
Parallel Implementation of
Number Theoretic Transform

Hwajeong Seo1, Zhe Liu2, Yasuyuki Nogami3,
Jongseok Choi1, Taehwan Park1, and Howon Kim1⋆

1 Pusan National University,
School of Computer Science and Engineering,

San-30, Jangjeon-Dong, Geumjeong-Gu, Busan 609–735, Republic of Korea
{hwajeong,jschoi85,pth5804,howonkim}@pusan.ac.kr

2 University of Luxembourg,
Laboratory of Algorithmics, Cryptology and Security (LACS),

6, rue R. Coudenhove-Kalergi, L–1359 Luxembourg-Kirchberg, Luxembourg
{zhe.liu}@uni.lu

3 Okayama University,
Graduate School of Natural Science and Technology,

3-1-1, Tsushima-naka, Kita, Okayama, 700-8530, Japan
{yasuyuki.nogami}@okayama-u.ac.jp

Abstract. Number Theoretic Transform (NTT) based polynomial mul-
tiplication is the most important operation for Lattice-based cryptog-
raphy. In this paper, we implement the parallel NTT computation over
ARM-NEON architecture. Our contributions include the following op-
timizations: (1) we vectorized the Iterative Number Theoretic Trans-
form, (2) we propose the 32-bit wise Shifting-Addition-Multiplication-
Subtraction-Subtraction (SAMS2) techniques for speeding up the mod-
ular coefficient multiplication, (3) we exploit the incomplete arithmetic
for representing the coefficient to ensure the constant time modular re-
duction. For medium-term security level, our optimized NTT implemen-
tation requires only 27, 160 clock cycles. Similarly for long-term security
level, it takes 62, 160 clock cycles. These results are faster than the state-
of-art sequential implementations by 31% and 34% respectively.

Keywords: Ring learning with errors (Ring-LWE), software implemen-
tation, public-key encryption, SIMD, Number Theoretic Transform (NTT),
ARM-NEON

1 Introduction

Today’s widely used public-key cryptosystems such as RSA and Elliptic Curve
Cryptography are mainly based on integer factorization and discrete logarithm
problems. However, these hard problems can be solved by using Shor’s algorithm
[15] with a quantum computer. Lattice-based cryptography is considered as a

⋆ Corresponding Author

2 Authors Suppressed Due to Excessive Length

promising candidate for post-quantum cryptosystems. Its security lies in the
worst-case computational assumptions in lattices that remain hard even for
quantum computers.

The introduction of learning with errors (LWE) problem [13] and its ring
variant (ring-LWE) [10] provides an efficient way to build lattice based public
key cryptosystems. The first practical evaluations of LWE and ring-LWE based
encryption schemes were presented by Göttert et al. in CHES’12 [7]. In the ex-
perimental results, the ring-LWE based encryption scheme is faster by at least a
factor of four and requires less memory in comparison to the encryption scheme
based on the standard LWE problem. The following hardware or software im-
plementations [11, 5, 3, 2, 12, 9] of ring-LWE based public-key encryption or dig-
ital signature schemes reduced clock cycles and memory requirements. Oder et
al. in [11] presented an efficient implementation of Bimodal Lattice Signature
Schemes (BLISS) on a 32-bit ARM Cortex-M4F microcontroller. The most op-
timal variant of their implementation cost 6M cycles for signing, 1M cycles for
verification and 368M cycles for key generation, respectively, at a medium-term
security level. In DATE’15, De Clercq et al. in [5] implemented ring-LWE en-
cryption scheme on the identical ARM processors, their implementation required
121K cycles per encryption and 43.3K cycles per decryption at medium-term
security level while 261K cycles per encryption and roughly 96.5K cycles per
decryption for long-term security level. The first time when a lattice-based cryp-
tographic scheme was implemented on an 8-bit processor belonged to Boorghany
et al. in [3, 2]. The authors evaluated four lattice-based authentication protocols
on both 8-bit AVR and 32-bit ARM processors. In particular, for 8-bit AVR
implementation, their implementation needed 754, 668 cycles and 2, 207, 787 cy-
cles for Fast Fourier Transform (FFT) transform at medium-term and long-
term security levels, respectively. For 32-bit ARM implementation, 109, 306 and
260, 521 cycles are required for medium and long-term security levels. Recently,
Pöppelmann et al. [12] studied and compared implementations of Ring-LWE
encryption and the Bimodal Lattice Signature Scheme (BLISS) on an 8-bit At-
mel ATxmega128 microcontroller. For medium-term security level, they achieved
1, 314, 977 cycles and 381, 254 for ring-LWE encryption and decryption opera-
tions, respectively. In CHES’15, Zhe et al. presents the high speed and memory
optimized ring- LWE results [9]. The work introduces MOV-and-ADD technique
for coefficient multiplication and Shifting-Addition-Multiplication-Subtraction-
Subtraction (SMAS2) approach for reduction operation. Furthermore, they ex-
ploit the incomplete arithmetic [16] for representing the coefficients and perform
the reduction operation in a lazy fashion. For medium-term security level, the
former one only requires 590K, 666K and 299K clock cycles for key- generation,
encryption and decryption, respectively. Similarly for long-term security level,
the key-generation, encryption and decryption take 2.3M , 2.7M and 700K clock
cycles, respectively.

Parallel Implementation of Number Theoretic Transform 3

1.1 Research Contributions

This paper continues the line of research on the efficient implementation of the
Number Theoretic Transform (NTT) on an ARM-NEON processor. The core
contributions are several optimizations to reduce the execution time in parallel
fashion. More specifically, our contributions are listed as follows:

1. The efficiency of coefficient modular multiplication is a pre-requisite for high-
speed NTT operation. We propose the parallel coefficient multiplication for
Iterative NTT procedures. The method aims at computing multiple multi-
plication in a parallel manner.

2. The modular reduction is the most time consuming operation. We apply the
32-bit wise Shifting-Addition-Multiplication- Subtraction-Subtraction (SMAS2)
approach for reduction operation. The approach replaced the expensive MUL
operation into cheaper shifting and ADD operations.

3. We exploit the incomplete arithmetic [16, 9] for representing the coefficients
and perform the reduction operation in a lazy fashion. This technique ensures
constant time solution which is strong against side channel attacks.

Based on the above optimization techniques, we present high speed and con-
stant time implementations of NTT for both medium-term and long-term secu-
rity levels on ARM-NEON processors. For medium-term security level, it only
requires 27, 160 clock cycles. For long-term security level, it takes 62, 160 clock
cycles. The rest of this paper is organized as follows. In the next section, we
review the background of NTT. In Section 3, we introduce the optimization
techniques for NTT on ARM-NEON processors. In particular, we propose sev-
eral optimization techniques to reduce the execution time in SIMD architecture.
In Section 4, we report the implementation results and compare with the state-
of-the-art NTT implementations. Finally, we draw our conclusions in Section 5.

2 Number Theoretic Transform

Our implementation adopts the Number Theoretic Transform (NTT) for
performing the polynomial multiplication. An NTT can be seen as a variant
of Fast Fourier Transform (FFT) but performs in a finite ring Zq. Instead of
using the complex roots of unity, NTT evaluates a polynomial multiplication

a(x) =
n−1∑
i=0

aix
i ∈ Zq in the n-th roots of unity ωi

n for i = 0, . . . , n− 1, where ωn

denotes a primitive n-th root of unity. Algorithm 1 shows the iterative version
of NTT algorithm, which is originally from Cormen et al. in [4]. As shown in
Algorithm 1, the iterative NTT algorithm consists of three nested loops. The
outermost loop (i-loop, line 2 ∼ 11) starts from i = 2 and increases by doubling
i, and the loop stops when i = n, thus it has only log2n iterations. In each itera-
tion, the value of twiddle factor ωi are computed by executing a power operation

ωi = ω
n/i
n , and the value of ω is initialized by 1. Compared to i-loop, the j-loop

(line 4 ∼ 10) executes more iterations, the number of iteration can be seen as

4 Authors Suppressed Due to Excessive Length

Algorithm 1 Iterative Number Theoretic Transform

Require: A polynomial a(x) ∈ Zq[x] of degree n − 1 and n-th primitive ω ∈ Zq of
unity

Ensure: Polynomial a(x) = NTT (a) ∈ Zq[x]
1: a = BitReverse(a)
2: for i from 2 by i = 2i to n do
3: ωi = ω

n/i
n , ω = 1

4: for j from 0 by 1 to i/2− 1 do
5: for k from 0 by i to n− 1 do
6: U = a[k + j]
7: V = ω · a[k + j + i/2]
8: a[k + j] = U + V
9: a[k + j + i/2] = U − V
10: ω = ω · ωi

11: return a

a sum of a geometric progression for 2i where i starts from 0 and has a maxi-
mum value of log2(n− 1), thus, the j-loop has n− 1 iterations. In each iteration
of j-loop, the twiddle factor ω is updated by performing a coefficient modular
multiplication in line 10. Apparently, the innermost loop (k-loop, line 5 ∼ 9)
occupies most part of the execution time of NTT algorithm since it is executed
roughly n

2 log2n times. In each iteration of the innermost loop (line 6 ∼ 9), two
coefficients a[i+ j] and a[i+ j+ i/2] are loaded from memory into registers, and
then a[i + j + i/2] are multiplied by the twiddle factor ω, after that, the value
of a[k + j] and a[k + j + i/2] are updated and stored in the memory.

In NTT computations, the majority of the processor’s clock cycles are spent
on modular operations. The straight-forward method of evaluating modular is
to perform an integer division. However, constrained devices often do not have
any dedicated hardware to divide the variables which generates a bulk of code
containing loops, multiplications and additions. For this reason, the optimal
modular implementation is the important consideration for high-speed NTT im-
plementations. In [3, 2], Boorghany et al. introduces the technique that calculates
the approximation of ⌊a/q⌋ and then executes the q = a− q×⌊a/q⌋. The results
show acceptable approximation of modular operation. The following works by
[12, 9] applied the approximation techniques to 8-bit AVR processor in assem-
bly level. The technique optimizes the number of addition and shift operations
by taking advantages of 8-bit word and instruction sets. Furthermore, it only
utilizes the temporal registers without saving which avoids push/pop operations
before/after function call. In [5], De Clercq et al. presented memory efficient
polynomial multiplication. When we store single 13-bit coefficient variable into
single 32-bit word in ARM processor, we cannot utilize the remaining 19-bit.
The author stores two coefficients into single word. This approach can reduce
the number of memory load and store instructions into half cases.

Parallel Implementation of Number Theoretic Transform 5

3 Optimization Techniques for NTT Computation

In this section, we describe several optimization techniques to reduce the execu-
tion time of NTT on ARM-NEON architectures. Our implementation adopts the
parameter sets (n, q, σ) with (256, 7681, 11.31/

√
2π) and (512, 12289, 12.18/

√
2π)

for security level of 128-bit and 256-bit, respectively. These parameter sets were
also used in most of the previous hardware implementations, e.g., [7, 14] and
software implementations, e.g., [3, 2, 5, 12, 9]. This also helps us to compare our
work with previous works.

3.1 Vectorized Iterative Number Theoretic Transform

Sequential order of NTT operation described in Algorithm 1 executes the single
coefficient multiplication with the single instruction in every round. However,
proposed vectorized form of NTT operation computes the multiple number of
coefficient multiplications with single SIMD instruction. We divide proposed
NTT largely into two parts including sequential and parallel ways. When the
number of consecutive coefficient multiplication satisfies the width of SIMD,
we can execute the SIMD based vectorized computations. When the number of
consecutive coefficient multiplication is smaller than width of SIMD, we simply
adopt the sequential fashion. The detailed descriptions are available in Algorithm
2. The Steps from 3 to 12 conduct the sequential way of NTT, because offsets (the
number of consecutive coefficient multiplication) between two coefficients (a[k+
j], a[k + j + i/2]) are only 1 and 2 for i = 2 and i = 4 cases, respectively. Since
the other cases (i > 4) have at least four consecutive coefficient multiplication
operations, we readily execute the parallel operation.

Firstly, we conduct whole twiddle factors (ω) in consecutive array form
throughout the Steps 14 ∼ 16. Since the twiddle factors are fixed variables,
we compute the values in off-line. In Steps 19 ∼ 24, the coefficient variables
are loaded into registers in consecutive array form such as Uarray, Varray and
ωarray. We conduct the four different modular multiplications with ωarray[p :
p + 3] · a[k + j + i/2 : k + j + 3 + i/2]. After then pointer p increases by 4
(SIMD width). Lastly the multiple number of coefficient variables are added and
subtracted each other.

3.2 Parallel Coefficient Multiplication

The coefficient multiplication is one of the most expensive operations of NTT
computation, since each NTT computation requires n

2 log2n coefficient multipli-
cations. In our implementation, the coefficient is at most 13-bit long, which can
be kept in one 32-bit register. Even though we can store two coefficients into one
register, we only store one coefficient in a register, because 13-bit wise multipli-
cation outputs at most 26-bit length which introduces another post processing
to extract the 13-bit out of 26-bit. The 128-bit ARM-NEON register can contain
four 32-bit wise variables. We loaded four different aligned consecutive variables
and then conduct the four different multiplications with single operation.

6 Authors Suppressed Due to Excessive Length

Algorithm 2 Vectorized Iterative Number Theoretic Transform

Require: A polynomial a(x) ∈ Zq[x] of degree n − 1 and n-th primitive ω ∈ Zq of
unity

Ensure: Polynomial a(x) = NTT (a) ∈ Zq[x]
1: a = BitReverse(a) {LUT based BitReverse; Section 3.6}
2: for i from 2 by i = 2i to n do
3: ωi = ω

n/i
n , ω = 1 {LUT for twiddle factors; Section 3.5}

4: if i = 2 or i = 4 then
5: for j from 0 by 1 to i/2− 1 do
6: for k from 0 by i to n− 1 do
7: U = a[k + j] {sequential computation}
8: V = ω · a[k + j + i/2]
9: a[k + j] = U + V
10: a[k + j + i/2] = U − V
11: ω = ω · ωi

12: else
13: ωarray[0] = ω
14: for p from 1 by 1 to i/2− 1 do
15: ω = ω · ωi, ωarray[p] = ω {multiple computations of ω}
16: for k from 0 by i to n− 1 do
17: p = 0
18: for j from 0 by 4 to i/2− 1 do
19: Uarray = a[k + j : k + j + 3] {parallel computation}
20: Varray = ωarray[p : p+3] · a[k+ j + i/2 : k+ j +3+ i/2] {Section 3.2}
21: p = p+ 4
22: a[k + j : k + j + 3] = Uarray + Varray

23: a[k + j + i/2 : k + j + 3 + i/2] = Uarray − Varray

24: return a

3.3 Fast Reduction

In the NTT computation, the majority of the execution time is spent on com-
puting reduction operation since it is performed in the innermost k-loop. Thus,
fast reduction operation is an essential for high-speed implementation of NTT
algorithm. Our implementation chooses the prime modulus q = 7681 (i.e. 0x1e01
in hexadecimal representation) and q = 12289 (i.e. 0x3001 in hexadecimal rep-
resentation).

We propose an optimized 32-bit wise SMAS2 reduction technique for per-
forming the mod 7681 operation. The first SMAS2 method is introduced in [9]
and the method is highly optimized in 8-bit AVR processors in terms of register
utilization and the number of operations. However, ARM-NEON processor has
two distinguished features over 8-bit AVR. First the processor provide 32-bit
word size. We can readily compute the 13-bit wise multiplication in single in-
struction and up-to 31-bit shift is available within single cycle. Second multiple
number of operations are conducted at once by exploiting SIMD instructions.
With these features in mind, we redesign the original SMAS2 for ARM-NEON
architecture.

Parallel Implementation of Number Theoretic Transform 7

t0

t1

t2

t0 +t1 + t2

0x1e01

0x1e01 × [t0 + t1 + t2]

r0

r0 » 17

r0» 13

1

2

3

r0 » 21

-- 4

r0

Fig. 1: Fast reduction operation with 32-bit wise SMAS2 method for q = 7681. 1⃝:
shifting; 2⃝: addition; 3⃝: multiplication; 4⃝: subtraction.

This main idea of SMAS2 is to first estimate the quotient of t = a
q , and then

perform the subtraction a−t·q where the value of t is (a ≫ 13)+(a ≫ 17)+(a ≫
21). The reduction process consists of four different basic operations, namely, 32-
bit wise Shifting → Addition → Multiplication → Subtraction → Subtraction
(SAMS2). As shown in Figure 1, we keep the product in 32-bit long register (r0,
a quarter of NEON register). The colorful parts mean that the storage has been
occupied while the white part is not. The reduction with 7681 using SAMS2
approach can be performed as follows:

1. Shifting. We right shift r0 by 13-bit, 17-bit and 21-bit. This outputs results
t0, t1 and t2.

2. Addition. We then perform the addition of t0 + t1 + t2.
3. Multiplication. The third step is to multiply the constant 0x1e01 by (t0 +

t1 + t2), which is a 16× 13-bit multiplication.
4. Subtraction. We subtract the product obtained from Step 3 from r0.
5. Subtraction. However, the result we get in step 4 may still be larger than

p = 7681, thus, we do the correction by subtracting the modulus p once.

3.4 Modular Reduction Operations in Constant Time

The coefficient multiplication needs to conduct final subtraction when the result
is larger than p = 7681. In cases of addition r = a + b mod p and subtraction
r = a− b mod p, it also needs one or two times of subtraction and addition with
the prime p. The intermediate result is kept in the range of [0, p]. Inspired by
the incomplete modular arithmetic [16], our implementation does not perform an
exact comparison between r and p, but rather tolerate an incompletely reduced
coefficient r ∈ [0, 2⌈log2p⌉]. Taking p = 7681 as an example, the incomplete coef-
ficient addition works as follows. We first perform a normal coefficient addition,
after that, we conduct the 13-bit shift to the right and perform the modular
reduction by multiplying the modulus with the shifted results. For incomplete

8 Authors Suppressed Due to Excessive Length

Algorithm 3 Pseudo codes of vectorized NTT computation

Require: Eight 32-bit coefficients A[0 : 3](q2), B[0 : 3](q3), ω(q1), modulo(q0).
Ensure: Eight 32-bit results C(q5,q10).
1: vmul.i32 q3, q3, q1 {coefficient multiplication}
2: vshr.u32 q4, q3, #13

3: vshr.u32 q5, q3, #17

4: vshr.u32 q6, q3, #21

5: vadd.i32 q4, q4, q5

6: vadd.i32 q4, q4, q6

7: vmls.i32 q3, q4, d0[0]

8: vshr.u32 q4, q3, #13

9: vmls.i32 q3, q4, d0[0]

10: vadd.i32 q5, q2, q3 {coefficient addition}
11: vshr.u32 q4, q5, #13

12: vmls.i32 q5, q4, d0[0]

13: vshl.i32 q1, q0, #2 {coefficient subtraction}
14: vadd.i32 q2, q2, q1

15: vsub.i32 q10, q2, q3

16: vshr.u32 q14, q10, #13

17: vmls.i32 q10, q14, d0[0]

coefficient subtraction, We first perform a normal coefficient subtraction, after
that, we add 4 × p and then conduct the 13-bit shift to the right and perform
the modular reduction by multiplying the modulus with the shifted results. This
approach replaces the subtraction into addition which avoids the negative cases.
In the very last outermost iteration of NTT, a correction process is performed
to bring the final result back into the range [0, p]. Our practical results show this
approach ensures constant time solution which is secure against side channel
attacks.

In Algorithm 3, pseudo codes for vectorized NTT computation with constant
time reduction is described. Firstly four coefficients (q3) and four twiddle fac-
tors (q1) are multiplied in Step 1. From Steps 2 ∼ 6, the intermediate results
are shifted to right by 13, 17 and 21-bit and accumulated. In Step 7, we conduct
multiplication with modulo (d0[0]) and intermediate result (q4). This process
is readily available by using vmls instruction, which conducts four different mul-
tiplication and then subtract operations from the destination (q3). From Steps
8 ∼ 9, results over 13-bit are shifted and then reduced once again. In case of
coefficient addition, two operands (q2 and q3) are added and then one time of
reduction is follows in Steps 10 ∼ 12. For subtraction, we firstly calculate the
value (4×modulus) in Step 13. After then the value is added to operand (q2).
Since the operand (q3) is placed within [0, 2⌈log2p⌉], the subtraction in Step 15
does not introduce negative values. Conveniently we can conduct one time of
reduction that is same with addition case.

Parallel Implementation of Number Theoretic Transform 9

Algorithm 4 Look-up tabled based bit-reverse

Require: A polynomial a(x) ∈ Zq[x] of degree n− 1
Ensure: A bit-reversed polynomial a(x) ∈ Zq[x] of degree n− 1
1: for i from 0 by 1 to cnt do
2: temp = a[in idx]
3: a[in idx] = a[out idx]
4: a[out idx] = temp
5: return a

3.5 Look-Up Table for the Twiddle Factors

In each iteration of the i-loop, a new twiddle factor ω (line 3 of Algorithm 1) is
computed by performing a modular multiplication. The total number of times
a new ω is computed in an NTT operation is n. In each iteration of the j-
loop, the twiddle factor ω is computed as shown in line 10 of Algorithm 1. A
straightforward computation of ω = ω · ωi on-the-fly needs to perform n − 1
times of coefficient modular multiplications. Both of the computations of the
power of ωn in i-loop and twiddle factor ω = ω · ωi in j-loop can be considered
as fixed costs. We can pre-compute the all twiddle factors ω into RAM which is
similar to the technique used in [9]. Fortunately, ARM-NEON process provides
huge RAM size (1 ∼ 4GB) and the storing all the intermediate twiddle factors
ω into RAM is very cheap approach. We only need to transfer the twiddle factor
that is required for the current iteration. For vectorized operation, whole twiddle
factors are stored in aligned vector form which ensures efficient memory access
pattern and vector operations as well.

3.6 Look-Up Table for the Bit Reverse

Before NTT operation (line 1 of Algorithm 1), coefficient variables are required
to conduct proper shuffling. The bit-reverse converts the variables in reverse
index. Since the reverse index is fixed value, we can conduct the bit-reverse with
fixed index variables. The Algorithm 4 shows that bit-reverse process. By the
number of loop (cnt), the coefficient a is properly mixed by following the input
index (in idx) and output index (out idx). The detailed parameters are available
in Appendix A.

4 Performance Evaluation and Comparison

4.1 Experimental Platform

The ARM Cortex-A9 is full implementations of the ARMv7 architecture in-
cluding NEON engine. Register sizes are 64-bit and 128-bit for double(d) and
quadruple(q) word registers, respectively. Each register provides short bit size
computations such as 8-bit, 16-bit, 32-bit and 64-bit. This feature provides more
precise operation and benefits to various word size computations. In particular,

10 Authors Suppressed Due to Excessive Length

the main structure of NTT and interface are written in C while the modular
operations are implemented in Assembly Language. We complied our implemen-
tation with speed optimization option -O3. In order to obtain accurate timings,
we ran each operation at least 1000 times and calculated the average cycle count
for one operation.

Table 1: Performance comparison of software implementation of Number Theoretic
Transform on different processors.

Implementations NTT/FFT

32-bit ARM-NEON processors, e.g., Cortex-A9:

Previous work [5, 9] (256) 39,480

This work (256) 27,160

Previous work [5, 9] (512) 95,200

This work (512) 62,160

32-bit ARM processors, e.g., Cortex-M4F, ARM7TDMI:

Boorghany et al. [3] (256) 109,306

DeClercq et al. [5] (256) 31,583

Boorghany et al. [3] (512) 260,521

Oder et al. [11] (512) 122,619

DeClercq et al. [5] (512) 71,090

8-bit AVR processors, e.g., ATxmega64, ATxmega128:

Boorghany et al. [2] (256) 1,216,000

Boorghany et al. [3] (256) 754,668

Pöppelmann et al. [12] (256) 334,646

Zhe et al. [9] (256) 193,731

Boorghany et al. [3] (512) 2,207,787

Pöppelmann et al. [12] (512) 855,595

Zhe et al. [9] (512) 441,572

4.2 Experimental Results

Table 1 summarizes the execution time of Number Theoretic Transform for
medium-term and long-term security levels. The parallel NTT operations only
require 27, 910 and 62, 160 clock cycles for medium-term and long-term security
levels. Furthermore, our NTT implementation is computed within constant time,
which ensures secure against side channel attacks.

Table 1 also compares software implementations of Number Theoretic Trans-
form on different processors. For the 8-bit AVR and 32-bit platforms, the pre-
vious works [3, 2, 12, 5, 11] and our implementations adopt the same parameter
sets as we mentioned in Section 3. The most suitable comparison is 32-bit ARM
implementations, since the target processor shares similar ARM instructions of

Parallel Implementation of Number Theoretic Transform 11

ARMv7. By comparing the both sequential and parallel implementations, we
can point out the 11.4 % enhancements with NEON engine. For better compar-
ison, we implemented the state-of-art techniques, which include SMAS2 method
and Negative-Wrapped Iterative Forward NTT in sequential fashion [5, 9], over
identical ARM-NEON platform. The previous state-of-art implementations show
that 39,480 and 95,200 cycles are required for medium-term and long-term se-
curity levels, respectively. Finally we can draw the conclusion that our proposed
parallel NTT implementations outperform the previous methods by 31% and
34% for medium-term and long-term security levels, respectively.

5 Conclusion

This paper presented parallel implementations of Number Theoretic Transform
on ARM-NEON platform. We proposed three optimizations to accelerate the
execution time for the NTT-based polynomial multiplication. A combination of
these optimizations results in a efficient NTT computation, which is faster than
the previous best implementation techniques by 31% and 34% for medium-term
and long-term security levels, respectively. Our future works are implementing
full scales of Ring-LWE encryption scheme with our proposed NTT techniques
and further researches on KY sampler over SIMD architectures.

References

1. A. Boorghany and R. Jalili. Implementation and comparison of lattice-based iden-
tification protocols on smart cards and microcontrollers. IACR Cryptology ePrint
Archive, 2014:78, 2014.

2. A. Boorghany, S. B. Sarmadi, and R. Jalili. On constrained implementation of
lattice-based cryptographic primitives and schemes on smart cards. ACM Trans-
actions on Embedded Computing Systems (TECS), 14(3):42, 2015.

3. T. H. Cormen. Introduction to algorithms. MIT press, 2009.
4. R. De Clercq, S. S. Roy, F. Vercauteren, and I. Verbauwhede. Efficient software

implementation of ring-lwe encryption. In Proceedings of the 2015 Design, Automa-
tion & Test in Europe Conference & Exhibition, pages 339–344. EDA Consortium,
2015.

5. N. Göttert, T. Feller, M. Schneider, J. Buchmann, and S. Huss. On the design of
hardware building blocks for modern lattice-based encryption schemes. In Cryp-
tographic Hardware and Embedded Systems–CHES 2012, pages 512–529. Springer,
2012.

6. Z. Liu, H. Seo, S. S. Roy, J. Großschädl, H. Kim, and I. Verbauwhede. Efficient
ring-lwe encryption on 8-bit avr processors.

7. V. Lyubashevsky, C. Peikert, and O. Regev. On ideal lattices and learning with
errors over rings. Journal of the ACM (JACM), 60(6):43, 2013.

8. T. Oder, T. Pöppelmann, and T. Güneysu. Beyond ecdsa and rsa: Lattice-based
digital signatures on constrained devices. In Proceedings of the 51st Annual Design
Automation Conference, pages 1–6. ACM, 2014.

9. T. Pöppelmann, T. Oder, and T. Güneysu. Speed records for ideal lattice-based
cryptography on avr.

12 Authors Suppressed Due to Excessive Length

10. O. Regev. On lattices, learning with errors, random linear codes, and cryptography.
Journal of the ACM (JACM), 56(6):34, 2009.

11. S. S. Roy, F. Vercauteren, N. Mentens, D. D. Chen, and I. Verbauwhede. Com-
pact ring-lwe cryptoprocessor. In Cryptographic Hardware and Embedded Systems–
CHES 2014, pages 371–391. Springer, 2014.

12. P. W. Shor. Algorithms for quantum computation: Discrete logarithms and factor-
ing. In Foundations of Computer Science, 1994 Proceedings., 35th Annual Sympo-
sium on, pages 124–134. IEEE, 1994.

13. T. Yanık, E. Savaş, and Ç. K. Koç. Incomplete reduction in modular arithmetic.
IEE Proceedings – Computers and Digital Techniques, 149(2):46–52, Mar. 2002.

A Index Parameters of 256-bit Bit Reverse

Table 2: Index Parameters of 256-bit Bit Reverse

256-bit Input Index

128, 64, 192, 32, 160, 96, 224, 16, 144, 80, 208, 48, 176, 112, 240,

136, 72, 200, 40, 168, 104, 232, 152, 88, 216, 56, 184, 120, 248, 132,

68, 196, 164, 100, 228, 148, 84, 212, 52, 180, 116, 244, 140, 76, 204,

172, 108, 236, 156, 92, 220, 188, 124, 252, 130, 194, 162, 98, 226, 146,

82, 210, 178, 114, 242, 138, 202, 170, 106, 234, 154, 218, 186, 122, 250,

134, 198, 166, 230, 150, 214, 182, 118, 246, 142, 206, 174, 238, 158, 222,

190, 254, 193, 161, 225, 145, 209, 177, 241, 201, 169, 233, 217, 185, 249,

197, 229, 213, 181, 245, 205, 237, 221, 253, 227, 211, 243, 235, 251, 247

256-bit Output Index

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,

17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 33,

34, 35, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51,

53, 54, 55, 57, 58, 59, 61, 62, 63, 65, 67, 69, 70, 71, 73,

74, 75, 77, 78, 79, 81, 83, 85, 86, 87, 89, 91, 93, 94, 95,

97, 99, 101, 103, 105, 107, 109, 110, 111, 113, 115, 117, 119, 121, 123,

125, 127, 131, 133, 135, 137, 139, 141, 143, 147, 149, 151, 155, 157, 159,

163, 167, 171, 173, 175, 179, 183, 187, 191, 199, 203, 207, 215, 223, 239

