
Maturity and Performance of Programmable

Secure Computation

David W. Archer
dwa@galois.com

Dan Bogdanov
dan.bogdanov@cyber.ee

Benny Pinkas
benny@pinkas.net

Pille Pullonen
pille.pullonen@cyber.ee

October 27, 2015

1 Introduction

Secure computation (SC) stands for a group of technologies for computing func-
tions of private inputs, while keeping the inputs themselves hidden. The canon-
ical example of secure computation is the millionaires’ problem, where two
millionaires, Alice and Bob, who own $X and $Y, respectively, wish to run
a computation that tells them which one of them is richer, but reveals no other
information. Obviously, if both parties trust some third party they could reveal
X and Y to that party, who could then tell them whether X>Y. Their goal is,
however, to do the same computation without the help of any third party and
while revealing nothing more than the final output of the computation.

Secure computation is essentially based on processing data that is protected
by encryption or a similar method. There are SC solutions that are targeted
for computing specific functions. We call a particular secure computation tech-
nology programmable if it is Turing-complete and can efficiently run at least
a certain class of algorithms. Most SC solutions are designed in order to pro-
tect data during sharing or outsourced processing, for example in the context
of cloud computing. Technologies for programmable SC include (but are not
limited to) secure multi-party computation (MPC) and fully homomorphic en-
cryption (FHE).

Secure computation research has gained traction internationally in the last
five years. In the United States, the DARPA PROCEED program (2011-2015)
focused on development of multiple SC paradigms and improving their perfor-
mance. In the European Union, the PRACTICE program (2013-2016) focuses
on its use to secure cloud computing. Both programs have demonstrated excep-
tional prototypes and performance improvements.

In PROCEED, Archer and Rohloff [AR15] demonstrated VoIP streaming
where an untrusted server decompresses, mixes, adds, clips, and recompresses

1

audio data while it remains encrypted. Carter et al. demonstrated the ca-
pability to compute route maps while map, source, and destination remain
secret [CLT14a]. In PRACTICE, Bogdanov et al. evaluated a tax fraud de-
tection system together with the Estonian Tax and Customs Board [BJSV15]
and showed significant speedups of MPC using cloud computing. In addition,
both programs contributed to speeding up the basic technologies of SC.

In this paper, we collect the results from both programs and other published
literature to present the state of the art in what can be achieved with today’s
secure computing technology. In the following, Sec. 2 describes three approaches
of programmable secure computation that we analyse in this paper. These are
homomorphic encryption, garbled circuits and linear secret sharing. This intro-
duction is followed by a set of interesting properties in Sec. 3 that are used to
characterize and differentiate between the approaches. In Sec. 4, we present a
taxonomy based on implementation maturity and runtime performance of each
technique showcasing the readiness for real-world use. The taxonomy has five
components—usage model, programming paradigm, implementation maturity,
developer tool maturity and performance. Sec. 5 gives concrete performance
evaluation of different secure computation artifacts based on common bench-
mark applications like AES evaluation. Finally, Sec. 6 summarises collected
information using the proposed maturity taxonomy.

2 Secure Computation Paradigms

Secure computation is a multi-party processing of private data where different
parties play different roles. The computing parties C are the ones actually car-
rying out the computations. The input parties I give their private data for the
computations, and it is important to ensure that the data remains private except
for the desired computation outcomes. Finally, the outcomes are obtained by
the result parties R. One participant may carry several of these roles, for exam-
ple a party that gives inputs and receives outputs is denoted as IR. The theory
of secure computation is mostly centred around the computing parties and often
expects the result and input parties to be the same as the computing parties
(depicted as ICR on Fig. 1c). However, many practical deployments, such as
surveys, separate these roles. A longer discussion about roles and deployment
scenarios can be found in [BKLPV13] and in Sec. 4.

Secure computation can be done in many ways depending on the needed
functionality and existing resources. In general, SC is required if it is necessary
to avoid leaking any information except for the final output of the computa-
tions that is given to the result parties. A secure computation protocol can be
designed to have passive security, also known as security against semi-honest ad-
versaries, meaning that it is secure if the computing parties follow the protocol
but might try to infer extra information from what they see during the protocol.
A protocol secure against actively malicious participants is secure even if the
computing parties try to cheat and do not follow the protocol. The intermediate
case, security against covert adversaries, guarantees that cheating participants

2

are caught with a reasonable probability, say 25%. This security guarantee is
effective if the participants have a strong incentive not to be caught cheating,
but might try to deceive if it is likely to avoid detection. Security against ac-
tively malicious adversaries is stronger than security against covert adversaries,
which in turn offers more guarantees than passive security.

Most of the secure computation literature handles the case of corrupted com-
putation parties, and gives absolute freedom for the input players to choose their
inputs, and for the output players to choose the functionality that is computed.
However, a corrupt behaviour of these parties can easily render the computa-
tion useless or insecure. For example, if the result parties are allowed to propose
queries or algorithms for the computation then such corrupted parties might try
to learn more outputs than originally intended. In this case, the computing par-
ties should verify that it is safe to run each piece of the computation. On the
other hand, input parties might try to corrupt the computation by giving in-
valid inputs. To that end, the computing parties should obliviously verify that
the inputs fall to the desired bounds or have the desired format and discard
invalid inputs and outliers from the computation. Furthermore, the input and
result parties should have means to check that the outputs are correct and the
computation really followed the safe procedure.

There are several major technologies that are used for secure computation,
on which we elaborate in the next sections. In case there is one well equipped
server, fully homomorphic encryption (FHE) can be deployed. Two-party com-
putation is well supported by garbled circuits (GC) as well as linear secret shar-
ing (LSS). However, the latter also allows for secure multi-party computation,
involving more than two parties (GC can also be applied in the multi-party set-
ting [BMR90, BNP08], but most of the research on GC focuses on the two-party
setting). We note that there are additional technologies for secure computation,
but they have received less attention both in the theoretical literature and with
developers.

2.1 Homomorphic Encryption

Homomorphic encryption (HE) is an encryption scheme that enables computa-
tions on encrypted values. Figuratively, HE is a opaque locked glovebox [Gen09a].
A party can input its valuables to the box and lock it. Anyone with the box
can use the gloves to manipulate the items inside, but only the box owner has
the key to open the box and take the contents out. Hence, HE is an encryption
with means to combine ciphertexts so that the result is a meaningful operation
like addition or multiplication on plaintexts. These operations can be applied
to the ciphertexts even without knowing the decryption key. Commonly HE
is considered in a two-party setting where the client (input and result party)
has the keys and outsources some computation to the server (the computing
party) by providing it with the encrypted inputs. Such division of the roles is
represented by Fig. 1a. At its best, HE requires interaction only for sending the
inputs and retrieving the outputs, making it very communication efficient.

Many schemes allow to compute one kind of operation over encrypted data,

3

for example addition in the Paillier encryption scheme [Pai99] or multiplica-
tion in the Elgamal [Elg85] scheme. Somewhat homomorphic encryption (SHE)
allows for computing both operations, but only a limited amount of one of
them. Usually operations introduce noise to the ciphertext and after some op-
erations the level of noise is too high for successful decryption. However, starting
with seminal work of Gentry [Gen09a, Gen09b], fully homomorphic encryption
(FHE) schemes that allow for unlimited number of both operations have become
feasible. Remarkably, these two operations enable to compute any arithmetic
functionality. In general, FHE is achieved from SHE by introducing bootstrap-
ping phase that resets the noise to a low level. FHE schemes used in secure
computation include DGHV [VDGHV10], NTRU [HPS98] and BGV [BGV12].
As a practical example, NTRU has been used for secure teleconferencing and
e-mail filtering [AR15].

2.2 Garbled Circuits

The first secure computation method was Yao’s GC [Yao82, LP09, BHR12]
proposed in 1982. Garbled circuits are like integrated digital circuits where it is
hard to observe the values carried between single gates and only the output of
the total circuit is revealed. Moreover, the materials used in the construction are
fragile and dissolve after one use. Hence, although the circuit diagram remains
the same a circuit one needs to be built for every evaluation.

In more detail, the idea is to evaluate boolean circuits by encoding wire values
as random strings and encrypting the truth tables of each gate. The encodings
of the input wires of a gate can be used to decrypt the encoding corresponding
to the gate output. The first party, the garbler, chooses the encodings, generates
the encrypted truth tables and forwards the circuit to the evaluator. The other
party, the evaluator, obtains the encodings corresponding to the secret inputs
and uses them to decode the encrypted truth tables and obtain the output. Both
parties have the role of the computing party and usually both also provide inputs
and obtain the outputs as on Fig. 1c, however this may vary. Furthermore the
process can be modified to allow external input and result parties. The basic
method is secure against passive adversaries, however, recent research mostly
considers active security [LP07, NO09, LP11, Lin13, MR13].

The GC approach excels in high latency networks as it requires a small
number of rounds of interaction. It is straightforward to securely compute any
functionality as there exist several compilers (e.g. [HFKV12, KMsB13]) that
produce optimized circuits and software libraries implementing GC computa-
tion. On the downside, many interesting functionalities have huge boolean cir-
cuits and thus require a lot of bandwidth to transfer the garbled circuit. GC is
deployed, for example, for safeguarding cryptographic keys from corrupt admin-
istrators by splitting them between several servers and computing encryption
without storing the keys in a single location [Sec14] and for finding common
contacts between Android users1.

1CommonContacts: http://mightbeevil.com/contacts/

4

2.3 Linear Secret Sharing

Secret sharing was proposed in 1979 [Sha79, Bla79] and is the basis for a prolific
branch in secure computation with seminal works [GMW87, BGW88, CCD88].
To illustrate LSS-based computation, consider a set of interconnected gloveboxes
with input hatches. Any party can distribute their valuables between the boxes
through the hatches. Afterwards the box operators can exchange pieces and
manipulate the inputs using the gloves. However, the final product is obtained
only when all boxes are opened and their results are combined.

More concretely, LSS enables parties to divide secrets to multiple shares
where any unqualified set of shares does not reveal information about the secret.
Each share is given to a different party. Homomorphic properties of the sharing
are used to apply arithmetic operations without revealing the shared values.
Each arithmetic operation is computed collaboratively by a dedicated interactive
protocol that is run between the computing parties and large functionalities
can be combined from basic operations or have a new specialized protocols.
The strength of LSS is allowing reactive protocols where new inputs depend
on the previous outputs, as well as securely storing intermediate results. The
computing parties carry out the interactive protocols, however especially in the
case of passive security it is straightforward to incorporate external input and
result parties as on Fig. 1b.

A significant advancement of SC was LSS-based computation deployment
for the Danish sugar beet auction [BCD+09] in 2008. Current practical im-
plementations of LSS-based secure computation include Sharemind [BLW08,
Bog13] and ShareMonad [LDDAM12] for passive security and SPDZ [DPSZ12,
DKL+13] and TinyOT [NNOB12, LOS14] for active security. ShareMonad is
used for spam filtering and secure teleconference [LADM14, AR15]. SPDZ is
deployed to secret share cryptographic keys and compute cryptographic op-
erations using secure computation thereby mitigating threats from corrupted
servers [Sec14]. Sharemind has been deployed to analyse ICT companies eco-
nomic indicators [BTW12], perform genome-wide association studies [KBLV13],
run government statistics [Kam15] and detect tax fraud [BJSV15].

3 Security Properties and Comparison Criteria

The main goal of SC is to enable useful and potentially collaborative computa-
tions while hiding the private data of the input parties. A protocol is considered
secure if the only thing revealed in the computation is the output (and, of course,
whatever information that can be deduced from the output). Although all SC
protocols follow this general definition, the settings in which they are proposed
differ significantly. This section mentions important theoretical criteria that can
be used to label SC protocols as well as points out common properties of differ-
ent paradigms where possible. We base this section on a recent classification by
Perry et al [PGFW14]. In the following, Sec. 4 considers a classification from a

5

more practical perspective.
As introduced in Sec. 2, two important criteria for characterizing secure com-

putation are the computation technology, where we consider FHE, GC and LSS,
and the adversarial model which is either active, passive or covert. Character-
istics that are tightly coupled with the computation paradigm are the model of
computation and the number of communication rounds. Common computation
models include boolean and arithmetic circuits, although other models such as
random access machines and Turing machines are also occasionally used. The
garbled circuits method is mostly described for boolean circuits whereas LSS is
applied to arithmetic circuits (although both methods can also be applied to
the other kind of circuits). FHE schemes support either one of the circuit mod-
els depending of the concrete scheme. GC and FHE have a constant number
of communication rounds while the number of communication rounds of LSS
schemes is linear in the depth of the circuit that is computed.

Different schemes can also be compared based on the desired deployment
scenario. A central property is the number of computing parties required for
the computation coupled with the fraction of tolerated corrupted parties for
which the protocol is still secure. FHE and GC focus on two party computation
where one party is allowed to be corrupted. LSS works for any number of parties
but a common model used in practice is two or three computing parties with
one corrupted party. A significant exception is the SPDZ model that allows to
corrupt all but one of the participants.

The communication model can assume that all parties have point-to-point
connections or that there exists a broadcast channel (a broadcast channel is rel-
evant in the case that there are more than two parties). All considered schemes
except SPDZ work in a point-to-point setting. SPDZ requires a broadcast chan-
nel but also discusses the possibility of obtaining broadcast via a specific pro-
tocol in a point-to-point setting. In addition, it is often meaningful to divide
computation to a preprocessing phase that does not require any knowledge of
the actual inputs and an online phase that uses preprocessing results and the
actual inputs to efficiently compute the result. This setting is applicable when
it is known beforehand that some computations are coming up. Out of the
aforementioned schemes, TinyOT and SPDZ use preprocessing.

From a programming perspective it is important to consider handling condi-
tional statements. Conditional statements with secret conditions are commonly
processed by evaluating all branches and obliviously choosing the right outcome.

Many properties describe the behaviour of the adversary or the possible
outcomes for the corrupted parties.

• Commonly the model of corruption is static meaning that corrupted par-
ties are fixed ahead of the protocol, but it is also possible to consider
adaptive adversaries that decide during the protocol execution which par-
ties to corrupt.

• A protocol is fair if whenever an output is obtained all parties are guar-
anteed to receive it (rather than the adversary being able to obtain the
output while keeping other participants from learning it).

6

• An abort capability means that a protocol run can be interrupted without
leaking information about the input. The reconstruction capability means
that it is possible for honest parties to restore the output even if corrupted
parties stop participating in the protocol. Schemes considered in this
paper are capable of abort but not of reconstruction.

• Interesting but more theoretical properties include the security assump-
tions and whether security is preserved in a concurrent execution. For
example, security can be information theoretic meaning that it is infeasi-
ble for any adversary (even with infinite computation powers) to break the
scheme. Alternatively, security can be based on computational assump-
tions, meaning that breaking security in reasonable time is equivalent to
breaking some well known hardness assumption (such as the hardness
of factoring large numbers). Information theoretic security can only be
achieved if a majority of the parties are honest. Passively secure LSS-
based multi-party computation usually has information theoretic security
whereas all two-party computation schemes offer only computational se-
curity.

• The security level estimates the expected number of operations required to
break the scheme (say, by doing a brute-force search over all possible keys).
The level of security is measured in bits where b-bit security means that
the attack is expected to take 2b operations. It is customary to support
at least 80 bit or 128 bit of security.

Most of the research on SC focuses on the computing parties. The input or
result parties could also be computing parties or could alternatively outsource
the computation. In particular, it is often reasonable to consider settings where
the computing parties are some fixed entities to whom input parties can send
private data and from whom result parties can request queries. In this con-
text, it is also possible to ask which guarantees regarding the correctness or
privacy of the computation can be given to the input and result parties that
do not take part in the computation. For example, these parties may be able
to verify the correctness of the result or audit the computation process. In
theory public verification is possible for all SC protocols, however doing so ef-
ficiently is currently an open question. Auditing the computation process has
been studied for Sharemind [Pik14] and verification of outputs has been stud-
ied for SPDZ [BDO14]. FHE-based SC is also well suited for outsourcing and
achieving verifiability although no practical auditing solutions have currently
been implemented.

4 Maturity Taxonomy

This section provides a taxonomy for secure computation techniques that aims
to summarize various aspects of real world use of SC. We consider five different
features — the usage model, programming paradigm, implementation matu-
rity, developer tool maturity and performance. This section focuses on aspects

7

of practical usability complementing the formal characterization criteria from
Sec. 3.

I R SC C

(a) Outsourced processing

I SC R

iC
(b) Outsourced services

I C R SC

(c) Joint processing

Figure 1: Party roles and communication in abstract usage models of SC

Not all secure computation techniques are well-suited for all kinds of ap-
plications. We define three general usage models that describe how data is
obtained and used by the application. Each of these is illustrated in Table 1
by well-known services that could be replaced with analogous privacy preserv-
ing tools. The separation of the expected roles of the parties together with
the direction of communication is illustrated by Fig. 1. Out of the consid-
ered secure computation techniques, HE is well suited for outsourced processing
whereas LSS and GC are better for outsourced services and joint computations.
A developer considering the use of secure computation should also be aware of
possible programming paradigms for a chosen method. Either the programmer
designs boolean or arithmetic circuits or is able to write programs that will be
interpreted by the computation framework. The programming paradigms for
different secure computation techniques are collected in Table 2.

Category Criteria of belonging Example
Outsourced
processing

A client uses external resources (e.g., a cloud)
to process its own data, and seeks protection
against resource controller.

Salesforce,
Erply

Outsourced
services

A client uses external resources (e.g., a cloud) to
process data collected from multiple data own-
ers, while protecting this data from the resource
controller and from itself.

Google
Forms,
Survey-
Monkey.

Joint pro-
cessing

Multiple clients collaborate to process data col-
lected from among themselves, protecting their
own data from each other.

Tinder,
Doodle

Table 1: Usage model for secure computing systems

Different SC paradigms are represented by various concrete protocol sets and
frameworks for secure computation. We describe these using an implementa-
tion maturity category in Table 3 together with a Technological Readiness Level
(TRL)2. This category indicates the engineering level of the best publicly known

2U.S. Department of Defense Technological Readiness Assessment (TRA) Guidance. Avail-

8

Category Criteria of belonging Example
Circuits Task expressed as a fully formed boolean or

arithmetic circuit.
Yao-style
GC

Programs Task expressed as a continuously interpreted
program of arbitrarily complex primitive oper-
ations.

LSS-based
SC

Table 2: Programming paradigm used by secure computing systems

implementations of different paradigms. Currently, LSS is the most used secure
computation method, however GC approaches are also featured in market-ready
and real-world deployment levels. Similarly, we describe the developer tool ma-
turity in Table 4 to show which tools are available for developing applications
with different SC frameworks. Most systems propose a special language that
can be used to program applications but some also provide various levels of
libraries to ease the development.

Level Criteria of belonging Examples
Academic
prototype

Implementation demon-
strated in a laboratory
setting (TRL 1-4).

Fairplay (GC) [MNPS04, BNP08],
HElib (FHE) [HS14],
SEPIA (LSS) [BSMD10],
TASTY (GC & HE) [HKS+10],
ShareMonad (LSS),
VIFF (LSS) [DGKN09]

Real-world
deployment

Implementation demon-
strated in a real-world
setting (TRL 5-6).

FastGC (GC) [HEKM11],
FRESCO (LSS) [Han15]

Market-
ready

Commercial services
available based on
technology (TRL 7-9).

Dyadic (GC & LSS), Partisia
(LSS), Sharemind (LSS)

Table 3: Implementation maturity of secure computation systems

There are many secure computation frameworks proposed in the literature,
but not all of them have practical implementations in software or hardware. The
classification in Table 5 assigns the performance level category to secure compu-
tation frameworks to denote the performance level of more mature implemen-
tations available in practice. In the following, Sec. 5 compares the performance
of different systems in more depth based on concrete benchmarks.

able at http://www.acq.osd.mil/chieftechnologist/publications/docs/TRA2011.pdf

9

http://www.acq.osd.mil/chieftechnologist/publications/docs/TRA2011.pdf

Level Criteria of belonging Examples
Programming
library

A hand-modified implementa-
tion or a library of primitives
for integration.

FRESCO, HElib, Share-
Monad, SEPIA, VIFF

Domain-
specific
language

An embedded or compilable
domain-specific language tar-
geted to secure computing.

L1 [SKB+09, SKM11],
OblivC [ZE15],
PCF [KMsB13],
SecreC [Jag10, BLR14],
SFDL [MNPS04, BNP08]

High-level
libraries &
tools

Reusable application-specific
functionalities or tool integra-
tions.

SecreC standard library,
Rmind [BKLS14]

Table 4: Developer tool maturity of secure computation systems

Level Criteria of belonging Examples
Single-
operation-
level

Performed primitive operations on input
arrays of non-trivial size.

HElib [GHJR14]

Algorithm-
level

Runs an algorithm built of multiple prim-
itive operations on an input structure of
non-trivial size.

FRESCO
[DDN+15],
SEPIA
[BD11, MBD12]

Business-
process-level

Runs a multi-algorithm business process
on an input database of non-trivial size.

Sharemind
[Kam15,
Sec. 6.4]

Table 5: Performance levels of secure computing systems

10

5 Performance of SC Implementations

A comprehensive survey performed near the end of the DARPA PROCEED
program characterized the performance of the three SC paradigms described in
Sec. 2. We describe salient results of that survey here. First, we aim to provide
a pragmatic answer to the question, ”How fast is FHE anyway?” using a number
of benchmarks. Second, we aim to compare all three SC paradigms using the
comparison benchmark of computing the AES-128 cipher.

5.1 How Fast is FHE?

Table 6 shows results from several publications on FHE performance for basic al-
gorithms. The artifacts referenced here were all created using fully homomorphic
(FHE) techniques. In each case, the artifact is tolerant of passive adversaries.
Results show a wide range of performance for the same operation computed
using different FHE approaches, as shown in the first two table entries. Other
results in this table show that the relative performance for different artifacts
using the same FHE method is sometimes non-intuitive. For example, the dif-
ference of 3 orders of magnitude between 32-bit addition and multiplication is
not analogous to typical computation results “in the clear”.

FHE
Method

Security
level, bits

Operation Time in
seconds

Platform

[XBY12] 80 32-bit add 0.0001 2.1GHz
Core2 Duo

[BLLN13] 80 32-bit add 0.000024 2.9GHz
Core i7

[FSF+13] 40 quadratic discriminant 108 2.0GHz
Core2 Duo

[XBY12] 80 32-bit multiply 0.108 2.1GHz
Core2 Duo

[FSF+13] 40 sum ten 4-bit numbers 36.3 - 51.2 2.0GHz
Core2 Duo

[LN14] 80 SIMON 32/64 cipher,
per block

0.8-1.1 3.4GHz
Core i7

[LN14,
Gal14]

128 SIMON 64/128 cipher,
per block

2-8 3.4GHz
Core i7

Table 6: Performance of FHE on various benchmarks

Although details are somewhat non-intuitive, the table offers an intuitive
feel for current FHE performance. This and other data gathered during the
PROCEED program suggest that as of early 2015, FHE computation is often
between 5 and 10 orders of magnitude slower than computing “in the clear”.

11

5.2 Cross-paradigm SC Performance on AES-128

The computation of the AES cipher (represented as a circuit) is a convenient
benchmark for comparing the performance of SC techniques. For example,
Damg̊ard et al. report on a pre-2012 comparison of several GC and linear secret
sharing systems, comparing them by AES performance [DKL+12]. In Fig. 2,
we report on results from the 2012-2015 time frame. Across a range of 9-bit
to 128-bit security levels, performance results span almost seven orders of mag-
nitude, from roughly 50 microseconds per block to roughly 200 seconds per
block. (Note that some of these results are based on running multiple threads
in parallel or need a preprocessing computation which is not included in the
online runtime.) LSS implementations tend to achieve the highest through-
puts shown on the chart, ranging from roughly 50 microseconds to 0.5 seconds
per block [NNOB12, Gal13a, DKL+12, LTW13, Cyb15]. GC implementations
cover the middle range of performance shown, ranging from roughly 20 millisec-
onds per block to 60 seconds per block [FN13, HS13, KsS12, HKE12, sS13].
FHE implementations demonstrate the slowest throughputs in the time frame
of our comparison, ranging from roughly 8 seconds per block to 200 seconds per
block [DHS14, CLT14b, GHS15].

5.3 Levenshtein Distance Computation

Edit distance, particularly using the Levenshtein algorithm, was useful as a SC
benchmark in the PROCEED program, though we found no other published re-
sults on this benchmark. In Fig. 3, we compare performance results as a function
of input string length for linear secret sharing and garbled circuit constructions.
In the chart, the red datapoints represent a ShareMonad (LSS) solution devel-
oped by Galois, Inc., the blue data points represent a Sharemind (LSS) solution
developed by Cybernetica, and the green points represent a GC solution de-
veloped by a team at University of Oregon and Georgia Tech. Measurements
were made on a 2.1GHz Intel e7 (Xeon) CPU with 1TB physical memory. The
consistency of the results is surprising, given the variability of FHE-specific data
and of the AES comparisons discussed above.

5.4 SC in Complex Applications

Applications more complex than simple operations or algorithms are difficult
to compare across SC paradigms. Partly, because the choice of underlying al-
gorithms can vary substantially between implementations, since SC is typically
not the only measurable contributor to performance in such applications. In ad-
dition, user expectations of performance of complex applications are typically
subjective rather than absolute. Thus in this paper we list complex applications
that have been successfully implemented in SC with “reasonable” performance,
but do not report on specific performance measurements of those implemen-
tations. In Table 7 we show for each considered SC paradigm a selection of
complex applications that have been implemented.

12

Figure 2: Comparison of SC paradigms using the AES-128 block cipher

13

Figure 3: Comparison of SC paradigms using Levenshtein edit distance compu-
tation

LSS

VoIP with encrypted server signal processing [LADM14, AR15]
E-mail filtering using regular expressions [LADM14, AR15]
Naive Bayes spam filtering [Cyb15]
Linear best-fit regression [NWI+13] [Gal13b]
Satellite collision analysis [KW14]
SHA2-based web service authentication [Gal13b]
Genome SNP correlation to medical conditions [KBLV13]
Tax fraud detection [BJSV15]
Private statistics to analyse ICT students dropping out and work-
ing during studies [Kam15, Sec. 6.4]
Linear programming based credit ranking [DDN+15]

GC
Route mapping [CLT14a]
Fingerprint identification [BS15]
Finding similar patients [WHZ+15]

FHE

VoIP with encrypted server voice addition [AR15]
E-mail filtering using string match only [AR15]
Genetic association study algorithms [LLAN15]
Forensic image recognition [BPHJ14]

Table 7: Complex SC applications implemented with reasonable performance

14

6 Maturity of Secure Computation

We collected information on the performance results and published prototypes
and used it to estimate the maturity of programmable secure computation tech-
niques. Table 8 evaluates the five most popular technologies with their current
state of the art estimations. The schemes that achieve practical efficiency are
currently mostly passively secure. Hence, currently secure computation is a
good approach for tasks with multiple parties who trust each other to behave
honestly but still need to deploy means to ensure the privacy of the computa-
tions. However, ongoing research and development is largely focused on active
security and it is likely to gain more efficiency in the near future.

It is still not clear, which fields will benefit the most from programmable
secure computation or whether it will find industrial acceptance. However, con-
tinued research in the field as well as increasingly larger real-world deployments
suggest that anyone looking for privacy-preserving computing technology keep
an eye on the development of secure computation.

References

[AR15] David W. Archer and Kurt Rohloff. Computing with Data Privacy:
Steps toward Realization. IEEE Security & Privacy, 13(1):22–29,
2015.

[BCD+09] Peter Bogetoft, Dan Lund Christensen, Ivan Damg̊ard, Mar-
tin Geisler, Thomas Jakobsen, Mikkel Krøigaard, Janus Dam
Nielsen, Jesper Buus Nielsen, Kurt Nielsen, Jakob Pagter, Michael
Schwartzbach, and Tomas Toft. Secure Multiparty Computation
Goes Live. In Roger Dingledine and Philippe Golle, editors, Fi-
nancial Cryptography and Data Security, pages 325–343. Springer-
Verlag, Berlin, Heidelberg, 2009.

[BD11] Martin Burkhart and Xenofontas Dimitropoulos. Privacy-
preserving Distributed Network Troubleshooting — Bridging the
Gap Between Theory and Practice. ACM Transactions on Infor-
mation and System Security (TISSEC), 14(4):31:1–31:30, Decem-
ber 2011.

[BDO14] Carsten Baum, Ivan Damg̊ard, and Claudio Orlandi. Publicly Au-
ditable Secure Multi-Party Computation. In Security and Cryp-
tography for Networks - 9th International Conference, SCN 2014,
volume 8642 of Lecture Notes in Computer Science, pages 175–196.
Springer, 2014.

[BGV12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Lev-
eled) Fully Homomorphic Encryption Without Bootstrapping. In

15

Technique Usage
model

Implemen-
tation
maturity

Program-
ming
paradigm

Developer
tool matu-
rity

Performance

LSS pas-
sive

Outsourced
services
/ Joint
processing

Market-
readya

Programs High-level
libraries &
toolsb

Business-
process-
levelc

LSS ac-
tive

Outsourced
services
/ Joint
processing

Market-
readyd

Programs Programming
library

Algorithm-
levele

GC pas-
sive

Outsourced
services
/ Joint
processing

Real-
world
deploy-
ment f

Circuits Domain-
specific
language

Business-
process-
levelg

GC
active

Outsourced
services
/ Joint
processing

Academic
prototype

Circuits Domain-
specific
language

Algorithm-
levelh

FHE
passive

Outsourced
processing
/ Out-
sourced
services

Academic
prototype

Circuits Programming
library

Single-
operation-
level

aPartisia Market Design ApS www.partisia.dk/, Cybernetica AS sharemind.cyber.ee/
bSecreC standard library github.com/sharemind-sdk/secrec and github.com/

sharemind-sdk/stdlib, Rmind [BKLS14]
cSugar beet auction [BCD+09] http://alexandra.dk/uk/cases/simap, ICT companies

economic indicators [BTW12], tax fraud detection [BJSV15], government statistics [Kam15]
dDyadic Security www.dyadicsec.com
eSimplex algorithm for linear programming [DDN+15]
fFastGC http://www.mightbeevil.com/framework/
gCommonContacts www.mightbeevil.com/contacts/
hDijkstra’s shortest path algorithm on PCF github.com/cryptouva/pcf and White-

wash [CLT14a]

Table 8: Maturity of most popular programmable SC techniques

16

www.partisia.dk/
sharemind.cyber.ee/
github.com/sharemind-sdk/secrec
github.com/sharemind-sdk/stdlib
github.com/sharemind-sdk/stdlib
http://alexandra.dk/uk/cases/simap
www.dyadicsec.com
http://www.mightbeevil.com/framework/
www.mightbeevil.com/contacts/
github.com/cryptouva/pcf

Proceedings of the 3rd Innovations in Theoretical Computer Sci-
ence Conference, ITCS ’12, pages 309–325, New York, NY, USA,
2012. ACM.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Complete-
ness Theorems for Non-cryptographic Fault-tolerant Distributed
Computation. In Proceedings of the Twentieth Annual ACM Sym-
posium on Theory of Computing, STOC ’88, pages 1–10, New
York, NY, USA, 1988. ACM.

[BHR12] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Founda-
tions of Garbled Circuits. In Proceedings of the 2012 ACM Confer-
ence on Computer and Communications Security, CCS ’12, pages
784–796, New York, NY, USA, 2012. ACM.

[BJSV15] Dan Bogdanov, Marko Jõemets, Sander Siim, and Meril Vaht. How
the Estonian Tax and Customs Board Evaluated a Tax Fraud De-
tection System Based on Secure Multi-party Computation. In Fi-
nancial Cryptography and Data Security - 19th International Con-
ference, FC 2015, volume 8975 of LNCS, pages 227–234. Springer,
2015.

[BKLPV13] Dan Bogdanov, Liina Kamm, Sven Laur, and Pille Pruulmann-
Vengerfeldt. Secure multi-party data analysis: end user validation
and practical experiments. Cryptology ePrint Archive, Report
2013/826, 2013.

[BKLS14] Dan Bogdanov, Liina Kamm, Sven Laur, and Ville Sokk. Rmind:
a tool for cryptographically secure statistical analysis. Cryptology
ePrint Archive, Report 2014/512, 2014.

[Bla79] George Robert Blakley. Safeguarding Cryptographic Keys. In
Proceedings of the 1979 AFIPS National Computer Conference,
pages 313–317, Monval, NJ, USA, 1979. AFIPS Press.

[BLLN13] Joppe W. Bos, Kristin E. Lauter, Jake Loftus, and Michael
Naehrig. Improved Security for a Ring-Based Fully Homomor-
phic Encryption Scheme. In Cryptography and Coding - 14th IMA
International Conference, IMACC 2013, volume 8308 of Lecture
Notes in Computer Science, pages 45–64. Springer, 2013.

[BLR14] Dan Bogdanov, Peeter Laud, and Jaak Randmets. Domain-
Polymorphic Programming of Privacy-Preserving Applications. In
Proceedings of the Ninth Workshop on Programming Languages
and Analysis for Security, PLAS’14, pages 53–65. ACM, 2014.

[BLW08] Dan Bogdanov, Sven Laur, and Jan Willemson. Sharemind: A
Framework for Fast Privacy-Preserving Computations. In Sushil
Jajodia and Javier Lopez, editors, Computer Security - ESORICS

17

2008, volume 5283 of Lecture Notes in Computer Science, pages
192–206. Springer Berlin Heidelberg, 2008.

[BMR90] Donald Beaver, Silvio Micali, and Phillip Rogaway. The round
complexity of secure protocols (extended abstract). In Harriet
Ortiz, editor, Proceedings of the 22nd Annual ACM Symposium
on Theory of Computing, May 13-17, 1990, Baltimore, Maryland,
USA, pages 503–513. ACM, 1990.

[BNP08] Assaf Ben-David, Noam Nisan, and Benny Pinkas. FairplayMP:
A System for Secure Multi-party Computation. In Proceedings
of the 15th ACM Conference on Computer and Communications
Security, CCS ’08, pages 257–266, New York, NY, USA, 2008.
ACM.

[Bog13] Dan Bogdanov. Sharemind: programmable secure computations
with practical applications. PhD thesis, Institute of Computer Sci-
ence, University of Tartu, Estonia, 2013.

[BPHJ14] Chrisoph Bosch, Andreas Peter, Pieter H. Hartel, and Willem
Jonker. SOFIR: Securely outsourced Forensic image recognition.
In Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE
International Conference on, pages 2694–2698, May 2014.

[BS15] Marina Blanton and Siddharth Saraph. Oblivious Maximum Bi-
partite Matching Size Algorithm with Applications to Secure Fin-
gerprint Identification. In Günther Pernul, Peter Y. A. Ryan, and
Edgar Weippl, editors, Computer Security ESORICS 2015, vol-
ume 9326 of Lecture Notes in Computer Science, pages 384–406.
Springer International Publishing, 2015.

[BSMD10] Martin Burkhart, Mario Strasser, Dilip Many, and Xenofontas
Dimitropoulos. SEPIA: Privacy-preserving Aggregation of Multi-
domain Network Events and Statistics. In Proceedings of the 19th
USENIX Conference on Security, USENIX Security’10, pages 15–
15, Berkeley, CA, USA, 2010. USENIX Association.

[BTW12] Dan Bogdanov, Riivo Talviste, and Jan Willemson. Deploying
Secure Multi-Party Computation for Financial Data Analysis -
(Short Paper). In Financial Cryptography, pages 57–64, 2012.

[CCD88] David Chaum, Claude Crépeau, and Ivan Damg̊ard. Multiparty
Unconditionally Secure Protocols. In Proceedings of the Twentieth
Annual ACM Symposium on Theory of Computing, STOC ’88,
pages 11–19, New York, NY, USA, 1988. ACM.

[CLT14a] Henry Carter, Charles Lever, and Patrick Traynor. Whitewash:
outsourcing garbled circuit generation for mobile devices. In Pro-
ceedings of the 30th Annual Computer Security Applications Con-
ference, pages 266–275. ACM New York, NY, USA, 2014.

18

[CLT14b] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi.
Scale-Invariant Fully Homomorphic Encryption over the Integers.
In Public-Key Cryptography - PKC 2014 - 17th International Con-
ference on Practice and Theory in Public-Key Cryptography, pages
311–328, 2014.

[Cyb15] Cybernetica. Sharemind Performance. Private communication in
the PROCEED program, 2015.

[DDN+15] Ivan Damg̊ard, Kasper Damg̊ard, Kurt Nielsen, Peter Sebastian
Nordholt, and Tomas Toft. Confidential Benchmarking based
on Multiparty Computation. Cryptology ePrint Archive, Report
2015/1006, 2015.

[DGKN09] Ivan Damg̊ard, Martin Geisler, Mikkel Krøigaard, and Jesper Buus
Nielsen. Asynchronous Multiparty Computation: Theory and Im-
plementation. In Proceedings of the 12th International Conference
on Practice and Theory in Public Key Cryptography: PKC ’09,
Irvine, pages 160–179, Berlin, Heidelberg, 2009. Springer-Verlag.

[DHS14] Yarkin Doröz, Yin Hu, and Berk Sunar. Homomorphic AES Eval-
uation using NTRU. IACR Cryptology ePrint Archive, 2014:39,
2014.

[DKL+12] Ivan Damg̊ard, Marcel Keller, Enrique Larraia, Christian Miles,
and Nigel P. Smart. Implementing AES via an Actively/Covertly
Secure Dishonest-majority MPC Protocol. In Proceedings of
the 8th International Conference on Security and Cryptography
for Networks, SCN’12, pages 241–263, Berlin, Heidelberg, 2012.
Springer-Verlag.

[DKL+13] Ivan Damg̊ard, Marcel Keller, Enrique Larraia, Valerio Pastro, Pe-
ter Scholl, and Nigel P. Smart. Practical Covertly Secure MPC for
Dishonest Majority - Or: Breaking the SPDZ Limits. In Com-
puter Security - ESORICS 2013 - 18th European Symposium on
Research in Computer Science, volume 8134 of Lecture Notes in
Computer Science, pages 1–18. Springer, 2013.

[DPSZ12] Ivan Damg̊ard, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias.
Multiparty Computation from Somewhat Homomorphic Encryp-
tion. In Advances in Cryptology - CRYPTO 2012 - 32nd Annual
Cryptology Conference, pages 643–662, 2012.

[Elg85] Taher Elgamal. A Public Key Cryptosystem and a Signature
Scheme Based on Discrete Logarithms. In Proceedings of CRYPTO
84 on Advances in Cryptology, pages 10–18, New York, NY, USA,
1985. Springer-Verlag New York, Inc.

19

[FN13] Tore Kasper Frederiksen and Jesper Buus Nielsen. Fast and Mali-
ciously Secure Two-Party Computation Using the GPU. In Applied
Cryptography and Network Security - 11th International Confer-
ence, ACNS 2013, pages 339–356, 2013.

[FSF+13] Simon Fau, Renaud Sirdey, Caroline Fontaine, Carlos Aguilar Mel-
chor, and Guy Gogniat. Towards Practical Program Execution
over Fully Homomorphic Encryption Schemes. In Eighth Inter-
national Conference on P2P, Parallel, Grid, Cloud and Internet
Computing, 3PGCIC 2013, pages 284–290, 2013.

[Gal13a] Galois. ShareMonad Performance. Private communication in the
PROCEED program, 2013.

[Gal13b] Galois. Unpublished ShareMonad Experiments during DARPA
PROCEED. Private communication in the PROCEED program,
2013.

[Gal14] Galois. Block Ciphers, Homomorphically, 2014. http://galois.

com/blog/2014/12/block-ciphers-homomorphically/, last
checked October 21, 2015.

[Gen09a] Craig Gentry. A Fully Homomorphic Encryption Scheme.
PhD thesis, Stanford University, Stanford, CA, USA, 2009.
AAI3382729.

[Gen09b] Craig Gentry. Fully Homomorphic Encryption Using Ideal Lat-
tices. In Proceedings of the Forty-first Annual ACM Symposium
on Theory of Computing, STOC ’09, pages 169–178, New York,
NY, USA, 2009. ACM.

[GHJR14] Craig Gentry, Shai Halevi, Charanjit Jutla, and Mariana Raykova.
Private Database Access With HE-over-ORAM Architecture.
Cryptology ePrint Archive, Report 2014/345, 2014.

[GHS15] Craig Gentry, Shai Halevi, and Nigel P. Smart. Homomorphic
Evaluation of the AES Circuit (Updated implementation). Cryp-
tology ePrint Archive, Report 2012/099, 2015.

[GMW87] Oded Goldreich, Silvio M. Micali, and Avi Wigderson. How to
Play ANY Mental Game. In Proceedings of the Nineteenth Annual
ACM Symposium on Theory of Computing, STOC ’87, pages 218–
229, New York, NY, USA, 1987. ACM.

[Han15] Edited by Isabelle Hang. State-of-the-Art Analysis. Tech-
nical Report ICT-609611 / D22.1 / 1.1, PRACTICE:
Privacy-Preserving Computation in the Cloud, 2015.
http://www.practice-project.eu/downloads/publications/

D22.1-State-of-the-art-analysis-PU-V1.1.pdf.

20

http://galois.com/blog/2014/12/block-ciphers-homomorphically/
http://galois.com/blog/2014/12/block-ciphers-homomorphically/
http://www.practice-project.eu/downloads/publications/D22.1-State-of-the-art-analysis-PU-V1.1.pdf
http://www.practice-project.eu/downloads/publications/D22.1-State-of-the-art-analysis-PU-V1.1.pdf

[HEKM11] Yan Huang, David Evans, Jonathan Katz, and Lior Malka. Faster
Secure Two-party Computation Using Garbled Circuits. In Pro-
ceedings of the 20th USENIX Conference on Security, SEC’11,
pages 35–35, Berkeley, CA, USA, 2011. USENIX Association.

[HFKV12] Andreas Holzer, Martin Franz, Stefan Katzenbeisser, and Helmut
Veith. Secure Two-party Computations in ANSI C. In Proceedings
of the 2012 ACM Conference on Computer and Communications
Security, CCS ’12, pages 772–783, New York, NY, USA, 2012.
ACM.

[HKE12] Yan Huang, Jonathan Katz, and David Evans. Quid-Pro-Quo-
tocols: Strengthening Semi-honest Protocols with Dual Execution.
In IEEE Symposium on Security and Privacy, SP 2012, pages 272–
284, 2012.

[HKS+10] Wilko Henecka, Stefan Kögl, Ahmad-Reza Sadeghi, Thomas
Schneider, and Immo Wehrenberg. TASTY: Tool for Automating
Secure Two-party Computations. In Proceedings of the 17th ACM
Conference on Computer and Communications Security, CCS ’10,
pages 451–462, New York, NY, USA, 2010. ACM.

[HPS98] Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. NTRU: A
Ring-Based Public Key Cryptosystem. In Proceedings of the Third
International Symposium on Algorithmic Number Theory, ANTS-
III, pages 267–288, London, UK, UK, 1998. Springer-Verlag.

[HS13] Wilko Henecka and Thomas Schneider. Faster Secure Two-party
Computation with Less Memory. In Proceedings of the 8th ACM
SIGSAC Symposium on Information, Computer and Communi-
cations Security, ASIA CCS ’13, pages 437–446, New York, NY,
USA, 2013. ACM.

[HS14] Shai Halevi and Victor Shoup. Algorithms in HElib. Cryptology
ePrint Archive, Report 2014/106, 2014.

[Jag10] Roman Jagomägis. SecreC: a Privacy-Aware Programming Lan-
guage with Applications in Data Mining. Master’s thesis, Institute
of Computer Science, University of Tartu, Estonia, 2010.

[Kam15] Liina Kamm. Privacy-preserving statistical analysis using secure
multi-party computation. PhD thesis, Institute of Computer Sci-
ence, University of Tartu, Estonia, 2015.

[KBLV13] Liina Kamm, Dan Bogdanov, Sven Laur, and Jaak Vilo. A new
way to protect privacy in large-scale genome-wide association stud-
ies. Bioinformatics, 29(7):886–893, 2013.

21

[KMsB13] Ben Kreuter, Benjamin Mood, abhi shelat, and Kevin Butler.
PCF: A Portable Circuit Format for Scalable Two-party Secure
Computation. In Proceedings of the 22Nd USENIX Conference
on Security, SEC’13, pages 321–336, Berkeley, CA, USA, 2013.
USENIX Association.

[KsS12] Benjamin Kreuter, abhi shelat, and Chih-Hao Shen. Billion-gate
Secure Computation with Malicious Adversaries. In Proceedings of
the 21st USENIX Conference on Security Symposium, Security’12,
pages 285–300, Berkeley, CA, USA, 2012. USENIX Association.

[KSS13] Marcel Keller, Peter Scholl, and Nigel P. Smart. An Architecture
for Practical Actively Secure MPC with Dishonest Majority. In
Proceedings of the 2013 ACM SIGSAC Conference on Computer
and Communications Security, CCS ’13, pages 549–560, New York,
NY, USA, 2013. ACM.

[KW14] Liina Kamm and Jan Willemson. Secure Floating-Point Arith-
metic and Private Satellite Collision Analysis. International Jour-
nal of Information Security, pages 1–18, 2014.

[LADM14] John Launchbury, Dave Archer, Thomas DuBuisson, and Eric
Mertens. Application-Scale Secure Multiparty Computation. In
Zhong Shao, editor, Programming Languages and Systems - 23rd
European Symposium on Programming, ESOP 2014, volume 8410
of Lecture Notes in Computer Science, pages 8–26. Springer, 2014.

[LDDAM12] John Launchbury, Iavor S. Diatchki, Thomas DuBuisson, and
Andy Adams-Moran. Efficient Lookup-table Protocol in Se-
cure Multiparty Computation. In Proceedings of the 17th ACM
SIGPLAN International Conference on Functional Programming,
ICFP ’12, pages 189–200, New York, NY, USA, 2012. ACM.

[Lin13] Yehuda Lindell. Fast Cut-and-Choose Based Protocols for Ma-
licious and Covert Adversaries. In Advances in Cryptology -
CRYPTO 2013 - 33rd Annual Cryptology Conference, volume 8043
of Lecture Notes in Computer Science, pages 1–17. Springer, 2013.

[LLAN15] Kristin Lauter, Adriana Lpez-Alt, and Michael Naehrig. Private
Computation on Encrypted Genomic Data. In Diego F. Aranha
and Alfred Menezes, editors, Progress in Cryptology - LATIN-
CRYPT 2014, volume 8895 of Lecture Notes in Computer Science,
pages 3–27. Springer International Publishing, 2015.

[LN14] Tancrède Lepoint and Michael Naehrig. A Comparison of the Ho-
momorphic Encryption Schemes FV and YASHE. In Progress in
Cryptology - AFRICACRYPT 2014 - 7th International Confer-
ence on Cryptology in Africa, volume 8469 of Lecture Notes in
Computer Science, pages 318–335, 2014.

22

[LOS14] Enrique Larraia, Emmanuela Orsini, and Nigel P. Smart. Dis-
honest Majority Multi-Party Computation for Binary Circuits. In
Advances in Cryptology - CRYPTO 2014 - 34th Annual Cryptology
Conference, pages 495–512, 2014.

[LP07] Yehuda Lindell and Benny Pinkas. An Efficient Protocol for Secure
Two-Party Computation in the Presence of Malicious Adversaries.
In Advances in Cryptology - EUROCRYPT 2007, 26th Annual In-
ternational Conference on the Theory and Applications of Cryp-
tographic Techniques, volume 4515 of Lecture Notes in Computer
Science, pages 52–78. Springer, 2007.

[LP09] Yehuda Lindell and Benny Pinkas. A Proof of Security of Yao’s
Protocol for Two-Party Computation. Journal of Cryptology,
22(2):161–188, April 2009.

[LP11] Yehuda Lindell and Benny Pinkas. Secure Two-Party Computa-
tion via Cut-and-Choose Oblivious Transfer. In Theory of Cryp-
tography - 8th Theory of Cryptography Conference, TCC 2011, vol-
ume 6597 of Lecture Notes in Computer Science, pages 329–346.
Springer, 2011.

[LTW13] Sven Laur, Riivo Talviste, and Jan Willemson. From Oblivious
AES to Efficient and Secure Database Join in the Multiparty Set-
ting. In Proceedings of the 11th International Conference on Ap-
plied Cryptography and Network Security, ACNS’13, pages 84–101,
Berlin, Heidelberg, 2013. Springer-Verlag.

[MBD12] Dilip Many, Martin Burkhart, and Xenofontas Dimitropoulos. Fast
Private Set Operations with SEPIA . Technical Report TIK report
no. 345, ETH Zurich, 2012.

[MNPS04] Dahlia Malkhi, Noam Nisan, Benny Pinkas, and Yaron Sella.
Fairplay—a Secure Two-party Computation System. In Proceed-
ings of the 13th Conference on USENIX Security Symposium,
volume 13 of SSYM’04, pages 20–20, Berkeley, CA, USA, 2004.
USENIX Association.

[MR13] Payman Mohassel and Ben Riva. Garbled Circuits Checking Gar-
bled Circuits: More Efficient and Secure Two-Party Computation.
In Ran Canetti and Juan A. Garay, editors, Advances in Cryptol-
ogy CRYPTO 2013, volume 8043 of Lecture Notes in Computer
Science, pages 36–53. Springer Berlin Heidelberg, 2013.

[NNOB12] Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi,
and Sai Sheshank Burra. A New Approach to Practical Active-
Secure Two-Party Computation. In Advances in Cryptology -
CRYPTO 2012 - 32nd Annual Cryptology Conference, pages 681–
700, 2012.

23

[NO09] Jesper Buus Nielsen and Claudio Orlandi. LEGO for Two-Party
Secure Computation. In Omer Reingold, editor, Theory of Cryp-
tography, volume 5444 of Lecture Notes in Computer Science,
pages 368–386. Springer Berlin Heidelberg, 2009.

[NWI+13] Valeria Nikolaenko, Udi Weinsberg, Stratis Ioannidis, Marc Joye,
Dan Boneh, and Nina Taft. Privacy-Preserving Ridge Regression
on Hundreds of Millions of Records. In Proceedings of the 2013
IEEE Symposium on Security and Privacy, SP ’13, pages 334–348,
Washington, DC, USA, 2013. IEEE Computer Society.

[Pai99] Pascal Paillier. Public-key Cryptosystems Based on Composite
Degree Residuosity Classes. In Proceedings of the 17th Inter-
national Conference on Theory and Application of Cryptographic
Techniques, EUROCRYPT’99, pages 223–238, Berlin, Heidelberg,
1999. Springer-Verlag.

[PGFW14] Jason Perry, Debayan Gupta, Joan Feigenbaum, and Rebecca N.
Wright. Systematizing Secure Computation for Research and De-
cision Support. In Security and Cryptography for Networks - 9th
International Conference, SCN 2014, pages 380–397, 2014.

[Pik14] Tiit Pikma. Auditing of Secure Multiparty Computations. Mas-
ter’s thesis, Institute of Computer Science, University of Tartu,
Estonia, 2014.

[Sec14] Dyadic Security. Dyadic Security White Paper. Technical report,
Dyadic Security Ltd, 2014. Published online at https://www.

dyadicsec.com/.

[Sha79] Adi Shamir. How to Share a Secret. Communications of the ACM,
22(11):612–613, November 1979.

[SKB+09] Axel Schröpfer, Florian Kerschbaum, Debmalya Biswas, Steffen
Geißinger, and Christoph Schütz. L1-Faster Development and
Benchmarking of Cryptographic Protocols. In ECRYPT Work-
shop on Software Performance Enhancements for Encryption and
Decryption and Cryptographic Compilers (SPEED-CC09), pages
12–13. IEEE Computer Society, 2009.

[SKM11] Axel Schröpfer, Florian Kerschbaum, and Günter Müller. L1 - An
Intermediate Language for Mixed-Protocol Secure Computation.
In Proceedings of the 35th Annual IEEE International Computer
Software and Applications Conference, COMPSAC 2011, pages
298–307. IEEE Computer Society, 2011.

[sS13] abhi shelat and Chih-hao Shen. Fast Two-party Secure Computa-
tion with Minimal Assumptions. In Proceedings of the 2013 ACM
SIGSAC Conference on Computer & Communications Security,
CCS ’13, pages 523–534, New York, NY, USA, 2013. ACM.

24

https://www.dyadicsec.com/
https://www.dyadicsec.com/

[VDGHV10] Marten Van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikun-
tanathan. Fully Homomorphic Encryption over the Integers. In
Advances in cryptology–EUROCRYPT 2010 - 29th Annual Inter-
national Conference on the Theory and Applications of Crypto-
graphic Techniques, volume 6110 of Lecture Notes in Computer
Science, pages 24–43. Springer, 2010.

[WHZ+15] Xiao Shaun Wang, Yan Huang, Yongan Zhao, Haixu Tang, Xi-
aoFeng Wang, and Diyue Bu. Efficient Genome-Wide, Privacy-
Preserving Similar Patient Query Based on Private Edit Distance.
In Proceedings of the 22Nd ACM SIGSAC Conference on Com-
puter & Communications Security, CCS ’15, pages 492–503, New
York, NY, USA, 2015. ACM.

[XBY12] Liangliang Xiao, Osbert Bastani, and I-Ling Yen. An Efficient
Homomorphic Encryption Protocol for Multi-User Systems. IACR
Cryptology ePrint Archive, 2012:193, 2012.

[Yao82] Andrew C. Yao. Protocols for Secure Computations. In Proceed-
ings of the 23rd Annual Symposium on Foundations of Computer
Science, SFCS ’82, pages 160–164, Washington, DC, USA, 1982.
IEEE Computer Society.

[ZE15] Samee Zahur and David Evans. Obliv-C: A Language for Ex-
tensible Data-Oblivious Computation (whitepaper), 2015. http:

//oblivc.org/downloads/oblivc.pdf.

25

http://oblivc.org/downloads/oblivc.pdf
http://oblivc.org/downloads/oblivc.pdf

	Introduction
	Secure Computation Paradigms
	Homomorphic Encryption
	Garbled Circuits
	Linear Secret Sharing

	Security Properties and Comparison Criteria
	Maturity Taxonomy
	Performance of SC Implementations
	How Fast is FHE?
	Cross-paradigm SC Performance on AES-128
	Levenshtein Distance Computation
	SC in Complex Applications

	Maturity of Secure Computation

