
Revisiting LEGOs: Optimizations, Analysis, and their Limit

Yan Huang and Ruiyu Zhu

Indiana University, Bloomington {yh33,zhu52}@indiana.edu

Abstract. The Cut-and-choose paradigm gives by far the most popular and efficient secure two-party
computation protocols in the standard malicious model, able to offer s bits of security with only s
copies of garbled circuits in the one-time execution scenario [33]. Nielsen, Orlandi et al. [48,13] have
even proposed the seminal idea of LEGO-style cut-and-choose to further reduce the number of circuit
copies to less than s while still keep constant round complexity. However, a substantial gap still exists
between the theoretical idea of LEGO cut-and-choose and a practical implementation, e.g., [48] is not
compatible with free-XOR and uses expensive asymmetric key operations for soldering, while [13] leaves
the important building-block of soldering unspecified.

In this work, we introduce XOR-Homomorphic Interactive Hash and propose an efficient implemen-
tation of this primitive by combining Reed-Solomon encoding and k-out-of-n oblivious transfers. We
show how to apply this primitive to solve the performance-critical wire-soldering problem and propose
a new LEGO-style cut-and-choose protocol. Comparing to previous LEGO-style protocols, ours only
requires a single (as opposed to “a majority of”) correctly garbled gate in each bucket to guarantee
security against malicious adversaries. Plus, through integrating Half-Gates garbling, we double the
chance a “bad” gate being detected in the check stage (compared to MiniLEGO [13]). Our construction
is more bandwidth-efficient than Lindell (CRYPTO, 2013) [33] either when the circuit size N is suffi-
ciently large, or when N is larger than a threshold solely determined by the ratio between the input
and circuit sizes. E.g., we use less bandwidth for computing most linear and sub-linear functions.

Deploying a LEGO-style cut-and-choose protocol involves convoluted protocol parameter selection.
To this end, we give a thorough analysis of the relations among all protocol parameters and propose
efficient algorithms that automate the search for the optimal parameter configuration based on a re-
quirement specification (i.e., the security parameters s, k and application parameter N) with provable
accuracy.

Last, we formally prove a tight bound on the benefit of LEGO-style secure computation protocols, in
the sense that the circuit duplication factor κ has to be larger than 2 and any κ > 2 is indeed achievable.
This corrects a common mistake of claiming LEGO cut-and-choose can reduce κ to O(sk/ logN) since
2 6∈ O(sk/ logN).

1 Introduction

Secure two-party computation was shown to be feasible in the 1980s [56,17]. Since then, significant efforts
have been devoted toward making such protocols practical. Work in this direction was pioneered by Fair-
play [40], which implemented Yao’s two-party computation, and followed by work that dramatically improves
the software implementation [19,21,20,31,39,54], and work that significantly improves the performance of gar-
bling [4,3,57,18]. All these work concerned the honest-but-curious model.

More desirable, of course, is to achieve security against malicious adversaries. While this is known to be
feasible, in principle, using generic zero knowledge [17], a generic approach of this kind does not currently
seem likely to result in efficient protocols even if specialized zero-knowledge proofs are used [26]. Indeed, the
first technique explored for making efficient two-party computation protocols secure against active adversaries
was the cut-and-choose paradigm. Alternative approaches to achieve active security in the two-party setting
include the IPS compiler [25], which appears to have good asymptotic complexity [34] but seem challenging
to implement in reality. Other approaches [47,12,11] have round complexity proportional to the depth of
the circuit, exposing serious network latency issues in realistic deployment. Thus, in this work, we focus on
protocols following the cut-and-choose paradigm.

With cut-and-choose, roughly speaking, one party generates κ garbled circuits (where κ depends on the
statistical security parameter s); some fraction of those are “checked” by the other party—who aborts if

any misbehavior is detected—and the remaining fraction are evaluated with the results being used to derive
the final output. Cut-and-choose was first relatively naively used in Fairplay [40], which was later shown
to be flawed [41,28].) A rigorous analysis of the cut-and-choose paradigm was first given by Lindell and
Pinkas [35], followed by numerous others exploring variations of this technique and their application to (ever
more) efficient secure two-party computation [55,48,50,36,52,32,22,33,2,23,37,38].

The critical question regarding the cut-and-choose approach is: how many garbled-circuit copies (namely,
κ) are needed to ensure some desired security level? The value of κ has great impact on the efficiency of
cut-and-choose protocols, especially as larger circuits are evaluated. Most cut-and-choose protocols’ com-
putation/communication complexity is O(κ · k · N) + poly(nI , s, κ) where N is the circuit size, k is the
computational security parameter and nI is the input length. Typically N � k and N � s, so if N � nI ,
minimizing κ is obviously of key importance.

1.1 Prior Work

Notably, Lindell showed that, when circuit size is significantly greater than the input and output length of
the target function, s bits of statistical security can be obtained with merely s copies of the circuits (i.e.,
κ = s). The key idea is to penalize cheating circuit generators, whose secret input x will be revealed to the
honest evalutor, through running conventional actively-secure cut-and-choose protocols [35,36] per output
bit. Alternatively, Huang et al. [22] proposed symmetric cut-and-choose that offers the same parallel cost
(2s copies are generated in total, concurrently), but avoid using expensive conventional cut-and-choose to
bootstrap.

Nielsen and Orlandi [48] proposed the seminal LEGO approach, which allows the evaluator to cut-and-
choose individual gates and exploits the evaluator’s randomness in grouping garbled gates to thwart active
attacks from the generator. This could reduce κ to values even less than s for most circuits! While their
first proposal was based on garbling NAND gates and required expensive asymmetric-key operations for
soldering, an improved version of this technique, MiniLEGO [13], is compatible with free-XOR technique
and would use only symmetric-key operations. However, both work focused on demonstrating the asymptotic
advantage, leaving the concrete analysis open to practitioners. In fact, it is not possible to derive a concrete
measurement of improvement for MiniLEGO as the construction of some critical components, e.g., the ssenc
algorithm heavily used in wire soldering, remain unspecified.

More recently, researchers studied the amortized cost of securely computing a function f many times
through cut-and-choose circuits across many executions [37,23,38]. The conclusion was that the amortized κ
for cut-and-choose can be reduced to O(s/ logN) where N is the number of executions. However, this result
does not apply to a single execution of f , which fits to many practical scenarios where users want to run
different computations with different peers in an ad hoc fashion. Thus, in the remainder of this paper, we
restrict our attention to cut-and-choose protocols that target single execution scenarios.

Related to our work on XOR-Homomorphic Interactive Hash, [48,13,38,53] considered the problem of
realizing XOR-homomorphic commitments. However, none of them satisfies the tight budget of practically
useful LEGO-protocols, while we note that XOR-homomorphic commitments, which is a stronger primitive
than XOR-homomorphic interactive hash, is not necessary for building secure LEGO-protocols.

In an independent and current work, Frederiksen et al. [14] made some similar exploration.1 Nevertheless,
our work is distinct in that: (1) we formally prove the tight bound on the efficiency of any LEGO-protocols
and identify a common mistake on some efficiency claims in prior work of LEGO-style protocols; (2) we
introduce the notion of XOR-Homomorphic Interactive Hash to address the wire soldering problem, while
they use XOR-Homomorphic Commitment and regular cryptographic hashes (which leads to a security flaw
in their protocol); (3) We present a numerical security analysis and a highly efficient automated tool to
optimize the protocol parameters with provable accuracy. In fact, their construction has a security flaw: the
circuit evaluator could not verify the correctness of the wire labels corresponding to its own initial input and

1 However, a detailed comparison with their work is difficult because many technical details, including protocol
specification, treatment of initial input-wires and final output-wires, and the calculation for their performance
estimation, were missing in [14].

2

the final output. It is unclear how to fix the problem without dramatically increasing the protocol overhead.2

In fact, they underestimated the number of XOR-homomorphic commitments used in the protocol and their
construction can not actually outperform Lindell’s [33].

1.2 Our Contribution

Prior work [13,48] on LEGO-family of protocols claims that they offer a factor of O(logN) savings comparing
to non-LEGO cut-and-choose (where N is the size of the circuit). We show that this claim does not hold.
In fact, the savings have to be upper-bounded by s/2, where s is the statistical security parameter. We give
a rigorous proof (Section 6) that the benefit of LEGO-protocols is tightly bounded at a duplication factor
κ = 2, in the sense that any κ > 2 (note κ can be decimals) is achievable if N is sufficiently large, while
any κ ≤ 2 is impossible to attain however large N is. Note that this result also applies to correct a similarly
fallacious claim on the amortized performance of cut-and-choose [37].

This lower bound on the best achievable κ postulates a tight budget on handling each garbled gate in
every LEGO-protocol that aims to outperform the most efficient non-LEGO secure computation protocol in
practice. Using Lindell’s cheat-then-reveal protocol [33] (the most efficient construction when N � nI , N �
k) as a baseline, a LEGO-protocol outperforming this baseline could afford at most s ·c(k)/2 on each garbled
gate because κ > 2 (where c(k) is the cost per boolean gate using [33]). For example, considering the cost
of bandwidth, when s = 40, k = 128, c(k) = 256 bits (assuming Half-Gates [57] is used), any LEGO-like
protocol that uses more than 40× 256/2 = 5120 bits of bandwidth per garbled gate will not outperform [33]
when N � nI . No existing LEGO-protocols achieved such a tight budget. In fact, the state-of-the-art
LEGO-protocol [13] left its solution to “soldering”, the most performance-critical component, unspecified.

In this work, we propose an efficient actively-secure two-party computation protocol in the Random
Oracle Model (ROM) [6] that fully instantiates the idea of LEGO. It is the first construction that meets
the aforementioned budget limit, and can actually outperform Lindell’s cheat-and-reveal protocol [33]. We
show that a single (as opposed to “majority” required by MiniLEGO) correctly garbled gate in every bucket
suffices to guarantee active-security (Section 4.4, Lemma 3). In addition, we show how to leverage the idea
of Half-Gates [57] to improve the evaluator’s detection rate (from 1/4 in MiniLEGO) to 1/2 (Lemma 4). The
two enhancements alone can lead to substantial savings compared to MiniLEGO, e.g., 15% when N = 10K
and 25% when N = 100K.

We introduce a new cryptographic primitive, called XOR-Homomorphic Interactive Hash, which played
a paramount role in our LEGO-protocol construction but may be of independent interest as well. It is the
primitive that enables efficient wire “soldering”. It also helps to relax the security requirement to “one good
gate per bucket”. This is because the evaluator in our protocol will learn the generator’s global secret ∆
whenever two “valid” but different wire labels were found at any bucket, where the “validity” is determined
by a label’s interactive hash.

An XOR-homomorphic interactive hash scheme involves two parties (a message holder and a hash re-
ceiver) where the hash receiver does not learn any information beyond what can be (efficiently) inferred
from the hash while the message holder does not learn the hash. It offers some sense of “hiding” (which is
precisely defined in terms of the ideal functionality FXorIHash, see Section 3.1), in addition to the “binding”
property that comes with traditional hashes. However, this security notion differs from the standard notion
of cryptographic commitment in that it allows leaking partial information on the pre-image of the hash.

We provide an instantiation of FXorIHash, which is inspired by Reed-Solomon encoding [51] and makes
black-box calls to a constant number of k-out-of-n oblivious transfers. The basic idea is to obliviously transfer
k symbols (chosen by the hash receiver) out of the n-symbol encoding of a message. If Reed-Solomon code
is used, we can carefully choose n, k and σ (number of bits per symbol) to statistically hide the pre-image

2 For example, one solution would be cut-and-choose three types of garbled gates separately: those used in buckets
connected to the evaluator’s input-wires, those used in buckets connected to the final output-wires, and those in the
rest of the circuit. However, it would defeat the performance gain by LEGO-style cut-and-choose because in typical
circuits such gates are very few but LEGO-style protocols benefits little from cut-and-choose a small number of
gates.

3

to the hash receiver meanwhile statistically bind the pre-image to the hash sent to the receiver (because any
change in the original message will be evident from one of the k symbols in the encoding watched by the
receiver with overwhelming probability). We show how to efficiently identify the optimal parameters of the
interactive hash scheme to mininize the overall bandwidth for the secure two-party computation protocol
(Section 5.1).

We formally prove the security of our secure two-party computation protocol in the active adversary model
(Section 4.4). We present a thorough numerical analysis of the complex relation between the bandwidth cost
and the rich set of parameters, including s, k, T,N,B, τ (see Figure 1 for definitions of these variables) in
the main protocol, and n, σ, w, ` (see Figure 3 for their definitions) of the interactive hash protocol. In
particular, we present efficient algorithms that automate the search of the optimal parameter setting based
on the security parameters s, k and the circuit parameter N . Our work has pushed LEGO-style two-party
computation protocols a step closer to practical deployment.

2 Notation and Building Blocks

We let H be a hash function that will be treated in the analysis as a random oracle. We use the standard
definitions of secure two-party computation for active adversaries [16].

We use P1 to denote the circuit generator and P2 the circuit evaluator. In addition, we assume for
simplicity that only P2 will receive f(x, y), the output of the computation (over P1’s secret input x and P2’s
secret input y). We assume the original function f can be computed by a circuit C consisting of N AND
gates (whereas the rest are all XORs). To execute it securely, our protocol will generate a total number of T
garbled AND gates. We summarize in Figure 1 the variables used to describe our main secure computation
protocol.

s The statistical security parameter.

k The computational security parameter.

C The boolean circuit that computes the target function f .

N Number of AND gates in C (i.e., the number of buckets).

T Total number of garbled AND gates generated by P1.

B Number of garbled AND gates in a bucket.

τ P2’s detection rate when checking a bad gate.

λw Wire label length, in bits.

λp Length of permutation randomness (denoted by ρ) in bits.

Fig. 1: Variables in XOR-Homomorphic Verifiable Commitment Scheme

2.1 Oblivious Transfer

We make black-box use of 1-out-of-2 oblivious transfers (OT) to send wire labels corresponding to the
evaluator’s input, and k-out-of-n OT in constructing the XOR-Homomorphic interactive hash. A k-out-of-n
oblivious transfer protocol takes n messages m1, . . . ,mn from the sender and a set of k indices i1, . . . , ik ∈
[1, n] from the receiver, and outputs the k messages mi1 , . . . ,mik to the receiver (but nothing else). Actively
secure 1-out-of-2 OT can be efficiently constructed [49,44] and extended [27,1] so that only a small number of
expensive base OTs are needed. An actively secure k-out-of-n oblivious transfer protocol could be efficiently
constructed from black-box use of 1-out-of-2 committed oblivious transfer (COT) protocols [29,15], or slightly
more efficiently by combining committing OT [28] and committed OT. UC secure committed and committing

4

1-out-of-2 OTs could be efficiently instantiated from dual-mode cryptosystems [49]. Camenisch, Neven, and
Shelat [8] proposed efficient and simulatable k-out-of-n OT in the Random Oracle Model.

2.2 Garbled Circuits

Following the formalism proposed by Bellare, Hoang, and Rogaway [4], a garbling scheme G is is 5-tuple
(Gb,En,Ev,De, f) of algorithms, where Gb is an efficient randomized garbler that, on input (1k, f), outputs
(F, e, d); En is an encoder that, on input (e, x), outputs X; Ev is an evaluator that, on input (F,X), outputs Y ;
De is a decoder that, on input (d, Y), outputs y. The correctness of G requires for every (F, e, d)← Gb(1k, f)
and every x, De(d,Ev(F,En(e, x))) = f(x). Let Φ be a prefixed function modeling the acceptable information
leak and “≈” symbolizes computational indistinguishability. Privacy of G implies that there exists an efficient
simulator S such that for any x ∈ {0, 1}nI ,{

(F, e, d)← Gb(1k, f), X ← En(e, x) : (F,X, d)
}
≈ {S(1k, f(x), Φ(f))}.

Obliviousness of G implies that there exists an efficient simulator S such that

{(F, e, d)← Gb(1k, f), X ← En(e, x) : (F,X)} ≈ {S(1k, Φ(f))}.

Authenticity of G requires that for every efficient adversary A = (A1,A2),

Pr

Y 6= Ev(F,X) and De(d, Y) 6= ⊥) :
(f, x)← A1(1k),
(F, e, d)← Gb(1k, f), X ← En(e, x),
Y ← A2(1k, F,X).

 = negl(k),

where negl is a negligible function.
Our protocol, uses the Half-Gates garbling scheme recently proposed by Zahur, Rosulek, and Evans [57],

which offers the simulation-based definition of privacy, obliviousness, and authenticity under a circular corre-
lation robustness assumption of the hash function H. We summarize their AND gate Gb and Ev algorithms,
GenAND (Algorithm 1) and EvlAND (Algorithm 2), respectively, in the Appendix.

2.3 LEGO-Style Cut-and-Choose

Nielsen and Orlandi [48] proposed the seminal idea of LEGO, which enables the circuit evaluator to check
individual garbled gates and randomly group evaluation gates to accomplish actively secure two-party com-
putation. The first construction [48] was based on NANDs and require public key operations for soldering.
Fredericksen et al. [13] improved the LEGO construction to work with free-XOR technique. The backbone
of LEGO-style protocols are made of three basic components:

1. Generate. P1 generates a total of T garbled gates.
2. Evaluate. P2 randomly picks BN gates and groups them into N buckets, each of which will realize

a gate in C. P2 evaluates every bucket by first translating the bucket’s input-wire labels to input-wire
labels of each garbled gate in the bucket, then evaluating the garbled gates and finally translating the
output-wire labels obtained from evaluating gates of the same bucket to the output-wire labels of the
bucket for majority selection. (The wire label translation is also known as wire soldering.

3. Check. P2 checks the rest T − BN gates for their correctness, using per-gate secrets revealed by P1.
Note that unlike the circuit checking of traditional cut-and-choose, every bad gates could be detected
with probability less than 1.

Note that in [48], all garbled gates in the description above are NANDs, as NANDs alone is functional
complete to realize arbitrary circuits; while with [13], all garbled gates are ANDs, which, combined with
XORs, are also functional complete. Because XORs can be securely computed locally, no extra cut-and-
choose is needed to ensure P1’s correct behavior on XORs.

5

3 XOR-Homomorphic Interactive Hash

3.1 Definition.

We introduce the notion of XOR-Homomorphic Interactive Hash, which is a pair of algorithms (Hash,Verify),
where Hash involves two participants, P1 and P2. Roughly speaking, Hash is an efficient two-party probabilis-
tic algorithm that takes a message m from P1 and outputs nothing to P1, but only the hash of m (denoted as
〈m〉) to P2 without revealing any extra information. Verify is an efficient deterministic algorithm (executable
by P2 alone) that takes a hash 〈m〉 and a message m′ as inputs, and outputs a bit b indicating whether
m=m′ (but nothing beyond). Like conventional notion of hashing, we require |〈m〉| < |m| and that for any
two distinct messages m1 and m2 from P1, their hashes received by P2 are distinct except for a negligible
probability. In addition, the hashes need to be XOR-homomorphic, i.e., 〈m1〉 ⊕ 〈m2〉 = 〈m1 ⊕m2〉.

Formally, we define the ideal functionality FXorIHash of XOR-Homomorphic Interactive Hash in Figure 2.

– Hash. Upon receiving (Hash, m) from the committer P1: if there is
a recorded value (cid ,m), generate a delayed output (Receipt,cid,
〈m〉) to P2, where 〈m〉 denotes the hash of m and |〈m〉| < |m|; other-
wise, pick a fresh number cid , record (cid ,m) and generate a delayed
output (Receipt,cid, 〈m〉) to P2.

– Verify. Upon receiving (Verify, cid1, . . . , cid t, d) for any t ≥ 1
from P2: if there are recorded values (cid1,m1), . . . , (cid t,mt) (other-
wise do nothing), set z = 1 if m1⊕· · ·⊕mt = d, and z = 0, otherwise;
generate a delayed output (VerifyResult, z) to R.

Fig. 2: Ideal functionality of XOR-Homomorphic Interactive Hash. (“send a delayed output x to party P” signals

a standard treatment of fairness: it means “send (x, P) to the adversay; whenreceiving ok from the adversary, output

x to P .”)

Like cryptographic commitments, FXorIHash also offers certain “hiding” and “binding” properties: (1) Even
after receiving 〈m〉, P2 learns nothing about m except for what can be efficiently inferred from 〈m〉; (2) Once
〈m〉 is sent to P2, P1 (who does not know 〈m〉) can’t claim 〈m〉 to be the hash of a different message
m′. Due to these “limited” notions of hiding and binding, we borrow two expressions from the domain of
commitments:

1. “P1 sends 〈m〉 to P2” refers to the action where P1 and P2 collaboratively run Hash over P1’s private
input m so that P2 learns 〈m〉 (but nothing else) while P1 learns nothing.

2. “P1 opens 〈m〉 to P2” refers to the action where P1 reveals the pre-image m to P2, who then checks
whether m is consistent with its claimed hash 〈m〉 via calling Verify(〈m〉,m).

Unlike traditional commitments, which fully hides the committed message to the receiver, an interactive
hash allows leaking some information of m to the receiver, yet preserve the remaining entropy (if m is picked
uniformly random, there has to be some entropy left since |〈m〉| < |m|). In addition, with an interactive
hash scheme, the hashes are kept secret from the party (i.e. P1) who holds the pre-images, while the party
(i.e. P2) who has the hash can efficiently query (by itself) whether a message is a pre-image of the hash.

3.2 Construction.

Inspired by Reed-Solomon code, we give a concrete implementation of XOR-homomorphic interactive hash
scheme that leverages a black-box use of w-out-of-n oblivious transfer protocols. If P1’s input messages to
Hash are sampled uniformly random, our construction perfectly hides |m| − |〈m〉| bits of information in m.
Meanwhile, it guarantees statistical binding in that P1 can only claim a different message m′ to be the pre-
image of 〈m〉 with negligible probability. We summarize the variables relevant to describing the interactive
hash protocol in Figure 3.

6

F2σ The symbol space, i.e., the Finite Field of size 2σ.

n Number of symbols in a codeword.

w Number of symbols to be watched by the receiver.

` Number of symbols in a message.

σ Number of bits to represent a symbol.

µ Bits of entropy (per message) retained.

Fig. 3: Variables in the construction of XOR-homomorphic interactive hash

Our construction combines the idea of Reed-Solomon code and oblivious transfer: to hash a message m
(we use bold face m to emphasize that messages are arrays of σ-bit symbols), P1 encodes its `-symbol private
message m using a Reed-Solomon code and then sends the n-symbols encoding to P2 using a w-out-of-n
obliviously transfer. Intuitively, perfect hiding is guaranteed for uniform-randomly sampled messages of P1,
because even after observing w symbols of P2’s choice, there remains 2(`−w)σ possible pre-images equally
likely mapping to 〈m〉; statistical binding is ensured since if P1 claims the hash with a different message
m′, it will be detected by P2 with probability at least

(
`−1
w

)/(
n
w

)
(since the encodings of m and m′ will be

identical at `− 1 symbols at most while w out of the n encoding symbols have been watched by P2).
Our optimized instantiation of FXorIHash is detailed in Figure 4. We leverage a symmetric encryption

scheme, (KeyGen,Enc,Dec), to limit the use of OT to Setup stage only. As Setup needs to run only once to
prepare P1 and P2 for all subsequent calls to Hash and Verify, the overall cost of OT is well amortized.

– Setup
1. P1 runs KeyGen n times to obtain n keys, denoted by {k1, . . . , kn}.
2. The P2 randomly picks a set of w integers from {1, . . . , n}, denoting

them with {i1, . . . , iw}.
3. P1 and P2 execute a w-out-of-n OT protocol where P1 is the sender

with inputs (k1, . . . , kn) while P2 is the receiver with input choices
(i1, . . . , iw). At the end of this step, P2 learns {ki1 , . . . , kiw}.

4. P1 and P2 agree on a set of n (` < n ≤ 2σ) `-dimensional vectors
{v1, . . . ,vn} ⊂

{
[1, x1i , . . . , x

`
i]
∣∣xi ∈ F2σ

}
, where any subset of `

vectors are linearly independent.
– Hash(m), where m ∈ F`2σ is the message to hash.

1. P1 computes Enck1(v1 ·m), . . . ,Enckn(vn ·m) and sends them to
P2.

2. P2 decrypts all watched symbols using ki1 , . . . , kiw to obtain
(vi1m, . . . ,viwm), which is output as the interactive hash of m,
written as 〈m〉.

– Verify(〈m〉,m′).
1. P2 return 1 if for all j ∈ {i1, . . . , iw}, vj ·m′ = 〈m〉j , where 〈m〉j

denotes the j-th entry in the hash; and 0, otherwise.

Fig. 4: Realize XOR-Homomorphic Interactive Hash

3.3 Proof of Security

It can be proved that the construction in Figure 4 realizes FXorIHash in the honest-but-curious model, though
this is not much more useful than Lemma 1 in the security proof of our main protocol. (Thus, we leave the
proof of the theorem to the full version of the paper.) Intuitively, the lemma suggests that (1) if m is picked

7

random, (`− w)σ bits of entropy remains even if after 〈m〉 is sent; (2) any w symbols is a valid hash; (3) a
hash 〈m〉 statistically binds the sender to the message m.

Lemma 1. Assume σ-bit symbols. Let m be a uniform-randomly sampled `-symbol message and 〈m〉 be the
w-symbol hash of m produced by the Hash algorithm of Figure 4. Let Hmin be the min-entropy function.
Then

1. Hmin(m|〈m〉) = (` − w)σ. That is, in P2’s perspective, there is still (` − w)σ bits of entropy about m
after P2 receives 〈m〉.

2. Any tuple of w symbols can be regarded as an interactive hash of some message m.
3. Once P2 receives 〈m〉, P1, even with unbounded computation power, cannot open 〈m〉 to a different

message m′ with probability more than
(
`−1
w

)/(
n
w

)
.

Theorem 1. In the semi-honest model, the protocol in Figure 4 realizes FXorIHash defined in Figure 2.

4 The Protocol

4.1 High-Level Description

At the high level, the protocol proceeds in the following steps:

1. Generate garbled ANDs. P1 generates a total of T garbled AND gates using the Half-Gates garbling
algorithm GenAND (but using elongated wire labels).

2. Commit and send garbled AND gates. P1 commits and sends all garbled ANDs it generated to P2.
3. Evaluate. P2 randomly picks a random string J and send it to P1. Using J as the source of randomness,
P1 and P2 randomly select BN ANDs and group them into N buckets, each of which will be used to
compute an AND gate in C. For every bucket,
(a) P1 and P2 securely solder the B garbled ANDs using the XOR-homomorphic interactive hash. P2

delays its response to soldering failures to step 5b.
(b) P2 evaluates all B garbled ANDs in the bucket.
P2 locally evaluates all XORs in circuit C.

4. Check. P2 checks the rest (T − BN) garbled ANDs to verify their correctness (but delays its response
to check-failures to step 5b).

5. Output determination.
(a) P1 “opens” the permutation randomness associated to the final output-wires so that P2 knows how

to interpret the final output-wire labels.
(b) If any failure occurred at the time of checking (step 4), soldering (step 3a), or opening (step 5a)

above, P2 aborts. Otherwise, P2 translates the output-wire labels into plaintext bits.

Remark 1. Our protocol is distinguished from previous LEGO-style protocols in that it requires only one
correctly generated garbled gate in each bucket. This is enabled by combining the free-XOR technique with
our XOR-homomorphic hash: (1) P2 can always learn, from 〈∆〉 and 〈wp〉 (the hash of the 0-label permuted
by a bit p associated with every wire), whether a wire label w it obtains in the evaluation stage is consistent
with either 〈w0〉 or 〈w1〉 regardless of the value of p; (2) whenever P2 learns both w0 and w1 (via evaluating
both good and bad gates in the same bucket), it can learn the global secret ∆ and further P1’s secret input
x, except with negligible probability. We will formally prove this point as Lemma 3.

Remark 2. Unlike MiniLEGO [13] where the detection rate τ = 1/4, we are able to increase τ to 1/2, through
leveraging the Half-Gates garbling [57]. The intuition behind this idea is that a correctly garbled gate can be
modeled as the solution to a linear system of four equations over three variables where all the coefficients are
fixed by the six interactive hashes associated with the gate. Since any three of the four coefficients vectors
are linearly independent (due to the hash function used in the Half-Gates garbling), if P1 cheats so that one
of the equations does not hold, there has to be at least another equation that is also not satisfied. That is, if
the gate is bad, at least two out of four rows of the garbled table is corrupted. We will formally prove this
observation as Lemma 4.

8

Remark 3. We stress that P2 should not complain in event of: (1) any bad gate found in the checking stage
(step 4); (2) XOR values not matching with their hashes in soldering (step 3a); and (3) any pre-images not
matching the hashes of the wire permutation randomness in step 5a, until in the end (step 5b). This prevents
malicious P1 from probing the watched symbols of P2 from observing P2’s responses.

4.2 Formal Specification

Fix a function f that P1 and P2 wish to compute over their respective inputs x, y (let nP1

I and nP2

I are the
bit length of x and y, respectively. Assume f is realized by a boolean circuit C. The protocol proceeds as
follows.

0. Setup.
(a) P1 and P2 execute the Setup step of the XOR-homomorphic hash scheme, where P1 is the hash sender

and P2 is the hash receiver.
(b) P1 randomly samples the global secret ∆ ← {0, 1}λw (as is used in Half-Gates [57] to enable the

free-XOR technique [30]) and commit it to P2, who learns 〈∆〉.
1. Generate garbled ANDs. For i = {1, . . . , T}, P1 runs the garbling algorithm GenAND (Figure 1) to

create T garbled AND gates:

(w0
i,l, w

0
i,r, w

0
i,o, Ti,G, Ti,E)← GenAND(i,∆)

where w0
i,l, w

0
i,r, w

0
i,o are the wire labels representing 0-values on the left input-wire, the right input wire,

and the output-wire, respectively, of the i-th garbled AND; Ti,G is the single garbled row in the generator
half-gate and Ti,E the single row in the evaluator half-gate.

2. Commit and send garbled AND gates. For i = {1, . . . , T},
(a) P1 samples ρi,l ← {0, 1}λp , ρi,r ← {0, 1}λp , ρi,o ← {0, 1}λp , and computes w1

i,l := w0
i,l ⊕ ∆; w1

i,r :=

w0
i,r ⊕∆; w1

i,o := w0
i,o ⊕∆.

(b) Let pi,l = ρi,l1 ⊕· · ·⊕ρ
i,l
λp

(where ρi,lj denotes the j-th bit of ρi,l), while pi,r and pi,o are similarly derived

from ρi,r and ρi,o, respectively. P1 and P2 hash ρi,l, w
pi,l
i,l , ρi,r, w

pi,r
i,r , ρi,o, w

pi,o
i,o so that P2 learns 〈ρi,l〉,

〈wpi,li,l 〉, 〈ρi,r〉, 〈w
pi,r
i,r 〉, 〈ρi,o〉, 〈w

pi,o
i,o 〉, respectively.

(c) P1 sends Ti,G, Ti,E to P2.
3. Evaluate. P2 randomly picks a random string J and send it to P1. Using J as a random source, BN

garbled ANDs are selected and grouped into N buckets.
P1 and P2 follow an identical topological order to process the initial input-wires and every binary gate of
the boolean circuit C. (Note C only contains ANDs and XORs.)
(a) For every input-wire Wi associated to P1’s private input bit xi: P1 samples ρi ← {0, 1}λp and a wire

label w0
i ← {0, 1}λw (thus w1

i := w0
i ⊕ ∆) and sends wxii and the hashes 〈ρi〉, 〈wpii 〉 to P2 (where

pi = ρi1 ⊕ · · · ⊕ ρiλp).

(b) For every input-wire Wi associated to P2’s private input yi:
i. Wi is ⊕-split into s wires Wi,1, . . . ,Wi,s.
ii. P1 samples w0

i,1 ← {0, 1}λw , . . . , w0
i,s ← {0, 1}λw and runs the interactive hashing with P2 so that

P2 learns 〈w0
i,1〉, . . . , 〈w0

i,s〉.
iii. P2 samples yi,1 ← {0, 1}, . . . , yi,s ← {0, 1} subject to yi,1 ⊕ · · · ⊕ yi,s = yi.
iv. For every j ∈ {1, . . . , s}, P2 retrieves w

yi,j
i,j from P1 through oblivious transfer, and verifies w

yi,j
i,j

against 〈wyi,ji,j 〉 (note P2 can compute 〈wyi,ji,j 〉 := 〈w0
i,j〉 ⊕ yi,j〈∆〉). A verification failure at any j

results in P2’s delayed abort at step 5.
v. P2 sets wyii := w

yi,1
i,1 ⊕ · · · ⊕ w

yi,s
i,s and 〈wyii 〉 := 〈wyi,1i,1 〉 ⊕ · · · ⊕ 〈w

yi,s
i,s 〉, 〈ri〉 := 〈0〉.

(c) For every AND gate in C (recall that P2 should have already obtained two wire labels wal , w
b
r, which

represent the signals a, b on the left and right input wires of the AND gate, and hashes 〈ρl〉, 〈wpll 〉 and
〈ρr〉, 〈wprr 〉):

i. P2 selects B garbled ANDs (solely determined by randomness rcc), g1, . . . , gB , from T − K and
notifies P1 its choices.

9

ii. P1 samples ρo ← {0, 1}λp and w0
o ← {0, 1}λw and sends hashes 〈ρo〉 and wpoo to P2 (where

po = ρo1 ⊕ · · · ⊕ ρoλp). P2 sets O to an empty set, and executes the following for i ∈ {1, . . . , B}
(note that whenever P2 receives an incorrect preimage reuqired to verify a hash, it continues its
execution until its delayed abort at step 5),
A. Let pi,l = gi.pl, pi,r = gi.pr. P1 opens 〈ρl〉 ⊕ 〈ρi,l〉, 〈ρr〉 ⊕ 〈ρi,r〉 to P2 so that P2 learns

pl ⊕ pi,l :=
⊕

1≤j≤λp(ρlj ⊕ ρ
i,l
j) and pr ⊕ pi,r :=

⊕
1≤j≤λp(ρrj ⊕ ρ

i,r
j).

B. Let wxi,l = gi.w
x
l and wxi,r = gi.w

x
r for any bit x, P1 opens 〈wpll 〉⊕ 〈w

pi,l
i,l 〉⊕ ((pl⊕ pi,l)〈∆〉) and

〈wprr 〉 ⊕ 〈w
pi,r
i,r 〉 ⊕ ((pr ⊕ pi,r)〈∆〉)to P2 so that P2 learns dl and dr (where dl = w0

l ⊕w0
i,l, dr =

w0
r ⊕ w0

i,r), hence can compute wai,l := wal ⊕ dl and wbi,r := wbi,r.

C. Let Ti,G = gi.TG, Ti,E = gi.TE . If P2 runs wi,o := EvlAND(wal , w
b
r, Ti,G, Ti,E).

D. P2 verifies wi,o against 〈wpi,oi,o 〉 and 〈wpi,oi,o 〉 ⊕ 〈∆〉. If neither succeeds, P2 stops processing gi
and advances to processing gate gi+1.

E. Let pi,o = gi.po. P1 opens po ⊕ pi,o to P2.
F. Let wi,o = gi.wo. P1 opens 〈wpoo 〉⊕ 〈w

pi,o
i,o 〉⊕ ((po⊕ pi,o)〈∆〉) to P2 so that P2 learns di,o (note

di,o := w0
o ⊕ w0

i,o), hence can compute wo := wi,o ⊕ di,o.
G. P2 verifies wo against 〈wpoo 〉 and 〈wpoo 〉⊕ 〈∆〉. If either verification succeeds, P2 adds wo to O;

otherwise, continue evaluating the next garbled gate.
iii. If there exist two different labels wo and w′o in O. P2 computes ∆∗ := wo ⊕ w′o, and uses ∆∗ to

find out P1’s private inputs x and computes f(x, y).
iv. Otherwise, i.e., O contains a single element w, P2 sets wo = w.

(d) For every XOR gate in C: since XOR is free, P1 does nothing while P2 calculates wo := wl ⊕ wr. At
the same time, P2 derives 〈ρo〉 := 〈ρl〉 ⊕ 〈ρr〉 and 〈wpoo 〉 := 〈wpll 〉 ⊕ 〈wprr 〉.

4. Check. P2 checks the correctness of the rest T − BN garbled ANDs. For every check-gate denoted by(
〈ρl〉, 〈wpll 〉, 〈ρr〉, 〈wprr 〉, 〈ρo〉, 〈wpoo 〉, TG, TE

)
,

(a) P2 samples a← {0, 1}, b← {0, 1} and sends a, b to P1.
(b) P1 opens 〈ρl〉, 〈ρr〉, 〈ρo〉 to P2. Let pl = ρl1 ⊕ · · · ⊕ ρlλp , pr = ρr1 ⊕ · · · ⊕ ρrλp , po = ρo1 ⊕ · · · ⊕ ρoλp ,

i. P1 opens 〈wpll 〉 ⊕ ((a⊕ pl)〈∆〉) to P2 so that P2 learns wal .
ii. P1 opens 〈wprr 〉 ⊕ ((b⊕ pr)〈∆〉) to P2 so that P2 learns wbr.
iii. Let z = a ∧ b. P1 opens 〈wpoo 〉 ⊕ ((z ⊕ po)〈∆〉) to P2 so that P2 learns wzo .

(c) P2 computes wo := EvlAND(wal , w
b
r, TG, TE). If wo 6= wzo , P2 goes to step 4d.

(d) If any failure is detected in step 4(b)ii and 4(b)iii, P2 keeps dummy-execution of the protocol as
normal, until step 5, when it aborts..

5. Output determination. If any incorrect garbled AND gates or incorrect hash preimages were found in
steps 4 and 3 above, P2 aborts. If P1’s f(x, y) was determined in step 3(c)iii (from leaked P1’s secret ∆),
P2 outputs f(x, y). Otherwise, (cheating was not observed by P2), for every final output-wire in C, P1

opens 〈ρo〉 (the hash of the permutation bit on the final output-wire) to P2 so that P2 can find out the
value represented by wo (recall wo is already either verified with 〈wpoo 〉 or 〈wpoo 〉 ⊕ 〈∆〉, thus once po is
known from opening ρo, wo can be translated to a plaintext bit).

4.3 Optimizations

Thwart selective-failure attacks, more efficiently. In order to prevent P1 from probing P2’s input y
using inconsistent wire labels in OT and garbling, in step 3b, every input-wire for P2’s input is split to s wires
(which are XOR-ed together), requiring nP2

I s 1-out-of-2 oblivious transfers (where nP2

I is the number of bits
in y and s is the statistical parameter). Lindell and Pinkas [35] suggested an optimization using a bundle of
wires per circuit to reduce the cost down to max(4nP2

I , 8s). Shelat and Shen [53] proposed an optimization
based on Reed-Solomon code to reduce the cost to as low as 25% of Lindell and Pinkas’s already optimized
construction.

Length preserving encryption. In the interactive hash scheme of Figure 4, a Hash requires n calls to the
symmetric key encryption. To prevent ciphertext explotion and save bandwidth, the symmetric key secure
encryption scheme can be replaced by a secure format-preserving encryption scheme [43,5,45].

10

4.4 Proof of Security

We first show that, for any security parameter s, k and circuit size N , it is possible to configure the protocol
parameters T,B, n, `, w such that if P2 will be able to correctly output f(x, y) (except with probability 2−s)
if it does not abort in our protocol. We break the proof into the following two lemmas. For concrete values of
s, k,N , we detail how to setup T,B, n, `, w to achieve the best performance while maintaining the security
guarantee.

Lemma 2. For any circuit size N , there are parameter settings of T,B such that if P2 does not abort at
step 5, then there is at least one correctly garbled gate in each bucket, except with probability 2−s.

Lemma 3. If there is at least one correctly garbled gate in each bucket, P2 is able to output f(x, y) except
with negligible probability when executing the two-party computation protocol of Section 4.2.

Lemma 4. Given 〈∆〉 and any committed garbled AND,
(
〈ρl〉, 〈wpll 〉, 〈ρr〉, 〈wprr 〉, 〈ρo〉, 〈wpoo 〉, TG, TE

)
, where

pl = ρl1 ⊕ . . . ⊕ ρlλp , pr = ρr1 ⊕ . . . ⊕ ρrλp , po = ρo1 ⊕ . . . ⊕ ρoλp . If any of the following is not satisfied (where

EvlAND is the Half-Gate AND gate evaluation algorithm, see Algorithm 2),

EvlAND(w0
l , w

0
r , TG, TE) = w0

o; EvlAND(w0
l , w

1
r , TG, TE) = w0

o;

EvlAND(w1
l , w

0
r , TG, TE) = w0

o; EvlAND(w1
l , w

1
r , TG, TE) = w1

o,

P2 will be able to detect this fact with probability at least 1/2 in step 4.

Theorem 2. Under the assumptions outlined in Section 2, and modeling H as a random oracle, the protocol
in Section 4 securely computes f in the presence of malicious adversaries.

Proof We analyze the protocol in a hybrid world where the parties have access to an ideal functionality for
k-out-of-n oblivious transfer. The standard composition theorem [9] implies security when the sub-routine
are instantiated with a secure k-out-of-n OT protocol.

For a corrupted P1, we construct a polynomial-time simulator S that interacts with the corrupted P1

using the protocol specified in Section 4.2 as P2 with input y = 0, except with the following changes:

1. In step 0a of Setup, instead of using a real w-out-of-n OT protocol, S and P1 use a trusted party
(simulated by S) to accomplish the w-out-of-n OT so that S learns all the symbol-encryption keys
k1, . . . , kn that P1 has generated.

2. In step 3a of Evaluate, in addition to receiving 〈ρi〉 and 〈wpii 〉, S uses the symbol-encryption keys
learned above to find out ρi, pi, and wpii , which, combined with the correctly garbled gate where wpii is

used, allows S to learn xi for all 1 ≤ i ≤ nP1

I .
3. In step 5 of Output determination, if S does not abort, (instead of outputs f(x, 0)), S sends x to the

trusted party and receive in return an output z = f(x, y).

Now we show that ∀x, y, REALP1,P2(x, y) ≈ IDEALT ,S,P2(x, y) by examining the following two cases:

1. If P2 does abort in the real world execution, S will also abort in the ideal world execution because the
difference between S and P2 does not affect their behavior of aborts.

2. If P2 does not abort in the real world execution, assuming the parameters T,B, n, `, w are properly set,
following Lemma 2 and Lemma 3, we know that P1 and P2 must be able to output f(x, y) in the real
world (except with probability less than 2−s. In this case, S in the ideal world execution will not abort
either, so S will send the extracted x (because S does not abort, thus except with probability less than
2−s, at least one correctly garbled gate is in every bucket and P1 had revealed all expected pre-images
and expected xors correctly, hence indeed able to extract x) to the trusted party so S and P2 can output
f(x, y) in the ideal world.

For a corrupted P2, we construct a polynomial-time simulator S that interacts with the corrupted P2

using the protocol specified in Section 4.2 as P1 with input x = 0, except with the following changes:

11

1. In step 0a of Setup, instead of using a real w-out-of-n OT protocol, S and P1 use a trusted party
(simulated by S) to accomplish the w-out-of-n OT so that S learns all positions of the watched symbols
selected by P2.

2. In step 3b of Evaluate, instead of using a real 1-out-of-2 OT protocol, S and P1 use a trusted party
(simulated by S) to accomplish the 1-out-of-2 OT so that S learns yi,1, . . . , yi,s, hence able to compute

P2’s effective input yi := yi,1 ⊕ · · · ⊕ yi,s for all 1 ≤ i ≤ nP2

I .
3. In step 5 of Output determination, if S does not abort, S sends the y extracted above to the trusted

party and receive in return f(x, y). Leveraging the knowledge of all positions of P2’s watched symbols,
for every output bit zi where f(x, y) differs from f(0, y), let ρ be the original permutation randomness on
the output-wire associated with zi , S opens 〈ρ〉 to ρ′, which differs from ρ in a single bit while matching
〈ρ〉 in of P2’s perspective.

Now we show that ∀x, y, REALP1,P2(x, y) ≈ IDEALT ,P1,S(x, y) by examining the following two cases:

1. If P2 does abort in the real world execution, S will also abort in the ideal world execution because P1 is
honest so the only reason that an abort happens is that P2 decides to leaves the protocol while the deci-
sion can only be made over transcripts that are computationally indistinguishable. This computational
indistinguishability can be derived from the security of the garbled circuit protocol.

2. If P2 does not abort in the real world execution, assuming the parameters T,B, n, `, w are properly set,
following Lemma 2 and Lemma 3, we know that P1 and P2 will be able to output f(x, y) in the real world
(except with probability less than 2−s). In this case, the S runs in the ideal world will not abort either
(following the security of the garbling scheme), so S will be able to extract y and use it to obtain f(x, y)
from the trusted party in the ideal world. Note that because S knows all w symbols of ρ’s encoding
watched by P2 and ` > w (where ` is the number of symbols in rho′), a ρ′ that matches 〈ρ〉 but differs
from ρ in a single bit can be efficiently calculated from solving a linear system of w + 1 equations. ut

5 Parameters and Analysis

Our protocol involves two flavors of cut-and-choose (one in the XOR-homomorphic interactive hash and the
other for gate checking and evaluation) and many parameters. It involves novel approaches of analysis to
figure out the best (in terms of efficiency) set of parameters subject to a concrete security guarantee. In this
section, we propose a unique approach to efficiently automate the search for optimal parameter settings for
every concrete security parameters (s, k).

Cost Metric. In this work, we focus on the cost of network bandwidth, which can be accurately calculated
in our analysis. As faster hardware [3,32], new garbling mechanisms [18,3], and circuit parallelism [7,46,24,32]
have been exploited to dramatically improve the speed of garbled circuit protocols, the high bandwidth cost
of these protocols, especially in the malicious model, is increasingly prominent and widely recognized by the
research community. In practice, bandwidth has been shown to be highly correlated with the time cost as a
significant portion of the time is spent on data transmission and synchronization.

5.1 Optimal Parameters of the Interactive Hash

Here our goal is to determine the most bandwidth-efficient configuration of (σ, `, n, w) that achieves s bits
statistical security in binding and retains µ bits entropy per hashed message from the hash receiver. We
model it as a non-linear optimization problem given in Figure 5. We introduce constants α, β to characterize
the bandwidth cost in the main protocol associated with the parameters of the interactive hash scheme.
We use α = 3, β = 3 when searching for the parameters of interactive hash used on wire permutation
randomness because every garbled AND gate comes with 3 wires, each having a random string to encode the
permutation bit (so 3nσ bits sent in Hash and 3`σ sent in “open” the XOR difference); while α = 3, β = 5
when determining the parameters for hashing the wire labels (note β = 5 because the two garbled rows have
to be extended to `σ bits each to enable P2 to verify the output wire labels on its own.)

12

Let s, µ, α, β be fixed integer constants, S = (αn+ β`)σ.

minS
subject to: (

`− 1

w

)/(
n

w

)
≤ 2−s (1)

σ(`− w) ≥ µ (2)

2σ ≥ n (3)

where n, `, σ, w are all positive integers.

Fig. 5: The non-linear programming problem for optimizing the interactive hash’s parameters. ((1) comes from

part 2 of Lemma 1, (2) is related to part 1 of Lemma 1, (3) stems from the requirement on the encoding vectors

(Figure 4, Step 4 of the Setup stage).)

1. Let S = (αn + β`)σ. For S ranging from 2 to infinity (but skipping
all odd primes)
(a) For σ ranging from all possible divisors of S

i. Set w := b` − µ/σc, ` := (S/σ − αn)/β, then search with
discrete Newton algorithm for the integer n that minimizes
Q(n) =

(
`−1
w

) /(
n
w

)
.

ii. If the current assignments of σ, `, n, w satisfy (1), output
(σ, `, n, w) and stop; otherwise, continue to examining the
next possible σ.

Fig. 6: Algorithm to find the bandiwidth-optimal parameters σ, `, n, w of XOR-homomorphic interactive hash
for every requirement specification s, µ, α, β.

A naive brute-force search of all possible (σ, `, n, w) values can hardly solve the non-linear programming
problem because, apparently, the value ranges of n and ` appear to be quite large, whereas there are no
explicit upper-bounds for σ and `.

To this end, we identified a highly efficient solution through aggressive pruning (Figure 6). Our basic
strategy is to scan through candidate S values from the bottom and return as soon as a viable (σ, `, n, w)
is found. We had two key insights that helps to dramatically speedup our search: (1) Fixing S = S0 and
σ = σ0, if w := b`− k/σ0c can’t satisfy (1) then there cannot be a viable solution with σ = σ0 that achieves
S0 (which saves us from trying out all possible w but only one); (2) Fixing S = S0, σ = σ0, w = w0, because
` = (S0/σ0−αn)/β,

(
`−1
w

) /(
n
w

)
is a convex function of n and its value is solely determined by n (which allows

us to decide whether a viable solution of (σ0, w0, `, n) exists for S0 by evaluating
(
`−1
w

) /(
n
w

)
at logarithmic

number of n values). Overall, given S = S0 and σ = σ0, it takes only logarithmic number of steps to search
in a one-dimensional space to decide whether a viable solution achieving S0 exists with σ = σ0. We formally
prove this as Lemma 5.

Lemma 5. Fixing S = S0 and σ = σ0, it takes only logarithmic number of steps to search in the one-
dimensional space of n, to decide whether a viable solution (σ,w, `, n) to the non-linear programming problem
of Figure 5 achieving S0 with σ = σ0.

Leveraging this parameter optimization algorithm, we plot the influence of the security parameters s, k
over the bandwidth cost related to XOR-homomorphic interactive hash in our secure two-party computation
protocol in Figure 7,

13

0
1
2
3
4
5
6

0 10 20 30 40 50 60 70 80

S
(b

its
)

T
ho

us
an

ds

Statictical security parameter s

 Permutation bits (µ=1)
 Wire labels (µ=80)

0

1

2

3

4

0 20 40 60 80 100 120 140

S
(b

its
)

T
ho

us
an

ds

Remaining entropy µ (s = 40)

 Permutation bits
 Wire labels

Fig. 7: Per gate bandwidth cost of XOR-homomorphic interactive hashes for two types of messages. (The cost

is roughly linear in the security parameter s and the amount of remaining entropy µ, except for a few periodic jumps

due to increased σ.)

5.2 Fast Computation of Proverall(N,B, T, τ, b)

Computing the optimal parameters T,B based on s, k,N, τ is an even challenging non-linear programming
problem. Our solution to that problem requires a highly efficient and accurate approach to compute the overall
success probability of P1. In this section, we describe our novel algorithm that computes Proverall(N,B, T, τ, b)
with unprecedented efficiency and accuracy.

Once the parameters N,B, T, τ, b are fixed, the exact probability of malicious P1’s attack success rate
could be straightforwardly described as,

Proverall(N,B, T, τ, b) =

b∑
i=0

Prc(N,B, T, τ, b, i)Pre(N,B, b− i)

Prc(N,B, T, τ, b, i) = (1− τ)i
(
b
i

)(
T−b

T−BN−i
)(

T
T−BN

) (4)

Pre(N,B, b) =

(
b

B

)/(
BN

B

)
+

b−1∑
i=0

Pre(N − 1, B, b− i) ·
(
b

B−i
)(
BN−b
i

)(
BN
B

) (5)

Pre(N,B, b) = 0, ∀0 ≤ b ≤ B

However, due to the large scale of N,T values (e.g., N > 230) and stringent requirement on the precision,
e.g. end results less than 240 ∼ 2−80 (determined by the statistical security parameter), it is infeasible
to accurately compute Prc (which involves calculating large binomial coefficients) and Pre (which involves
exponential number of slow recursions) based on (4) and (5).

Thus, we propose novel approaches to compute Pre and Prc, which naturally combines to yield a highly
efficient and accurate approximation for Proverall(N,B, T, τ, b). E.g., set s = 40, if N = 50, 000, the error in
our approximation of log Proverall(N,B, T, τ, b) (on any secure choice of (T,B) assuming T > BN + 0.05T)
is less than 1 bit, while it decreases as N increases (following Lemma 6 and Lemma 7).

Computing Pre(N,B, b) Our key idea is to use generating functions to efficiently calculate Pre as the ratio
between the count of garbled gate assignments resulting a failure (i.e., at least one bucket is filled with B bad
gates) and the total count of garbled gate assignments. First, we can use function g(x, y) = (1+x)B+(y−1)xB

to model the gate assignment process for a single bucket, where x denotes a gate is “bad” and 1 denotes a
gate is “good” while the coefficient of xi is the number of ways to assign i bad gates to a bucket. Note that
we explicitly introduce the coefficient y for xB to denote the event that “all B gates in a bucket are bad”.
Furthermore, we can use G(x, y) = g(x, y)N as the generating function to model the gate assignment process
on the whole circuit with N buckets: the coefficient (which is a polynomial in y, hence written as fi(y)) of

14

xi in G(x, y) denotes the number of assignments that used i bad gates in total. Let fi(y) =
∑∞
j=0 cjy

j , then

fb(1) =
∑∞
j=0 cj is the total number of assignments with b bad gates used in the evaluation stage whereas

fb(1)− fb(0) =
∑∞
j=1 cj denotes the number of assignments that resulted at least one broken bucket. Hence,

we calculate Pre(N,B, b) = [fb(1)− fb(0)]/fb(1).
Note that we can further dramatically reduce the cost of computing the coefficients of the polynomial

G(x, y), by not distinguishing any terms yj1 and yj2 for any j1, j2 ≥ 1. Therefore, multiplying (u+ vy) and
(w + ty) yields uw + (ut+ vw + vt)y, keeping all cjs a linear formula of y no matter how big N and B are.

Computing Prc(N,B, T, τ, b, i) Recall that typically T,N are large while b, i are far smaller than N . So

the dominating cost in computing Prc is due to calculating
(

T−b
T−BN−i

)/(
T

T−BN
)

. Fortunately, we show that,

according to Lemma 6, it can be accurately approximated by
(
T−BN
T

)i (BN
T−i

)b−i
.

Lemma 6. Let T,B,N, b, i be defined as above. Then

lim
N−>∞

(
T−b

T−BN−i
)(

T
T−BN

) =

(
T −BN

T

)i(
BN

T − i

)b−i
.

5.3 Parameters of Gate Checking and Bucketing

Here the goal is, for every statistical security requirement s and circuit size N , efficiently identify the smallest
T that guarantees s bits of statistical security for a circuit of N buckets. To ensure security, a naive solution
requires, for a candidate (T,B) configuration, calculating Proverall for all b ranging from 1 to T . In practice,
this works only for circuits of moderate size, e.g., a few million. When N is large, it does not work due to
the daunting cost of computing (and memorizing) the coefficients of the generating function G(x, y), fj(y)
for all i ≤ T (as b is only roughly upper-bounded by T).

Therefore, we propose to consider a relaxed but practically useful problem for cases when N is large.
Namely, assuming the check rate r = (T −BN)/T > r0 for a positive constant r0, find the (T,B) pair with
minimal T (except for an asymptotically diminishing error due to approximating Prc). Intuitively, strategies
with low check rate do not perform well as a malicious P1 would exploit it by injecting more bad gates,
increasing its probability of successful attacks. In practice, we can set r0 to however small positive values to
attain stronger claims on the optimality of the T value output by the search.

A key insight of our (T,B)-searching algorithm (Figure 8) is that we can significantly save the cost of
computing G(x, y) by bounding b based on r0: because we can show that if P2 sets r > r0, there exists a
b0 such that all of P2’s strategies using b > bu will be dominated by those with b ≤ bu, thus we don’t even
bother to compute the coefficients of xj in G(x, y) for all j > bu. We formally prove that a lower-bound of
r implies a upper-bound of b as Lemma 7. Our algorithm finds the smallest T by enumerating all possible
B values. Another useful observation, which enables to effictively prune our search space, is that a smaller
viable TB we found on the way stipulates an upper-bound on B values we need to enumerate.

Using the efficient search algorithm above, we discovered the optimal T for a range of N , s settings.
Figure 9 depicts the the optimal κ = T/N with respect to different N and s.

Lemma 7. For any s, r0, τ > 0, there exists N0 and bu such that if T ≥ BN/(1− r0), then

Proverall(N,B, T, τ, b) < 2−s, ∀ b > bu.

5.4 Compare to Existing Two-Party Computation Protocols

Since our protocol has constant rounds whereas NNOB [47] and SPDZ [12] requires linear number of rounds
(theoretically in circuit depth but practically in circuit size because only a bounded number of gates can be

15

Input: s,N , r0.
Output: Tmin , BTmin

1. Choose bu and Bu.
(a) Compute i0 := s+2 and bu := −(s+1)

/
log(r0

2
+ 2

2/(1−r0)−i0/N
)

(b) Set Tmin :=∞ and Bu :=∞.
2. For B ranging from 2 to Bu,

(a) Precompute Pre(N,B, b) = 1 − fb(0)/fb(1) for all integer b ∈
[B, bu].

(b) Find the smallest TB such that Proverall(N,B, TB , τ, b) < 2−s

for all b ≤ bu. Note that such a TB exists for every B ≥ 2.
Since Proverall(N,B, T, τ, b) is a monotonically decreasing func-
tion of T , the search of TB is highly efficient with a doubling-
and-halving probe strategy.

(c) If Tmin > TB , then update Tmin := TB , BTmin
:= B, and Bu :=

d(1− r0)TB/Ne.
3. Output Tmin , BTmin .

Fig. 8: Determine bucket size (B) and the total number of gates to garble (T).

0
2
4
6
8

10
12
14
16

0 1 2 3 4 5 6 7 8 9 10 11

κ

Circuit Size N Thousands

 s=30
 s=40
 s=50

0
2
4
6
8

10
12

0 10 20 30 40 50 60 70 80 90

κ

Statistical security parameter s

 N=20000
 N=10000
 N=5000

Fig. 9: Optimal κ with respect to different N and s values. (When s = 40, κ = 6 is easily achievable for circuits

with more than 6000 gates. Note κ increases almost linearly with the statistical security parameter s.)

held in memory) and a heavy-weighted preparation stage, ours performs better for large scale computation
when the impact of network latency is taken into account.

Our protocol easily beats any existing cut-and-choose based two-party computation protocols (such
as [35,52,36,53,42]) that requires 3s copies of circuits to achieve s-bit of statistical security on any not-
too-small circuits (e.g., N ≥ 6000), because, say s = 40, the bandwidth of using 120 copies of the circuit is
equivalent to a κ value of 120 ∗ 128 ∗ 2/4844 = 6.34, while as Figure 9 shows, we can achieve κ = 5.8 for any
circuit of size N ≥ 6000.

Next, we consider The Lindell (CRYPTO, 2013)’s cheat-then-reveal protocol [33], the only protocol that
achieves s bits of security using s copies of circuits in the non-amortized execution scenario. We will show
that our protocol can outperform theirs in terms of bandwidth cost either when the nP1

I /N ratio is large, or
when N is sufficiently large.

First of all, we calculate the bandwidth cost of our protocol for (s = 40, k = 128) as follows:

1. Determine the optimal parameter setting n = 100, ` = 46, w = 27, σ = 7 for hashing wire labels. That
is, it costs nσ = 700 bits to hash a wire label and `σ = 322 bits to reveal a wire label (or an XOR of
several wire labels).

2. Determine the optimal parameter setting n = 44, ` = 19, w = 18, σ = 6 for hashing permutation bits. So
it costs nσ = 264 bits to hash a permutation bit and `σ = 114 bits to reveal a permutation bit (or an
XOR of several permutation bits).

16

3. Each row in the garbled table should have 322 bits since the wire labels are extended.
4. To check a gate, the total bandwidth cost is 114× 3 + 322× 2 = 986 because three permutation bits and

two wire labels needs to be revealed.
5. To evaluate a gate, the total bandwidth cost is 114× 3 + 322× 3 = 1308 because all three wires needs to

be soldered once, each of which requires revealing an XOR of two permutation bits and an XOR of two
wire labels.

6. Let nP1

I be the bit length of x, P1 needs to send a `σnP1

I bits in Step 3a; Let nP2

I be the bit length of y, we

use log nP2

I + nP2

I + s+ s ·max
(

log(4nP2

I), log(4s)
)

number of actively secure oblivious transfers (where

efficient actively secure OT extension [27,1] can be used) in Step 3b following Shelat-Shen’s optimization
on handling P2’s input [53].

Taking a conservative estimation, every garbled gate will cost no more than (700 + 264) × 3 + (322 +
114) × 3 + 322 × 2 = 4844 bits, no matter whether the gate is used for checking or evaluation. Note that
Lindell (CRYPTO, 2013)’s protocol [33] will generate 128×2×40 = 10240 bits of traffic per gate (excluding
the cost of the special handling of input and output wires). Since the same overhead allows us to implement
5120/4844 = 2.11 gates per bucket. Therefore, according to the results of Section 6.2, setting κ to any value
between 2 and 2.11, our approach can outperform theirs when N is sufficiently large.

When N is not sufficiently large, the cost of proper treatment of the initial input wires cannot be
ignored. In this case, our protocol has significant advantage over the state-of-the-art actively secure two-
party computation protocols, since ours requires only sending a `σ-bit message per bit of P1’s input x,
whereas the state-of-the-art protocols spend significantly more bandwidth in the input consistency proofs.
Let cours(nI) and cprev(nI) be the cost of handling the initial inputs in our work and a previous work,
respectively. Let cN,ours and cN,prev be the per gate cost of our work and a previous work, respectively. Our
protocol will outperform when

cours(nI) + cN,ours ·N < cprev(nI) + cN,prev ·N,

that is, when cN,ours < c(nI)/N + cN,prev where c(nI) = cprev(nI)− cours(nI). Because cN,prev is a constant
solely determined by the security parameters while cN,ours decreases as N grows, for any fixed c(nI)/N , our
protocol will outperform traditional cut-and-choose protocols if N is larger than a threshold Nbreak−even.
Figure 10 quantitatively depicts Nbreak−even with respect to c(nI)/N . Our protocol uses less bandwidth for
all (c(nI)/N,N) configurations in the area above the curve.

1

10

100

1,000

10,000

0 50 100 150 200 250 300 350
Thousands

Fig. 10: Quantifying Nbreak−even with respect to c(nI)/N , the cost ratio of input handling and circuit size.

Comparing to Lindell (CRYPTO, 2013)’s protocol [33], we have significant performance advantage on
processing input-wires corresponding to the P1’s input, because in addition to the input consistency proof,
they require actively-secure computing a cheating-punishment circuit whose bandwidth cost grows with the
length of P1’s input and is orders-of-magnitude more expensive than ours. (We stress that although they

17

proposed an optimization that effectively reduces the size of the cheating-punishment circuit, it does not
reduce the number of input-wires, which equals to the number of bits in a wire label). For many interesting
linear and sub-linear algorithms, c(nI)/N for Lindell (CRYPTO, 2013)’s protocol is so large that ours
has clear advantage, e.g., c(nI)/N is 50K bits for computing the Hamming distance between two strings
((nP1

I = nP2

I = N/2), 101K bits for Integer comparison (nP1

I = nP2

I = N), and 3K bits for private AES cipher

(nP1

I = nP2

I = 128, N ≈ 10K). So, our protocol can easily outperform theirs for Hamming distance and
Integer comparison but will not be more bandwidth-efficient for computing private AES when N ≤ 1010. In
general, our scheme loses to Lindell (CRYPTO, 2013) for most super-linear algorithms (except for sufficiently
large N), whose c(nI)/N values are small.

Most recently, Arash-Mohassel-Pinkas-Riva [2] proposed a lightweight cheating-punishment technique
based on Lindell’s and applied a bandwidth-saving technique that requires little more than 19 copies of
garbled circuits being transmitted to obtain 40-bit security. Our protocol cannot outperform theirs in band-
width but it would be an interesting and promising research to develop XOR-homomorphic interactive hash
schemes that are more bandwidth-efficient to outperform theirs.

6 The Tight Bound on The Benefit

In LEGO-protocols, κ = T/N (could be a decimal). When the circuit size N approaches to infinity, (following
the efficiency claim in LEGO-style protocols [13,48,14]) one may intuitively think κ goes to 0, as O(κ) =
O(T/N) = O((skN/ logN) · 1/N) = O(sk/ logN). However, this is not the case! We will show shortly that
two is the tight bound of κ, i.e., κ ≤ 2 can never be securely achieved by any LEGO-protocol; while any
κ > 2 can be achieved (at least with the protocol proposed in this paper) when N is sufficiently large.

In the proof of this section, we generalize the bucket size B to decimal values, which suggests different
buckets can have different (integer) size.

6.1 Any κ ≤ 2 Is Impossible to Achieve

Let Proverall be the overall success rate of P1 attacking a LEGO-style protocol. Our goal is to show that any
LEGO-style protocol will be insecure in an asymptotic sense. Namely, there exists a positive constant c and
N0 such that Proverall > c holds for all circuit sizes larger than N0 (Theorem 3). We achieve this by first
restricting our attention to the insecurity of LEGO-style protocols with κ = 2 that use only size-1 and size-2
buckets (Lemma 8), which can be proved through a sequence of mathematical relaxation (Lemma 10, 11, 12)
on the success probabilities of a malicious generator. Then we generalize the result of Lemma 8 to schemes
of arbitrary size buckets (Lemma 9) and settings of κ < 2 (Theorem 3).

Theorem 3. If κ ≤ 2, there exist a constant c > 0 and an integer N0 such that Proverall > c for all N > N0.

Proof First, we will show a proposition Prop that if κ = 2, there exist a constant c > 0 and an integer N0

such that Proverall > c for all N > N0. This can be derived directly through combining the facts of Lemma 8
and Lemma 9: it suffices to consider schemes involving only size-1 and size-2 buckets because, according to
Lemma 9, they work at least as good as any scheme with the same (T,N) but using other bucket sizes; while
Lemma 8 proves Prop with respect to using buckets of sizes 1 and 2.

Second, to generalize Prop to κ < 2, it suffices to see that comparing to the setting of κ = 2, with the
circuit size N being fixed, reducing κ leads to a smaller T , hence some garbled gates have to be dropped
either in the verification stage, or in the evaluation stage, or both, all of which further undermine the overall
security guarantee of the original cut-and-choose scheme. Therefore, Prop also holds for all κ < 2. ut

Lemma 8. Assume only size-1 buckets and size-2 buckets are used. Let Proverall(N, x, b) be the probability
that a cheating P1, who generates b bad gates, successfully attacks a LEGO-style protocol that computes a
circuit with N buckets, of which x percent is of size 2 and (1−x) percent is of size 1 (hence x ∈ [1/N, 1−1/N]).
If κ = 2, there exists a constant c > 0 and an integer N0 such that Proverall(N, x, b) > c for all N > N0.

18

Lemma 9. If κ = 2 and T,N are fixed, a scheme that uses only size-1 and size-2 buckets results in lower
rate of successful attacks by a malicious generator than one using any number of buckets whose size is greater
than 2.

Lemma 10. Fix κ = 2 and assume a total of N buckets are used, of which x percent is of size 2 and (1−x)
percent is of size 1. Let Prc(N, x, b) be the probability that P1 survives the gate verification stage, generating
b bad gates. Then

Prc(N, x, b) ≥
(

1 + x

2

)b [
1− (1− x)b2

(1 + x)(2N − b)

]
.

Lemma 11. Assume a total of N buckets are used, of which x percent is of size 2 and (1− x) percent is of
size 1. Let Pre(N, x, b) be the probability of P1 successfully cheats in the evaluation stage, with b bad gates
selected for evaluation. Then

Pre(N, x, b) ≥ 1−
(

2x

1 + x

)b
Lemma 12. There exists a constant c > 0 and a constant N0 such that for all integer N > N0,∀x ∈
[1
N , 1−

1
N], there exists a positive integer b such that(

1 + x

2

)b(
1− (1− x)b2

(1 + x)(2N − b)

)(
1− 2x

1 + x

)b
> c

Last, we remark that our discussion above only concerns the asymptotic notion of security. Therefore, the
aforementioned theorem and proofs should not be interpreted as contradiction to the fact that a particular
κ ≤ 2 could work with certain concrete security parameter settings, e.g., a κ ≤ 2 may be achievable for
3 bits of statistical security. However, we stress that any κ ≤ 2 can never be achieved with more than 5
bits of statistical security, evidenced by picking c2 = 0.48, c3 = 0.13, c1 = 0.85, and N0 = 3 in the proof of
Lemma 12 such that c > 0.05 while log 0.05−1 ≈ 4.32.

6.2 Any κ > 2 Is Achievable

When N is sufficiently enough, LEGO-style protocols can indeed reduce the circuit duplication factor κ to
values arbitrarily close to 2. Our proof of this fact (Theorem 4) is constructive, which essentially uses the
protocol we will explain in Section 4 hence inherits its proof of security (see Section 4.4) except for a claim
on the feasibility of upper-bounding a malicious generator’s probability of successful attacks, which we prove
here as Lemma 13. The proof is based on a simple cut-and-choose scheme where all buckets are of size 2 and
T − 2N gates are used for verification. The key idea is to show that, for a fixed κ > 2 and a (however small)
constant ε, we can find an integer N0 such that for all N > N0, a malicious generator’s successful attack
probability is upper-bounded by ε.

Theorem 4. For any κ > 2, statistical security parameter s and computational security parameter k, there
exist an integer N0 and a LEGO-like two-party computation protocol Πκ

LEGO of circuit duplication factor κ
such that for Πκ

LEGO is actively-secure for all circuits of size N > N0.

Lemma 13. Assume that, to compute a boolean circuit of size N , P1 generates a total of T garbled gates,
T − 2N of which are used for gate verification. Assume all buckets used in evaluation stage are of size 2. Let
Proverall(N, b) be the probability that P1 succeeds in an attack by generating b bad gates. For any κ > 2 and
any ε > 0, there exists N0 such that

Proverall(N, b) < ε, (∀N > N0)

Lemma 14. Let Pre(N, b) be the probability that, conditioned on passing the verification stage, P1 succeeds
with b bad gates actually used in the evaluation stage. Then

19

1. For every fixed N , Pre(N, b) is strictly increasing with respect to b.
2. For any b and ε > 0, there exists an N0 such that Pre(N, b) < ε.

Lemma 15. If T,N, b, i are non-negative integers such that T > 2N , T ≥ b, and i ≤ b, then(
T−b

T−2N−i
)(

T
T−2N

) ≤ (T − 2N

T

)i(
2N

T − i

)b−i
.

Acknowledgememnt

Yan Huang would like to thank Feng-Hao Liu for helpful discussions on some security proofs, and thank
Jesper Nielsen for an initial chat that provoked this research topic. This work is supported by NSF award
#1464113.

References

1. G. Asharov, Y. Lindell, T. Schneider, and M. Zohner. More efficient oblivious transfer extensions with security
for malicious adversaries. Advances in Cryptology – EUROCRYPT, 2015.

2. A. Afshar, P. Mohassel, B. Pinkas, and B. Riva. Non-interactive secure computation based on cut-and-choose.
Advances in Cryptology – EUROCRYPT, 2014.

3. M. Bellare, V. T. Hoang, S. Keelveedhi, and P. Rogaway. Efficient garbling from a fixed-key blockcipher. IEEE
Symposium on Security and Privacy, 2013.

4. M. Bellare, V. T. Hoang, and P. Rogaway. Foundations of garbled circuits. 19th Conference on Computer and
Communications Security, 2012.

5. M. Bellare, T. Ristenpart, P. Rogaway, and T. Stegers. Format-preserving encryption. SAC: 16th Annual
International Workshop on Selected Areas in Cryptography, 2009.

6. M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing efficient protocols. 1st
Conference on Computer and Communications Security, 1993.

7. N. Buescher and S. Katzenbeisser. Faster secure computation through automatic parallelization. 24th USENIX
Security Symposium, 2015.

8. J. Camenisch, G. Neven, and a. shelat. Simulatable adaptive oblivious transfer. Advances in Cryptology –
EUROCRYPT, 2007.

9. R. Canetti. Security and composition of multiparty cryptographic protocols. Journal of Cryptology, 2000.
10. H. Chen and R. Cramer. Algebraic geometric secret sharing schemes and secure multi-party computations over

small fields. Advances in Cryptology – CRYPTO, 2006.
11. I. Damg̊ard, M. Keller, E. Larraia, C. Miles, and N. P. Smart. Implementing AES via an actively/covertly secure

dishonest-majority MPC protocol. International Conference on Security in Communication Networks, 2012.
12. I. Damg̊ard, V. Pastro, N. P. Smart, and S. Zakarias. Multiparty computation from somewhat homomorphic

encryption. Advances in Cryptology – CRYPTO, 2012
13. T. K. Frederiksen, T. P. Jakobsen, J. Nielsen, P. S. Nordholt, and C. Orlandi. MiniLEGO: Efficient secure

two-party computation from general assumptions. Advances in Cryptology – EUROCRYPT, 2013.
14. T. K. Frederiksen, T. P. Jakobsen, J. Nielsen, and R. Trifiletti. TinyLEGO: An interactive garbling scheme for

maliciously secure two-party computation. ePrint Archive, 2015. http://eprint.iacr.org/2015/309.
15. J. A. Garay, P. MacKenzie, and K. Yang. Efficient and universally composable committed oblivious transfer and

applications. Theory of Cryptography Conference, 2004.
16. O. Goldreich. Foundations of Cryptography: Basic Applications, volume 2. Cambridge University Press, Cam-

bridge, UK, 2004.
17. O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game or A completeness theorem for protocols

with honest majority. ACM Symposium on Theory of Computing, 1987.
18. S. Gureron, Y. Lindell, A. Nof, and B. Pinkas. Fast garbling of circuits under standard assumptions. Conference

on Computer and Communications Security, 2015.
19. W. Henecka, S. Kögl, A.-R. Sadeghi, T. Schneider, and I. Wehrenberg. TASTY: tool for automating secure

two-party computations. Conference on Computer and Communications Security, 2010.

20

http://eprint.iacr.org/2015/309

20. A. Holzer, M. Franz, S. Katzenbeisser, and H. Veith. Secure two-party computations in ANSI C. Conference on
Computer and Communications Security, 2012.

21. Y. Huang, D. Evans, J. Katz, and L. Malka. Faster secure two-party computation using garbled circuits. USENIX
Security Symposium, 2011.

22. Y. Huang, J. Katz, and D. Evans. Efficient secure two-party computation using symmetric cut-and-choose.
Advances in Cryptology – CRYPTO, 2013.

23. Y. Huang, J. Katz, V. Kolesnikov, R. Kumaresan, and A. J. Malozemoff. Amortizing garbled circuits. Advances
in Cryptology – CRYPTO, 2014.

24. N. Husted, S. Myers, A. Shelat, and P. Grubbs. GPU and CPU parallelization of honest-but-curious secure
two-party computation. Annual Computer Security Applications Conference, 2013.

25. Y. Ishai, M. Prabhakaran, and A. Sahai. Founding cryptography on oblivious transfer - efficiently. Advances in
Cryptology – CRYPTO, 2008.

26. S. Jarecki and V. Shmatikov. Efficient two-party secure computation on committed inputs. Advances in Cryptology
– EUROCRYPT, 2007.

27. M. Keller, E. Orsini, and P. Scholl. Actively secure OT extension with optimal overhead. Advances in Cryptology
– CRYPTO, 2015.

28. M. S. Kiraz and B. Schoenmakers. A protocol issue for the malicious case of yao’s garbled circuit construction.
Symposium on Information Theory in the Benelux, 2006.

29. M. S. Kiraz, B. Schoenmakers, and J. Villegas. Efficient committed oblivious transfer of bit strings. International
Conference on Information Security, 2007.

30. V. Kolesnikov and T. Schneider. Improved garbled circuit: Free XOR gates and applications. International
Colloquium on Automata, Languages and Programming, 2008.

31. B. Kreuter, B. Mood, A. Shelat, and K. Butler. Pcf: A portable circuit format for scalable two-party secure
computation. USENIX Security Symposium, 2013.

32. B. Kreuter, A. Shelat, and C. hao Shen. Billion-gate secure computation with malicious adversaries. USENIX
Security Symposium, 2012.

33. Y. Lindell. Fast cut-and-choose based protocols for malicious and covert adversaries. Advances in Cryptology –
CRYPTO, 2013.

34. Y. Lindell, E. Oxman, and B. Pinkas. The IPS compiler: Optimizations, variants and concrete efficiency. Advances
in Cryptology – CRYPTO, 2011.

35. Y. Lindell and B. Pinkas. An efficient protocol for secure two-party computation in the presence of malicious
adversaries. Advances in Cryptology – EUROCRYPT, 2007.

36. Y. Lindell and B. Pinkas. Secure two-party computation via cut-and-choose oblivious transfer. Journal of
Cryptology, 2012.

37. Y. Lindell and B. Riva. Cut-and-choose Yao-based secure computation in the online/offline and batch settings.
Advances in Cryptology – CRYPTO, 2014.

38. Y. Lindell and B. Riva. Blazing fast 2pc in the offline/online setting with security for malicious adversaries.
Computer and Communication Security, 2015.

39. C. Liu, Y. Huang, E. Shi, J. Katz, and M. W. Hicks. Automating efficient RAM-model secure computation.
IEEE Symposium on Security and Privacy, 2014.

40. D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella. Fairplay — a secure two-party computation system. USENIX
Security Symposium, 2004.

41. P. Mohassel and M. Franklin. Efficiency tradeoffs for malicious two-party computation. International Conference
on Theory and Practice of Public Key Cryptography, 2006.

42. P. Mohassel and B. Riva. Garbled circuits checking garbled circuits: More efficient and secure two-party compu-
tation. Advances in Cryptology – CRYPTO, 2013.

43. B. Morris, P. Rogaway, and T. Stegers. How to encipher messages on a small domain. Advances in Cryptology –
CRYPTO, 2009.

44. M. Naor and B. Pinkas. Efficient oblivious transfer protocols. ACM-SIAM Symposium on Discrete Algorithms,
2001.

45. M. Naor and O. Reingold. On the construction of pseudorandom permutations: Luby-Rackoff revisited. Journal
of Cryptology, 1999.

46. K. Nayak, X. S. Wang, S. Ioannidis, U. Weinsberg, N. Taft, and E. Shi. GraphSC: Parallel secure computation
made easy. IEEE Symposium on Security and Privacy, 2015.

47. J. Nielsen, P. S. Nordholt, C. Orlandi, and S. S. Burra. A new approach to practical active-secure two-party
computation. Advances in Cryptology – CRYPTO, 2012.

48. J. Nielsen and C. Orlandi. LEGO for two-party secure computation. Theory of Cryptography Conference, 2009.

21

49. C. Peikert, V. Vaikuntanathan, and B. Waters. A framework for efficient and composable oblivious transfer.
Advances in Cryptology – CRYPTO, 2008.

50. B. Pinkas, T. Schneider, N. P. Smart, and S. C. Williams. Secure two-party computation is practical. Advances
in Cryptology – ASIACRYPT, 2009.

51. I. Reed and G. Solomon. Polynomial codes over certain finite fields. Journal of the Society of Industrial and
Applied Mathematics, 1960.

52. a. shelat and C.-H. Shen. Two-output secure computation with malicious adversaries. Advances in Cryptology –
EUROCRYPT, 2011.

53. a. shelat and C.-H. Shen. Fast two-party secure computation with minimal assumptions. Conference on Computer
and Communications Security, 2013.

54. E. M. Songhori, S. U. Hussain, A.-R. Sadeghi, T. Schneider, and F. Koushanfar. TinyGarble: Highly compressed
and scalable sequential garbled circuits. IEEE Symposium on Security and Privacy, 2015.

55. D. P. Woodruff. Revisiting the efficiency of malicious two-party computation. Advances in Cryptology – EURO-
CRYPT, 2007.

56. A. C.-C. Yao. How to generate and exchange secrets (extended abstract). Annual Symposium on Foundations of
Computer Science, 1986.

57. S. Zahur, M. Rosulek, and D. Evans. Two halves make a whole - reducing data transfer in garbled circuits using
half gates. Advances in Cryptology – EUROCRYPT, 2015.

A Proofs

Proof of Lemma 1:

1. Since m is sampled uniform-random, every one of the ` symbols in m can equally-likely take any one of
the 2σ values of F2σ . As 〈m〉 is the product of m and w linearly independent vectors, P2 can eliminate
w unknown symbols of m using the w equations implied by 〈m〉, while the remaining `−w symbols are
still completely unconstrained, i.e., for every 〈m0〉,

Pr (m = m0|〈m〉 = 〈m0〉) = 2−(`−w)σ.

Therefore,

Hmin(m|〈m〉) = −
∑
m0

Pr (m = m0|〈m〉 = 〈m0〉) · log Pr (m = m0|〈m〉 = 〈m0〉)

= −
∑
m0

2−(`−w)σ · [−(`− w)σ]

= 2−(`−w)σ · [(`− w)σ] · 2(`−w)σ = (`− w)σ.

2. Let (hi1 , . . . , hiw) be a tuple of w symbols. The linear system of equations, vit ·m = hit ,∀1 ≤ t ≤ w,
will always has some solutions for the `-symbol vector m because vi1 , . . . ,viw are linearly independent
and w < `. That is, for any m satisfies the w equations above, (hi1 , . . . , hiw) is a hash of m.

3. We know n > `, and P1 computes the n-symbol encoding of m as (v1m, . . . ,vnm). If m 6= m′, their
n-symbol encodings will be identical in at most ` − 1 symbols (otherwise, we can use the ` identical
symbols to show m = m′ because any ` vectors of {v1, . . . ,vn} are linearly independent). Since w (out
of n) symbols of the encoding are randomly selected and watched, the change can evade P2’s detection
with probability no more than

(
`−1
w

) /(
n
w

)
. ut

Proof of Lemma 2: Following the analysis of Section 5.3, fixing N,B(B ≤ 2), T can be set to a value based
on N,B such that it does not make sense for P1 to generate more than bu bad gates (where bu is a constant
fixed by N,B, s, τ because ∀b > bu,Proverall(N,B, T, τ, b) < 2−s. Moreover, because the probability that all

b bad gates are consumed in the checking stage is
(
T−2N
b

)/(
T
b

)
, which approaches 1 when T approaches

infinity, there exists a constant T0, the probability that all bad circuits are consumed by the checking stage

22

is less than 2−s. Thus, we can setup T,B,N to achieve a even stronger guarantee, i.e., all gates in every
bucket are correctly garbled, except with probability 2−s. ut

Proof of Lemma 3: It suffices to consider the impacts of incorrectly garbled gates. Evaluating an
incorrectly garbled gate yields a output wire label that matches the hash 〈wpoo 〉, or 〈wpoo 〉⊕〈∆〉 = 〈wpoo ⊕∆〉,
or neither of them.

1. If the output label matches with neither hashes, the evaluation result will be discarded (step 3(c)iiG);
2. If the output label matches with a hash and represents the same plain-text value as the output label

obtained from evaluating the correct garbled gate in the same bucket, the corrupted garbled gate does
not affect the evaluation.

3. If the output label matches with a hash but represents the opposite plain-text value as the output label
obtained from evaluating the correct garbled gate, P2 learns ∆∗ at step 3(c)iii. Then P2 will be able to
learn P1’s input x except with negligible probability, because
(a) Case I (∆∗ = ∆): P2 can find out every bit of x through completely decrypt the correctly garbled

gates (every bucket has at least one) in the buckets directly operating on the bits of x.
(b) Case II (∆∗ 6= ∆): this implies either ∆∗ is corrupted (contradicting with the assumption and

reasoning above) or ∆ is corrupted (contradicting with the fact that no bad gate is identified in the
check stage), neither of which can happen except with negligible probability.

In all three cases, P2 can correctly output f(x, y) except with negligible probability. ut

Proof of Lemma 4: Using the specification of EvlAND, the four equations above can be translated into

H(w0
l)⊕ lsb (w0

l)TG ⊕H(w0
r)⊕ lsb (w0

r)(TE ⊕ w0
l) = wpoo

H(w1
l)⊕ lsb (w1

l)TG ⊕H(w0
r)⊕ lsb (w0

r)(TE ⊕ w1
l) = wpoo

H(w0
l)⊕ lsb (w0

l)TG ⊕H(w1
r)⊕ lsb (w1

r)(TE ⊕ w0
l) = wpoo

H(w1
l)⊕ lsb (w1

l)TG ⊕H(w1
r)⊕ lsb (w1

r)(TE ⊕ w1
l) = wpoo ⊕∆.

That is,

lsb (w0
l)TG ⊕ wpoo ⊕ lsb (w0

r)TE = H(w0
l)⊕H(w0

r)⊕ lsb (w0
r)w

0
l

lsb (w1
l)TG ⊕ wpoo ⊕ lsb (w0

r)TE = H(w1
l)⊕H(w0

r)⊕ lsb (w0
r)w

1
l

lsb (w0
l)TG ⊕ wpoo ⊕ lsb (w1

r)TE = H(w0
l)⊕H(w1

r)⊕ lsb (w1
r)w

0
l

lsb (w1
l)TG ⊕ wpoo ⊕ lsb (w1

r)TE = H(w1
l)⊕H(w1

r)⊕ lsb (w1
r)w

1
l ⊕∆.

which can be viewed as a linear system of four equations over three variables TG, TE , and wpoo . Note that
all coefficients on the left-hand side and all constants on the right-hand side of the equations are fixed by
the seven statistically-binding hashes known to P2. Also note that any three out of the four equations are
linearly independent except with negligible probability, because lsb (w0

l)⊕lsb (w1
l) = 1, lsb (w0

r)⊕lsb (w1
r) = 1,

w0
l ⊕ w1

l = w0
r ⊕ w1

r = ∆ and H is modeled as a random oracle. Thus, if any three of the four equations
hold, the fourth one will be automatically satisfied as it is simply a linear combination of the other three. In
addition, we know there must be one solution to the system of four equations if P1 follows the specification
of GenAND. Therefore, if TG, TE , w

po
o take some corrupted values such that any one equation does not hold,

there has to be at least one other equality that does not hold, (otherwise, TG, TE , w
po
o have to satisfy all four

equations). Namely, if the gate is corrupted, at least two out of the four equations evidence the corruption.
Hence, P2 detects the corruption with probability at least 1/2 as it randomly checks one equations at step 4c.

ut

Proof of Lemma 5: Fixing σ = σ0, (2) stipulates that for any `, w ≤ b`− µ/σ0c. Since for all `, n where
n > ` > w,

(
`−1
w

) /(
n
w

)
decreases as w increases (a proof is easy to obtain similarly to that in part 1 of

Lemma 14). If setting w := b` − µ/σ0c still can’t satisfy (1), there is no other w that can work with σ0 to
meet (1).

23

For any given S = S0, σ = σ0, w = w0, because ` = (S0/σ0 − αn)/β, the value of
(
`−1
w

) /(
n
w

)
is solely

decided by n, hence we denote Q(n) =
(
`−1
w

) /(
n
w

)
=
(
(S0/σ0−αn)/β−1

w0

)/(
n
w0

)
.

Without loss of generality, assume d = gcd(α, β) = 1 (otherwise it suffices to minimize S = (α′n+β′`)σd
where α′ = α/d, β′ = β/d and gcd(α′, β′) = 1), because S, n, l, σ, α, β are all integers, n can only take values
at length β intervals. Let S′ = S/σ, we have

Q(n+ β)

Q(n)
=

(
n− S′−αn

β + 2 + (`− w − 1)
)
· · ·
(
n− S′−αn

β + β + α+ 1 + (`− w − 1)
)

(
S′−αn
β

)
· · ·
(
S′−αn
β + α− 1

)
· (n+ 1) · · · (n+ β)

and also that

d log
Q(n+ β)

Q(n)

/
dn =

1 + α/β

n− S′−αn
β + 2 + (`− w − 1)

+ · · ·

+
1 + α/β

n− S′−αn
β + β + 1 + α+ (`− w − 1)

+
α/β
S′−αn
β

+ · · ·

+
α/β

S′−αn
β + α− 1

− 1

n+ 1
− · · · − 1

n+ β
> 0,

since (S′−αn)/β = ` > `−w so for all non-negative integer x, n−(S′−αn)/β+2+x+(`−w−1) < n+1+x.
This implies Q(n) is a convex function of n. Therefore, we can apply a discrete Newton algorithm to find its
minimum in logarithmic number of steps. If the minimal Q(n) satisfies (1), we found a viable solution that
achieves S0; otherwise, there won’t be any n to work with the parameter setting σ0 to achieve S0. ut

Proof of Lemma 6: There exists N0 such that if N > N0,

(
T−b

T−BN−i
)(

T
T−BN

) =
(T − b)!(T −BN)!(BN)!

T !(T −BN − i)!(BN − b+ i)!

=
((T −BN − i+ 1) · · · (T −BN))((BN − b+ i+ 1) · · ·BN)

(T − b+ 1) · · ·T

=
(T −BN − i+ 1) · · · (T −BN)

(T − i+ 1) · · ·T
· (BN − b+ i+ 1) · · ·BN

(T − b+ 1) · · · (T − i)

≤
(
T −BN

T

)i(
BN

T − i

)b−i
, U.

Similarly, we have, there exists N1 such that if N > N1,

(
T−b

T−BN−i
)(

T
T−BN

) ≥ (T −BN − i+ 1

T − i+ 1

)i(
BN − b+ i+ 1

T − b+ 1

)b−i
, L.

24

So, we know that, for sufficiently large N ,

U

/(
T−b

T−BN−i
)(

T
T−BN

) ≤ U

L
=

(
T −BN

T −BN − i+ 1
· T − i+ 1

T

)i(
BN

BN − b+ i+ 1
· T − b+ 1

T − i

)b−i
=

[
(T −BN)T − (i− 1)T + (i− 1)BN

(T −BN)T − (i− 1)T

]i
·[

(BN − b+ i+ 1)(T − i) + (b− i− 1)(T −BN − i)
(BN − b+ i+ 1)(T − i)

]b−i
=

[
1 +

(i− 1)BN

(T −BN)T − (i− 1)T)

]i [
1 +

(b− i− 1)(T −BN − i)
(BN − b+ i+ 1)(T − i)

]b−i
≤
(

1 +
i− 1

T −BN − i+ 1

)i(
1 +

b− i− 1

BN − b+ i+ 1

)b−i
(6)

≤
(

1 +
i− 1

T −BN − i+ 1

)i(
1 +

b− 1

BN − b+ 1

)b
(7)

Note that the inequality (6) holds because T > BN . Thanks to the upper-bound of b (Lemma 7) and

hence on i (recall i ≤ b), limN→∞

(
1 + i−1

T−BN−i+1

)i (
1 + b−1

BN−b+1

)b
= 1. ut

Proof of Lemma 7: Following Lemma 13, we know that there exists i0, N0 such that (1− r)i0 < 2−s−1

for all r > r0, and

Proverall(N,B, T, b) ≤
(

(1− τ)
T − 2N

T
+

2N

T − i0

)b
Pre(N, b) + 2−s−1

≤
(

(1− τ)
T − 2N

T
+

2N

T − i0

)b
+ 2−s−1

Because for all N > N0, limb→∞ Proverall(N,B, T, b) = 2−s+1, there exists bu such that

Proverall(N,B, T, b) < 2−s, for all b > bu.

ut

Proof of Lemma 8: We assume for simplicity that in the gate verification stage, if a bad gate is indeed
selected for verification, P2 is able to detect the fact that “the gate is bad” with probability 1 (i.e., τ = 1).
(If τ < 1, it only makes it easier for a cheating P1 to succeed.)

Let Prc(N, x, b) be the probability that P1 survives the gate verification stage; and Pre(N, x, b) be the
probability that, P1 succeeds in the evaluation stage given that it already passes the verification stage.
Because τ = 1, in a successful attack, no bad gates will be “consumed” in the verification stage. Therefore,
there exists a positive constant c and a constant N0 such that for all N > N0

Proverall(N, x, b) = Prc(N, x, b) · Pre(N, x, b)

≥
(

1 + x

2

)b [
1− (1− x)b2

(1 + x)(2N − b)

]
· Pre(N, x, b) [Lemma 10]

≥
(

1 + x

2

)b [
1− (1− x)b2

(1 + x)(2N − b)

](
1−

(
2x

1 + x

)b)
[Lemma 11]

> c [Lemma 12]

This completes the proof. ut

25

Proof of Lemma 9: First, we show that, if B > 2, a scheme S1 that uses at least a size-1 bucket and
a size-B bucket can always be improved (in terms of thwarting attacks from a cheating generator) into a
scheme S2 by replacing the two bucket by a size-2 bucket and a size-(B−1) bucket. Since the only difference
between S1 and S2 is this pair of buckets, the change actually preserves the total number of garbled gates
being used. We say S2 is at least as good as S1 because for any positive integer xb (which denotes the number
of bad gates falling into the B + 1 slots in these two buckets), a malicious generator is less or equally likely
to succeed with S2 than S1. This fact is evident from counting the number of ways to place the xb bad gates
that will not result a successful attack: assume B > 2,

1. If xb < B−1, the count is
(
B
xb

)
for S1 (as the only way to fail the attack is to put the xb bad gates in the

size-B bucket) and
(
B−1
xb

)
+
(
2
1

)(
B−1
xb−1

)
for S2 (as the xb bad gates are either all put into the size-(B − 1)

bucket, or 1 put in the size-2 bucket while the rest xb − 1 put in the size-(B − 1) bucket). Hence,(
B − 1

xb

)
+

(
2

1

)(
B − 1

xb − 1

)
=

(
B

xb

)
+

(
B − 1

xb − 1

)
>

(
B

xb

)
, ∀ 0 < xb < B − 1

implies S2 is better than S1.
2. If xb = B − 1, the count is B for S1 and 2(B − 1) for S2. Since 2(B − 1) > B, S2 is better than S1.
3. If xb > B − 1, the count is 0 for both S1 and S2: both are destined to successful attacks.

Through recursively applying the above observation to any LEGO-style cut-and-choose scheme, we will
derive an improved scheme that either

1. uses only buckets of size 2 or above: because at least 1 gate needs to be used for verification, the
overall κ has to be greater than 2. The scope of this claim (κ = 2) already eliminates this case. Or,

2. uses only buckets of size 1 and 2.

This completes the proof. ut

Proof of Lemma 10: Since a total of (1 + x)N garbled gates are used in evaluation while the rest
T − (1 + x)N gates are used for checking, we have

Prc(N, x, b) =

(
T − b

T − (1 + x)N

)/(
T

T − (1 + x)N

)
=

(
2N − b

2N − (1 + x)N

)/(
2N

2N − (1 + x)N

)
(8)

=

(
2N − b

(1− x)N

)/(
2N

(1− x)N

)
=

(2N − b)(2N − b− 1) · · · [2N − b− (1− x)N + 1]

2N(2N − 1) · · · [2N − (1− x)N + 1]

=
[2N − (1− x)N] · · · [2N − b− (1− x)N + 1]

2N(2N − 1) · · · [2N − b+ 1]

=
[2N − (1− x)N]

2N
· · · · · [2N − b− (1− x)N + 1]

[2N − b+ 1]

=
[(1 + x)N]

2N
· · · · · [(1 + x)N − b+ 1]

[2N − b+ 1]

≥
[

(1 + x)N − b
2N − b

]b
(9)

=

(
1 + x

2

)b(
1− (1− x)b

(1 + x)(2N − b)

)b
≥
(

1 + x

2

)b(
1− (1− x)b2

(1 + x)(2N − b)

)
(10)

26

where equality (8) holds because κ = T/N = 2; the inequality (9) holds because every of the b fractions is
larger than or equal to [(1 + x)N − b]/(2N − b); and (10) can be derived from the binomial inequality (i.e.,

∀x ∈ R, x > −1, and∀n ∈ N, (1 + x)n ≥ 1 + nx) and the fact that
(1− x)b

(1 + x)(2N − b)
< 1 when 0 ≤ b ≤ κN =

2N ,
1

N
≤ x ≤ 1− 1

N
. ut

Proof of Lemma 11: We assume that P1 fails an attack if there is at least one good gate in every bucket
(the proposed protocol in Section 4 indeed achieves this), which happens with probability 2b

(
xN
b

)/(
(1+x)N

b

)
,

where 2b
(
xN
b

)
is the number of ways to place b bad gates into the xN size-2 buckets subject to at most

one bad gate per bucket, and
(
(1+x)N

b

)
is the total number of ways to place the b bad gates without any

restriction. Therefore,

Pre(N, x, b) = 1−
2b
(
xN
b

)(
(1+x)N

b

) = 1− 2b[xN − (b− 1)][xN − (b− 2)] · · · [xN]

[(1 + x)N − (b− 1)][(1 + x)N − (b− 2)] · · · [(1 + x)N]

= 1− 2xN − 2(b− 1)

(1 + x)N − (b− 1)
· 2xN − 2(b− 2)

(1 + x)N − (b− 2)
· · · · · 2xN

(1 + x)N

≥ 1−
(

2x

1 + x

)b
where the inequality holds because every of the b fractions is greater than or equal to (2x)/(1 + x). ut
Proof of Lemma 12: It suffices to show that there exists c1, c2, c3 > 0 and N0 > 0 such that ∀N >
N0,∀x ∈ [1/N, 1− 1/N], there exists a positive integer b that satisfy all of the three inequality below,(

1 + x

2

)b
> c1 (11)

1− (1− x)b2

(1 + x)(2N − b)
> c2 (12)

1−
(

2x

1 + x

)b
> c3 (13)

Because (11) holds as long as b < log c1
/

log 1+x
2 , (12) holds as long as

b <

√
2N

1 + x

1− x
(1− c2) +

1

4

(
1 + x

1− x

)2

(1− c2)2 − 1

2
· 1 + x

1− x
· (1− c2),

(13) holds as long as b > log(1− c3)
/

log 2x
1+x , and b needs to be a positive integer, it suffices to show that

there exist positive c1, c2, c3, and N0 such that the following two inequalities hold for all N > N0

log(1− c3)

log 2x
1+x

+ 1 <
log c1

log 1+x
2

(14)

log(1− c3)

log 2x
1+x

+ 1 <

√
2N

1 + x

1− x
(1− c2) +

1

4
·
(

1 + x

1− x

)2

(1− c2)2 − 1

2
· 1 + x

1− x
· (1− c2) (15)

We note that (14) is equivalent to

1

log c1
log

1 + x

2x
>

1

log(1− c3)
log

2

1 + x
+ log

1 + x

2x
log

2

1 + x
,

which will always hold as long as

1

log c1
− 1

log(1− c3)
− log 2 > 0 (16)

27

because 1+x
2x > 2

1+x and log 2
1+x < log 2 hold for all x ∈ [1/N, 1 − 1/N]. Since (16) doesn’t involve x, it is

easy to find a c1 based on (any value of) c3 such that (16) is satisfied.

Next, we note that (15) is equivalent to

2N 1+x
1−x (1− c2)√

2N 1+x
1−x (1− c2) + 1

4 (1+x
1−x)2(1− c2)2 + 1

2 ·
1+x
1−x · (1− c2)

> 1 +
log 1

1−c3
log 1+x

2x

,

which can be simplified, by defining c′2 = 1 − c2 and y = (1 + x)/(1 − x) (hence, y ∈ [1 + 1/N, 2N] and
(1 + x)/(2x) = 1 + 1/y), to

 2N√
2N
yc′2

+ 1
4 + 1

2

− 1

 log

(
1 +

1

y − 1

)
> log

1

1− c3
.

Now we analyze this inequality in two cases.

Case I (y < 3): If y < 3,

 2N√
2N
yc′2

+ 1
4 + 1

2

− 1

 log

(
1 +

1

y − 1

)
≥ (

2N√
2N
c′2

+ 1
4 + 1

2

− 1) log(1 +
1

y − 1
)

≥ (
2N√
2N
c′2

+ 1
− 1) log(1 +

1

y − 1
)

≥ (
2N√
2N
c′2

+ 1
− 1) log

3

2
.

Because there exists an integer N0 such that for all N > N0,

 2N√
2N
c′2

+ 1
− 1

 log
3

2
> log

1

1− c3
(17)

(15) can also be satisfied when N > N0, regardless of the values of c′2 and c3.

Case II (y ≥ 3): If y ≥ 3, then 0 < 1/(y − 1) < 1/2, and (because y = log(1 + x) is concave function when
x ∈ [0, 1/2]) we have

log[1 + 1/(y − 1)] ≥ [2 log(3/2)]
/

(y − 1) >
2 log(3/2)

y
.

In addition, for all N > N0 (where N0 is defined as above), we have

2N√
2N
yc′2

+ 1
4 + 1

2

− 1 >
2N√
2N
c′2

+ 1
− 1 > 0.

28

Thus, for all N > N0, we know

 2N√
2N
yc′2

+ 1
4 + 1

2

− 1

 log

(
1 +

1

y − 1

)
≥

 2N√
2N
yc′2

+ 1
4 + 1

2

− 1

 2 log(3/2)

y

= 2 log(3/2)

 2N√
2Ny
c′2

+ 1
4y

2 + 1
2y
− 1

y

≥ 2 log(3/2)

 2N√
4N2

c′2
+N2 +N

− 1

3

= 2 log(3/2)

 2

1 +
√

4
c′2

+ 1
− 1

3

 ,

where the second inequality holds because 3 ≤ y ≤ 2N . Therefore, it is easy to find c3
based on (any value of) c′2 to satisfy

2 log(3/2)

 2

1 +
√

4
c′2

+ 1
− 1

3

 > log
1

1− c3
, (18)

which will guarantee (15) holds.

To sum up, we have shown that if we pick an arbitrary positive number c2, then find c3 based on (18)
and c2, find c1 based on (16) and c3, and finally find N0 based on (17) and c2, c3, then for all N > N0, all
three inequalities, (11), (12), (13) should hold. This completes the proof. ut

Proof of Theorem 4: The proof, which is based on the construction of our protocol in Section 4.2, can be
derived from the proof in Section 4.4, by substituting the use of Lemma 2 and Lemma 3 with the following
Lemma 13, in the case of P2 being corrupted (while the proof for corrupted P1 works unaffected). ut

Proof of Lemma 13: Let 0 < τ ≤ 1 be the probability that P2 detects the abnormality in checking
garbled gate g conditioned on g is indeed bad. We have

Proverall(N, b) =

b∑
i=0

(1− τ)i
(
b
i

)(
T−b

T−2N−i
)(

T
T−2N

) Pre(N, b− i)

where (1− τ)i
(
b
i

)(
T−b

T−2N−i
)/(

T
T−2N

)
is the probability that P1 who generates b bad gates survives the gate

verification stage with i bad gates selected for verification (but P2 fails to detect any of them). Because there

29

exists i0 such that (1− τ)i0 < ε/2,

Proverall(N, b) =

b∑
i=0

(1− τ)i
(
b
i

)(
T−b

T−2N−i
)(

T
T−2N

) Pre(N, b− i)

=

i0∑
i=0

(1− τ)i
(
b
i

)(
T−b

T−2N−i
)(

T
T−2N

) Pre(N, b− i) +

b∑
i=i0+1

(1− τ)i
(
b
i

)(
T−b

T−2N−i
)(

T
T−2N

) Pre(N, b− i)

≤
i0∑
i=0

(1− τ)i
(
b
i

)(
T−b

T−2N−i
)(

T
T−2N

) Pre(N, b− i) + (1− τ)i0
b∑

i=i0+1

(
b
i

)(
T−b

T−2N−i
)(

T
T−2N

) Pre(N, b− i)

≤
i0∑
i=0

(1− τ)i
(
b
i

)(
T−b

T−2N−i
)(

T
T−2N

) Pre(N, b− i) +
ε

2

b∑
i=i0+1

(
b
i

)(
T−b

T−2N−i
)(

T
T−2N

)
≤

i0∑
i=0

(1− τ)i
(
b
i

)(
T−b

T−2N−i
)(

T
T−2N

) Pre(N, b− i) +
ε

2

b∑
i=1

(
b
i

)(
T−b

T−2N−i
)(

T
T−2N

)
≤

i0∑
i=0

(1− τ)i
(
b
i

)(
T−b

T−2N−i
)(

T
T−2N

) Pre(N, b− i) +
ε

2
· 1

≤
i0∑
i=0

(1− τ)i
(
b

i

)(
T − 2N

T

)i(
2N

T − i

)b−i
Pre(N, b− i) +

ε

2
[Lemma 15]

≤
i0∑
i=0

(1− τ)i
(
b

i

)(
T − 2N

T

)i(
2N

T − i

)b−i
Pre(N, b) +

ε

2

≤
i0∑
i=0

(1− τ)i
(
b

i

)(
T − 2N

T

)i(
2N

T − i0

)b−i
Pre(N, b) +

ε

2

≤
b∑
i=0

(1− τ)i
(
b

i

)(
T − 2N

T

)i(
2N

T − i0

)b−i
Pre(N, b) +

ε

2

=

(
(1− τ)

T − 2N

T
+

2N

T − i0

)b
Pre(N, b) +

ε

2
.

Since T = κN , we have

lim
N→∞

(1− τ)(T − 2N)

T
+

2N

T − i0
= lim
N→∞

(1− τ)(κ− 2)

κ
+

2

κ− i0/N
= 1− τ(κ− 2)

κ
< 1.

Therefore, there exists N1 such that for all N > N1, (1− τ)(T − 2N)/T + 2N/(T − i0) < 1. Hence, for every
ε > 0, we can find a b0 such that,

1. for all b > b0,

Proverall(N, b) ≤
[
(1− τ)(T − 2N)/T + 2N/(T − i0)

]b
Pre(N, b) + ε/2

< εPre(N, b)/2 + ε/2 < ε/2 + ε/2 = ε.

2. for all b ≤ b0, by Lemma 14, we can further find an integer N2 (according to the proof of Lemma 14)
such that for all N > N2,

Proverall(N, b) ≤
[
(1− τ)(T − 2N)/T + 2N/(T − i0)

]b
Pre(N, b) + ε/2

<
[
1− τ(κ− 2)/κ

]b
ε/2 + ε/2 < ε/2 + ε/2 = ε.

30

Thus, setting N0 = max(N1, N2) completes the proof. ut

Proof of Lemma 14: Since all buckets are of size 2, the following can be derived similarly to the proof
of Lemma 11 (by setting x = 1),

Pre(N, b) = 1−
2b
(
N
b

)(
2N
b

)
= 1− 2N − 2(b− 1)

2N − (b− 1)
· 2N − 2(b− 2)

2N − (b− 2)
· · · · · 2N

2N

≤ 1−
(

2N − 2b+ 2

2N − b+ 1

)b
= 1−

(
2− 2(b− 1)/N

2− (b− 1)/N

)b
1. From the second equality above, we know Pre(N, b) is a strictly increasing function of b because the

larger b is, the more multiplicative fractions (that are smaller than 1) are in the product form.
2. The above inequality indicates that for all b and ε, there exists an N1 such that for all N > N1,

Pre(N, b) < ε. ut

Proof of Lemma 15:(
T−b

T−2N−i
)(

T
T−2N

) =
(T − b)!(T − 2N)!(2N)!

T !(T − 2N − i)!(2N − b+ i)!

=

[
(T − 2N − i+ 1) · · · (T − 2N)

][
(2N − b+ i+ 1) · · · 2N)

]
(T − b+ 1)(T − b+ 2) · · ·T

=
(T − 2N − i+ 1) · · · (T − 2N)

(T − i+ 1) · · ·T
· (2N − b+ i+ 1) · · · 2N

(T − b+ 1) · · · (T − i)
≤
(
T − 2N

T

)i(
2N

T − i

)b−i
ut

B Half-Gates Garbling and Evaluating Algorithms

Algorithm 1 GenAND(i , ∆)

wl ← {0, 1}λw ; w0
r ← {0, 1}λw

ql := lsb (w0
l); qr := lsb (w0

r)
j := 2i ; j′ := 2i + 1
TG := H(w0

l , j)⊕H(w1
l , j)⊕ qr∆

w0
g := H(w0

l , j)⊕ qlTG
TE := H(w0

r , j
′)⊕H(w1

r , j
′)⊕ w0

l

w0
e := H(w0

r , j
′)⊕ qr(TE ⊕ w0

l)
w0
o := w0

g ⊕ w0
e

return (w0
l , w

0
r , w

0
o, TG, TE)

Algorithm 2 EvlAND(wl, wr, TG, TE)

sl := lsb (wl); sr := lsb (wr);
j := 2i ; j′ := 2i + 1
wg := H(wl, j)⊕ slTG
we := H(wr, j

′)⊕ sr(TE ⊕ wl)
wo := wg ⊕ we
return wo

31

	Revisiting LEGOs: Optimizations, Analysis, and their Limit

