
Extended Tower Number Field Sieve:
A New Complexity for the Medium Prime Case?

Taechan Kim1 and Razvan Barbulescu2

1 NTT Secure Platform Laboratories, Japan
taechan.kim@lab.ntt.co.jp

2 CNRS, Univ Paris 6, Univ Paris 7, France
razvan.barbulescu@imj-prg.fr

Abstract. We introduce a new variant of the number field sieve algo-
rithm for discrete logarithms in Fpn called exTNFS. The most important
modification is done in the polynomial selection step, which determines
the cost of the whole algorithm: if one knows how to select good polynomi-
als to tackle discrete logs in Fpκ , exTNFS allows to use this method when
tackling Fpηκ whenever gcd(η, κ) = 1. This simple fact has consequences
on the asymptotic complexity of NFS in the medium prime case, where the
complexity is reduced from LQ(1/3, 3

√
96/9) to LQ(1/3, 3

√
48/9), Q = pn,

respectively from LQ(1/3, 2.15) to LQ(1/3, 1.71) if multiple number fields
are used. On the practical side, exTNFS can be used when n = 6 and
n = 12 and this requires to update the keysizes used for the associated
pairings-based cryptosystems.

Keywords: Discrete Logarithm Problem; Number Field Sieve; Finite
Fields; Cryptanalysis

1 Introduction

The discrete logarithm problem (DLP) is at the foundation of a series of public key
cryptosystems. Over a generic group of cardinality N , the best known algorithm
to solve the DLP has an exponential running time of O(

√
N). However, if the

group has a special structure one can design better algorithms, as it is the case
for the multiplicative group of finite fields FQ = Fpn where the DLP can be
solved much more efficiently than in the exponential time.

When the characteristic p is small compared to the extension degree n, the
best known algorithms have quasi-polynomial time complexity [6,17].

DLP over fields of medium and large characteristic Recall the usual
LQ-notation,

LQ(`, c) = exp
(
c(logQ)`(log logQ)1−`

)
,

? This work is a merged version of two consecutive works [20] and [4].

for some constants 0 ≤ ` ≤ 1 and c > 0. We call the characteristic p = LQ(`p, cp)
medium when 1/3 < `p < 2/3 and large when 2/3 < `p ≤ 1. We are in the
boundary case if `p = 2/3.

For medium and large characteristic, in particular when Q is prime, all the
state-of-art attacks are variants of the number field sieve (NFS) algorithm. Initially
used for factoring, NFS was rapidly introduced in the context of DLP [16,26]
to target prime fields. One had to wait almost one decade before the first
constructions for Fpn with n > 1 were proposed [27], known today [7] as the
tower number field sieve (TNFS). This case is important because it is used to
choose the key sizes for pairings based cryptosystems. Since 2006 one can cover
the complete range of large and medium characteristic finite fields [18]. This
latter approach that we denote by JLSV has the advantage to be very similar to
the variant used to target prime fields, except for the first step called polynomial
selection where two new methods were proposed: JLSV1 and JLSV2.

In the recent years NFS in fields Fpn with n > 1 has become a laboratory
where one can push NFS to its limits and test new ideas which are ineffective
or impossible in the factorization variant of NFS. Firstly, the polynomial se-
lection methods were supplemented with the generalized Joux-Lercier (GJL)
method [22,5], with the Conjugation (Conj) method [5] and the Sarkar-Singh (SS)
method [25]. One can see Table 1 for a summary of the consequences of these
methods on the asymptotic complexity. In particular, in all these algorithms the
complexity for the medium prime case is slightly larger than that of the large
prime case.

Table 1: The complexity of each algorithms in the medium and large prime cases.
Each cell indicates c if the complexity is LQ(1/3, (c/9)

1
3).

p = LQ(`p) 1/3 < `p < 2/3 best `p = 2/3 2/3 < `p < 1

TNFS [27,7] none none 64
NFS-JLSV [18] 128 64 64

NFS-(Conj and GJL) [5] 96 48 64
NFS-SS [25] 96 48 64

exTNFS (this article) 48 48 64

Secondly, a classical idea which was introduced in the context of factorization
is to replace the two polynomials f and g used in NFS by a polynomial f and
several polynomials gi, i = 1, 2, . . . which play the role of g. All the currently
known variants of NFS admit variants with multiple number fields (MNFS) which
have a slightly better asymptotic complexity, as shown in Table 2. The discrete
logarithm problem allows to have a case with no equivalent in the factorization
context: instead of having a distinguished polynomial f and many sides gi all
the polynomials are interchangeable [8].

2

Table 2: The complexity of each algorithms using multiple number fields. Each
cell indicates an approximation of c if the complexity is LQ(1/3, (c/9)

1
3)

p = LQ(`p) 1/3 < `p < 2/3 best `p = 2/3 2/3 < `p < 1

MTNFS [7] none none 61.93
MNFS-JLSV [8] 122.87 61.93 61.93

MNFS-(Conj and GJL) [24] 89.45 45.00 61.93
MNFS-SS [25] 89.45 45.00 61.93

MexTNFS (this article) 45.00 45.00 61.93

Thirdly, when the characteristic p has a special form, as it is the case for fields
in several pairings-based cryptosystems, one might speed-up the computations
by variants called special number field sieve (SNFS). In Table 3 we list the
asymptotic complexity of each algorithm. Once again, the medium characteristic
case is harder than the large characteristic one.

Table 3: The complexity of each algorithms used when the characteristic has a
special form (SNFS) Each cell indicates an approximation of c if the complexity

is LQ(1/3, (c/9)
1
3)

p = LQ(`p) 1/3 < `p < 2/3 2/3 < `p < 1

JP [19] 64 32
STNFS [7] none 32

SexTNFS (this article) 32 32

Our contributions Let us place ourselves in the case when the extension degree
is composite with relatively prime factors, n = ηκ with gcd(η, κ) = 1. The basic
idea is to use the trivial equality

Fpn = F(pη)κ .

In the JLSV algorithm, Fpn is constructed as Fp[x]/k(x) for an irreducible
polynomial k(x) of degree n. In the TNFS algorithm Fpn is obtained as R/pR
where R is a ring of integers of a number field where p is inert. In our construction
Fpη = R/pR as in TNFS and Fpn = (R/pR)[x]/(k(x)) where k is a degree κ
irreducible polynomial over Fpη .

Interestingly, this construction can be integrated in an algorithm, that we call
the extended number field sieve (exTNFS), in which we can target Fpηκ with the

3

same complexity as FPκ for a prime P of the same bitsize as pη. Hence we obtain
complexities for composite extension degrees which are similar in the medium
characteristic case to the large characteristic case. Since the previous algorithms
have an “anomaly” in the case `p = 2/3, where the complexity is better than in
the large prime case, when n is composite we obtain a better complexity for the
medium prime case than in the large prime case.

Overview We introduce the new algorithm in Section 2 and analyse its com-
plexity in Section 3. The multiple number field variant and the one dedicated to
fields of SNFS characteristic are discussed in Section 4. In Section 5 we make a
precise comparison to the state-of-art algorithms at cryptographic sizes before
concluding with the consequences on the key size estimations for pairing-based
construction.

2 Extended TNFS

2.1 Setting

Throughout this paper, we target fields FQ with Q = pn where n = ηκ such that
gcd(η, κ) = 1 and the characteristic p is medium or large, i.e. `p > 1/3.

First we select a polynomial h(t) ∈ Z[t] of degree η which is irreducible
modulo p. We put R := Z[t]/h(t) and note that R/pR ' Fpη . Then we select two
polynomials f and g with integer coefficients whose reductions modulo p have a
common factor k(x) of degree κ which is irreducible over Fpη . Our algorithm is
unchanged if f and g have coefficients in R because in all the cases we use the
number fields Kf (resp. Kg) defined by f (resp. g) above the fraction field of R
but this generalization is not needed for the purpose of this paper, except in a
MNFS variant.

The conditions on f , g and h yield two ring homomorphisms from R[x]/f(x)
(resp. R[x]/g(x)) to (R/pR)/k(x) = Fpηκ : in order to compute the reduction of a
polynomial in R[x] modulo p then modulo k(x) one can start by reducing modulo
f (resp. g) and continue by reducing modulo p and then modulo k(x). The result
is the same if we use f as when we use g. Thus one has the commutative diagram
in Figure 1 which is a generalization of the classical diagram of NFS.

After the polynomial selection, the exTNFS algorithm proceeds as all the
variants of NFS, following the same steps: relations collection, linear algebra and
individual logarithm. Most of these steps are very similar to the TNFS algorithms
as we shall explain below.

2.2 Detailed Descriptions

Polynomial Selection

4

R[x]

Kf ⊃ R[x]/〈f(x)〉 R[x]/〈g(x)〉 ⊂ Kg

(R/pR)[x]/〈k(x)〉
mod p

mod k(x)

mod p

mod k(x)

Fig. 1: Commutative diagram of exTNFS. When R = Z this is the diagram of
NFS for non-prime fields. When k(x) = x−m for some m ∈ R this is the diagram
of TNFS. When both R = Z and k(x) = x−m this is the diagram of NFS.

Choice of h We have to select a polynomial h(t) ∈ Z[x] of degree η which is
irreducible modulo p and whose coefficients are as small as possible. As in TNFS
we try random polynomials h with small coefficients and factor them in Fp[t]
to test irreducibility. Heuristically, one succeeds after η trials and since η ≤ 3η

we expect to find h such that ‖h‖∞ = 1. For a more rigorous description on the
existence of such polynomials one can refer to [7].

Next we select f and g in Z[x] which have a common factor k(x) modulo
p of degree κ which remains irreducible over Fpη . It is here that we use the
condition gcd(η, κ) = 1 because an irreducible polynomial k(x) ∈ Fp[x] remains
irreducible over Fpη if and only if gcd(η, κ) = 1. If one has an algorithm to select
f and g in R[x] one might drop this condition, but in this paper f and g have
integer coefficients. Thus it is enough to test the irreducibility of k(x) over Fp
and we have the same situation as in the classical variant of NFS for non-prime
fields (JLSV): JLSV1, JLSV2, Conjugation method, GJL and Sarkar-Singh. Let
us present two of these methods which are important for results of asymptotic
complexity.

JLSV2 method We briefly describe the polynomial selection introduced in Section
3.2 of [18]. One first chooses a monic polynomial f0(x) of degree κ with small
coefficients, which is irreducible over Fp (and automatically over Fpη because
gcd(η, κ) = 1). Set an integer W ≈ p1/(D+1), where D is a parameter determined
later subject to the condition D ≥ κ. Then we define f(x) := f0(x+W). Take
the coefficients of g(x) as the shortest vector of an LLL-reduced basis of the
lattice L defined by the columns:

L := (p · x0, . . . , p · xκ, f(x),xf(x), . . . ,xD+1−κf(x)).

Here, f(x) denotes the vector formed by the coefficients of a polynomial f . Finally,
we set k = f then we have

– deg(f) = κ and ‖f‖∞ = O(p
κ

D+1);

– deg(g) = D ≥ κ and ‖g‖∞ = O(p
κ

D+1).

5

Conjugation method We recall the polynomial selection method in Algorithm 4
of [5]. First, one chooses two polynomials g1(x) and g0(x) with small coefficients
such that deg g1 < deg g0 = κ. Next one chooses a quadratic, monic, irreducible
polynomial µ(x) ∈ Z[x] with small coefficients. If µ(x) has a root δ in Fp and
g0 +δg1 is irreducible over Fp (and automatically over Fpη because gcd(η, κ) = 1),
then set k = g0 + δg1. Otherwise, one repeats the above steps until such g1,
g0, and δ are found. Once it has been done, find u and v such that δ ≡ u/v
(mod p) and u, v ≤ O(

√
p) using rational reconstruction. Finally, we set f =

ResY (µ(Y), g0(x) + Y g1(x)) and g = vg0 + ug1. By construction we have

– deg(f) = 2κ and ‖f‖∞ = O(1);

– deg(g) = κ and ‖g‖∞ = O(
√
p) = O(Q

1
2ηκ).

The bound on ‖f‖∞ depends on the number of polynomials g0 +δg1 tested before
we find one which is irreducible over Fp. Heuristically this happens on average
after 2κ trials. Since there are 32κ > 2κ choices of g0 and g1 of norm 1 we have
‖f‖∞ = 1.

Relation Collection The elements of R = Z[x]/h(x) can be represented
uniquely as polynomials of Z[x] of degree less than deg h.

We proceed as in TNFS and enumerate all the pairs (a, b) ∈ Z[t]2 of degree
≤ η − 1 such that ‖a‖∞, ‖b‖∞ ≤ A for a parameter A to be determined. We say
that we obtain a relation for the pair (a, b) if

Nf (a, b) := Rest(Resx(a(t)− b(t)x, f(x)), h(t)) and
Ng(a, b) := Rest(Resx(a(t)− b(t)x, g(x)), h(t))

are B-smooth for a parameter B to be determined (an integer is B-smooth if all
its prime factors are less than B). If ι denotes a root of h in R our enumeration
is equivalent to putting linear polynomials a(ι)− b(ι)x in the top of the diagram
of Figure 1. One can generalize exTNFS to the case where one puts non-linear
polynomials r(x) ∈ R[x] in the diagram but this is not necessary in this paper.

For each pair (a, b) we can write a linear equation and this part, although
computationally negligible, demands some mathematical details.

Factor base Let αf (resp. αg) be a root of f in Kf (resp. of g in Kg), the
number field it defines over the fraction field of R. Then the norm of a(ι) −
b(ι)αf (resp. a(ι) − b(ι)αg) over Q is Rest(Resx(a(t) − b(t)x, f(x)), h(t)) (resp.
Rest(Resx(a(t)− b(t)x, g(x)), h(t))) up to a power of l(f) (resp. l(g)), the leading
coefficient of f (resp. g). We call factor base the set of prime ideals of Kf and Kg

which can occur in the factorization of a(ι)− b(ι)αf and a(ι)− b(ι)αg when both
norms are B-smooth. By Proposition 1 in [7] we can give an explicit description
of the factor base as F(B) := Ff (B)

⋃
Fg(B) where

Ff (B) =

{
〈q, α− γ〉 :

q is a prime in Q(ι) lying over a prime
p ≤ B and f(γ) ≡ 0 (mod q)

}
⋃
{prime ideals of Kf dividing l(f)Disc(f)} .

and similarly for Fg(B).

6

Schirokauer maps If 〈a(ι) − b(ι)αf 〉 =
∏

q∈Ff (B) q
valq(a(ι)−b(ι)αf) and 〈a(ι) −

b(ι)αg〉 =
∏

q∈Fg(B) q
valq(a(ι)−b(ι)αg) we write∑

q∈Ff (B)

valq(a(ι)−b(ι)αf) log q+εf (a, b) =
∑

q∈Fg(B)

valq(a(ι)−b(ι)αg) log q+εg(a, b)

where the log sign denotes virtual logarithms in the sense of [26] and [18] and εf
and εg are correction terms called Schirokauer maps which were first introduced
in [26].

The novelty for TNFS and exTNFS with respect to JLSV is that Kf and Kg

are constructed as tower extensions instead of absolute extensions. On the other
hand, it is more convenient to work on absolute extensions when we compute
Schirokauer maps. We solve this problem by computing primitive elements θf
(resp. θg) of Kf/Q (resp. Kg/Q). For a proof we refer to Section 4.3 in [18].

Linear algebra and individual logarithm These two steps are unchanged
with respect to the classical variant of NFS. The linear algebra step, comes
after relation collection and consists in solving the linear system over Fl for
some prime factor l of the order of F∗Q. Using Wiedemann’s algorithm this has
a quasi-quadratic complexity in the size of the linear system, which is equal to
the cardinality of the factor base. In [7] it is shown that the factor base has
(2 + o(1))B/ logB elements, so the cost of the linear algebra is B2+o(1).

In the individual logarithm step one writes any desired discrete logarithm
as a sum of virtual logarithms of elements in the factor base. Since the step is
very similar to the corresponding step in NFS we keep the description for the
Appendix.

3 Complexity

The complexity analysis of exTNFS follows the steps of the analysis of NFS in
the case of prime fields. It is expected that the stages of the algorithm other
than the relation collection and the linear algebra are negligible, hence we select
parameters to minimize their cost and afterwards we check that the other stages
are indeed negligible.

Let us call T the time spent in average for each polynomial r ∈ R[x] enumer-
ated in the relation collection stage (in this paper r = a(ι)− b(ι)x), and let Pf
(resp. Pg) be the probability that the norm Nf (resp. Ng) of r with respect to f
(resp. g) is B-smooth. The number of polynomials that we test before finding
each new relation is on average 1/(PfPg), so the cost of the relations collection
is #F(B)T/(PfPg).

We make the usual heuristic that the proportion of smooth norms is the
same as the proportion of arbitrary positive integers of the same size, so Pf =
Prob(Nf , B) (resp Pg = Prob(Ng, B)) where Prob(x, y) is the probability that
an arbitrary integer less than x is y-smooth. The value of T depends on whether
we use a sieving technique or we consider each value and test smoothness with

7

ECM [21]; if we use the latter variant we obtain T = LB(1/2,
√

2)(logQ)O(1), so
T = Bo(1). Using the algorithm of Wiedemann [28] the cost of the linear algebra
is (#F(B))2+o(1) = B2+o(1). Hence, up to an exponent 1 + o(1), we have

complexity(exTNFS) =
B

Prob(Nf , B)Prob(Ng, B)
+B2. (1)

This equation is the same for NFS, TNFS, exTNFS and the corresponding SNFS
variants. The differences begin when we look at the size of Nf and Ng which
depend on the polynomial selection method. In what follows we instantiate
Equation (1) with various cases and obtain equations which have already been
analysed in the literature.

Lemma 1. Let h and f be irreducible polynomials over Z and call η := deg h
and κ := deg(f). Let a(t), b(t) ∈ Z[t] be polynomials of degree at most η − 1 with
‖a‖∞, ‖b‖∞ ≤ A. We put Nf (a, b) := Rest(Resx(a(t)− b(t)x, f(x)), h(t)). Then
we have

1.
|Nf (a, b)| < Aη·κ‖f‖η∞‖h‖κ·(η−1)∞ C(η, κ), (2)

where C(η, κ) = (η + 1)(3κ+1)η/2(κ+ 1)3η/2.
2. Assume in addition that ‖h‖∞ is bounded by an absolute constant H and

that p = LQ(`p, c) for some `p > 1/3 and c > 0. Then

Nf (a, b) ≤ Eκ‖f‖η∞LQ(2/3, o(1)), (3)

where E = Aη

Proof. 1. This is proven in Theorem 3 in [7].
2. The overhead is bounded as follows

log(‖h‖κ(η−1)∞ C(η, κ)) ≤ κη logH + 3κη log η + 3η log κ

= O(log(Q)1−`p(log logQ)`p)

= o(1) log(Q)2/3(log logQ)1/3.

ut

If Nf = LQ(2/3) then we can forget the overhead LQ(2/3, o(1)) as the
Canfield-Erdös-Pomerance theorem states that the smoothness probability satis-
fies, uniformly on x and y in the validity domain,

Prob(x1+o(1), y) = Prob(x, y)1+o(1).

The next statement summarizes our results.

Theorem 1. (under the classical NFS heuristics) If Q = pn is a prime power
such that

– p = LQ(`p, cp) with 1/3 < `p;

8

algorithm C conditions

exTNFS-JLSV2 (64/9)
1
3 κ = o

(
(logQ
log logQ

)
1
3

)
exTNFS-GJL (64/9)

1
3 κ ≤ (8

3
)−

1
3 (logQ

log logQ
)
1
3

exTNFS-Conj (48/9)
1
3

`p < 2/3 or `p = 2/3 and cp < 12
1
3

κ = 12−
1
3 (logQ

log logQ
)
1
3

SexTNFS (32/9)
1
3

κ = o
(

(logQ
log logQ

)
1
3

)
p is d-SNFS with d = (2/3)

1
3 +o(1)
κ

(logQ
log logQ

)
1
3

MexTNFS-JLSV2 (92+26
√
13

27
)
1
3 κ = o

(
(logQ
log logQ

)
1
3

)
MexTNFS-GJL (92+26

√
13

27
)
1
3 κ ≤ (7+2

√
13

6
)−1/3(logQ

log logQ
)
1
3

MexTNFS-Conj
3+
√

3(11+4
√
6)(

18(7+3
√
6)
)1/3 `p < 2/3 or `p = 2/3 and cp < (56+24

√
6

12
)1/3

κ = ((56+24
√
6

12
)−1/3 + o(1))(logQ

log logQ
)
1
3

Table 4: Complexity of exTNFS variants

– n = ηκ such that gcd(η, κ) = 1

then the discrete logarithm over FQ can be solved in LQ(1/3, C) where C and the
additional conditions are listed in Table 4.

In the rest of this section we prove this statement. In any case in the table, one

shares the conditions κ = o
(

(logQ
log logQ)

1
3

)
or κ ≤ c(logQ

log logQ)
1
3 for some constant

c > 0. These are equivalent to say that P = pη = LQ(`P) for some `P ≥ 2/3.

3.1 exTNFS-JLSV2

In this section we assume that n has a factor κ such that

κ = o

((
log(Q)

log log(Q)

)1/3
)
.

Let us introduce ‖h‖∞ = O(1) and the values of ‖f‖∞, ‖g‖∞ ≈ pκ/(D+1) coming
from the JLSV2 method (Section 2.2) in Equation (2). Then we get

|Nf (a, b)| <
(
Aηκ(p

κ
D+1)η

)1+o(1)
=
(
EκP

κ
D+1

)1+o(1)
, (4)

|Ng(a, b)| <
(
AηD(p

κ
D+1)η

)1+o(1)
=
(
EDP

κ
D+1

)1+o(1)
, (5)

where we set E := Aη and P := |R/pR| = pη.
One recognizes the expressions for the norms in the large prime case [18,

Appendix A.3.], where P = p and κ = n. We conclude that we have the same
complexity:

complexity(exTNFS with JLSV2) = LQ(1/3, 3
√

64/9).

9

3.2 exTNFS-GJL

We relax a bit the condition from the previous section: we assume that n has a
factor κ such that

κ ≤ (8/3)−
1
3

(
log(Q)

log log(Q)

)1/3

.

Recall the characteristics of our polynomials: ‖h‖∞ = O(1) and deg h = η;
‖f‖∞ = O(1) and deg f = d + 1 for a parameter d ≥ κ; ‖g‖∞ ≈ pκ/(d+1) and
deg g = d. We inject these values in Equation (2) and we get

|Nf (a, b)| < Ed+1LQ(2/3, o(1)), (6)

|Ng(a, b)| < EdQ1/(d+1)LQ(2/3, o(1)), (7)

where we set E := Aη and P := |R/pR| = pη. We recognize the expression in the
first equation of Section 4.2 in [5], so

complexity(exTNFS with GJL) = LQ(1/3, 3
√

64/9).

3.3 exTNFS-Conj

We propose here a variant of NFS which combines exTNFS with the Conjugation
method of polynomial selection.

Let us consider the case when n = ηκ with

κ =

(
1

121/3
+ o(1)

)(
log(Q)

log log(Q)

)1/3

.

As before, evaluating the values coming from the Conjugation method (Section 2.2)
in Equation (2), we have

|Nf (a, b)| < E2κLQ(2/3, o(1)), (8)

|Ng(a, b)| < Eκ(pκη)1/(2κ)LQ(2/3, o(1)). (9)

When we combine Equations (8) and (9) we obtain

|Nf (a, b)| · |Ng(a, b)| < E3κQ(1+o(1))/(2κ).

But this is Equation (5) in [5] when t = 2. The rest of the computations are
identical as in point 3. of Theorem 1 in [5], so

complexity(exTNFS-Conj) = LQ(1/3, (48/9)1/3).

4 Variants

4.1 The case when p is has a special form (SexTNFS)

In some pairings-based constructions p has a special form, e.g. in the Barreto-
Naehrig curves [9] p = 36u4 + 36u3 + 24u2 + 6u+ 1 of embedding degree 12 and

10

in the Freeman pairings construction of embedding degree 10 [14, Section 5.3]
p = 25u4 + 25u3 + 25u2 + 10u+ 3. For a given integer d, an integer p is d-SNFS if
there exists an integer u and a polynomial Π(x) with integer coefficients so that

p = Π(u),

degΠ = d and ‖Π‖∞ is bounded by an absolute constant.

We consider the case when n = ηκ, gcd(η, κ) = 1 with κ = o

((
logQ

log logQ

)1/3)
and p is d-SNFS. In this case exTNFS is unchanged: we select h, f and g three
polynomials with integer coefficients so that

– h is irreducible modulo p, deg h = η and ‖h‖∞ = O(1);
– f and g have a common factor k(x) modulo p which is irreducible of degree κ.

Choice of f and g using the method of Joux and Pierrot Find a polynomial S
of degree κ − 1 with coefficients in {−1, 0, 1} so that k(x) = xκ + S(x) − u is
irreducible modulo p. Since the proportion of irreducible polynomials in Fp of
degree κ is 1/κ and there are 3κ choices we expect this step to succeed. Then we
set {

g = xκ + S(x)− u
f = Π(xκ + S(x)).

If f is not irreducible over Z[x], which arrives with negligible probability, start
over. Note that g is irreducible modulo p and that f is a multiple of g modulo p.
By construction we have:

– deg(g) = κ and ‖g‖∞ = u = p1/d;
– deg(f) = κd and ‖f‖∞ = 2d‖Π‖∞ = O(2d).

Let us compute the analysis of this particular case of exTNFS. We inject
these values in Equations (2) and obtain

|Nf (a, b)| ≤ EκdLQ(2/3, o(1))

|Ng(a, b)| ≤ EκP 1/dLQ(2/3, o(1)),

where E := Aη and P := |R/pR| = pη. We recognize the size of the norms in the
analysis by Joux and Pierrot [19, Section 6.3.], so we obtain the same complexity
as in their paper:

complexity(exTNFS for SNFS primes) = LQ(1/3, (32/9)1/3).

4.2 The multiple polynomial variants (MexTNFS)

Virtually every variant of NFS can be accelerated using multiple polynomials
and exTNFS makes no exception. The multiple variant of exTNFS is as follows:
choose f and g which have a common factor k(x) modulo p which is irreducible
of degree κ using any of the methods given in Section 2.2. Next we set f1 = f

11

and f2 = g and select other V − 2 irreducible polynomials fi := µif1 + νif2
where µi =

∑η−1
j=0 µi,jι

j and νi =
∑η−1
j=0 νi,jι

j are elements of R = Z[t]/hZ[t] such

that ‖µi‖∞, ‖νi‖∞ ≤ V
1
2η where V = LQ(1/3, cv) is a parameter which will be

selected later. Denote αi a root of fi for i = 1, 2, . . . , V .
Once again the complexity depends on the manner in which the polynomials

f and g are selected.

MexTNFS-JLSV2 Barbulescu and Pierrot [8, Section 5.3.] analysed the com-
plexity of MNFS with JLSV2, so we only need to check that the size of the norm
is the same for NFS and exTNFS for each polynomial fi with 1 ≤ i ≤ V . By
construction we have:

– deg(f1) = κ and ‖f1‖∞ = p
κ

D+1 ;

– deg(fi) = D ≥ κ and ‖fi‖∞ = V
1
2η p

κ
D+1 for 2 ≤ i ≤ V .

As before, we inject these values in Equations (2) and obtain

|Nf1(a, b)| < Eκ(pκη)
1

D+1LQ(2/3, o(1))

|Nfi(a, b)| < ED(pκη)
1

D+1LQ(2/3, o(1)) for 2 ≤ i ≤ V.

We emphasize that (V
1
2η)η = V

1
2 = LQ(1/3, cv/2) = LQ(2/3, o(1)) which is true

without any condition on η. Hence we obtain

complexity(MexTNFS-JLSV2) = LQ

(
1/3,

(92 + 26
√

13

27

)1/3)
.

MexTNFS-Conj and GJL Pierrot [24] studied the multiple polynomial variant
of NFS when the Conjugation method or GJL are used. To show that we obtain
the same complexities we need to show that the norm with respect to each
polynomial is the same as in the classical NFS, except for a factor LQ(2/3, o(1)),

which boils down to testing again that (V
1
2η)η = LQ(2/3, o(1)) which is always

true. When P = pη = LQ(2/3, cP) such that cP > (7+2
√
13

6)1/3 and t is the
number of coefficients of the enumerated polynomials r, then the complexity
obtained is LQ(1/3, C(t, cP)) where

C(t, cP) =
2

cP t
+

√
20

9(cP t)2
+

2

3
cP (t− 1).

The best case is when cP = (56+24
√
6

12)1/3 and t = 2 (linear polynomials):

complexity(best case of MexTNFS-Conj) = LQ

1/3,
3 +

√
3(11 + 4

√
6)(

18(7 + 3
√

6)
)1/3

 ,

where the second constant being approximated by 1.71.

12

5 Comparison and examples

NFS, TNFS and exTNFS have the same main lines:

– we compute a large number of integer numbers;
– we factor these numbers to test if they are B-smooth for some parameter B;
– we solve a linear system depending on the previous steps.

If we reduce the size of the integers computed in the algorithm we reduce the
work needed to find a subset of integers which are B-smooth, which further
allows us to adapt the other parameters so that the linear algebra is also cheap.
A precise analysis is complex because in some variants one tests smoothness
using ECM while in others one can sieve (which is faster). Nevertheless, as a first
comparison we use the criterion in which one must minimize the bitsize of the
product of the norms.

5.1 Precise comparison when p is arbitrary

Each method of polynomial selection has a different expression of the norm
bitsize, which depends on the number t of coefficients of the polynomials r(x)
that are enumerated during the relation collection. Let us reproduce Table 2
in [25], which we extend with TNFS and exTNFS:

Method norms product conditions

NFS-JLSV1 E
4n
t Q

t−1
n

NFS-JLSV2 E
2(n+D)

t Q
t−1
D+1 D ≥ n

NFS-GJL E
2(2r+1)

t Q
t−1
r+1 r ≥ n

NFS-Conj E
6n
t Q

t−1
2n

NFS-SS E
2η(2r+1)

t Q
t−1

η(r+1) n = ηκ, r ≥ κ
TNFS E

2(d+1)
t Q

2(t−1)
d+1 n small

exTNFS-JLSV1 E
4κ
t Q

t−1
κ n = ηκ, gcd(η, κ) = 1, η small

exTNFS-JLSV2 E
2(κ+D)

t Q
t−1
D+1 n = ηκ, gcd(η, κ) = 1, η small, r ≥ κ

exTNFS-GJL E
2(2r+1)

t Q
t−1
r+1 n = ηκ, gcd(η, κ) = 1, η small, r ≥ κ

exTNFS-Conj E
6κ
t Q

(t−1)
2κ n = ηκ, gcd(η, κ) = 1, η small

exTNFS-SS E
2d(2r+1)

t Q
t−1

d(r+1) n = dηκ, gcd(η, κ) = 1, η small, r ≥ κ

Table 5: Comparison of norm sizes.

Note that the method of Sarkar and Singh requires that n is composite. The
settings based on TNFS (TNFS, exTNFS-GJL etc) have an overhead due to the
combinatorial factor which is not written in this table, so we add the condition
that the degree of the intermediate number field must be small. Finally, exTNFS
requires the additional condition that κ and η are relatively prime.

13

Extrapolation E The parameter E depends on the implementation of NFS and
might be different for one variant to another. Let us take for example three
computations with NFS which tackle various problems of the same bitsize:

– Danilov and Popovyan [13] factored a 180-digit RSA modulus using log2E ≈
30 (although the size of the pairs (a, b) in theirs computations is not written
explicitly, one can compute E using the range of special-q’s and the default
cardinality of the sieving space per special-q, which is 230);

– Bouvier et al. [11] computed discrete logarithms in a 180-digit field Fp using
log2E ≈ 30 (computed from other parameters).

– Barbulescu et al. [5] computed discrete logarithms in a 180-digit field Fp2
using log2E ≈ 29.

We see that in the first approximation E depends only on the bitsize of the field
that we target and has the same value as in the factoring variant of NFS. Let us
extrapolate E from the pair (log2Q = 600, log2E = 30) using the formula

E = cLQ(1/3, (8/9)1/3).

Since exTNFS requires that gcd(η, κ) = 1, the first case to study is n = 6.

The case of fields Fp6 When n = 6 we can use the general methods

– NFS-JLSV1 (bitsize E
24
t Q

t−1
6 , best values of t are 3 and 2)

– NFS-GJL with r equal to its optimal value, 6 (bitsize E
26
t Q

t−1
7 , best values

of t are 3 and 2)
– TNFS with deg f = 5, its optimal value for this range of fields (bitsize

E
12
t Q

t−1
3 , best value of t is 2)

as well as the methods which exploit the fact that n is composite

– Sarkar-Singh (NFS-SS) with η = 2 and r = 3, best value so that r ≥ n/η for

this range of fields, (E
28
t Q

t−1
8) respectively η = 3 and r = 2, best value so

that r ≥ n/η for this range of fields, (bitsize E
30
t Q

t−1
9 , best t are 4 and 3)

– exTNFS with η = 2 or η = 3 and one of two methods for selecting f and g

• exTNFS-GJL with η = 3, r = 2 its best value so that r ≥ n/η, (bitsize

E
10
t Q

t−1
3 , best value of t is 2)

• exTNFS-GJL with η = 2, r = 3 its best value so that r ≥ n/η, (E
14
t Q

t−1
4 ,

best values of t are 3 and 2)

• exTNFS-Conj with η = 2 (bitsize E
18
t Q

t−1
6 , best values of t is 2).

• exTNFS-Conj with η = 3 (bitsize E
12
t Q

t−1
4 , best values of t are 3 and 2).

We plot the values of the norms product in Figure 2. Note that exTNFS with
the Conjugation method seems to be the best choice for fields between 300 and
1000 bits.

For even more insight enter into details on a specific field.

14

300 400 500 600 700 800 900 1,000
200

300

400

500

600
NFS-JLSV1

NFS-SS

TNFS

exTNFS-Conj(κ = 2)

exTNFS-Conj(κ = 3)

Fig. 2: Plot of the norms bitsize for several variants of NFS

Example 1: Let us consider the field Fp6 when

p = 3141592653589793238462643383589.

The bitsize of Q = p6 is 608 and its number of decimal digits is 182. Since the
parameter E can only be chosen after an effective computation we are bound
to make the hypothesis that it will have a similar value as in a series of record
computations with NFS having the same input size:

In the following log2E = 30. Let us make a list with the norm sizes obtained
with each version of NFS:

1. NFS-JLSV1. We take for example f = x6 − 1772453850905517 and g =
1772453850905515x6 + 96769484157334. The sieving space contains polyno-
mials of degree two r(x) = a+ xb+ cx2, i.e. t = 3, and the upper bound on
the norms’ product is

norms bitsize(NFS-JLSV1) = 8 log2E +
1

3
log2Q ≈ 440.

2. TNFS. We take f = x5 + 727139x3 + 538962x2 + 513716x + 691133, g =
x−1257274 and h = x6+x4+x+1. This time t = 2. Note that the parameter
d = deg f is equal to 5, so that we have

norms bitsize(TNFS) = 6 log2E +
1

3
log2Q ≈ 380.

15

3. exTNFS-Conj with η = 2 and κ = 3. We take f = x6−3, g = 309331385734750x3−
1851661516636217 and h = x2 + 2. Here t = 2. Hence we obtain

norms bitsize(exTNFS η = 2) = 9 log2E +
1

6
log2Q ≈ 370.

4. exTNFS-Conj with η = 3 and κ = 2. We take f = x4− 2x3 +x2− 3, g = x2 +
3141592653589793238462643383588x+ 2607544377307649649616026264183
and h = x3 + x+ 1. Again t = 2. This leads to

norms bitsize(exTNFS κ = 2) = 6 log2E +
1

4
log2Q ≈ 330.

We conclude that in this example the best choice is exTNFS with κ = 2.
The condition gcd(η, κ) = 1 restricts the values of n where exTNFS applies

to n = 6, 10, 12, 14, 18, 20, 24 etc, but we do not discuss them in detail.

5.2 Precise comparison when p is SNFS

To compare precise norm sizes when p is a d-SNFS prime, let us consider Table 6.

Method condition norms product

STNFS E
2(d+1)
t Q

t−1
d

SNFS-JP E
2n(d+1)

t Q
t−1
nd

SexTNFS E
2κ(d+1)

t Q
t−1
κd

n = ηκ
gcd(κ, η) = 1

2 ≤ η < n

Table 6: Comparison of norm sizes when p is d-SNFS prime.

Note that SexTNFS encompass SNFS-JP when η = 1, and STNFS when
η = n, so we only call it SexTNFS when 2 ≤ η < n.

As in the case when p is arbitrary, we do not have precise estimations of
E, especially in the large range of fields log2Q ∈ [1000, 10000]. We are going
to extrapolate from the pair (log2Q = 1039, log2E = 30.38), due to the record
of [1], using the formula

E = cLQ(1/3, (4/9)
1
3).

Let us introduce a notation for the bitsize of SexTNFS, for any integers κ ≥ 1
and t ≥ 2:

Cnorm(t, κ) =
2κ(d+ 1)

t
logE +

t− 1

κd
logQ.

For each κ, Cnorm(t, κ) has a minimum at the integer t ≥ 2 which best approxi-

mates
(

2κ2d(d+1) logE
logQ

)1/2
.

16

The case of 4-SNFS primes . To fix ideas, we restrict at the case d = 4. When
κ = 1, i.e. STNFS, the norm size has its minimum at t = 2 as soon as logQ

logE ≥
40/22 = 10. In our range of interest (300 ≤ log2Q ≤ 10000), the ratio logQ/ logE
is always larger than 19. So, we only take care of sieving linear polynomials
in the case of STNFS with d = 4. Similarly, it suffices to consider sieving
linear polynomials in the case of SexTNFS with κ = 2 (resp. κ = 3) whenever
logQ/ logE ≥ 40 (resp. logQ/ logE ≥ 90). It is satisfied when Q is of at least
1450 bits (resp. 6300 bits).

Let us compare the norm sizes of STNFS and SexTNFS when we sieve only
linear polynomials (t = 2) in both cases. The value Cnorm(2, κ) has a minimum

at κ =
(

logQ
d(d+1) logE

)1/2
. In the case of d = 4, this value has minimum at κ = 2

or κ = 3 whenever 20 ≤ logQ/ logE ≤ 180 = 20 · 32. Thus, in fields with large
size, SexTNFS with κ = 2 or κ = 3 is better than STNFS.

In Figure 3 we plot the norm sizes of SNFS-JP, STNFS, and SexTNFS for
n = 12 and d = 4 for Q is of from 300 bits to 5000 bits. We also compare these
values with the best choice for general prime cases (exTNFS with Conjugation
when κ = 3). From the plots we remark that STNFS could be a best choice
for small Q otherwise SexTNFS with small κ becomes an important challenger
against any other methods as the size of Q grows.

500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000
200

400

600

800

1,000

1,200

1,400

1,600 STNFS

SexTNFS(κ = 3)

SNFS-JP

exTNFS Conj(κ = 3)

Fig. 3: Comparison when n = 12 and d = 4 for 300 ≤ log2Q ≤ 5000

17

To get a better intuition, let us see in detail a specific field.
Example 2: We consider the prime p = P4(u4) where

P4(x) = 36x4 + 36x3 + 24x2 + 6x+ 1 and u4 = 2158 − 2128 − 268 + 1

(Section 6 in [2]), and note that p is 4-SNFS. The bitsize of p12 is 7647 for which
we predict by extrapolation that log2E = 76.15.

Let us make a list with the norm sizes obtained with each version of NFS:

1. STNFS. The size of the norms is E2(d+1)/tQ(t−1)/d and has its minimum for
t = 2. Take for example h = x12 + x10 + x9 − x6 − 1, f = P4 and g = x− u4.

norms bitsize(STNFS) = 5 log2E +
1

4
log2Q ≈ 2292.

2. SNFS-JP. The size of the norms is E2n(d+1)/tQ(t−1)/(nd) and has its minimum
when t = 8. Take for example f = P4(x12 + x6 + x3 + 1) and g = (x12 + x6 +
x3 + 1)− u4.

norms bitsize(SNFS-JP) =
120

7
log2E +

1

8
log2Q ≈ 2257.

3. SexTNFS-JP η = 4. In this case the norm size is E2κ(d+1)/tQ
(t−1)
κd and has

its minimum when t = 2. Take for example h = x4 − x− 1, f = P4(x3 − x2)
and g = x3 − x2 − u4.

norms bitsize(SexTNFS) = 15 log2E +
1

12
log2Q ≈ 1779.

One can do a similar analysis in the cases d = 5, d = 6 etc, but we do not present
the details here.

6 Cryptologic consequences

The keysizes used in pairings-based cryptosystems are computed under the
hypothesis that DLP in Fpn with 2 ≤ n ≤ 12 is at least as difficult as factoring
an integer of the same size as pn (see for example [15]). This hypothesis has been
invalidated for n = 2 by the record computations presented in [5] where DLP in
GF (p2) was 260 times faster than in GF (p), and similar estimations were given
for Fp3 . The precise estimation in the same paper concluded however that the
security of fields Fp6 was much less affected and there was nothing said about
Fp12

Thanks to exTNFS we addressed the case of Fp6 and by a precise estimation
concluded that it has norm sizes approximatively equal to those in the case of
Fp2 . This invalidates the keysizes which are currently used for Fp6 . In order to

extrapolate the new keysizes it is necessary to use the complexity LQ(1/3, 3
√

48/9)

instead of the old LQ(1/3, 3
√

64/9) (a MNFS variant is also available of complexity

18

LQ(1/3, 1.71)). The same is true when n = κη with κ = 2 or 3 and gcd(κ, η) = 1,
e.g. n is in the list

10, 12, 14, 18, 21, 22, 24.

When p is of special form, as in the Barreto-Naehrig construction, a precise
estimations using STNFS and SexTNFS invalidated the current keysizes. In
order to extrapolate the new keysizes it s necessary to use the new complexity
LQ(1/3, 3

√
32/9) instead of the old LQ(1/3, 3

√
64/9).

A Non-linear polynomials

In all the variants of exTNFS that we have discussed, one puts linear polynomials
r(x) ∈ R[x] in the diagram of Figure 1. This is justified by the fact that exTNFS
is a way of copying the setting from large characteristic to the medium prime
case. Since in the large characteristic, the best choice is to take linear polynomials
in all the variants, NFS, MNFS, SNFS, we have done the same thing in exTNFS,
MexTNFS and SexTNFS.

The estimation of the norms sizes given in Lemma 1 is central in the analysis
of exTNFS. For completion reasons we generalize this result to arbitrary degrees.

Lemma 2. Let h be an irreducible polynomial over Z of degree η and f be an
irreducible polynomial over Z[ι] of degree κ. Let ι (resp. α) be a root of h (resp.
f) in its number field and set Kf := Q(ι, α). Let A > 0 be a real number and
T an integer such that 2 ≤ T ≤ κ. For each i = 0, . . . , κ− 1, let ai(t) ∈ Z[t] be
polynomials of degree ≤ η − 1 with ‖ai‖∞ ≤ A. Then we have

∣∣NKf/Q(T−1∑
i=0

ai(ι)α
i
)∣∣ < Aηκ‖f‖(T−1)η∞ ‖h‖(T+κ−1)(η−1)

∞ D(η, κ),

where D(η, κ) =
(
(2κ− 1)(η− 1) + 1

)η/2
(η+ 1)(2κ−1)(η−1)/2

(
(2κ− 1)!η2κ

)η
. The

above formula remains the same when we restrict the coefficients of f to be
integers.

Proof. By abusing the notation, we write f(t, x) :=
∑
i fi(t)x

i with degt(fi) ≤
κ − 1 for f(x) =

∑
i fi(ι)x

i ∈ Z[ι][x]. Write A(t, x) :=
∑
i ai(t)x

i and r(t) :=
Resx

(
A(t, x), f(t, x)

)
, then we have

NKf/Q(ι)(A(ι, α)) = r(ι).

By Theorem 8 and Theorem 10 in [10], the degree of r(t) is given by (κ+ T −
1)(η − 1) and

‖r(t)‖∞ ≤ (T + κ− 1)!ηT+κ−2Aκ‖f‖T−1∞ .

Then by Theorem 7 in the same article, we have

|NQ(ι)/Q(r(ι))| ≤ (deg r + 1)deg h/2(deg h+ 1)deg r/2‖r‖deg h∞ ‖h‖deg r∞ .

Combining all together, we obtain the desired result. ut

19

This result allows to analyze MexTNFS-SS when κ = 1
cp

(logQ
log logQ)3 and cp <

(
√

78/9 + 29/36)
1
3 ≈ 1.21. Indeed, in this case one puts non-linear polynomials

in the diagram, as indicated in Table 4 of [25].

Once again we check when D(η, κ) = LQ(2/3, o(1)) and obtain the condition

ηκ = o((logQ
log logQ)

2
3). The factor ‖h‖(T+κ−1)(η−1)

∞ is also negligible under the same

condition. Hence the overhead is negligible for all range `p > 1/3.

B Individual Logarithm

Let s ∈ F∗pn = F∗pηκ be an element for which we want to compute the discrete
logarithm. In general, the discrete logarithm of s can be found by following two
steps: smoothing step and special-q descent.

In the smoothing step, the value s is randomized by z := se for random value
e and B1-smoothness of z (for pre-determined value B1 > B) is tested. Then, for
each prime ideal D which is not in the factor base, one finds a linear relation
involving D and other smaller ideals. This step is called special-q descent. We
recursively produce the special-q descent tree, and finally deduce the desired
discrete logarithm.

The complexity of the individual logarithm step differs by polynomial selec-
tion methods. In the following, to fix ideas, we consider only the JLSV2 and
Conjugation methods (exTNFS-JLSV2 and exTNFS-Conj), but similar argument
directly applies to any other polynomial selection method.

Smoothing. For each z ∈ Fpn we compute an element z̄ ∈ Kf = Q(ι, αf) which
is sent to z when ι is mapped to a root of h in Fpη and αf in a root of f in Fpηκ .
Then we test if NKf/Q(z̄) is B1-smooth and squarefree. Let us discuss how to
compute and what is the size of its norm.

JLSV2 As before, we consider the target field Fpn as an extension field Fpηκ =
Fpη(m) = Fpη [x]/k(x) over Fpη = Fp(ι) = Fp[t]/h(t). For a given z in F∗pn , we

write z =
∑
i zi(ι)m

i, where the coefficients of zi are non-negative intergers
bounded by p. We set

z̄ =

κ−1∑
i=0

zi(ι)α
i
f

and, by Lemma 2 for T = κ, we obtain

|NKf/Q(z̄)| ≤
(
pn(pκ/(D+1))n−η

)1+o(1)
≤ Q2−2/(κ+1)+o(1),

where, in the last inequality, we used the condition that D ≥ κ.

20

Conjugation In this case, a direct lift would make that z̄ has degree κ instead
of 2κ = degKf , and the coefficients zi(t) have norm bounded by p. In order to
“spread” the coefficients, i.e. compute another polynomial with the same image in
Fpn of degree 2κ and coefficients of norm p1/2, we need to use the LLL algorithm.
With no extra cost we can obtain a further improvement: use the Waterloo
improvement which consists in replacing the smoothness condition of integers of
a given size X by the smoothness condition of two integers of size X1/2.

The Waterloo improvement for exTNFS-Conj is as follows: we find two
bivariate polynomials u(t, x) =

∑2κ−1
i=0 ui(t)x

i and v(t, x) =
∑2κ−1
i=0 vi(t)x

i ∈
Z[t, x] such that z is the image in Fpn of

z̄ :=
u(ι, αf)

v(ι, αf)

where ‖ui‖∞,‖vj‖∞ ≤ 2np1/4. For this we LLL-reduce the lattice of dimension
4n defined by the lines of the matrix

L =

p
. . .

p
vec(k)

. . .

vec(k)
vec(z mod (h, f)) 1

...
. . .

vec(tixjz mod (h, f))
. . .

...
. . .

vec(tη−1x2κ−1z mod (h, f)) 1

the first n rows contain only the diagonal coefficient equal to p and where, for
all bivariate polynomial w(t, x) =

∑2κ−1
i=0 wi(t)x

i with wi(t) =
∑η−1
j=0 wi,jt

η−1−j ,
vec(w) = (w0,0, . . . , w0,η−1, . . . , w2κ−1,0, . . . , w2κ−1,η−1) of dimension 2n. In par-
ticular, k ∈ Fpη [x] has been seen as a two-variate polynomial.

By dividing if necessary by the leading coefficient, we can assume that k(x) is
monic, hence the right-most coordinate of vec(k) is 1. Then detL = pn and we

have u, v with ‖ui‖∞, ‖vj‖∞ ≤ 2(4n−1)/4Q
1
4n ≤ 2nQ

1
4n . By Lemma 2 we obtain

that

|NKf/Q(u(ι, αf))NKf/Q(v(ι, αf))| ≤ 2n
2

Q
(
‖f‖(2κ−1)η∞ ‖h‖(3κ−1)∞ (η − 1)D(η, 2κ)

)2
.

The term in the later bracket is LQ(2/3, o(1)) and 2n
2

is negligible compared to
Q if and only if `p > 1/2. We conclude that when `p > 1/2

|NKf/Q(u(ι, αf))NKf/Q(v(ι, αf))| = Q1+o(1).

21

Once the lift z̄ has been computed, the smoothing step is carried out as
usual: one tests that the norm of z̄ (or u and v) is squarefree and B1-smooth
where B1 = LQ(2/3, β1) for some constant β1 > 0. We recognize the complexity
analysis done in [12] in the case of prime fields: the complexity of the smoothing
step is LQ(1/3, csmooth) with

– csmooth = 6
1
3 for exTNFS-JLSV2;

– csmooth = 3
1
3 for exTNFS-Conj.

Descent by special-q Recall how the special-q descent is done in the large
characteristic case of NFS (for example NFS-JLSV2). Due to the condition that
NKf/Q(z̄) is squarefree the ideal generated by z̄ factors only into prime ideals of
degree 1. For a prime ideal q of degree 1 in Kf that appears in the factorization
of the principal ideal (z̄), we write the logarithm of q as a formal sum of virtual
logarithms of ideals in Kf and Kg of norm less than N(q)c for a constant c < 1.
For this, we enumerate pairs (a, b) ∈ Z× Z such that q divides (a− bαf) to find
one pair such that

– (a− bαf)/q factors into prime ideals of norm less than N(q)c, and
– the ideal (a− bαg) factors into prime ideals of norm less than N(q)c.

To do this we find two pairs (a(1), b(1)) and (a(2), b(2)) of euclidean norm less

than a constant times N(q)
1
2 , using LLL. Then we enumerate the pairs i1 + i2 for

all rational integers with |i1|, |i2| ≤ E′. The complexity of the descent is mainly
determined by the size of the norms:

|NKf/Q(a− bαf)| ≤
(
(E′)κN(D)κ/2Q1/(D+1)

)1+o(1)
,

|NKg/Q(a− bαg)| ≤
(
(E′)DN(D)D/2Q1/(D+1)

)1+o(1)
.

In our two cases, exTNFS-JLSV2 and exTNFS-Conj, we enumerate a(ι), b(ι) ∈
R ⊂ Q(ι) where a(t), b(t) ∈ Z[x] of degree ≤ η − 1 and ‖a‖∞, ‖b‖∞ ≤ (E′)

1
η

so that a(ι)− b(ι)αf ≡ 0 mod q. This can be done in the following manner (cf
Appendix 7.1 in [7]). First, we construct the lattice

L(q) := {(a, b) = (a0, . . . , aη−1, b0, . . . , bη−1) ∈ Z2η : a(ι)− b(ι)αf ≡ 0 mod q},

which has determinant N(q). Let (a(k), b(k)), k = 1, 2, . . . , 2η, be the LLL-reduced
basis of this lattice. Then we test the above smoothness conditions for pairs
(a, b) =

∑2η
k=1 ik(a(k), b(k)), where ik are rational integers with absolute value

less than I := (E′)
1
η . By Lemma 1, in the case of exTNFS-JLSV2 the size of the

norms is

|NKf/Q(a− bαf)| ≤
(
(E′)κN(q)κ/2Q1/(D+1)

)1+o(1)
,

|NKg/Q(a− bαg)| ≤
(
(E′)DN(q)D/2Q1/(D+1)

)1+o(1)
.

22

Then, the rest of the analysis is similar to that of Chapter 7.3. in [3] and we
conclude that in exTNFS-JLSV2 the special-q descent is negligible compared to
the smoothing step.

In the case of exTNFS-Conj, we use again Lemma 1 and obtain:

|NKf/Q(a− bαf)| ≤
(
(E′)2κN(q)κ

)1+o(1)
,

|NKg/Q(a− bαg)| ≤
(
(E′)κN(q)κ/2Q1/(2κ)

)1+o(1)
.

We make an usual heuristic argument that a number x is y-smooth with the
probability of ρ(log x/ log y) for Dickman function ρ. So, the probability of the
pair (a, b) to be descended is given by

Prob[(a, b) descends] ≥ ρ
(

3κ logE′ + (3κ/2) log ν + (1/(2κ)) logQ

c log ν

)1+o(1)

,

(10)
where ν := N(q).

In the case when ν is large, i.e. ν = LQ(2/3, β1), where β1 is imposed
by the smoothing step described above, the inverse of the probability can be
approximated by

ρ
(3κ

2c

)−1+o(1)
= LQ

(
1

3
,
cκ
2c

)1+o(1)

,

where cκ = κ/(logQ
log logQ)

1
3 = 12−

1
3 . Multiplying this by the time for νc-smoothness

test the total cost becomes

LQ

(
1/3,

cκ
2c

+ 2

√
cβ1
3

)1+o(1)

.

This value is minimized by LQ(1/3, (9β1cκ/2)1/3) when c =
(

3c2κ
4β1

)1/3
. When we

use that β1 = (1/3)1/3 and cκ = 12−
1
3 , we deduce the complexity

LQ
(
1/3, (81/32)

1
9

)
that is less than the complexity of the smoothing step.

In the case of small ν, i.e. ν = LQ(1/3), the hardest descent step corresponds
to the case when νc = B (the smoothness bound for the factor base). In this
case, again by Equation (10), we have the probability of the descent,

LQ

(
1/3,

cκ
2c

+
cκε

β
+

1

6cκβ

)−1+o(1)
.

The complexity is minimized when the size of sieving space equals to the inverse
of the above probability. This translates to

2ε =
cκ
2c

+
cκε

β
+

1

6cκβ
.

23

This shows that the optimal value for c can be any value close but not equal
to 1, e.g. c = 0.999, and the optimal complexity of descent step for small ν is
LQ(1/3, 2ε) where

ε =

(
cκ
2

+
1

6βcκ

)/(
2− cκ

β

)
= 12−1/3 ≈ 0.44,

where we used β = (2/3)1/3 and cκ = 12−1/3. This complexity is negligible to
the smoothing step.

algorithm
rels collection
+lin. algebra

smoothing
special-q
descent

extra
conditions

exTNFS-JLSV2 (64/9)
1
3 (54/9)

1
3 negligible -

exTNFS-Conj (48/9)
1
3 (27/9)

1
3 negligible `p > 1/2

Table 7: Complexity of individual logarithm

For medium ν, i.e. ν = LQ(`) with 1/3 < ` < 2/3, it is obviously faster
than the case of large ν. So, we omit detailed analysis for this case and refer to
Chapter 7.3. in [3].

We conclude this section of the Appendix with a summary of our results in
Table 7.

References

1. K. Aoki, J. Franke, T. Kleinjung, A. K. Lenstra, and D. A. Osvik. A kilobit special
number field sieve factorization. In Advances in Cryptology – ASIACRYPT 2007,
volume 4833 of Lecture Notes in Comput. Sci., pages 1–12. Springer, 2007.

2. D. F. Aranha, L. Fuentes-Castaneda, E. Knapp, A. Menezes, and F. Rodrıguez-
Henrıquez. Implementing pairings at the 192-bit security level. Pairing-Based
Cryptography–Pairing 2012, 7708:177, 2012.

3. R. Barbulescu. Algorithms of discrete logarithm in finite fields. Theses, Université
de Lorraine, Dec. 2013.

4. R. Barbulescu. An appendix for a recent paper of kim. IACR Cryptology ePrint
Archive, 2015:1076, 2015.

5. R. Barbulescu, P. Gaudry, A. Guillevic, and F. Morain. Improving NFS for the
discrete logarithm problem in non-prime finite fields. In Oswald and Fischlin [23],
pages 129–155.

6. R. Barbulescu, P. Gaudry, A. Joux, and E. Thomé. A heuristic quasi-polynomial
algorithm for discrete logarithm in finite fields of small characteristic. In Advances
in Cryptology - EUROCRYPT 2014 - 33rd Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Copenhagen, Denmark, May
11-15, 2014. Proceedings, pages 1–16, 2014.

24

7. R. Barbulescu, P. Gaudry, and T. Kleinjung. The Towed Number Field Sieve. In
T. Iwata and J. H. Cheon, editors, ASIACRYPT 2015, to appear, LNCS. Springer,
2015.

8. R. Barbulescu and C. Pierrot. The multiple number field sieve for medium- and
high-characteristic finite fields. LMS Journal of Computation and Mathematics,
17:230–246, 2014. The published version contains an error which is corrected in
version 2 available at https://hal.inria.fr/hal-00952610.

9. P. S. L. M. Barreto and M. Naehrig. Pairing-friendly elliptic curves of prime
order. In Selected Areas in Cryptography, 12th International Workshop, SAC 2005,
Kingston, ON, Canada, August 11-12, 2005, Revised Selected Papers, pages 319–331,
2005.

10. Y. Bistritz and A. Lifshitz. Bounds for resultants of univariate and bivariate
polynomials. Linear Algebra and its Applications, 432(8):1995 – 2005, 2010. Special
issue devoted to the 15th {ILAS} Conference at Cancun, Mexico, June 16-20, 2008.

11. C. Bouvier, P. Gaudry, L. Imbert, H. Jeljeli, and E. Thom. Discrete logarithms in
GF(p) — 180 digits, 2014. Announcement available at the NMBRTHRY archives,
item 004703.

12. A. Commeine and I. Semaev. An algorithm to solve the discrete logarithm problem
with the number field sieve. In Public Key Cryptology–PKC 2006, volume 3958 of
Lecture Notes in Comput. Sci., pages 174–190. Springer, 2006.

13. S. Danilov and I. Popovyan. Factorization of rsa-180, 2010. http://eprint.iacr.

org/2010/270.
14. D. Freeman. Constructing pairing-friendly elliptic curves with embedding degree 10.

In Algorithmic Number Theory, 7th International Symposium, ANTS-VII, Berlin,
Germany, July 23-28, 2006, Proceedings, pages 452–465, 2006.

15. D. Freeman, M. Scott, and E. Teske. A taxonomy of pairing-friendly elliptic curves.
23(2):224–280, 2010.

16. D. M. Gordon. Discrete logarithms in gf(p) using the number field sieve. SIAM J.
Discret. Math., 6(1):124–138, Feb. 1993.

17. R. Granger, T. Kleinjung, and J. Zumbrägel. On the powers of 2. Cryptology
ePrint Archive, Report 2014/300, 2014. http://eprint.iacr.org/.

18. A. Joux, R. Lercier, N. P. Smart, and F. Vercauteren. The number field sieve in
the medium prime case. In C. Dwork, editor, Advances in Cryptology - CRYPTO
2006, 26th Annual International Cryptology Conference, Santa Barbara, California,
USA, August 20-24, 2006, Proceedings, volume 4117 of Lecture Notes in Computer
Science, pages 326–344. Springer, 2006.

19. A. Joux and C. Pierrot. The special number field sieve in f
pn - application to

pairing-friendly constructions. In Pairing-Based Cryptography - Pairing 2013 - 6th
International Conference, Beijing, China, November 22-24, 2013, Revised Selected
Papers, pages 45–61, 2013.

20. T. Kim. Extended tower number field sieve: A new complexity for medium prime
case. IACR Cryptology ePrint Archive, 2015:1027, 2015.

21. H. W. Lenstra Jr. Factoring integers with elliptic curves. Annals of Mathematics,
pages 649–673, 1987.

22. D. V. Matyukhin. Effective version of the number field sieve for discrete logarithm
in a field GF(pˆk). Trudy po Diskretnoi Matematike, 9:121–151, 2006.

23. E. Oswald and M. Fischlin, editors. Advances in Cryptology - EUROCRYPT
2015 - 34th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part I,
volume 9056 of Lecture Notes in Computer Science. Springer, 2015.

25

https://hal.inria.fr/hal-00952610
http://eprint.iacr.org/2010/270
http://eprint.iacr.org/2010/270
http://eprint.iacr.org/

24. C. Pierrot. The multiple number field sieve with conjugation and generalized
joux-lercier methods. In Oswald and Fischlin [23], pages 156–170.

25. P. Sarkar and S. Singh. New complexity trade-offs for the (multiple) number field
sieve algorithm in non-prime fields. Cryptology ePrint Archive, Report 2015/944,
2015. http://eprint.iacr.org/.

26. O. Schirokauer. Discrete logarithms and local units. Philosophical Transactions of
the Royal Society of London A: Mathematical, Physical and Engineering Sciences,
345(1676):409–423, 1993.

27. O. Schirokauer. Using number fields to compute logarithms in finite fields. Math.
Comput., 69(231):1267–1283, 2000.

28. D. Wiedemann. Solving sparse linear equations over finite fields. IEEE Trans.
Inform. Theory, 32(1):54–62, 1986.

26

http://eprint.iacr.org/

	Extended Tower Number Field Sieve:A New Complexity for the Medium Prime Case

