OEE.Setup(1λ): On input a security parameter λ in unary, it executes the following steps.

• It runs TwoMsgABE.Setup(1λ) to obtain the secret key-public parameters pair, (TwoMsgABE.SK,
TwoMsgABE.PP).

• It runs FHE.Setup(1λ) twice to obtain the FHE public key-secret key pairs (FHE.pk0,FHE.sk0)
and (FHE.pk1,FHE.sk1).

It finally outputs OEE.sk = (TwoMsgABE.SK,TwoMsgABE.PP,FHE.pk0,FHE.sk0,FHE.pk1,FHE.sk1).

OEE.TMEncode(OEE.sk,M0,M1): On input the secret key OEE.sk and a pair of Turing
machines M0,M1 ∈M, it does the following.

• It parses OEE.sk as (TwoMsgABE.SK,TwoMsgABE.PP,FHE.pk0,FHE.sk0,FHE.pk1,FHE.sk1).

• It generates the FHE ciphertexts of TMs M0 and M1 w.r.t public keys FHE.pk0 and
FHE.pk1. That is, it generates FHE.CTM0

← FHE.Enc(FHE.pk0,M0) and FHE.CTM1
←

FHE.Enc(FHE.pk1,M1).

• It computes the TM encoding of the machine N = N(
{FHE.pkb,FHE.CTMb

}b∈{0,1}
), Ñ ←

TwoMsgABE.KeyGen(TwoMsgABE.SK, N), where N is described in Figure 3.

It outputs the TM encoding, ˜(M0,M1) = Ñ .

N(
{FHE.pkb,FHE.CTMb

}b∈{0,1}
)(x, i, indt)

• Let U = Ux,indt(·) be a universal Turing machine that on input a Turing machine M , outputs M(x)
if the computation terminates within 2indt number of steps, otherwise it outputs ⊥ 11.

• Transform the universal Turing machine U into a circuit using Theorem 5 (Section 2) by computing
C ← TMtoCKT(U).

• Execute FHE.Eval(FHE.pk0, C,FHE.CTM0) to obtain z1. Similarly execute
FHE.Eval(FHE.pk1, C,FHE.CTM1) to obtain z2.

• Set z = (z1||z2). Output the ith bit of z, namely, zi.

Figure 3: Description of program N .

OEE.InpEncode(OEE.sk, x, b): On input the secret key OEE.sk, input x and bit b, it executes
the following steps.
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• It parses OEE.sk as (TwoMsgABE.SK,TwoMsgABE.PP,FHE.pk0,FHE.sk0,FHE.pk1,FHE.sk1).

• For indt ∈ [λ], it computes the garbled circuit along with the wire keys,
(
gcktindt , {w

indt
i,0 , w

indt
i,1 }i∈[q]

)
← Garble(1λ, G), where G = G(FHE.skb,b)(·) is a circuit that takes as input FHE cipher-
texts (FHE.CT0, FHE.CT1) and outputs ab, where ab ← FHE.Dec(FHE.skb,FHE.CTb).
Here, q denotes the total length of two FHE ciphertexts (FHE.CT0,FHE.CT1).

• For every i ∈ [q] and indt ∈ [λ], it computes an ABE ciphertext of message pair
(windt

i,0 , w
indt
i,1 ) associated to the attribute (x, i, indt); ỹi,indt ← TwoMsgABE.Enc

(
TwoMsgABE.SK,

(x, i, indt), w
indt
i,0 , w

indt
i,1

)
.

Finally, it outputs the encoding (̃x, b) =
(
TwoMsgABE.PP, {gckt}indt∈[λ], {ỹi,indt}i∈[q],indt∈[λ]

)
.

OEE.Decode( ˜(M0,M1), (̃x, b)): On input the TM encoding ˜(M0,M1) and input encoding
(x, b), it executes the following steps.

• It parses the TM encoding, ˜(M0,M1) = (Ñ) and the input encoding, (̃x, b) =
(
TwoMsgABE.PP,

{gckt}indt∈[λ], {ỹi,indt}i∈[q],indt∈[λ]
)
.

• For every indt ∈ [λ], it does the following:

1. For every i ∈ [q], it executes the decryption procedure of TwoMsgABE to obtain

the wire keys of the garbled circuit, w̃indt
i ← TwoMsgABE.Dec(Ñ , ỹi,indt).

2. It executes EvalGC(gcktindt , w̃
indt
1 , . . . , w̃indt

q ) to obtain outindt .

3. If outindt 6= ⊥ then output out = outindt . Otherwise, continue.

This completes the description of the main algorithms. We now describe the auxiliary algo-
rithms.

OEE.puncInp(OEE.sk, x): The secret key OEE.sk = (TwoMsgABE.SK,TwoMsgABE.PP,FHE.pk0,
FHE.sk0,FHE.pk1,FHE.sk1) punctured at point x is OEE.skx = (TwoMsgABE.PP,FHE.pk0,FHE.sk0,
FHE.pk1,FHE.sk1). That is, the punctured key is same as the original secret key except that
the master secret key of TwoMsgABE is removed. Output OEE.skx.

OEE.pIEncode(OEE.skx, x
′): On input the punctured key OEE.skx and input x′ 6= x, it exe-

cutes OEE.InpEncode(OEE.skx, x
′, b) to obtain the result (̃x′, b) which is set to be the output.

[Note: The algorithm OEE.InpEncode can directly be executed on the punctured key OEE.skx,
input x and bit b because the master secret key TwoMsgABE.SK is never used during its
execution.]

OEE.puncBit(OEE.sk, b): On input the secret key OEE.sk and bit b ∈ {0, 1}, it first inter-
prets OEE.sk as (TwoMsgABE.SK,TwoMsgABE.PP,FHE.pk0,FHE.sk0,FHE.pk1,FHE.sk1). It
then outputs the punctured key, OEE.skb = (TwoMsgABE.PP,FHE.pk0,FHE.pk1,FHE.skb).
Output the punctured key OEE.skb.

OEE.pBEncode(OEE.skb, x): On input the punctured key OEE.skb, it computes (̃x, b) ←
OEE.InpEncode(OEE.skb, x, b). The result (̃x, b) is then output.

[Note: The algorithm OEE.InpEncode can directly be executed on the punctured key OEE.skb,
input x and bit b because the FHE secret key associated to b, namely FHE.skb, is never used
during the execution.]

This completes the description of the auxiliary algorithms. We now, in detail, argue that the
above scheme satisfies all the properties of an oblivious evaluation encoding scheme. The
proof of security is dealt in Appendix D.3.
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Correctness. Consider a pair of Turing machines M0,M1 ∈ M, an input x ∈ {0, 1}∗
and a bit b. Let t∗ be the amount of time taken by Mb to execute on x. Suppose OEE.sk
is the output of OEE.Setup(1λ). Let Ñ = Ñ(

{FHE.pkb,FHE.CTMb
}b∈{0,1}

) be the output of

OEE.TMEncode(OEE.sk,M0,M1) and let
(
TwoMsgABE.PP, {gckt}indt∈[λ], {ỹi,indt}i∈[q],indt∈[λ]

)
be the output of OEE.InpEncode(OEE.sk, x, b).

• From the correctness of TwoMsgABE we have the output of TwoMsgABE.Dec(Ñ , ỹi,indt)
being the ith wire key of gcktindt which corresponds to the ith bit of (FHE.CT0,FHE.CT1).
Furthermore, from the correctness of FHE it follows that FHE.CT0 (resp., FHE.CT1) is
an encryption of M0(x) (resp., M1(x)), at 2indt number of steps, under FHE.pk0 (resp.,
FHE.pk1).

• From the correctness of garbling schemes, it follows that the output of garbled circuit
evaluation, EvalGC(gcktindt , w̃

indt
1 , . . . , w̃indt

q ) is Mb(x) when 2indt ≥ t∗ and is ⊥ oth-
erwise. Since M runs in polynomial time on all inputs, there will exist at least one
indt ∈ [λ] such that 2indt ≥ t∗.

Therefore, the output of OEE.Decode in this case would be Mb(x), as desired.

Efficiency. From the description of the scheme, it follows that OEE.Setup(1λ) runs in time
poly(λ), OEE.TMEncode(OEE.sk,M0,M1) runs in time poly(λ, |M0|, |M1|) and OEE.InpEncode(

OEE.sk, x, b) runs in time poly(λ, |x|). Furthermore, the running time of OEE.Decode( ˜(M0,M1),

(̃x, b)) is poly(λ, t∗), where t∗ is the time taken to execute Mb on x: the main bottleneck in
the running time of OEE.Decode is the number of the iterations it executes. Further, the ith

iteration takes time polynomial in λ and 2i. If indt ∈ [λ] is the smallest number such that
2indt ≥ t∗ then the number of the iterations in the execution of decode is indt. Thus, the
total running time of decode is (

∑indt
j=1 2j)poly(λ) = poly(t∗, λ).

Constant Multiplicative Overhead. Consider a pair of Turing machines (M0,M1) ∈
M2. The output of OEE.TMEncode(OEE.sk,M0,M1), where OEE.sk ← OEE.Setup(1λ),

is a two-outcome ABE key Ñ of the program N . From the additive overhead prop-
erty of TwoMsgABE, the size of Ñ is |N | + poly(λ). Also by inspection we have, |N | =
|M0| + |M1| + poly(λ) (which follows from the additive overhead property of FHE). Com-
bining these two facts we get the size of the output encoding of OEE.TMEncode to be
|M0|+ |M1|+ poly(λ).

5 Succinct iO with Constant Multiplicative Overhead

Let OEE = (OEE.Setup,OEE.InpEncode,OEE.TMEncode,OEE.Decode) be an OEE scheme
with additive overhead. Let iO be an indistinguishability obfuscator for general circuits.
Let PRF be a puncturable PRF family. Using these primitives, we now give a construction
of a succinct indistinguishability obfuscator with additive overhead. We denote it by SuccIO.

Construction. Let M denote the family of turing machines. On input the security pa-
rameter and a turing machine M ∈M, SuccIO(1λ,M) computes the following:

• OEE.sk← OEE.Setup(1λ, T ), where T is the bound on the running time of M .

• ˜(M,M)← OEE.TMEncode(OEE.sk,M,M).

• C̃ ← iO
(
C[K,OEE.sk]

)
, where K is a randomly chosen key for the puncturable PRF

family and C[K,OEE.sk] is the circuit described in Figure 4.

The output of the obfuscator is
(

˜(M,M), C̃
)

.

To evaluate the obfuscated machine on an input x, the evaluator first computes C̃(x) to

obtain (̃x, 0). Next, it computes y ← OEE.Decode
(

˜(M,M), (̃x, 0)
)

and outputs y.
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C[K,OEE.sk] (x)

1. Compute r ← PRFK(x‖0).

2. Compute (̃x, 0)← OEE.InpEncode(OEE.sk, x, 0) using randomness r.

3. Output (̃x, 0).

Figure 4: Circuit C[K,OEE.sk].

Theorem 4. If PRF is a sub-exponentially secure puncturable PRF, OEE is a sub-exponentially
secure OEE scheme with additive overhead and iO is a sub-exponentially secure indistin-
guishability obfuscator for general circuits, then SuccIO is a succinct indistinguishability
obfuscator with additive overhead.

Below we argue the efficiency of our construction. The proof of correctness and security
is deferred to Appendix E.

Efficiency. The size of the obfuscated program is | ˜(M,M)|+ |C̃|. From the efficiency of the

machine encoding algorithm of the OEE scheme, it follows that | ˜(M,M)| = c · |M |+poly(λ)

for some constant c. Further, from the efficiency of the iO scheme, it follows that |C̃| =
poly(λ, |C[K,OEE.sk]|). Further, from the efficiency of the input encoding algorithm of the
OEE scheme, it follows that |C[K,OEE.sk]| = poly(λ, L), where L is the bound on the input
length.

Putting it all together, we have that the size of the obfuscated program is c · |M | +
poly(λ, L), as required.
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A Preliminaries (cont’d)

A.1 Turing machines (TMs)

A Turing machine is a 7-tuple M = 〈Q,Σinp,Σtape,⊥, δ, q0, qacc, qrej〉 where Q and Σtape are
finite sets with the following properties:

1. Q is the set of finite states.

2. Σinp is the set of input symbols.

3. Σtape is the set of tape symbols.

4. ⊥ denotes the blank symbol.

5. δ : Q× Σtape → Q× Σtape × {+1,−1} is the transition function.

6. q0 ∈ Q is the start state.

7. qacc ∈ Q is the accept state.

8. qrej ∈ Q is the reject state, where qacc 6= qrej.

Turing machines to circuits. A Turing machine running in time at most T (n) on
inputs of size n, can be transformed into a circuit of input length n and of size O

(
(T (n))2

)
.

This theorem proved by Pippenger and Fischer [38] is stated below.

Theorem 5. Any Turing machine M running in time at most T (n) for all inputs of size n,
can be transformed into a circuit CM : {0, 1}n → {0, 1} such that (1) CM (x) = M(x) for all
x ∈ {0, 1}n, and (2) the size of CM is |CM | = O

(
(T (n))2

)
. We denote this transformation

procedure as TMtoCKT.
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We use the notation RunTime to denote the running time of a TM on a specific input.
More formally, RunTime(M,x) outputs the time taken by M to run on x.

In this work, we only consider TMs which run in polynomial time on all its inputs, i.e.,
there exists a polynomial p such that the running time is at most p(n) for every input of
length n. We note that our schemes can be generalized in a natural way to the Turing
machines for which this restriction does not apply.

A.2 Puncturable Pseudorandom Functions

A pseudorandom function family F consisting of functions of the form PRFK(·), that is
defined over input space {0, 1}η(λ), output space {0, 1}χ(λ) and key K in the key space K, is
said to be a secure puncturable PRF family if there exists a PPT algorithm PRFPunc that
satisfies the following properties:

• Functionality preserved under puncturing. PRFPunc takes as input a PRF key
K, sampled from K, and an input x ∈ {0, 1}η(λ) and outputs Kx such that for all
x′ 6= x, PRFKx

(x′) = PRFK(x′).

• Pseudorandom at punctured points. For every PPT adversary (A1,A2) such that

A1(1λ) outputs an input x ∈ {0, 1}η(λ), consider an experiment where K
$←− K and

Kx ← PRFPunc(K,x). Then for all sufficiently large λ ∈ N, for a negligible function
µ, ∣∣Pr[A2(Kx, x,PRFK(x)) = 1]− Pr[A2(Kx, x, Uχ(λ)) = 1]

∣∣ ≤ µ(λ)

where Uχ(λ) is a string drawn uniformly at random from {0, 1}χ(λ).
As observed by [13, 15, 32], the GGM construction [26] of PRFs from one-way functions
yields puncturable PRFs.

Theorem 6 ([26, 13, 15, 32]). If µ-secure one-way functions12 exist, then for all polynomials
η(λ) and χ(λ), there exists a µ-secure puncturable PRF family that maps η(λ) bits to χ(λ)
bits.

A.3 Garbling schemes

Yao in his seminal work [43, 35] proposed the notion of garbled circuits as a solution to
the problem of secure two party computation. Recently, Bellare et al. [8] formalized this by
calling them garbling schemes. We define garbling schemes next. The syntax of our scheme
is similar to the definition of Bellare et al.

A garbling scheme GC for a class of circuits C = {Cn}n∈N consists of two PPT algorithms
namely (Garble,EvalGC).

• Garbling algorithm, Garble(1λ, C ∈ C): On input a security parameter λ in unary
and a circuit C ∈ Cn of input length n, it outputs a garbled circuit along with its wire
keys, (gckt, {wi,0, wi,1}i∈[n]).

• Garbled circuit evaluation algorithm, EvalGC(gckt, {wi,xi
}i∈[n]): On input the

garbled circuit gckt along with the input wire keys {wi,xi
}i∈[n] corresponding to an

input x, it outputs out.

The correctness property of a garbling scheme dictates that for every C ∈ Cn, the output of
the evaluation procedure EvalGC(gckt, {wi,xi

}i∈[n]) is C(x), where (gckt, {wi,0, wi,1}i∈[n])←
Garble(1λ, C).

12We say that a one-way function family is µ-secure if the probability of inverting a one-way function, that is
sampled from the family, is at most µ(λ).

25



Security. A garbling scheme is said to be secure if the joint distribution of garbled circuit
along with the wire keys, corresponding to some input, reveals only the output of the circuit
and nothing else. This can be formalized in the form of a simulation-based notion as given
below.

Definition 9. A garbling scheme GC = (Garble,EvalGC) for a class of circuits C = {Cn}n∈N
is said to be secure if there exists a simulator SimGarble such that for any C ∈ Cn the
following two distributions are computationally distinguishable.

• {SimGarble(1λ, 1|C|, C(x))}
• {(gckt, {wi,xi

}i∈[n])}, where (gckt, {wi,0, wi,1}i∈[n])← Garble(1λ, C).

A.4 Fully Homomorphic Encryption for circuits

Another main tool that we use in one of our constructions is a fully homomorphic encryption
scheme (FHE). First proposed more than three decades ago, a construction of this primitive
was conceived in 2009 by Gentry [24].

A public key fully homomorphic encryption (FHE) scheme for a class of circuits C =
{Cλ}λ and message space MSG = {MSGλ}λ∈N consists of four PPT algorithms, namely,
(FHE.Setup,FHE.Enc,FHE.Eval,FHE.Dec). The syntax of the algorithms are described be-
low.

• Setup, FHE.Setup(1λ): On input a security parameter 1λ it outputs a public key-secret
key pair (FHE.pk,FHE.sk).

• Encryption, FHE.Enc(FHE.pk,m ∈ MSGλ): On input public key FHE.pk and message
m ∈ MSGλ, it outputs a ciphertext denoted by FHE.CT.

• Evaluation, FHE.Eval(FHE.pk, C ∈ C,FHE.CT): On input public key FHE.pk, a circuit

C ∈ Cλ and a FHE ciphertext FHE.CT, it outputs the evaluated ciphertext ˜FHE.CT.

• Decryption, FHE.Dec(FHE.sk,FHE.CT): On input the secret key FHE.sk and a ci-
phertext FHE.CT, it outputs the decrypted value out.

The correctness property guarantees the following, where (FHE.pk,FHE.sk)← FHE.Setup(1λ)
and FHE.CT← FHE.Enc(FHE.pk,m ∈ MSGλ):

• m← FHE.Dec(FHE.sk,FHE.CT)

• For any circuit C ∈ Cλ where the input length of C is |m|, we have C(m)← FHE.Dec(
FHE.sk,FHE.Eval(FHE.pk, C,FHE.CT)).

The security notion of an FHE scheme is identical to the definition of semantic security of
a public key encryption scheme.

An FHE scheme should also satisfy the so called compactness property. At a high level, the
compactness property ensures that the length of the ciphertext output by FHE.Eval(FHE.pk, C, ·)
is independent of the size of C.

FHE with Additive Overhead. A fully homomorphic encryption scheme is said to
satisfy additive overhead property if the size of ciphertext of a message m is |m|+ poly(λ).
An FHE scheme with additive overhead can achieved generically starting from any FHE
scheme. Suppose FHE = (FHE.Setup,FHE.Enc,FHE.Eval,FHE.Dec) be any FHE scheme.
Then we can define a FHE scheme FHEa.o. = (FHE.Setup,FHE.Enc∗,FHE.Eval,FHE.Dec)

as follows. The encryption algorithm FHE.Enc∗
(
FHE.pk,m

)
outputs (Sym.Enc(Sym.sk,

m),FHE.Enc(FHE.pk,Sym.sk)), where (i) FHE.pk is a public key produced by FHE.Setup,
(ii) Sym is a (symmetric) encryption algorithm with Sym.sk being the (symmetric) key. Ob-
serve that FHEa.o. satisfies additive overhead property if we use a symmetric encryption
scheme that satisfies additive overhead property.
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B Formal Definition of 1-Key ABE for TMs

A 1-key ABE for Turing machines scheme, defined for a class of Turing machinesM, consists
of four PPT algorithms, 1ABE = (1ABE.Setup, 1ABE.KeyGen, 1ABE.Enc, 1ABE.Dec). We
denote the associated message space to be MSG. The syntax of the algorithms is given
below.

1. Setup, 1ABE.Setup(1λ): On input a security parameter λ in unary, it outputs a public
key-secret key pair (1ABE.PP, 1ABE.SK).

2. Key Generation, 1ABE.KeyGen(1ABE.SK,M ∈M): On input a secret key 1ABE.SK
and a TM M ∈M, it outputs an ABE key 1ABE.skM .

3. Encryption, 1ABE.Enc(1ABE.PP, x,msg): On input the public parameters 1ABE.PP,
attribute x ∈ {0, 1}∗ and message msg ∈ MSG, it outputs the ciphertext 1ABE.CT(x,msg).

4. Decryption, 1ABE.Dec(1ABE.skM , 1ABE.CT(x,msg)): On input the ABE key 1ABE.skM
and encryption 1ABE.CT(x,msg), it outputs the decrypted result out.

Correctness. The correctness property dictates that the decryption of a ciphertext of
(x,msg) using an ABE key of M yields the message msg if M(x) = 1. In formal terms, the
output of the decryption procedure 1ABE.Dec(1ABE.skM , 1ABE.CT(x,msg)) is (always) msg

if M(x) = 1, where (1ABE.SK, 1ABE.PP) ← 1ABE.Setup(1λ), 1ABE.skM ← 1ABE.KeyGen(
1ABE.SK,M ∈M) and 1ABE.CT(x,msg) ← 1ABE.Enc(1ABE.PP, x,msg).

Security. The security framework we consider is identical to the indistinguishability
based security notion of ABE for circuits except that (i) the key queries correspond to
Turing machines instead of circuits and (ii) the adversary is only allowed to make a single
key query. Furthermore, we only consider the setting when the adversary submits both the
challenge message pair as well as the key query at the beginning of the game itself. We term
this weak selective security. We formally define this below.

The security is defined in terms of the following security experiment between a challenger
and a PPT adversary. We denote the challenger by Ch and the adversary by A.

Expt1ABEA (1λ, b ∈ {0, 1}):
1. A sends to Ch a tuple consisting of a Turing machine M , an attribute x and two

messages (msg0,msg1).

2. The challenger Ch replies to A with the public key 1ABE.PP, an ABE key 1ABE.skM ←
1ABE.KeyGen(1ABE.SK,M) for machineM and the challenge ciphertext 1ABE.CT(x,msgb)

← 1ABE.Enc(1ABE.PP, x,msgb), where (1ABE.SK, 1ABE.PP)← 1ABE,Setup(1λ).

3. The experiment terminates when the adversary outputs the bit b′.

We say that a 1-key ABE for TMs scheme is said to be weak-selectively secure if any PPT
adversary can guess the challenge bit only with negligible probability.

Definition 10. A 1-key attribute based encryption for TMs scheme is said to be weak-
selectively secure if |Pr[0 ← Expt1ABEA (1λ, 0)]− Pr[0 ← Expt1ABEA (1λ, 1)]| ≤ negl(λ), where
negl is a negligible function.

Remark 4. Henceforth, we will not explicitly use the term “weak-selective” when referring
to the security of ABE schemes.

C Proof of Security of 1-Key ABE for TMs

Consider the following sequence of hybrids. The first hybrid corresponds to the real experi-
ment (as described in the security game) when the challenger picks a bit b at random and
sets the challenge bit to be b. We then describe a series of intermediate hybrids such that
every two consecutive hybrids are computationally indistinguishable. In the final hybrid,
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the challenger picks a bit b at random but sets the challenge bit to be 0. At this point the
probability that the PPT adversary A can guess the bit b is 1

2 .
We denote advA,i to be the advantage of A in Hybi.

Hybrid Hyb1: The challenger receives from A, a Turing machine M , an attribute x and two
messages msg0,msg1 ∈ MSG. The challenger then responds with the public key 1ABE.PP,
an ABE key of M , namely 1ABE.skM and an encryption of msgb w.r.t attribute x, namely
1ABE.CT∗, where b is picked at random. All the parameters are generated honestly by the
challenger.

The output of the hybrid is the output of the adversary.

Hybrid Hyb2: The verification key VKtm is replaced by a verification key that only verifies
on the root of the accumulator storage, initialized with the TM M , and rejects signatures
on all other messages. The rest of the hybrid is the same as the previous hybrid.

The challenger upon receiving a TM M , attribute x and messages msg0,msg1 ∈ MSG,
does the following. It first picks a bit b at random. It generates the accumulator and the
iterator parameters PPAcc, w̃0, s̃tore0,PPItr, v0 as in the setup algorithm. It then initializes
the accumulator storage with the Turing machine M as follows: as before, let `tm = |M | be

the length of the Turing machine. It computes s̃torej = WriteStore(PPAcc, s̃torej−1, j − 1,

Mj), auxj = PrepWrite(PPAcc, s̃torej−1, j−1), w̃j = Update(PPAcc, w̃j−1, inpj , j−1, auxj)
for 1 ≤ j ≤ `tm. Finally, it sets w = w̃`tm .

It then executes the setup of splittable signatures scheme, (SKtm,VKtm)← SetupSpl(1λ).
It then executes the split algorithm of the signatures scheme to obtain, (σy

tm,VK
y
tm,SK\y,VK\y)

← SplitSpl(SKtm,y = (v0, q0,w, 0)). Of particular interest to us is σy
tm, which is the (de-

terministic) signature on y and VKy
tm, which is the verification key that only validates the

message-signature pair (y, σy
tm) and invalidates all other message-signature pairs. It finally

sets the public key as
(
1ABE.PP = (VKy

tm,PPAcc, w̃0, s̃tore0,PPItr, v0)
)
.

The challenger then sets 1ABE.skM = (M,w, σy
tm, v0). It generates the challenge cipher-

text by computing 1ABE.CT∗ ← 1ABE.Enc(1ABE.PP, x,msgb). It then sends (1ABE.PP, 1ABE.skM ,
1ABE.CT∗) to A.

Claim 1. Assuming that SplScheme satisfies VKone indistinguishability (Definition 4), for
any PPT adversary A we have |advA,1 − advA,2| ≤ negl(λ).

Proof. The only message-signature pair, with respect to the instantiation of the key pair
(SKtm,VKtm), provided to the adversaryA is (y, σy

tm). Even with this additional information,
the verification keys VKtm from VKy

tm, defined as in Hyb1 and Hyb2, are computationally
indistinguishable from the VKone property of SplScheme. The proof of the claim follows.

Hybrid Hyb3: The program SignProg, which is part of the encryption process, is now
modified with the output hardwired into it. The rest of the hybrid is as before.

The challenger upon receiving a TM M , attribute x and messages msg0,msg1 ∈ MSG,
does the following. It first picks a bit b at random. It sets msg∗ = msgb. It then computes

1ABE.PP = (VKy
tm,PPAcc, w̃0, s̃tore0,PPItr, v0) as in Hyb2. Further, it computes the ABE

key of M , namely 1ABE.skM = (M,w, σy
tm, v0), as in Hyb2.

It then samples a PRF key KA at random. It computes the obfuscation of the program
Ux(·), N ← iO(NxtMsg{Ux(·),msg∗,PPAcc,PPItr,KA}) where Ux(·) is defined as in 1ABE.Enc
and NxtMsg is defined in Figure 1. From here onwards, the challenger deviates from the hon-
est execution of the encryption algorithm. It generates the signing key-verification key pair
(SK0,VK0) ← SetupSpl(1λ; rA), where rA is the output of F (K, 0). It computes the signa-
ture σ0 ← SignSpl(SK0,y = (v0, q0,w, 0)). As before, it generates (σy

tm,VK
y
tm,SK\y,VK\y)

← SplitSpl(SKtm,y = (v0, q0,w, 0)). It then computes the obfuscation of the program
S∗ ← (HybSgn{VKy

tm, σ0}) where HybSgn is defined in Figure 5. It sets the ciphertext
1ABE.CT∗ = (N,S∗). The challenger then sends (1ABE.PP, 1ABE.skM , 1ABE.CT

∗) to A.

Claim 2. Assuming the security of the scheme iO, for any PPT adversary A we have that
|advA,2 − advA,3| ≤ negl(λ).

28



Proof. Suppose S ← iO(SignProg{KA,VK
y
tm}) as in Hyb2 and S∗ ← iO(HybSgn{VKw

tm, σ0})
as in Hyb3. To prove the claim, it suffices to show that it is computationally hard to
distinguish S and S∗. This further reduces, courtesy security of iO, to showing that
SignProg{KA,VKtm} and HybSgn{VKy

tm, σ0} are functionally equivalent. Consider the input
(y, σ) to both the programs. There are two cases to consider:

• Case (y, σ) 6= (y, σy
tm): The program SignProg{KA,VK

y
tm}(y, σ) outputs ⊥ because

(y, σ) is invalid with respect to VKy
tm. For the same reason, program HybSgn{VKw

tm, σ0}(y,
σ) also outputs ⊥.

• Case (y, σ) = (y, σy
tm) : The program SignProg{KA,VK

y
tm}(y, σ) outputs the signature

σ0 computed by first running rA ← F (K, 0), then (SK0,VK0) ← SetupSpl(1λ) and
finally σ0 ← SignSpl(SK0,y). The program HybSgn outputs the hardwired σ0, where
σ0 is pre-computed exactly as in SignProg.

Thus the programs SignProg and HybSgn are functionally equivalent. This proves the claim.

HybSgn{VKy
tm, σ0}

Constants: PRF key KA, verification key VKy
tm and signature σ0.

Input: Message y and a signature σtm.

1. If VerSpl(VKy
tm, y, σtm) = 0 then output ⊥. Otherwise output σ0.

Figure 5: Program HybSgn

Hybrid Hyb4: This is identical to Hyb3 except that the message msg∗ to be encrypted is now
set to msg0, where (msg0,msg1) is the challenge message pair submitted by the adversary.
Recall that in Hyb3, msg∗ was set to msgb, where b is picked at random.

Claim 3. From Theorem 2, we have |advA,3 − advA,4| ≤ negl(λ)

Proof. Assume that the claim is not true. We then construct a reduction B that uses the
adversary A to contradict Theorem 2.
A first sends the Turing machineM ∈M, input x and message pair (msg0,msg1) ∈ MSG2

to B. The reduction then obtains a sample from the distribution DM,x,msgb , where b is ei-
ther picked at random or set to 0. It then parses the sample as

(
N,w, v0, σ0, store0, init =

(PPAcc, w̃0, s̃tore0,PPItr)
)
. The reduction B then samples a signature key-verification key

pair by running the setup of SplScheme, (SKtm,VKtm)← SetupSpl(1λ). It then executes the
split algorithm, (σy

tm,VK
y
tm,SK\y,VK\y) ← SplitSpl(SKtm,y = (v0, q0,w, 0). Finally, B gen-

erates the obfuscation of the program HybSgn described in Figure 5, S∗ ← (HybSgn{VKw
tm, σ0}).

The reduction then prepares the ABE public key, attribute key and challenge ciphertext as
below:

• The public key is set to be 1ABE.PP = (VKy
tm,PPAcc, w̃0, s̃tore0,PPItr, v0).

• The attribute key of M to be 1ABE.skM = (M,w, s̃tore0, σ
y
tm, v0).

• The challenge ciphertext is set to be 1ABE.CT∗ = (N,S∗).

B then sends (1ABE.PP, 1ABE.skM , 1ABE.CT
∗) across to A. The output of B is set to be

the output of A.
If the bit b in DM,x,msgb is picked at random then we are in Hyb3 and if it is set to

be 0 then we are in Hyb4. From our hypothesis (that the claim is not true), this means
that the hybrids Hyb3 and Hyb4 are computationally indistinguishable. Thus we arrive at a
contradiction of Theorem 2. This completes the proof.

The probability that A outputs the bit b in Hyb4 is 1/2. From Claims 1, 2 and 3, we have
that the probability that A outputs bit b in Hyb1 is negligibly close to 1/2. This completes
the proof.
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D 1-Key Two-Outcome ABE for TMs

D.1 Definition

A 1-key two-outcome ABE for TMs scheme, defined for a class of Turing machines M and
message space MSG, consists of four PPT algorithms, (TwoMsgABE.Setup,TwoMsgABE.KeyGen,
TwoMsgABE.Enc,TwoMsgABE.Dec). The syntax of the algorithms is given below.

1. Setup, TwoMsgABE.Setup(1λ): On input a security parameter λ in unary, it outputs
a secret key TwoMsgABE.SK and public key TwoMsgABE.PP.

2. Key Generation, TwoMsgABE.KeyGen(TwoMsgABE.SK,M ∈M): On input a secret
key TwoMsgABE.SK and a TM M ∈M, it outputs an ABE key TwoMsgABE.skM .

3. Encryption, TwoMsgABE.Enc(TwoMsgABE.PP, x,msg0,msg1): On input the public
key TwoMsgABE.PP, attribute x ∈ {0, 1}∗ and a pair of messages (msg0 ∈ MSG,msg1 ∈
MSG), it outputs the ciphertext TwoMsgABE.CT(x,msg0,msg1)

.

4. Decryption, TwoMsgABE.Dec(TwoMsgABE.skM ,TwoMsgABE.CT(x,msg0,msg1)
): On in-

put the ABE key 1ABE.skM and ciphertext 1ABE.CT(x,msg0,msg1)
, it outputs the de-

crypted value out.

Correctness. The correctness property dictates that the decryption of a ciphertext of
(x,msg0,msg1), using the ABE key of M , yields the message msg0 if M(x) = 0, otherwise it
outputs msg1. Formally, TwoMsgABE.Dec(TwoMsgABE.skM ,TwoMsgABE.CT(x,msg0,msg1)

)
is (always) msg0 if M(x) = 0 or msg1 if M(x) = 1, where

• (TwoMsgABE.SK,TwoMsgABE.PP)← TwoMsgABE.Setup(1λ),

• TwoMsgABE.skM ← TwoMsgABE.KeyGen(TwoMsgABE.SK,M ∈M) and

• TwoMsgABE.CT(x,msg0,msg1)
← TwoMsgABE.Enc(TwoMsgABE.PP, x,msg0,msg1).

Security. As in the single-message case, we define an indistinguishability based security
notion of 1-key two-outcome ABE scheme. The security notion is formalized in the form of
the following security experiment between a challenger and a PPT adversary. We denote
the challenger by Ch and the adversary by A.

ExptTwoMsgABE
A (1λ, b ∈ {0, 1}):

1. A sends to Ch a key query M , and input comprising of the attribute x and two pairs

of messages
(

(msg0,0,msg0,1), (msg1,0,msg1,1)
)

.

2. Ch checks if (i) M(x) = 0 and msg0,0 = msg1,0 or if (ii) M(x) = 1 and msg0,1 = msg1,1.
If both the conditions are not satisfied then Ch aborts the experiment. Otherwise, it
replies to A with the public key TwoMsgABE.PP, two-outcome ABE predicate key
(TwoMsgABE.skM )← 1ABE.KeyGen(1λ,M) and the challenge ciphertext
TwoMsgABE.CT(x,msgb,0,msgb,1)

← TwoMsgABE.Enc(TwoMsgABE.PP, x,msgb,0,msgb,1).

3. The experiment terminates when the adversary outputs the bit b′.

We are now ready to define the security of 1-key two-outcome ABE for TMs scheme. We say
that a 1-key two-outcome ABE for TMs scheme is said to be secure if any PPT adversary
can guess the challenge bit only with negligible probability.

Definition 11. A 1-key two-outcome ABE for TMs scheme is said to be secure if |Pr[0←
ExptTwoMsgABE

A (1λ, 0)] − Pr[0 ← ExptTwoMsgABE
A (1λ, 1)]| ≤ negl(λ), where negl is a negligible

function.

1-Key Two-Outcome ABE for TMs with Constant Multiplicative Over-
head. We define the notion of 1-Key Two-Outcome ABE for TMs with constant multi-
plicative overhead. The size of the attribute key of M is c · |M |+ poly(λ) for a constant c.
The formal definition is provided below.
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Definition 12 (Constant Multiplicative Overhead). A 1-key two-outcome ABE for TMs
scheme, TwoMsgABE, defined for a class of Turing machines M, is said to have con-
stant multiplicative overhead if |TwoMsgABE.skM | = c · |M | + poly(λ), for a constant c,
where (TwoMsgABE.SK,TwoMsgABE.PP) ← TwoMsgABE.Setup(1λ) and TwoMsgABE.skM
← TwoMsgABE.KeyGen(TwoMsgABE.SK,M ∈M).

If the constant overhead in the TM size is 1 then we say that 1-key two-outcome ABE for
TMs satisfies additive overhead property.

Definition 13 (Additive Multiplicative Overhead). A 1-key two-outcome ABE for TMs
scheme, TwoMsgABE, defined for a class of Turing machines M, is said to have additive
multiplicative overhead if |TwoMsgABE.skM | = ·|M | + poly(λ), where (TwoMsgABE.SK,
TwoMsgABE.PP)← TwoMsgABE.Setup(1λ) and TwoMsgABE.skM ← TwoMsgABE.KeyGen(
TwoMsgABE.SK,M ∈M).

D.2 Construction

We realize this primitive along the same lines as described by Goldwasser et al. [27]. The idea
is to have two instantiations of a ABE scheme. To encrypt an attribute x and two messages
(msg0,msg1), we encrypt (x,msg0) in one instantiation and (x,msg1) in the other. Even
given attribute keys of M with respect to both the instantiations and the two ciphertexts,
there will be exactly one of (msg0,msg1) that is hidden depending on the value of M(x).

We formally give the construction below. The only tool we use in our construction is 1-key
ABE for TMs with additive overhead, 1ABE = (1ABE.Setup, 1ABE.KeyGen, 1ABE.Enc, 1ABE.Dec).
We denote the associated class of TMs to beM and the associated message space to be MSG.

TwoMsgABE.Setup(1λ): On input a security parameter λ in unary, execute 1ABE.Setup

twice to obtain (1ABE.PP0, 1ABE.SK0) ← 1ABE.Setup(1λ) and (1ABE.PP1, 1ABE.SK1) ←
1ABE.Setup(1λ). Output

(
TwoMsgABE.PP = (1ABE.PP0, 1ABE.PP1),TwoMsgABE.SK =

(1ABE.SK0, 1ABE.SK1)
)
.

TwoMsgABE.KeyGen(TwoMsgABE.SK,M ∈M): On input a secret key TwoMsgABE.SK =
(1ABE.SK0, 1ABE.SK1) and a Turing machine M ∈ M, first compute two ABE keys:
1ABE.sk0M ← 1ABE.KeyGen(1ABE.SK0,M ∈M) and 1ABE.sk1M ← 1ABE.KeyGen(1ABE.SK1,
M), where M (complement of M) on input x outputs 1 −M(x) 13. Output the attribute
key, TwoMsgABE.skM = (1ABE.sk0M , 1ABE.sk

1
M ).

TwoMsgABE.Enc(TwoMsgABE.PP, x,msg0,msg1): On input a public key TwoMsgABE.PP =

(1ABE.PP0, 1ABE.PP1), attribute x ∈ {0, 1}∗ and messages (msg0,msg1) ∈ MSG2, compute
two ciphertexts: 1ABE.CT0 ← 1ABE.Enc(1ABE.PP, x,msg0) and 1ABE.CT1 ← 1ABE.Enc
(1ABE.PP, x,msg1). Output the ciphertext, TwoMsgABE.CT = (1ABE.CT0, 1ABE.CT1).

TwoMsgABE.Dec(TwoMsgABE.skM ,TwoMsgABE.CT): On input an attribute key TwoMsgABE.skM
= (TwoMsgABE.sk0M ,TwoMsgABE.sk1M ) and TwoMsgABE.CT = (1ABE.CT0, 1ABE.CT1),
first compute out0 ← 1ABE.Dec(1ABE.sk0M , 1ABE.CT0) and then compute out1 ← 1ABE.Dec
(1ABE.sk1M , 1ABE.CT1). Let outb, for some b ∈ {0, 1}, be such that outb 6= ⊥. Output
out = outb.

The correctness of the above scheme follows directly from the correctness of the 1-key ABE
scheme 1ABE.

Size overhead. Suppose TwoMsgABE.skM = (1ABE.sk0M , 1ABE.sk
1
M ) is the output of

TwoMsgABE.KeyGen(TwoMsgABE.SK,M ∈ M). We have the size of TwoMsgABE.skM to
be,

|TwoMsgABE.skM | = |1ABE.sk0M |+ |1ABE.sk1M | = 2 · |M |+ poly(λ)

13Here we are only considering Turing machines with boolean output.
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This shows that TwoMsgABE satisfies the constant multiplicative overhead property.

A careful reader will notice that when we instantiate 1ABE using the scheme we constructed
in Section 3 then we indeed get a TwoMsgABE scheme with additive overhead. Notice that
the attribute key for a machine M in 1ABE is of the form (M, aux), where |aux| = poly(λ).
Now, using the above transformation we have a attribute key in TwoMsgABE to be of the
form (M, aux,M, aux′). This key can be compressed to be of the form (M, aux, aux′) since M
can be re-derived from M during the evaluation phase. We thus have the following lemma.

Lemma 2. TwoMsgABE satisfies additive overhead property.

Security. The security of the above scheme is essentially the same proof as in Goldwasser
et al. [27]. However, for completeness, we present the proof of security.

Theorem 7. Assuming the (weak-selective) security of 1ABE, the scheme TwoMsgABE is
(weak-selectively) secure.

Proof. Suppose TwoMsgABE is not secure. Denote by A the PPT adversary that breaks
the security of TwoMsgABE. We build a reduction B that breaks the security of 1ABE.

A sends a Turing machineM , attribute x, message pairs
(

(msg0,0,msg0,1), (msg1,0,msg1,1)
)

.

Denote the output of M(x) to be c. The reduction checks if msg0,c = msg1,c. If this
condition is not satisfied then B aborts. If B has not aborted, it sends the machine
M , attribute x and message pair (msg0,c,msg1,c) to the challenger of 1ABE. In return

B receives the public key 1ABE.PPc, attribute key 1ABE.skcM and challenge ciphertext
1ABE.CT∗c . As a next step, B first executes (1ABE.PPc, 1ABE.SKc) ← 1ABE.Setup(1λ),
then generates 1ABE.skcM ← 1ABE.KeyGen(1ABE.SK,M) and finally executes 1ABE.CT∗c ←
1ABE.Enc(1ABE.PPc,msg0,c).
B sets the two-outcome ABE public key TwoMsgABE.PP = (1ABE.PP0, 1ABE.PP1), at-
tribute key TwoMsgABE.skM = (1ABE.sk0M , 1ABE.sk

1
M ), ciphertext TwoMsgABE.CT∗ =

(1ABE.CT∗0, 1ABE.CT
∗
1). It then sends (TwoMsgABE.PP,TwoMsgABE.skM ,TwoMsgABE.CT∗)

to A. The output of B is the output of A.

It can be observed that the advantage of B in the security game of 1ABE is exactly the
same as the advantage of 1ABE in the security game of TwoMsgABE. From our hypothesis,
the advantage of 1ABE is non-negligible, contradicting the security of 1ABE.

D.3 Proof of Security of OEE

We first focus on proving that the oblivious evaluation encoding scheme satisfies the indis-
tinguishability of encoding bit property and later we deal with the indistinguishability of
machine encoding property.

Theorem 8. The scheme OEE satisfies indistinguishability of bit encoding property assum-
ing the weak selective security of TwoMsgABE and security of garbling scheme GC.

Proof. We first design a series of hybrids. The first hybrid corresponds to the real experiment
where the challenger picks a bit b at random. In the last hybrid Hyb3, the bit b is information
theoretically hidden from the adversary. The probability that the adversary guesses b is with
probability 1/2. Then by arguing that every two consecutive hybrids are computationally
indistinguishable, it follows that the probability that the adversary outputs b is negligibly
close to 1/2.

We denote the advantage of the adversary in Hybi to be advA,i.

Hybrid Hyb1: On receiving the TM pair (M0,M1) and input x, the challenger first picks a
bit b ∈ {0, 1} at random. It then runs the setup OEE.Setup(1λ) to obtain OEE.sk. It then

runs OEE.TMEncode(OEE.sk,M0,M1) to obtain ˜(M0,M1). It then executes OEE.InpEncode
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(OEE.sk, x, b) to obtain (̃x, b). The challenger finally runs OEE.puncInp(OEE.sk, x) to obtain
OEE.skx.

The challenger then sends {OEE.skx, (̃x, b), ˜(M0,M1)} to the adversary. The output of
the hybrid is the output of the adversary.

Hybrid Hyb2: Unlike the previous hybrid the challenger, for every input position of the
garbled circuit includes exactly one wire key in the input encoding.

The challenger on receiving the TM pair (M0,M1), input x and bit b, does the fol-
lowing. It picks the bit b at random. It executes OEE.Setup(1λ) to obtain the secret key
OEE.sk = (TwoMsgABE.SK,TwoMsgABE.PP,FHE.pk0,FHE.sk0,FHE.pk1,FHE.sk1). It then

executes OEE.TMEncode(OEE.sk,M0,M1) to obtain the encoding ˜(M0,M1) = Ñ , where
N is a program described in Figure 3. It generates the punctured secret key OEE.skx =
(TwoMsgABE.PP,FHE.pk0,FHE.sk0,FHE.pk1,FHE.sk1) as the output of OEE.puncInp(OEE.sk, x).

The input encoding (̃x, b) is computed by executing the steps below:

• For every indt ∈ [λ], it computes the garbled circuit with its wire keys,
(
gcktindt ,

{windt
i,0 , w

indt
i,1 }i∈[q]

)
← Garble(1λ, G), where G is a circuit that is as defined in the honest

input encoding procedure.

• For every i ∈ [q] and indt ∈ [λ], it sets the messageWi,indt = (windt
i,0 , 0

`w) ifN(x, i, indt) =

0, otherwise it sets Wi,indt = (0`w , windt
i,1 ), where `w is the length of the garbled circuit

wire keys. It then computes ỹi,indt ← TwoMsgABE.Enc
(
TwoMsgABE.PP, (x, i, indt),

Wi,indt

)
.

The challenger then sets the encoding to be (̃x, b) =
(
TwoMsgABE.PP, {gcktindt∈[λ]}indt∈[λ],

{ỹi,indt}i∈[q],indt∈[λ]
)
. The challenger then sends the tuple

( ˜(M0,M1), (̃x, b),OEE.skx
)

to the
adversary.

Lemma 3. Assuming the security of TwoMsgABE, we have |advA,1 − advA,2| ≤ negl(λ),
where negl is a negligible function.

Proof. To transition from Hyb1 to Hyb2, we change the two-outcome ABE ciphertexts one
at a time. Consider the following sequence of intermediate hybrids, Hyb1.j , for j ∈ [qλ]. The
first hybrid Hyb1.1 is identical to Hyb1 and the final intermediate hybrid Hyb1.qλ is identical
to Hyb2.

Intermediate hybrid, Hyb1.j , for 1 < j < qλ: This is the same as Hyb1.j−1 except that the
ABE ciphertext ỹi∗,ind∗t , where j = (i∗ − 1) · λ + ind∗t with 1 ≤ i∗ ≤ q and 1 ≤ ind∗t ≤ λ, is
composed as follows: the challenger computes ỹi,indt ← TwoMsgABE.Enc(TwoMsgABE.PP,

(x, i∗, ind∗t ),Wc), whereWc is defined below. As in the description of Hyb2, here (w
ind∗t
i∗,0 , w

ind∗t
i∗,1)

denotes the i∗th wire keys corresponding to the ind∗t
th

garbled circuit.

Wc =


(w

ind∗t
i∗,0 ,⊥) if N(x, i∗, ind∗t ) = 0,

(⊥, wind∗t
i∗,1) if N(x, i∗, ind∗t ) = 1

The rest of the hybrid is as in Hyb1.j−1.
We thus have the following claim.

Claim 4. Assuming the security of TwoMsgABE, we have |advA,1.j−1 − advA,1.j | ≤ negl(λ)
for every 1 < j ≤ qλ, where negl is a negligible function.

Hence,

|advA,1 − advA,2| =
qλ∑
j=2

|advA,1.j−1 − advA,1.j | ≤ negl(λ)
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Hybrid Hyb3: The challenger now simulates the garbled circuits instead of generating them
honestly. As in the previous hybrid, the challenger picks the bit b at random and then
generates the secret key OEE.sk = (TwoMsgABE.SK,TwoMsgABE.PP,FHE.pk0,FHE.sk0,
FHE.pk1,FHE.sk1), TM encoding (M0,M1) and punctured key OEE.skx.

For the input encoding procedure, we use a simulated garbling procedure denoted by
SimGC. It takes as input (1λ, |G|, out) and outputs a garbling of a circuit of size |G| along
with wire keys such that the evaluation of the garbled circuit yields the result out. The

input encoding (̃x, b) is computed by executing the steps below:

• Let the output of Mb on x be out and let t∗ be the amount of time taken for the execu-
tion. We note that t∗ would also be the time taken by Mb to execute on x. For every
indt ∈ [λ], it sets outindt = out if 2indt ≥ t∗, and otherwise outindt = ⊥. It then com-
putes the simulated garbled circuit along with the wire keys,

(
SimGCindt , {w

indt
i }i∈[q]

)
←

SimGarble(1λ, 1|G|, outindt), where G is a circuit that is as defined in the honest input
encoding procedure.

• It then computes the ABE ciphertexts ỹi,indt , for every i ∈ [q], indt ∈ [λ], exactly as in
the previous hybrid.

The challenger then sets the encoding to be (̃x, b) =
(
TwoMsgABE.PP, {SimGCindt}indt∈[λ],

{ỹi,indt}i∈[q],indt∈[λ]
)
. The challenger then sends the tuple

( ˜(M0,M1), (̃x, b),OEE.skx
)

to the
adversary.

Lemma 4. Assuming the security of the garbling scheme GC, we have |advA,2 − advA,3| ≤
negl(λ), where negl is a negligible function.

Proof. We consider a sequence of intermediate hybrids where we change one garbled circuit
at a time. Consider the following sequence of intermediate hybrids Hyb2.j , for j ∈ [λ]. The
first hybrid Hyb2.1 is identical to Hyb2 and the final intermediate hybrid Hyb2.λ is identical
to Hyb3. For j ∈ [λ] and j > 1 we define the following sequence of hybrids,

Intermediate hybrid, Hyb2.j : This hybrid is identical to Hyb2.j−1 except in the genera-

tion of jth garbled circuit in the encryption algorithm. Suppose t∗ be such that Mb(x)
takes t∗ number of steps. If j is such that 2j < t∗ then generate

(
SimGCj , {wji }i∈[q]

)
←

SimGarble(1λ, |G|,⊥). Otherwise, generate
(
SimGCj , {wji }i∈[q]

)
← SimGarble(1λ, |G|,Mb(x)).

The rest of the garbled circuits and the two-outcome ABE ciphertexts are generated as in
Hyb2.j−1.

We thus have the following claim.

Claim 5. Assuming the security of the garbling schemes GC, we have |advA,2.j−1−advA,2.j | ≤
negl(λ) for every 1 < j ≤ λ, where negl is a negligible function.

We thus have,

|advA,2 − advA,3| =
λ∑
j=2

|advA,2.j−1 − advA,2.j | ≤ negl(λ)

The probability that A outputs b in Hyb3 is 1/2 since b is information theoretically
hidden. Further from Lemmas 3, 4, we have that |advA,1 − advA,3| ≤ negl(λ). Combining
these two facts we have, advA,1 ≤ negl(λ), as desired.

Theorem 9. The scheme OEE satisfies the indistinguishability of machine encoding property
assuming the security of FHE.

Proof. Let (M0,M1) ∈M2 be the number of time steps and b the bit sent by the adversary
to the challenger. And let OEE.skb = (TwoMsgABE.PP,FHE.pk0,FHE.pk1,FHE.skb) be the

punctured key and Ñ(FHE.CT∗TM0
,FHE.CT∗TM1

) be the TM encoding sent by the challenger to the
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adversary, where (i) FHE.CTTMb
← FHE.Enc(FHE.pkb,FHE.CTTMb

), and (ii) TMb is either
Mb or Mb. From the semantic security of FHE, the adversary cannot distinguish the case
when TMb = Mb from the case when TMb = Mb. This completes the proof.

E Proof of Security of Succinct iO

E.1 Correctness

To evaluate the obfuscated program
(

˜(M,M), C̃
)

on an input x, the evaluator first computes

C̃(x). From the correctness of iO, it follows that the output of C̃(x) = C[K,OEE.sk](x). From
the definition of C[K,OEE.sk](·), the correctness of the puncturable PRF and the correctness of

the OEE scheme, it follows that C̃(x) = (̃x, 0). In the second step, the evaluator computes

y ← OEE.Decode
(

˜(M,M), (̃x, 0)
)

. From the correctness of the OEE scheme, it follows that

y = M(x), as required.

E.2 Security

LetM0,M1 ∈M such that: (a)M0 andM1 are functionally equivalent, (b) |M0| = |M1|, and
(c) for every input x, running time of M0 is equal to the running time of M1. Let N = 2L be
the total number of inputs to M0 and M1. We will prove that SuccIO(M0) and SuccIO(M1)
are ε-indistinguishable, where ε = advPMHE2 +N · (advPRF (λ) + adviO (λ) + advPMHE1 (λ)),
ignoring constant multiplicative factors. Since punctured PRF can be based on one-way
functions and our construction of OEE is based on one-way functions and iO for circuits,
we get ε = N · poly (advOWF (λ) + adviO (λ)). When advOWF (λ) and adviO (λ) are sub-
exponentially small, then we obtain ε = negl(λ).

We prove the security of the construction by a hybrid argument. We will consider a
sequence of five main hybrids H0, . . . ,H5 such that H0 (resp., H5) denotes the real world

experiment where the adversary is given the obfuscated program
(

˜(M0,M0), C̃
)

(resp.,(
˜(M1,M1), C̃

)
). Next, we describe the hybrids.

Hybrid H0: Real world experiment where machine M0 is obfuscated. The adversary is

given the obfuscated program
(

˜(M0,M0), C̃
)

.

Hybrid H1: Same as H0, except that C̃ is now computed as C̃ ← iO
(
C1

[K,OEE.sk0]

)
, where

OEE.sk0 ← OEE.puncBit(OEE.sk, 0) and C1
[K,OEE.sk0]

is the circuit described in Figure 6.

C1
[K,OEE.sk0]

(x)

1. Compute r ← PRFK(x‖0).

2. Compute (̃x, 0)← OEE.pBEncode(OEE.sk0, x) using randomness r.

3. Output (̃x, 0).

Figure 6: Circuit C1
[K,OEE.sk0]

.

Hybrid H2: Same as H1, except that we replace the machine encoding ˜(M0,M0) with

˜(M0,M1).

Hybrid H3: Same as H2, except that C̃ is now computed as C̃ ← iO
(
C3

[K,OEE.sk1]

)
, where

OEE.sk1 ← OEE.puncBit(OEE.sk, 1) and C3
[K,OEE.sk1]

is the circuit described in Figure 7.
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C3
[K,OEE.sk1]

(x)

1. Compute r ← PRFK(x‖1).

2. Compute (̃x, 1)← OEE.pBEncode(OEE.sk1, x) using randomness r.

3. Output (̃x, 1).

Figure 7: Circuit C3
[K,OEE.sk1]

.

Hybrid H4: Same as H3, except that we replace the machine encoding ˜(M0,M1) with

˜(M1,M1).

Hybrid H5: Same as H4, except that C̃ is now computed as C̃ ← iO
(
C[K,OEE.sk]

)
where

C[K,OEE.sk] is the circuit described in Figure 4. This is the real world experiment where
machine M1 is obfuscated.

This completes the description of the main hybrids.

Indistinguishability of H0 and H1. We show that the circuits C[K,OEE.sk] and C1
[K,OEE.sk0]

are functionally equivalent. The indistinguishability of H0 and H1 then follows from the
security of the indistinguishability obfuscator iO.

Circuit C[K,OEE.sk] on input x computes OEE.InpEncode(OEE.sk, x, 0) using randomness
r ← PRFK(x‖0) while C1

[K,OEE.sk0]
computes OEE.pBEncode(OEE.sk0, x) using randomness

r. From the correctness of bit puncturing property of the OEE scheme, it follows that
OEE.InpEncode(OEE.sk, x, 0) = OEE.pBEncode(OEE.sk0, x). Thus, C[K,OEE.sk] and C1

[K,OEE.sk0]
are functionally equivalent.

Indistinguishability of H1 and H2. Note that in both H1 and H2, only the punctured
key OEE.sk0 is used. Then, the indistinguishability of H1 and H2 follows from the indistin-
guishability of machine encoding property of the OEE scheme.

ε′-Indistinguishability of H2 and H3. We will prove that the experiments H2 and H3

are ε′-indistinguishable, where ε′ = N · (advPRF (λ) + adviO (λ) + advPMHE1
(λ)), ignoring

constant multiplicative factors.
The proof of this case involves several intermediate hybrids. We describe it in Section

E.2.1.

Indistinguishability of H3 and H4. Note that in both H3 and H4, only the punctured
key OEE.sk1 is used. Then, the indistinguishability of H3 and H4 follows from the indistin-
guishability of machine encoding property of the OEE scheme.

Indistinguishability of H4 and H5. The proof of this case follows in the same manner
as the proof of indistinguishability of hybrids H0 and H1. We omit the details.

Completing the proof. Combining the above claims, it follows that experiments H0

andH5 are ε-indistinguishable, where ε = advPMHE2
+N ·(advPRF (λ) + adviO (λ) + advPMHE1

(λ)),
ignoring constant multiplicative factors.

E.2.1 ε′-Indistinguishability of H2 and H3

To argue ε′-indistinguishability ofH2 andH3, we will considerN internal hybridsH2:1, . . . ,H2:N .
Let x1, . . . , xN denote the N inputs to machines M0 and M1, sorted in lexicographic order.
For notational convenience, we think of H2 as H2:0. Below, we describe hybrid H2:i, where
1 ≤ i ≤ N .

Hybrid H2:i: Same as H2:i−1, except that C̃ is now computed as C̃ ← iO
(
C2:i

[K,OEE.sk]

)
,

where C2:i
[K,OEE.sk] is the circuit described in Figure 8.
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C2:i
[K,OEE.sk] (x)

1. If x ≤ xi, then b = 1, else b = 0.

2. Compute r ← PRFK(x‖b).

3. Compute (̃x, b)← OEE.InpEncode(OEE.sk, x, b) using randomness r.

4. Output (̃x, b).

Figure 8: Circuit C2:i
[K,OEE.sk].

For every 0 ≤ i ≤ N , we will argue the indistinguishability of H2:i and H2:i+1. (Recall
that we denote H2 as H2:0.) To facilitate this, we consider another sequence of intermediate
hybrids H2:i:1, . . . ,H2:i:4, where 0 ≤ i < N . We describe them below.

Hybrid H2:i:1: Same asH2:i, except that C̃ is now computed as C̃ ← iO

(
C2:i:1[

Kxi+1
,OEE.skxi+1

, ˜(xi+1,0)
]
)

,

where:

• Kxi+1 ← PRFPunc(K,xi+1).

• OEE.skxi+1
← OEE.puncInp(OEE.sk, xi+1).

• ˜(xi+1, 0)← OEE.InpEncode(OEE.sk, xi+1, 0) using randomness r ← PRF(K,xi+1‖0).

• Circuit C2:i:1[
Kxi+1

,OEE.skxi+1
, ˜(xi+1,0)

] contains the values Kxi+1
, OEE.skxi+1

and ˜(xi+1, 0)

hardwired, and is described in Figure 9.

C2:i:1[
Kxi+1

,OEE.skxi+1
, ˜(xi+1,0)

] (x)

1. If x = xi+1, output ˜(xi+1, 0).

2. If x ≤ xi, then b = 1, else b = 0.

3. Compute r ← PRFKxi+1
(x‖b).

4. Compute (̃x, b)← OEE.InpEncode(OEE.skxi+1 , x, b) using randomness r.

5. Output (̃x, b).

Figure 9: Circuit C2:i:1
[K,OEE.sk].

Hybrid H2:i:2: Same as H2:i:1, except that the hardwired value ˜(xi+1, 0)← OEE.InpEncode
(OEE.sk, x, 0) is now computed using true randomness (as opposed to PRF generated ran-
domness).

Hybrid H2:i:3: Same as H2:i:2, except that we now replace the hardwired value ˜(xi+1, 0)

with ˜(xi+1, 1), where ˜(xi+1, 1) ← OEE.InpEncode(OEE.sk, x, 1) is computed using true ran-
domness.

Hybrid H2:i:4: Same as H2:i:3, except that the hardwired value ˜(xi+1, 1)← OEE.InpEncode
(OEE.sk, x, 1) is now computed using randomness r ← PRFK(xi+1‖1).

This completes the description of the intermediate hybrids. For every 0 ≤ i < N , we
now make the following indistinguishability claims:

• H2:i ≈ H2:i:1.

• H2:i:1 ≈ H2:i:2.

• H2:i:2 ≈ H2:i:3.
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• H2:i:3 ≈ H2:i:4.

• H2:i:4 ≈ H2:i+1.

In addition to the above, we will also prove that H2:N ≈ H3. Finally, we will combine
all these claims to argue the indistinguishability of H2 and H3.

Indistinguishability of H2:i and H2:i:1. We show that the two circuits C2:i
[K,OEE.sk] and

C2:i:1[
Kxi+1

,OEE.skxi+1
, ˜(xi+1,0)

] are functionally equivalent. The indistinguishability of H2:i and

H2:i:1 then follows from the security of the indistinguishability obfuscator iO.
First observe that since the punctured PRF preserves functionality under puncturing

and the OEE scheme satisfies correctness of input puncturing property, it follows that the
behavior of circuits C2:i

[K,OEE.sk] and C2:i:1[
Kxi+1

,OEE.skxi+1
, ˜(xi+1,0)

] is identical on all inputs x 6=

xi+1. On input xi+1, circuit C2:i
[K,OEE.sk] outputs OEE.InpEncode(OEE.sk, xi+1, 0) that is

computed using randomness r ← PRFK(xi+1‖0), while circuit C2:i:1[
Kxi+1

,OEE.skxi+1
, ˜(xi+1,0)

]
outputs the hardwired value ˜(xi+1, 0). However, it follows from the description of H2:i:1

that ˜(xi+1, 0) = OEE.InpEncode(OEE.sk, xi+1, 0) (where randomness r as described above is
used). Then, combining the above, we have that C2:i

[K,OEE.sk] and C2:i:1[
Kxi+1

,OEE.skxi+1
, ˜(xi+1,0)

]
are functionally equivalent.

Indistinguishability of H2:i:1 and H2:i:2. This follows immediately from the security of
the punctured PRF family used in the construction.

Indistinguishability of H2:i:2 and H2:i:3. Note that in both experiments H2:i:2 and H2:i:3,
only the punctured key OEE.skxi+1

is used. Then, the indistinguishability of H2:i:2 and H2:i:3

follows from the indistinguishability of encoding bit property of the OEE scheme.

Indistinguishability of H2:i:3 and H2:i:4. This follows immediately from the security of
the punctured PRF family used in the construction.

Indistinguishability of H2:i:4 and H2:i+1. This follows in the same manner as the proof
of the indistinguishability of hybrids H2:i and H2:i:1. We omit the details.

Indistinguishability of H2:N and H3. Let C2:N
[K,OEE.sk] denote the circuit used in hybrid

H2:N . We will show that the circuits C2:N
[K,OEE.sk] and C3

[K,OEE.sk1]
are functionally equivalent.

The indistinguishability of H2:N and H3 then follows from the security of the indistinguisha-
bility obfuscator iO.

Circuit C2:N
[K,OEE.sk] on input x computes OEE.InpEncode(OEE.sk, x, 1) using randomness

r ← PRFK(x‖1) while C3
[K,OEE.sk1]

computes OEE.pBEncode(OEE.sk1, x) using randomness
r. From the correctness of bit puncturing property of the OEE scheme, we have that
OEE.InpEncode(OEE.sk, x, 1) = OEE.pBEncode(OEE.sk1, x). Thus, C2:N

[K,OEE.sk] and C3
[K,OEE.sk1]

are functionally equivalent.

Completing the proof of ε′-Indistinguishability of H2 and H3. Combining
the above claims, we can first establish that H2:i and H2:i+1 are ε′′-indistinguishable, where
ε′′ = advPRF (λ) + adviO (λ) + advPMHE1

(λ), ignoring constant multiplicative factors. This is
true for every i such that 0 ≤ i < N . Iterating over all values of i, we obtain that H2:0 and
H2:N are N · ε′′-indistinguishable. Then, since H2:0 is the same as H2, and H2:N and H3

are indistinguishable (as proven above), it follows that H2 and H3 are ε′-indistinguishable,
where ε′ = N · (advPRF (λ) + adviO (λ) + advPMHE1

(λ)), ignoring constant multiplicative
factors. This completes the proof.
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