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Abstract

This paper, examining the hardness of the search LWE problem, is a refined continuation of previous
works including (Lindner-Peikert 2011, Liu-Nguyen 2013, Aono et al. 2013) using lattice reduction and
lattice vector enumeration. We adopt the attack to the LWE using discrete Gaussian distribution, and
propose a new bounding method named band pruning in lattice enumeration. We update the security
estimations for several parameter sets proposed in the literature. Finally, using the data gained in our
experiments, we derive an explicit formula linking the LWE’s parameters with the bit security.
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1 Introduction

1.1 Background

Fix numbers n and q. The learning with errors (LWE) problem [23] is roughly the problem to find a secret
vector x ∈ Zn from a set of samples (ai ∈ Z

n, bi ∈ Z) where

〈ai, x〉 + ei = bi (mod q) for i = 1, 2, . . .

where ai is randomly sampled from {0, . . . , q − 1}n and ei is sampled from a distribution over a set of small
integers of deviation s. (The detailed definition is in Section 2.3)

The hardness of the learning with errors problem is a gold mine for cryptographers. It has been widely
used to ensure the security of numerous cryptographic schemes. Therefore, giving concrete parameters for
the hardness is a must in practice.

1.2 Our Contributions

This paper is an update of lattice vector enumeration based analyses [6,18] for the LWE problem, and gives
security analyses for several proposed parameter sets [6, 17, 18]. In details, our technical contributions are
as follows:

(1) we update (refine) the cost estimation of lattice reduction part using recent records in SVP challenge [2].
Besides the time for lattice reduction, we need to predict the lengths of Gram-Schmidt basis vectors as sharp

∗An abridged part of this paper was presented in [6] as the analytic contribution. This manuscript extends that part significantly.
†The authors are with Network Security Research Institute, National Institute of Information and Communications Technology,

Japan.
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as possible to predict the cost of lattice point search and consider the trade-off between two timings. We
give our new estimation under both Lindner-Peikert model [17] and Chen-Nguyen [12] model with modified
coefficients.
(2) we develop a new pruning method, which we will refer as the band pruning, to speed up the lattice
vector enumeration. Our theoretical analysis considers discrete Gaussian error vectors while the previous
attacks [17, 18] only consider continuous Gaussian ones1, allowing more rigid security analysis using small
(e.g., deviation less than 8.0) Gaussian parameters.
(3) we give a new method to estimate the lattice vector enumeration cost, which is derived from the volume
of a bit complicated n-dimensional object (see Seciton 4.) To approximate the volume, we use a method
inspired from Gama-Nguyen-Regev [13] in the conference version [6] though it was omitted due to the
space limit. After the conference version, we find a new method to approximate the volume without using a
random source, which was a drawback of the original method. For the completeness of the information, we
give both methods in Section 4.1 and A.
(4) combining these new techniques together, we give security estimations for several parameters and suc-
cess probabilities. By curve fitting on the data gained in our experiments, we derive an explicit formula to
link between the bit security and LWE’s parameters (n, q, s) as follows:

bit − security =
7.18n − 219

ln(q) − 1.66 ln(s)
− 87 (1)

The left hand side bit-security is defined as follows:

bit − security of LWE(n, q, s) = log2

(
attacking time in seconds
attack success probability

)
+ log2(9 · 106) (2)

Here, the constant log2(9 · 106) to convert time in seconds to bit-security is from the result of RC5-72
benchmark published in distributed.net. It makes a record that a standard Intel CPU can check about
9 · 106 keys in second in one thread.

1.3 Discussion on the Possibility of Optimizing Bounding Function

As the cases to estimate SVP and CVP, we simulate the cost and success probability psucc when we search
an area defined by the bounding function. It is clear that the optimized bounding function that achieves min-
imizing cost with keeping some probability, gives the hardness of cryptographies. Several fast computing
methods to approximate the cost and psucc have been developed when we assume the target point distributes
uniformly in the searching area, and it allows us to optimize bounding function.

On the other hand, we assume the error vector distributes as a discrete Gaussian in this paper. This
discreteness makes the estimation of probability very complicated and the problem of optimizing bounding
function becomes a practically hard problem. Efficient generation of optimal function is an interesting future
work.

1.4 Related Works

The LWE problem in dimension n can be theoretically reduced to lattice problems in dimension
√

n as
in [10]. On the practical side, to give the concrete security parameters, several attacks are proposed which

1Quoting from [17, Section 6]: “... to allow for a Gaussian parameter s ≥ 8, so that the discrete Gaussian DZm ,s approximates
the continuous Gaussian Ds extremely well.”
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are mainly classified to three types. Since the polynomial-time equivalence between the decision and search
versions [23], many known attacks consider the search version while the securities of schemes are from the
decision version. A survey on recent algorithms for solving LWE is in Albrecht et al. [5].

Lattice-Based attacks: Micciancio and Regev [20] gave a distinguishing attack using lattice reduction to a
gadget lattice basis of which the first vector of a reduced basis corresponds to the error vector. In this line,
Bai-Galbraith [8] and Lauter et al. [16] investigated the analysis.

Subsequently, Lindner-Peikert [17] regarded the problem to find the error vector as the bounded distance
decoding (BDD) and analyzed a randomized version of the Babai’s nearest plane algorithm. Liu-Nguyen
[18] also considered the problem as BDD and estimated the computational cost by lattice enumeration with
linear pruning. These works assume the noises are from a continuous Gaussian distribution. The attack in
Aono et al. [6] improved all these attacks by viewing the LWE problem as the closest vector problem (CVP)
in which the difference between the target vector and lattice vectors has a discrete Gaussian distribution.

When the Gaussian error is continuous, it is the problem to recover the received signals in MIMO
wireless connection. Several lattice based algorithms have been proposed [19, 26].

BKW attacks: Because the LWE problem is a natural extension of the learning with parity noises (LPN)
problem, namely, LPN is LWE with q = 2, algorithms for LPN problem can be adopted for solving LWE
problems. While Blum-Kalai-Wasserman [9] was originally proposed to solve the LPN problem, it was
imported to the cryptographic area [3] and has been deeply investigated. The early attacks have a drawback
that requires exponential number of samples, that does not match the real scheme, whereas the problem is
avoided by considering trade-off between the complexity and number of samples.

Algebraic attacks: This type of LWE attacking algorithm is converting the original problem to an algebraic
equation over integers. Arora-Ge [7] proposed a method to convert the problem to a large dimensional linear
equation. The algorithm was further improved by the Gröebner basis technique [4].

1.5 Roadmap

We give necessary lemmas and theorems, and introduce several previous works in Section 2. We fix the
models and give our cost and probability estimation for the lattice reduction part in Section 3 and for the
lattice enumeration part in Section 4. In Section 5, we propose a method to set our bounding function
used in lattice enumeration. Finally, we give our new estimation for LWE problem and concrete formula in
Section 6.

2 Preliminaries

Throughout this paper, we use log2 and ln to denote the logarithms of base 2 and of natural base.

2.1 Lattices

For a set of linearly independent vectors (v1, . . . , vm), which is called a lattice basis, the lattice is set
L :=

{∑m
i=1 aivi : ai ∈ Z

}
. We denote its Gram-Schmidt basis by tildes: ṽ1, . . . , ṽm. The lattice volume or

determinant is det(L) :=
∏m

i=1 ||ṽi||. For a fixed lattice basis (v1, . . . , vm) and a vector v =
∑m

i=1 xiṽi, its k-th
projection is πk(v) =

∑m
i=k xiṽi. For lattice theories used in cryptographic area, see [22].

3



2.2 Discrete Gaussian

For the derivation parameter s > 0, the discrete Gaussian distribution ψs over Z is the random variable
whose density function at y is

Pr[ψs = y] =
exp(−πy2/s2)

1 + 2
∑∞

j=1 exp(−π j2/s2)
. (3)

Denote the denominator in (3) as W(s). The m-dimensional discrete Gaussian e = (e1, . . . , em) ∈ ψm
s is

defined by taking each ei from ψs independently. Thus, we have

Pr[ψm
s = (e1, . . . , em)] =

exp(−π||e||2/s2)
W(s)m . (4)

To treat the discrete Gaussian, the following lemma is necessary.

Lemma 1 For given m, B ∈ Z and small s ∈ R, we can efficiently compute the probability

p(m, B) := Pr
e←ψm×1

s

[
||e||2 = B

]
=

∑
y ∈ Zm

||y||2 = B

exp(−π||y||2/s2)

W(s)m

with high accuracy.

Proof. Consider the sequence {p(1, i)}i=0,1,... that is easily computed with high accuracy. By the rela-
tion p(m + 1, B) =

∑B
j=0 p(m, j) · p(1, B − j), {p(m + 1, i)}i=0,1,... is the convolution of {p(m, i)}i=0,1,... and

{p(1, i)}i=0,1,.... Considering an aborted sequence {p(1, i)}i=0,1,...,N−1 of length N of some power of two, the
convolution can be efficiently computed by the FFT. 2

In this paper, it is enough by computing these values in 512-bit precision because we will argue the
parameters that achieve at most about 256-bit security. If one wants to obtain these values in very high
accuracy, compute its numerator η(B,m) exp(−πB/s2) where η(B,m) is the number of integer solutions of
the Diophantine equation x2

1 + · · · + x2
m = B. This is just the coefficient of xB of a special case of the

Jacobi theta function (
∑∞

j=−∞ x j2)m = (1 + 2
∑∞

j=1 x j2)m. The coefficients are easily derived by computing
this function modulo x` for some `.

With the same method, the probability that ||e|| is within some range is also computable:

Pr
e←ψm×1

s

[
B1 ≤ ||e||2 ≤ B2

]
=

∑
B∈[B1,B2]∩Z

Pr
e←ψm×1

s

[
||e||2 = B

]
.

2.3 The (Search) Learning With Errors Problem

The search LWE is defined as follows. For given ( A ∈ Zm×n, b = Ax + e ∈ Zm×1) where x ∈ ψn×1
αq and

e ∈ ψm×1
αq , the problem is to find the secret vector x or equivalently to find e. Let us denote as LWE(n, α, q).

For given instance (A, b), the standard lattice based attack considers the lattice Λq(A) := {z ∈ Zm :
∃x such that z = Ax (mod q)} whose vector z closest to b derives the error vector e = b − z. Assume the
lattice Λq(A) is given by rows of a q-ary matrix:[

qIm−n 0
A′ In

]
4



Reference Predicting ||b∗i || Computing Time
[17] GSA log2(TimeBKZ(δ)) = 1.8/ log2(δ) − 110
[12] GSA Upper bound of ENUM cost [12, Table 4]
Our model 1 GSA log2(TimeBKZ(δ)) = 1.8/ log2(δ) − 130
(Section 3.1)
Our model 2 Chen-Nguyen’s simulator log2(Costβ) = α log2(Lβ) + (1 − α) log2(Uβ)
(Section 3.2) (α = 0.2)

Table 1: Summery of attacking models among previous works and this paper

where A′ is uniquely determined under modulo q from the instance. We use (b1, . . . , bm) and (b̃1, . . . , b̃m)
to denote a reduced basis and its Gram-Schmidt basis. As we will introduced later, the cost of lattice
enumeration part can be approximated using only the Gram-Schmidt lengths (||b∗1||, . . . , ||b

∗
m||) and bounding

coefficients.

2.4 Experimenting Environment

We used the boost library [1] to compute the bounding functions in lattice vector enumeration, and to
compute the attacking cost and success probability. The preliminary experiments in Section 3 was performed
with using ntl library [27].

3 Models for Lattice Reduction

To analyse the lattice based attack for LWE, it needs to fix the model for lattice reduction part. Concretely,
the lengths ||b̃i|| of Gram-Schmidt basis which is used to estimate the lattice vector enumeration part, and
time for lattice reduction. Following the previous works [17, 18], we consider two models, the geometric
series assumption (GSA) model [24] and BKZ 2.0 model [12] with modifying constant factor using Lattice
Challenge records [2]. Table 1 shows the summery, and below we give the details of them.

3.1 Geometric Series Assumption Model

Since the target lattice is q-ary, following Schnorr [24] and experiments in [17], we set the following as-
sumption here.

Assumption 1 The graph of ln ||̃bi|| consists of horizontal line ||̃bi|| = q (if they exist), slope of 0.5 ln r, and
line ||̃bi|| = 1.

Here, r is a constant in GSA that assumes ||̃bi||
2/||b1||

2 = ri−1 for a reduced basis. It connects to the root
Hermite factor δ by the relation r = δ−4m/(m−1) if the Gram-Schmidt basis lengths consist only the slope part.
The condition is explicitly given as follows.

1 < ||̃bi|| < q for all i ∈ [m] ⇔
(
ln q −

√
ln2 q − 4n ln δ ln q

)
/2 ln δ < m <

√
(n ln q)/ ln δ (5)

In this situation, δ is an algorithm-depended factor so that ||b1|| = δn det(L)1/n holds.
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Computing time: In [17], they estimated the cost of BKZ algorithm to achieve the root Hermite factor δ as

TimeLP(δ) = 21.8/ lg(δ)−c [single-core seconds],

where they used c = 110. Figure 1 plots recent records in SVP Challenge. From the figure, we decided to
use c = 130 as the average performance of recent algorithms.

Figure 1: Relation between root Hermite factor and computing time published in SVP Challenge, and
modified Lindner-Peikert estimation..

Drawback of this model: Clearly, there exists a lower bound of δ from the lengths of the shortest vector.
We can see that substituting its value, TimeLP = 2Θ(n/ ln(n)). Thus, it derives a subexponential algorithm for
SVP, which is probably hard to realize. For detailed argument, see Albrecht et al. [5].

Moreover, it is known that Schnorr’s GSA does not hold in general when the basis is very reduced [11].
Remark that Liu-Nguyen [18] also employed this model with modified computing time from Chen-Nguyen’s
BKZ 2.0 simulator.

To avoid these drawbacks, we use the BKZ 2.0 Model.

3.2 BKZ 2.0 Model

To modify the drawback of GSA model., we use Chen-Nguyen’s estimation and simulator.
From [12, Table 4,5], we extrapolate the lower and upper bound of the number of processed nodes in

one enumeration of BKZ-β as

log2(Uβ) = 0.000784314β2 + 0.366078β − 6.125, and
log2(Lβ) = 0.000409753β2 + 0.237652β − 19.3668.

Since they have a significant gap, we need to select a good medium estimation to meet the experimental
data. For this purpose, we assume the cost of enumeration satisfies

log2(Costβ) = α log2(Lβ) + (1 − α) log2(Uβ), (6)
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and for several fixed α ∈ [0, 1] and lattice dimension, we execute their BKZ simulator to solve the SVP
challenge problems and search the optimal β minimizing total enumeration cost. The simulation starts at
the simulated LLL-reduced basis that satisfies GSA and δ = 1.022 whose constant is from [21]. Total
enumeration cost in seconds is

TimeBKZ2.0(n, β, ]Tours) = ]Tours ·
n−1∑
i=1

Costmin(β,n−i+1)/(5.0 · 107)[sec] (7)

Comparing with the recent records (see Figure 2), we decide that α = 0.2 gives the practical lower bound
to the lattice reduction cost at state of the art, and we will use in this paper. Here, the constant 5.0 · 107 is
decided from our benchmark on lattice enumeration.

Figure 2: Costs for solving SVP Challenge problems simulated by Chen-Nguyen’s BKZ 2.0 simulator.
Lower and upper bounds, costs when α = 0.2 and points from [2].

4 Model for Lattice Vector Enumeration

We introduce our model for searching error vector, success probability and computing cost adopting to the
discrete Gaussian model.
Lattice vector enumeration algorithm: To find the error vector, our attack employs an exhaustive search
algorithm [15] (and its modifications [18, 25]) with pruning technique adopted for discrete Gaussian LWE.
Since the coordinates of error vector are from a Gaussian, we can bound its projected lengths from lower
and upper.

The outline of algorithm is as follows: Consider a search tree whose root is labeled by the vector b. For
each node labeled by v at depth k, its children have labels of the form v − a · bm−k with a ∈ Z. Thus, nodes
at depth k are labeled by vectors of the form b −

∑m
i=m−k+1 ai · bi ∈ b − Λq(A) and the desired vector e exists

at depth m. The algorithm is the depth-first search for this tree and a node is pruned if the projected length
||πm−k+1(b −

∑m
i=m−k+1 ai · bi)|| is outer of the range [Lk,Rk] which we will give later.
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Assumptions to set the bonding coefficients:

Assumption 2 [13, Heuristic 3] the distribution of matrix (b̃1/||b̃1||, . . . , b̃m/||b̃m||) of a random reduced
basis looks like a uniform distribution over Rm×m

O
in the meaning of Haar measure, the set of normalized

orthogonal matrix of degree m. In particular, for a fixed point w ∈ S m−1, wV distributes uniformly over S m−1

when V ← Rm×m
O

.

Note that this assumption does not hold in general q-ary lattices, because for some reduced bases and
parameters, b̃i’s for small and large indexes remain as (0, . . . , 0, q, 0, . . . , 0) and (0, . . . , 0, 1, 0, . . . , 0), respec-
tively. To avoid this phenomenon, we restricted the range of m and δ by (5) in parameter setting.

From now on, denote vi := b̃i/||̃bi||. For b = Ax + e, write the error vector e := b − z = (e1, . . . , em) =∑m
i=1 αĩbi with z = Ax ∈ Λq(A). By 〈e, b̃i〉 = αi||̃bi||

2, the projective length of each node is

∣∣∣∣∣∣∣∣πm−k+1
(
b −

m∑
i=m−k+1

ai · bi
)∣∣∣∣∣∣∣∣2 =

m∑
i=m−k+1

α2
i ||̃bi||

2 =

m∑
i=m−k+1

〈e, b̃i/||̃bi||〉
2 =

m∑
i=m−k+1

〈e, vi〉
2.

We discuss the distribution of this length when (v1, . . . , vm) ← Rm×m
O

and e ← ψm×1
s . Let V = (v1, . . . , vm).

〈vi, v j〉 = δi j and V−1 = VT hold. Since 〈e, vi〉 = 〈V−1e,V−1vi〉 = (V−1e)i (the i-th element of vec-
tor) and ||V−1e|| = ||e||, the distribution of

∑k
i=1〈e, vi〉

2 is the same as that of ||e||(g2
1 + · · · + g2

k) where

(g1, . . . , gm)
$
← S m−1. In other words, the norm distribution is unchanged, whereas its position distributes

over the scaled (n−1)-sphere. We denote this distribution Cs,m. This is our model of the distribution of error
vector.

Definitions of cost and probability:
For fixed parameters and bounding functions Li and Ri, we define the success probability of the attack

as follows.

Definition 1 Success probability of the attack.

Pr
[
L2

k <

k∑
i=1

〈e, vi〉
2 < R2

k ∀k ∈ [m]
]
. (8)

Here, the probability is over e← ψm×1
s and (v1, . . . , vm)← Rm×m

O
.

The above can be decomposed as

Pr
f←Cs,m

[
L2

k <

k∑
i=1

f 2
i < R2

k ∀k ∈ [m]
]

=

R2
m∑

u=L2
m

Pr
f←Cs,m

[ k∑
i=1

f 2
i ∈ [L2

k ,R
2
k] ∀k ∈ [m]

∣∣∣∣|| f ||2 = u
]
× Pr

f←Cs,m
[|| f ||2 = u].

Remark that the latter factor Pr f←Cs,m[|| f ||2 = u] is computable by using Claim 1, and we compute the
other part by the Monte-Carlo sampling over sphere.

Following [13], by the Gaussian heuristic assumption, the approximated number of processed nodes
during lattice enumeration is computable. We will use it to estimate the cost of lattice vector enumeration
part.
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Definition 2 Cost of lattice vector enumeration.

]ENUM =

m∑
k=1

VolC(L1, . . . , Lk; R1, . . . ,Rk)∏m
i=m−k+1 ||̃bi||

.

Here, C(L1, . . . , Lk; R1, . . . ,Rk) is the object defined by(x1, . . . , xk) ∈ Rk : L2
i <

i∑
`=1

x2
` < R2

i for ∀i ∈ [k]

 .
To find a good cost estimation, we need to approximate the volume of this object.

4.1 Approximating Volume Factors

Fix an integer k ≥ 1. Let the sequences (L1, . . . , Lk) and (R1, . . . ,Rk) are monotonic increasing and satisfy
0 ≤ Li < Ri ≤ 1 for all i. We can assume Ri ≤ 1 without loss of generality; if not, we normalize the sequence
by deviding Rk. For simplicity, we use lk and rk to denote the sequence respectively. Then denote the object
C(lk, rk) := C(L1, . . . , Lk; R1, . . . ,Rk).

To find a good approximation of VolC(lk, rk), in the conference version [6], we used the random sampling
method inspired from Gama-Nguyen-Regev’s analysis for lattice vector enumeration [13]. Because this
method requires the random source, the estimated volume is perturbated in each execution for the same
parameters. It is a barrier to search optimized parameters correctly. Moreover, it requires a heavy computing
when the dimension is high. To avoid the drawbacks, we develop a new approximating method. Although
the old algorithm is not used in this paper, we give it in Appendix A for completeness of information because
it was omitted in the conference proceeding.

Our method in theory: Since C(lk, rk) ⊂ [−1, 1]k, the volume can be written by the probability Pk =

Prx←[−1,1]k [x ∈ C(lk, rk)] times 2k.
For a point x in an Euclidean space of dimension ≥ j, we denote the event E j be that x satisfies L2

j <∑ j
`=1 x2

` < R2
j . The desired probability is Prx∈[−1,1]k [E1 · · · Ek]. For i = 1, . . . , k, we let

Pi = Pr
x←[−1,1]i

[Ei|E1 · · · Ei−1]

and we have by the chain rule

Pk = Pr
x←[−1,1]k

[Ek|E1 · · · Ek−1] · Pr
x←[−1,1]k

[E1 · · · Ek−1]

= Pr
x←[−1,1]k

[Ek|E1 · · · Ek−1] · Pr
x←[−1,1]k−1

[E1 · · · Ek−1]

= Pr
x←[−1,1]k

[Ek|E1 · · · Ek−1] · Pk−1.

We compute the probability by induction starting with the base case P1 = R1 − L1.
By definition, the conditional probability is

αk := Pr
x←[−1,1]k

[Ek|E1 · · · Ek−1] = Pr
x←C(lk−1,rk−1)×[−1,1]

[Ek]. (9)
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Denote Fk−1(z) and Gk(z) be the probability density function (p.d.f.) of |x|2 and |y|2 when x
$
←C(lk−1, rk−1) ⊂

Rk−1 and y
$
←C(lk−1, rk−1) × [−1, 1] ⊂ Rk, respectively. It is clear that the distribution of |y|2 is that of

|x|2 + (x′)2 where x is the same as above and x′ ← [−1, 1] independently. Thus, we have the relation

Gk(z) = Fk−1(z) ∗ H(z) :=
∫ 1

0
Fk−1(y)H(z − y)dy. (10)

where

H(z) =

{
1/2
√

z (0 < z < 1)
0 (otherwise)

is the p.d.f. of x2 when x
$
← [−1, 1].

By the relation C(lk, rk) = C(lk−1, rk−1) × [−1, 1] ∩ {x ∈ Rk|L2
k ≤ |x|

2 ≤ R2
k}, the probability (9) can be

computed by

Pr
x←C(lk−1,rk−1)×[−1,1]

[L2
k ≤ |x|

2 ≤ R2
k] =

∫ R2
k

L2
k

Gk(z)dz. (11)

Also, we have the relation between the p.d.f.

Fk(z) =

{
(1/αk)Gk(z) (L2

k ≤ z ≤ R2
k)

0 (otherwise)
(12)

Therefore, the probability is

Pk =

k∏
i=1

αi.

Our method in practice: Our algorithm to compute the volume approximates the p.d.f. Fk(z) and Gk(z)
within the range [0, 1] by a real number sequence f j = ( f j,0, . . . , f j,N−1) of length N where f j,` is an approx-
imation for ∫ (`+0.5)/N

(`−0.5)/N
F j(x)dx. (13)

The sequences g j = (g j,0, . . . , g j,N−1) and h = (h0, . . . , hN−1) are also used for G j(x) and H(x) in (13).
We simulate the theoretical argument as follows. For the base case, simulate

F1(x) =

{
2
√

(R1 − L1)z (L2
1 ≤ z ≤ R2

1)
0 (otherwise)

and H(z).
To simulate the convolution (10) of functions, we use the convolution of sequences { f j∗g j}` = {

∑`
i=0 f j,ig j,`−i}`

which can be efficiently computable by using FFT.
The integral at the right-hand side of (11) is simulated by a simple addition:

α̃k =

`2∑
i=`1

gi

with `1 = [L2
k · N] and `2 = [R2

k · N]. The cut-off (12) is multiply-then-zeroing:

fk,` =

{
gk,`/α̃k (` = `1, . . . , `2)
0 (otherwise)

To simulate the values with sufficient accuracy, we selected N = 216 and used 150-bit precision floating
point variables using the boost library.
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5 LWE Hardness Estimation

In the rest of this section, the notation Pr without indicating distribution means that the probability over
f ← Cs,m.

5.1 Our Bounding Function Setting

The goal of this section is to give a constructive proof of the following theorm.

Theorem 1 (Band pruning) For any probability parameter p ∈ [1/m, 1), under our model, we can effi-
ciently compute numbers Lk and Rk so that the success probability is larger than 1 − p.

Proof. We again denote the event Ek be L2
k <

∑k
i=1 f 2

i < R2
k holds and Ēk for its inverse. Then the probability

that the error vector is found is psucc := Pr [E1 · · · Em].
From Lemma 1 it is possible to compute the lower and upper bounds of error vector lengths Lm and Rm

so that
Pr

e
g
← Zm

s

[
||e||2 > R2

m

]
≤

1
2m

and Pr
e

g
← Zm

s

[
||e||2 < L2

m

]
≤

1
2m

.

Using these values, we have

psucc = Pr [Em] · Pr [E1 · · · Em−1|Em] ≥
(
1 −

1
m

)
· Pr [E1 · · · Em−1|Em] .

To bound the probability factor, we consider the individual probability Pr[Ek|Em]. For any Lk < Rk, we
have

Pr[Ēk|Em] =
∑

u∈[L2
m,R2

m]∩Z

Pr
[ k∑

i=1

f 2
i ≤ L2

k

∣∣∣∣|| f ||2 = u
]
Pr

[
|| f ||2 = u

]
+

∑
u∈[L2

m,R2
m]∩Z

Pr
[ k∑

i=1

f 2
i ≥ R2

k

∣∣∣∣|| f ||2 = u
]
Pr

[
|| f ||2 = u

]
.

(14)
Each conditional probability can be represented by the incomplete beta function. For instance, the case

of lower bound is

Pr
[ k∑

i=1

f 2
i ≤ L2

k

∣∣∣∣|| f ||2 = u
]
= Pr

(h1,...,hm)←S m

[ k∑
i=1

h2
i ≤

L2
k

u

]
= IL2

k/u

(
k
2
,

m − k
2

)
:=

∫ L2
k/u

0
t

k
2−1(1 − t)

m−k
2 −1dt

B(k/2, (m − k)/2)
,

and the other case is similar. Here, for u ≤ L2
k , we regard the probability is one. The other factor Pr[|| f ||2 = u]

can be computed by Claim 1. Therefore, the tail probability (14) can be computed efficiently by summing
up 2(R2

m − L2
m) terms.

We set L2
k and R2

k so that the both factors in the right-hand side of (14) are p′/2(m− 1) where p′ =
mp−1
m−1 .

Thus, we have Pr[Ēk|Em] = p′/(m − 1) for k ∈ [m − 1], and

Pr[E1 · · · Em−1|Em] > 1 +

m−1∑
k=1

Pr[Ek|Em] = 1 − p′. (15)

Therefore, with these settings, psucc > (1 − 1/m)(1 − p′) = 1 − p holds. 2
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Practical relation between p′ and psucc: We remark on the success probability analysis. Since the inequal-
ity (15) uses a simple union bound, there exists a significant gap. To check it, we performed the preliminary
experiment. Figure 2 shows the relation among dimension m, individual probability p′, and the success
probability psucc when setting bounding function Lk and Rk so that Pr[Ek|Em] = p′ when s = 8. The circles
and curves indicate the experimental result using the above formula, and the result of curve fitting where we
set

psucc = pY where Y = a + bmc + dpe.

and
(a, b, c, d, e) = (0.0345, 3.32, 0.2, 7.93, 35.8).

Using this relation, we can set p when the target probability psucc is given. We will use this formula to
set p from a target psucc ∈ [0.01, 0.99].

Figure 3: Relation between p and psucc for several dimensions (temporal)

6 LWE Parameters

We give our experimental results of LWE attacking cost.

6.1 Comparison to Previous Results under GSA

Table 2 gives the comparison among previous and our attacks for Lindner-Peikert’s parameters under GSA.
We again remark that the GSA does not hold exactly and its estimation for timing of lattice vector enumer-
ation small.

6.2 Updated Parameters

Table 3 gives updated attacking costs in various success probabilities from several published papers.
For given parameter set (n, q, s), we consider the additional parameters (m, β, ]Tours), and simulate ||̃bi||

of m-dimensional q-ary lattices after ]Tours tours of BKZ-β by using Chen-Nguyen’s simulator. Then, the
total attacking cost is given by the sum of (7) and enumeration cost in Section 4:

Our Estimation(n, q, s)[sec] = TimeBKZ + ]ENUM/(5 · 107) (16)

12



Lindner-Peikert [17] Liu-Nguyen [18] this work with GSA
(Our model 1)

Gaussian model Continuous Continuous Discrete
log2(tBKZ(δ)) 1.8/ log2(δ) − 110 [12]’s upper 1.8/ log2(δ) − 130
]ENUM/sec./thread 215 107 = 223.25 [12] 5 · 107 = 225

n s q log2(time in second in single thread) and success probability
128 6.77 2053 32 ≈ 100% 23.6 ≈ 63.21% 11.5 ≈ 95.4%
192 8.87 4093 78 ≈ 100% 62.8 ≈ 63.21% 52.4 ≈ 95.7%
256 8.35 4093 132 ≈ 100% 105.5 ≈ 63.21% 95.8 ≈ 95.7%
320 8.00 4093 189 ≈ 100% – – 139.7 ≈ 95.6%

Table 2: Comparison among several attacks on LWE using single-thread time for Lindner-Peikert parame-
ters.All models assume that ||b̃i|| of reduced lattices satisfy the GSA.

We search the optimal parameters (m, β, ]Tours) to minimize it by the standard numerical method.

Reference Parameters log2(our. est. [sec])
n s q ≈ 95 % ≈ 65 % ≈ 1 %

Lindner- 128 6.77 2053 22.1 19 15
Peikert [17] 192 8.87 4093 64.5 61.3 56.0

256 8.35 4093 118 114 107
320 8.00 4093 180 175 166

Aono et al. 450 5.00 16381 186 182 175
[6] 450 3.00 16381 148 144 138
RFID low [29] 152 7.292 8219 17.5 15.6 12.4
RFID high [29] 198 4.338 6803 31.4 29.2 25.7
Micciancio- 136 13.02 2003 53.8 50.1 44.3
Regev [20] 233 7.107 32749 38.8 36.7 33.4
LL15 [16] 350 8.0 252 < 0 < 0 < 0

1024 8.0 247.5 58.1 57.5 56.0

Table 3: Updated attacking costs for previous parameters assuming Our model 2.

6.3 The Very Low Probability Case

In an application that involves data of a large number of persons, for example, 108 is the population of
Japan, a data owner need to manipulate ciphertexts Enc(pki, datai) encrypted by many different secret keys.
In such case, an attack with a low probability can be a threat to the system. We estimate Lindner-Peikert
parameters by our attack using psucc ≈ 10−8. The result is given in Table 4. Because the setting method of
bounding functions are not investigated enough, the speed up is minor compared to the probability.
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(n, q, s) ≈ 95% ≈ 10−8

(192, 8.87, 4093) 64.5 54.9
(256, 8.35, 4093) 118 101
(320, 8.00, 4093) 180 159

Table 4: Cost comparison between high and very low probabilities

6.4 An Explicit Formula for Parameter Setting

Since our prediction requires a heavy computation to obtain results, we give a formula of attacking time for
parameter (n, s, q) by curve fitting. We assume the form of formula as

log2(TimeLWE [sec]) =
Bn −C

ln q − A ln s
− D.

which was derived from the estimation in [14]. Using the estimation in [17], they proposed a necessary LWE
dimension n ≥ log(q/s) · (k + 110)/7.2 to achieve 2k attacking time/probability. Remark that the formula
of [14] is a theoretical estimation. In contrast, our formula is from real experiments. In addition, the models
under the formulas are also different, so it is hard to directly compare them.

With our hardness estimations for several parameters satisfies n ∈ [100, 1000], q ∈ [210, 252], s ∈
[2.0, 14.0] and psucc ∈ [0.01, 0.95], besides Table 3, we fix the coefficients as (A, B,C,D) is (1.66, 7.18, 219, 110)
by the least square estimation. Figure 4 is the points whose coordinates are the security estimations by this
formula and our method by (2). We can see the points are on the line y = x which means our formula works
well.

Figure 4: Verifying our security estimation formula

If one wants to obtain bit security, change D to 87. Furthermore, to obtain the lower bound of the
attacking time of parameters, adjust D to 125.

Note that this estimation assumes s > 1.5 because if the deviation is too small, the lattice point enumer-
ation can be done significantly fast. We also assume p ≥ 0.01 because the estimated security (2) is much

14



smaller than that by the formula when the probability is small. For low probability situation, it needs to
perform the individual simulations.

7 Conclusion

We update the lattice based attack for LWE problem and adopt the previous attack to the discrete Gaussian
model. We algo give an explicit formula to bit security estimation. Using this result, we can set the concrete
parameters having any bit security in LWE based scheme.
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A Random Sampling Method to Approximate the Volume of C(lk, rk) in the
Conference Version [6]

We also define the covering object for an even integer k ≥ 2 by

C′(lk, rk) =

(x1, . . . , xk) ∈ Rk : L2
i <

i∑
`=1

x2
` < R2

i for ∀ even i ∈ [k]

 .
Clearly, C(lk, rk) ⊂ C′(lk, rk).

An algorithm for approximating VolC(lk; rk) by induction is given as follows. For the base cases k = 1
and 2, they can be computed by VolC(L1; R1) = 2(R1 − L1) and approximated by the standard Monte-Carlo
sampling method, respectively. For simplicity, let us denote the interval Ik = [−Rk,Rk].

For even k ≥ 2, suppose (an approximation of) VolC(lk; rk) is computed. Then by the relation in (k + 1)-
dimensional space

C(rk+1, lk+1) ⊂ C(rk, lk) × [−Rk+1,Rk+1] ⊂ C′(rk, lk) × [−Rk+1,Rk+1],

the volume in k + 1 dimension is computed by the relation

VolC(rk+1, lk+1) = VolC(rk, lk) · 2Rk+1 × Pr
[
x ∈ C(rk+1, lk+1)

∣∣∣∣x ∈ C(rk, lk) × Ik+1
]
.

where the probability is over x ← C′(rk, lk) × [−Rk+1,Rk+1]. Here, the above holds for any probability
distribution over x ← S such that S ⊃ x ∈ C(rk, lk) × [−Rk+1,Rk+1]. Following [13], we decided to take
S = C′(rk, lk) × [−Rk+1,Rk+1] that gives a better balance between the easiness of sampling and probability
ratio Pr[x ∈ C(rk, lk) × [−Rk+1,Rk+1]]. As shown below, uniform sampling from C′(rk, lk) is easy and hence
the probability is easily approximated.

Next, consider the (k + 2)-dimensional object. By the relation

C(rk+2, lk+2) ⊂ C(rk, lk) × Ik+1 × Ik+2 ⊂ C′(rk, lk) × Ik+1 × Ik+2,

we can also compute the volume by

VolC(rk+2, lk+2) = VolC(rk, lk) · 4Rk+1Rk+2 × Pr
[
x ∈ C(rk+2, lk+2)

∣∣∣x ∈ C(rk, lk) × Ik+1 × Ik+2
]

where the probability is over x← C′(rk, lk) × Ik+1 × Ik+2.

Uniform sampling from even-tube-intersections. To approximate the probability, we need to perform
uniform sampling from C′(rk, lk). This can be done by generating

(
√

u1 cos θ1,
√

u1 sin θ1,
√

u2 cos θ2, . . . ,
√

uk/2 cos θk/2) ∈ Rk (17)

where (θ1, . . . , θk/2) is uniform over [−π, π]k/2 and u = (u1, . . . , uk/2) is uniform from the polygon

P(rk, lk) :=

u ∈ Rk/2
∣∣∣∣L2

2i <

i∑
`=1

u` < R2
2i, ui ∈ [0, 1] ∀i ∈

[
k
2

]
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by the hit-and-run algorithm [28] for sampling points uniformly from this object.
The correctness follows from [13]. Here we give a proof outline. Let us consider the standard (k/2)-

simplex

∆k/2 =

w ∈ Rk/2
∣∣∣∣wi ≥ 0 for ∀i ∈ [k/2] and

k/2∑
`=1

w` ≤ 1


that contains C′(rk, lk), and let (y1, . . . , yk/2) be the uniform sampling from the simplex. Then, the extended
vector (y1, . . . , yk/2, ȳ) where ȳ = 1 − y1 − · · · − yk/2 has the Dirichlet distribution Dir(1, . . . , 1) of order
k/2 + 1. On the other hand, for θ over uniform [−π, π], (cos2 θ, sin2 θ) has the distribution Dir(1/2, 1/2).
Hence, the compound random distribution is a tuple in Rk+2

(y1 cos2 θ1, y1 sin2 θ1, y2 cos2 θ2, . . . , yk/2 cos2 θk/2, ȳ cos2 θk/2+1, ȳ cos2 θk/2+1)

where θi are uniformly sampled from [−π, π] independently, has the distribution Dir(1/2, . . . , 1/2). Thus,
by a straightforward computation of probability density function, the component-wise squared distribution

(
√
y1 |cos θ1| ,

√
y1 |sin θ1| , . . . ,

√
yk/2

∣∣∣sin θk/2
∣∣∣ , √ȳ ∣∣∣sin θk/2+1

∣∣∣ , √ȳ ∣∣∣cos θk/2+1
∣∣∣) ∈ Rk+2

is the uniformly random over the part of (k + 2)-dimensional unit sphere(z1, . . . , zk+2) ∈ Rk+2 : zi ≥ 0 for ∀ i and
k+2∑
i=1

z2
i = 1)

 .
Therefore, extracting first k coordinates and removing the absolute function, it can be shown that

(
√
y1 cos θ1,

√
y1 sin θ1, . . . ,

√
yk/2 cos θk/2) ∈ Rk

is the uniform distribution in the unit ball.
Finally, considering rejection sampling, that is, restricting ∆k/2 to P(rk, lk) corresponds to restricting the

unit ball to C′(rk, lk).
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