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Abstract. In this paper, we extend the tower number field sieve (TNFS)
proposed by Barbulescu, Gaudry, and Kleinjung in Asaicrypt 2015. Our
generalization based on the JLSV algorithm (by Joux, Lercier, Smart, and
Vercautern, Crypto 2006) shows that one can solve the discrete logarithm
over the field FQ := Fpn in time complexity,

LQ(1/3, (64/9)1/3), for p = LQ(`p) with some `p > 1/3.

This should be compared that the previous NFS algorithms only assures
this bound either when `p > 2/3 (the JLSV algorithm) or when p is of
special form when 1/3 < `p < 2/3 (by Joux and Pierrot, Pairing 2013).

Even more, when we apply some variants (such as the multiple number
field sieve or the special number field sieve) to our algorithm, then we
show that the above complexity is further improved.

Keywords: Discrete Logarithm Problem; Number Field Sieve; Finite
Fields; Cryptanalysis.

1 Introduction

The discrete logarithm problem (DLP) has been an important mathematical
tool to support the security of many public key cryptosystems. For the DLP
over a generic group, the best known algorithm has the exponential running
time of O(

√
N), where N denotes the order of the group. On the other hand, if

a group has special structures, then one exploits them to further leverage the
computational costs. In particular, the DLP over finite fields FQ = Fpn can be
solved much more efficiently than the exponential complexity.

When the characteristic p is small compared to the extension degree n, the
best known algorithm has quasi-polynomial time complexity due to Barbulescu,
Gaudry, Joux, and Thomé [2].

DLP over medium/large prime cases. For larger characteristic case, most
of the current best algorithms come from the number field sieve (NFS) algorithm.
The NFS was first introduced by Gordon [9] targeting at the DLP over prime fields.
Later, the NFS was extended to the non-prime finite field cases by Joux, Lercier,



Table 1: The complexity of each algorithms for medium/large prime characteristic
cases. The left-top cell means that the JLSV algorithm has the complexity of
LQ(1/3, (128/9)1/3) for primes p = LQ(`p) with 1/3 < `p < 2/3.

p = LQ(`p) 1/3 < `p < 2/3 2/3 < `p < 1

JLSV [10] 128/9 64/9
BGGM [1] 96/9 64/9

BP [4] 213/36 (92 + 26
√

13)/27

Pierrot [13] (72 + 32
√

6)/15 none
JP [11] ≈ 64/9 32/9

Smart, and Vercauteren [10]. It is further improved by many following works such
as the multiple number field sieve (MNFS) by Barbulescu and Pierrot [4], the NFS
with conjugation method and the generalized Joux and Lercier (gJL) method by
Barbulescu, Gaudry, Guillevic, and Morain [1], and the MNFS with conjugation
method and gJL method by Pierrot [13]. When p is of special form, e.g. in the
case of pairing construction such as BN curves [5], the special number field sieve
(SNFS) proposed by Joux and Pierrot [11] provides a better performance.

Recall the usual LQ-notation,

LQ(`, c) = exp
(
c(logQ)`(log logQ)1−`

)
,

for some constants 0 ≤ ` ≤ 1 and c > 0. All of the above algorithms have different
complexity following by the size of the characteristic, say, medium case and large
case, where we call the prime p = LQ(`p, cp) medium for 1/3 < `p < 2/3 and
large for 2/3 < `p < 1.

In particular, all of them share features that the complexity for the medium
prime case is slightly larger than that of the large prime case. To overview the
complexity of those algorithms, we provide Table 1. The value in each cell of the
table, if we denote it by C, means that the complexity of the correspond algorithm
is given by LQ(1/3, C1/3) in the range of primes of the corresponding size. Each
of the cells in the same column is listed in (almost) decreasing order (except the
case between BGGM and BP in medium case, in which 96/9 < 213/36).

Our Contributions. In this paper, we break out this barrier between the
medium and large characteristic cases. For instance, our algorithm based on the
JLSV algorithm has a complexity of LQ(1/3, (64/9)1/3) for any prime p such that
`p > 1/3. As seen in Table 1, this value is already the best among the existing
algorithms in the medium case. Note that we do not restrict any form of the
prime, otherwise the JP algorithm [11] requires a special form of the prime.

Our main idea is based on a recent progress on the NFS by Barbulescu,
Gaudry, and Kleinjung [3]. They provided an algorithm so called the tower
number field sieve (TNFS) by revisiting the Schirokauer’s TNFS [15]. Their
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algorithm generalizes the NFS for prime field case to the NFS for prime-power
field case with the following observation: Regard Fpη as (Z[t]/h(t))/p(Z[t]/h(t))
for an irreducible polynomial h ∈ Z[t] of degree η. To target the field Fpη , one
just applies arguments from the NFS algorithm for Zp = Z/pZ, replacing Z by
R in the arguments.

Due to this construction, their analysis has an analogy with that of the NFS
for prime fields, while the TNFS targets at “large” prime characteristic case in
their case. Their algorithm is mathematically elegant, but the result in terms of
a complexity is less impressive, since the same complexity was already known by
the JLSV algorithm [10].

In this paper, we further extend this TNFS. As the TNFS algorithm has an
analogy with the NFS algorithm for prime field, our extended algorithm has an
analogy with the NFS algorithm for non-prime field. In a nutshell, we target a
field

F(pη)κ = Rp[x]/k(x),

where R = R/pR = Fpη and k is an irreducible polynomial of degree κ in Rp[x].
Recall that, in the case of the NFS algorithm over non-prime field, a target field
can be written as Fpκ = Zp[x]/k(x) by abusing the notation Zp with Fp.

Interestingly, this analogy provides a complexity analysis of the exTNFS
which are quite similar to that of the NFS for “large” prime cases, while in this
case we can target at the medium prime cases. As a consequence, we obtain a new
complexity in the medium prime case which are the same with the state-of-art
complexity in the large prime case.

2 Overview of Extended TNFS

We briefly review the TNFS [3] and provide our algorithm that extends the TNFS.
Throughout this paper, we target fields FQ with Q = pn for n = ηκ, where η
and κ are coprime integers. In particular, we consider the case of p = LQ(`p) for
some constant `p > 1/3.

Let h(t) ∈ Z[t] be an irreducible polynomial of degree η. Define a ring
R := Z[t]/h(t). Furthermore, we require h(t) remains irreducible modulo p so
that p is inert in the number field Q[t]/h(t) that contains a subring R. The TNFS
algorithm [3] involves of selecting two irreducible polynomials f and g in R[x]
that shares a common root, say m, modulo pR.

The conditions on f , g, and h yield two ring homomorphisms fromR[x]/f(x) (resp.
R[x]/g(x)) to R/pR = Fpη by taking a root αf (resp. αg) of f (resp. g) to the
common root m. Thus one has the commutative diagram in Figure 1. Note
that, in the case of R = Z, we get a commutative diagram in the classical NFS
algorithm for prime fields.

On the other hand, let us recall a classical NFS algorithm over non-prime
field, say Fpκ = Fp[x]/k(x) for an irreducible polynomial k(x) of degree κ > 1.
Polynomial selection method for most algorithms such as [10,1] require two
irreducible polynomials f and g in Z[x] such that k | gcd(f, g) modulo p.
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R[x]

Kf ⊃ R[x]/〈f(x)〉 R[x]/〈g(x)〉 ⊂ Kg

Rp = R/pR

αf→m

R→R mod p

αg→m

R→R mod p

Fig. 1: Commutative diagram of TNFS with R = Z(ι) and f(m) ≡ g(m) ≡
0 mod pR. When R = Z, it yields the NFS over prime field.

R[x]

Kf ⊃ R[x]/〈f(x)〉 R[x]/〈g(x)〉 ⊂ Kg

Rp[x]/〈k(x)〉

αf→m

R→R mod p

αg→m

R→R mod p

Fig. 2: Commutative diagram of exTNFS with R = Z(ι) and Rp = R/pR. When
R = Z, it yields the diagram for NFS over non-prime field. When k(x) = x−m,
it yields the diagram for TNFS.

In our extended TNFS, we consider two irreducible polynomials f and g in
R[x], where R is the ring defined as before. At this stage, we let k(x) ∈ Rp[x] =
Fpη [x] be irreducible of degree κ and we impose the conditions such that k divides
both f and g modulo pR.

Let Rp := R/pR. By the above conditions on f , g, h, and k, there exist
two ring homomorphisms from R[x]/f(x) (resp. R[x]/g(x)) to Rp[x]/k(x) = FQ.
Each of homomorphism maps the root αf (resp. αg) of f (resp. g) to m ∈ Rp,
where m denotes a root of k(x) modulo pR. See the commutative diagram given
in Figure 2. When R = Z, it yields the digram in the classical NFS for target field
Fpκ . When k(x) = x−m for a common root m of f and g, it simply provides
the diagram for the TNFS as in Figure 1.

As in [1], we take the coefficients of f or g from Z, not in R itself, but we
keep considering f and g as polynomials in R[x]. Denote Kf (resp. Kg) by the
number field defined by f (resp. g) over the field Q[t]/h(t). We consider R[x]/f(x)
(resp. R[x]/g(x)) as a subring of Kf (resp. Kg). In the case of exTNFS, these
conditions on f and g further ask the coefficients of k to be in Zp, instead of
Rp = Fpη .

Afterwards, the exTNFS algorithm proceeds as usual. It comprises of polyno-
mial selection, relation collection, linear algebra step, and individual logarithm
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phase. Most of these steps are quite similar to the TNFS algorithms as we shall
explain below.

3 Detailed Descriptions

3.1 Polynomial Selection

As described before, we take f and g from Z[x], but in the following analysis
we keep considering them as in R[x]. Then the previous condition on k ∈ Rp[x]
implies that k should be an irreducible polynomial in Rp[x] with coefficients in
Zp satisfying that k | gcd(f, g) (mod p). Recall that Rp = Fpη , where deg(k) = κ
is coprime to η. Since any irreducible polynomial over Fp of degree κ is also
irreducible over Fpη for gcd(η, κ) = 1, we are free to choose k from any irreducible
polynomial over Fp.

For our purpose, one can use any polynomial selection method as in the NFS
algorithm for large prime cases [10,1,13]. To fix ideas, we take polynomials f and
g following by the JLSV algorithm [10].

JLSV algorithm. We briefly describe the polynomial selection in the JLSV
algorithm for the large prime characteristic case ([10], Sec 3.2). One first chooses
a monic polynomial f0(x) of degree κ, and has small coefficients. Set an integer
W ∼ p1/(D+1), where D (the precise value will be determined later) will be
D := deg(g) ≥ κ. Then we define f(x) := f0(x + W ). Take the coefficients of
g(x) by the LLL reduction output of the lattice L defined by the columns:

L := (p · x0, . . . , p · xκ, f(x),xf(x), . . . ,xD+1−κf(x)).

Here, f(x) denotes a vector by its coefficients for a polynomial f . Finally, we set
k = f and we have ‖f‖∞ ≈ ‖g‖∞ ≈ pκ/(D+1), where ‖f‖∞ denotes the absolute
value of the largest coefficient of f .

Choice of h. Now we are left to select an irreducible polynomial h(t) of degree
η to define a ring R = Z[t]/h(t). We also require that h remains irreducible
modulo p. We select the coefficients of h to be small so that ‖h‖∞ = O(1).
Heuristically, one can find such polynomials after η trials, since the probability of
irreducibility modulo p is ≈ 1/η. For more rigorous description on the existence
of such polynomials, refer to [3] for details.

3.2 Relation Collection

As usual, we say that we obtain a relation when two principal ideals each of which
is generated by the image of a polynomial r(x) ∈ R[x] in Kf or Kg simultaneously
factor into prime ideals of norm less than a value B (will be determined later).

Throughout this section, to fix ideas, we only consider the cases of f -side,
but it also readily applies to the case of g-side.
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Factor base. In particular, we only consider linear polynomials of form r(x) = a−
bx as in the case of the TNFS. It helps us to deal with only prime ideals of degree
1 as a factor base element (except a few ideals that divides the discriminants).

The following proposition [7, Lemma 2.3.9] is a simple generalization of
Lemma 10.5.1 in [6] which was restated in [3, Proposition 1].

Proposition 1 ([3], Proposition 1.). Let Q(ι) = Q[t]/h(t) be a number field
and Oι be its ring of integers. Let f be an irreducible polynomial in Oι[x] and α
denotes one of its roots. We consider the extension number field Kf := Q(ι, α).
Denote Of by its ring of integers. Let D be a prime ideal in Kf lying over a prime
ideal q ⊆ Oι. If D divides the ideal (a − bα) ⊂ Kf for any coprime elements
a, b ∈ Oι, then either q divides the index [Of : Oι[α]] or

D = 〈q, α− γ〉,

where γ is an element in Q(ι) such that γ ≡ a/b (mod q).

As a consequence of this proposition, we keep only the ideals of degree 1 in
the factor bases of each side. We define the factor base for f for a smoothness
bound B (will be determined later) by

Ff (B) =

{
〈q, α− γ〉 :

q is a prime in Q(ι) lying over prime
p ≤ B and f(γ) ≡ 0 (mod q)

}
.

We define Fg(B) similarly. As usual, we have to deal with the case when
q divides the index ideal [Of : Oι[α]] separately. To do this, we add the ideals
above Disc(f) and the ideals above the leading coefficients to the factor base for
f , and similarly for g. See [3] for details.

Finally, we write the set of all the factor base elements for both side by F .
By the prime number theorem, we again make an usual heuristic arguments that
#F ≈ 2(B/ logB). In our analysis, we approximate #F = LQ(1/3, β) for some
β > 0.

Estimation of the norm size. Once the factor base is fixed, we search for relations
by testing the smoothness of NKf/Q(a− bαf ) for a, b ∈ R = Z(ι). For this, we
first estimate the size of the norm.

Let a(t), b(t) ∈ Z[t] be polynomials of at most degree η − 1. Denote A by an
absolute bound on the coefficients of a(t) and b(t). We introduce the following
lemma derived in [3].

Lemma 1 ([3], Theorem 3.). Let h and f be monic irreducible polynomials
over Z of respective degrees η and κ := deg(f). Let Kf := Q(ι, α) be the composi-
tion field as defined in Proposition 1, where ι and α are respective roots of h and f .
Let a(t), b(t) ∈ Z[t] be polynomials of at most degree η − 1 with ‖a‖∞, ‖b‖∞ ≤ A.
Then we have

|NKf/Q(a(ι)− b(ι)αf )| < Aη·κ‖f‖η∞‖h‖κ·(η−1)∞ C(η, κ), (1)

where C(η, κ) = (η + 1)(3κ+1)η/2(κ+ 1)3η/2.
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Remark that we conditioned on h and f to be monic in Lemma 1. However,
this is just to avoid some technicalities, and we simply overcome the issue by
adding a few prime ideals that divide the leading coefficient to the factor base.
See [3]. For the simplicity, we keep assuming the polynomials are monic.

Turning to our interest. To fix idea, we approximate the value D := deg(g) ≥ κ
by,

D = cD

(
logQ

log logQ

)1/3

.

Let us evaluate ‖h‖∞ = O(1) and the values of ‖f‖∞, ‖g‖∞ ≈ pκ/(D+1) coming
from the JLSV polynomial selection (Section 3.1) to Equation 1. Then we get

|NKf/Q(a− bαf )| <
(
Aηκ(p

κ
D+1 )η

)1+o(1)
=
(
EκP

κ
D+1

)1+o(1)
, (2)

and

|NKg/Q(a− bαg)| <
(
AηD(p

κ
D+1 )η

)1+o(1)
=
(
EDP

κ
D+1

)1+o(1)
, (3)

where we set E := Aη and P := |Rp| = pη.
In our analysis, we assumed that the contribution of C(η,D) (thus, so C(η, κ))

is negligible. It is equivalent to ask the value of C(η,D) to be strictly smaller

than LQ(2/3), or, the expression for η is strictly less than
(

logQ
log logQ

)1/3
. It is

also equivalent to P = LQ(`P ) for some `P > 2/3.
It is remarkable that the above expressions for the norms are the same for

the large prime case [10, Appendix A.3.], where P = p and κ = n. Recall that
the TNFS algorithm had a similar analogy with the NFS for the prime field case.

Virtual logarithms. From a relation, we deduce a linear relation in terms of
Schirokauer’s virtual logarithms [14]. For this, it is simpler to work withKf = Q(θ)
for a primitive element θ in Kf . Since the arguments in our exTNFS does not
change from that of the TNFS, we simply refer to [3] for further details.

3.3 Complexity Analysis

In this section, we analyze the complexity of the main phase of the algorithm. It
is analogous to that of the NFS for large prime cases (e.g. [10, Appendix A.3.]).

In our case, the size of the search space for pairs (a, b) ∈ R2 is E2. We collect
approximately B linear relations of virtual logarithms to solve the logarithms
of the factor base elements. The cost for linear algebra step is thus of B2. To
minimize the cost, we set

E = B = LQ(1/3, β) for some β > 0.

From Equation (2) and (3), the product of the norms is bounded by
(
ED+κP

2κ
D+1

)1+o(1)
=(

ED+κQ
2

D+1
)1+o(1)

. When P = LQ(`P ) for `P > 2/3, then the contribution by
κ becomes negligible to D (recall that Q = Pκ) and we have

(absolute value of the product of norms) = LQ(2/3, βcD + 2/cD),
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which is minimized to LQ
(
2/3, 2

√
2β
)

at cD =
√

2/β.
Let P denote the probability that the product of the norms factors into primes

less than B. Using Canfield-Erdös-Pomerance theorem, we have

P = LQ(1/3,−2/3
√

2/β).

Since we want to have E2 · P = B, we take 1/P = B. It yields the value of
β = (8/9)1/3. Thus the total cost for the main phase becomes

LQ(1/3, 2β) = LQ(1/3, (64/9)1/3),

where (64/9)1/3 ≈ 1.923. Recall that our complexity analysis has carried out
under the condition that

p = LQ(`p, cp) for some `p > 1/3.

This should be compared that a previous state-of-art algorithm in the medium
characteristic case, the MNFS with conjugation method [13], has a complexity of
LQ(1/3, 2.156). Moreover, this already has a similar complexity with the SNFS
in the same case, which applies only for special prime case. Furthermore, using
many variants, we show that the complexity can be reduced further in Section 4.

The choice of parameters. Throughout this section, we assumed that p = LQ(`p)
for `p > 1/3, conditioned on that

P = pη = LQ(`P ) for some `P > 2/3,

for κ to be negligible to D, and

η = cη

(
logQ

log logQ

)`η
for some `η < 1/3,

for C(η,D) to be negligible to LQ(2/3).
This can be done as follows: From P = LQ(`P ) = LQ(`p + `η), these two

requirements are equivalent to 2/3− `p < `η < 1/3. Since `p > 1/3 (i.e. 1/3 >
2/3− `p), one can always select a real number `η between 2/3− `p and 1/3.

4 Variants.

The case of the SNFS. In the case of the prime p is of a special form, we
apply Joux and Pierrot’s SNFS method [11] to our exTNFS. This includes the
case appears in the pairing constructions (e.g. BN curve [5], Freeman curve [8]),
but it generally applies to any case satisfying that

p = Π(u) for some u,

where Π(x) is a polynomial of degree λ of small coefficients.
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In the case, our exTNFS selects two polynomials similarly as in Joux and
Pierrot’s algorithm. Let h(t) ∈ Z[t] be an irreducible polynomial of degree η,
still irreducible modulo p, and of small coefficients. Choose k(x) an irreducible
polynomial of degree κ over Fp, but viewed as a polynomial over Rp = Fpη
similarly before. Note that k is still irreducible over Rp since gcd(κ, η) = 1. Let
f = k be of form

f(x) = k(x) = xκ + S(x)− u,

where the coefficients of S are chosen from {−1, 0, 1} and p = Π(u). Choose g
such that

g(x) = Π(xκ + S(x)).

Then, we deduce that k | g mod pR.
Applying Lemma 1, we obtain the product of norm bounded by

|NKf/Q(a− bαf )| · |NKg/Q(a− bαg)| <
(
E(λ+1)κP 1/λ

)1+o(1)
,

where E = Aη and P = pη as before.

Set κλ =
(

2 logQ
3 log logQ

)1/3
. Following the analysis by Joux and Pierrot [11,

Section 6.3.], instead of p by P , we obtain the overall complexity given by

LQ(1/3, (32/9)1/3)

conditioned on that P = LQ(`P ) for `P > 2/3. As before, the condition translates
to `p > 1/3. See the end of Section 3.3.

The case of the MNFS. Choose f1 and f2 followed by the JLSV algorithm
as described earlier (in terms of the previous notations, f1 = f and f2 = g). We
select other V − 2 irreducible polynomials as linear combinations of f1 and f2
of coefficients bounded by

√
V . Denote αi by a root of fi for i = 1, 2, . . . , V . As

before, we have the norms bounded by

|NKf1/Q(a− bα1)| <
(
EκPκ/(D+1)

)1+o(1)
,

and
|NKfi/Q(a− bαi)| <

(
EDPκ/(D+1)

)1+o(1)
for 2 ≤ i ≤ V.

We choose κ = 1
cP

(
logQ

log logQ

)1−cP
, D = cD

(
logQ

log logQ

)1/3
, and E = LQ(1/3, cEcP ).

When `P > 2/3, we get Eκ = LQ(`) for ` < 2/3.
Replaced with p by P in the analysis by Barbulescu and Pierrot [4, Section

5.3.], we deduce the complexity of exTNFS using the MNFS in the medium
characteristic case,

LQ

(
1/3,

(92 + 26
√

13

27

)1/3)
.

Similarly before, the condition `P > 2/3 translates to `p > 1/3.
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5 Conclusion

In this paper, we extend the TNFS which was recently revisited by Barbulescu,
Gaudry, and Kleinjung [3]. Our results shows that the DLP over medium char-
acteristic field, which was believed to be harder before, is not so harder than
the case of large characteristic field. Precisely, the complexity of our extended
TNFS does not depend on the size of the characteristic, whenever p = LQ(`p) for
`p > 1/3. Consequently, in the world of DLP over finite fields, we only have two
separate cases, small characteristic case (when `p < 1/3) and large characteristic
case (when `p > 1/3).
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