
Maturity and Performance of Programmable

Secure Computation

David W. Archer
dwa@galois.com

Dan Bogdanov
dan.bogdanov@cyber.ee

Benny Pinkas
benny@pinkas.net

Pille Pullonen
pille.pullonen@cyber.ee

October 27, 2015

1 Introduction

Secure computation (SC) stands for a group of technologies for computing func-
tions of private inputs, while keeping the inputs themselves hidden. The canon-
ical example of secure computation is the millionaires’ problem, where two
millionaires, Alice and Bob, who own $X and $Y, respectively, wish to run
a computation that tells them which one of them is richer, but reveals no other
information. Obviously, if both parties trust some third party they could reveal
X and Y to that party, who could then tell them whether X>Y. Their goal is,
however, to do the same computation without the help of any third party and
while revealing nothing more than the final output of the computation.

Secure computation is essentially based on processing data that is protected
by encryption or a similar method. There are SC solutions that are targeted
for computing specific functions. We call a particular secure computation tech-
nology programmable if it is Turing-complete and can efficiently run at least
a certain class of algorithms. Most SC solutions are designed in order to pro-
tect data during sharing or outsourced processing, for example in the context
of cloud computing. Technologies for programmable SC include (but are not
limited to) secure multi-party computation (MPC) and fully homomorphic en-
cryption (FHE).

Secure computation research has gained traction internationally in the last
five years. In the United States, the DARPA PROCEED program (2011-2015)
focused on development of multiple SC paradigms and improving their perfor-
mance. In the European Union, the PRACTICE program (2013-2016) focuses
on its use to secure cloud computing. Both programs have demonstrated excep-
tional prototypes and performance improvements.

In PROCEED, Archer and Rohloff [AR15] demonstrated VoIP streaming
where an untrusted server decompresses, mixes, adds, clips, and recompresses
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audio data while it remains encrypted. Carter et al. demonstrated the ca-
pability to compute route maps while map, source, and destination remain
secret [CLT14a]. In PRACTICE, Bogdanov et al. evaluated a tax fraud de-
tection system together with the Estonian Tax and Customs Board [BJSV15]
and showed significant speedups of MPC using cloud computing. In addition,
both programs contributed to speeding up the basic technologies of SC.

In this paper, we collect the results from both programs and other published
literature to present the state of the art in what can be achieved with today’s
secure computing technology. In the following, Sec. 2 describes three approaches
of programmable secure computation that we analyse in this paper. These are
homomorphic encryption, garbled circuits and linear secret sharing. This intro-
duction is followed by a set of interesting properties in Sec. 3 that are used to
characterize and differentiate between the approaches. In Sec. 4, we present a
taxonomy based on implementation maturity and runtime performance of each
technique showcasing the readiness for real-world use. The taxonomy has five
components—usage model, programming paradigm, implementation maturity,
developer tool maturity and performance. Sec. 5 gives concrete performance
evaluation of different secure computation artifacts based on common bench-
mark applications like AES evaluation. Finally, Sec. 6 summarises collected
information using the proposed maturity taxonomy.

2 Secure Computation Paradigms

Secure computation is a multi-party processing of private data where different
parties play different roles. The computing parties C are the ones actually car-
rying out the computations. The input parties I give their private data for the
computations, and it is important to ensure that the data remains private except
for the desired computation outcomes. Finally, the outcomes are obtained by
the result parties R. One participant may carry several of these roles, for exam-
ple a party that gives inputs and receives outputs is denoted as IR. The theory
of secure computation is mostly centred around the computing parties and often
expects the result and input parties to be the same as the computing parties
(depicted as ICR on Fig. 1c). However, many practical deployments, such as
surveys, separate these roles. A longer discussion about roles and deployment
scenarios can be found in [BKLPV13] and in Sec. 4.

Secure computation can be done in many ways depending on the needed
functionality and existing resources. In general, SC is required if it is necessary
to avoid leaking any information except for the final output of the computa-
tions that is given to the result parties. A secure computation protocol can be
designed to have passive security, also known as security against semi-honest ad-
versaries, meaning that it is secure if the computing parties follow the protocol
but might try to infer extra information from what they see during the protocol.
A protocol secure against actively malicious participants is secure even if the
computing parties try to cheat and do not follow the protocol. The intermediate
case, security against covert adversaries, guarantees that cheating participants
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are caught with a reasonable probability, say 25%. This security guarantee is
effective if the participants have a strong incentive not to be caught cheating,
but might try to deceive if it is likely to avoid detection. Security against ac-
tively malicious adversaries is stronger than security against covert adversaries,
which in turn offers more guarantees than passive security.

Most of the secure computation literature handles the case of corrupted com-
putation parties, and gives absolute freedom for the input players to choose their
inputs, and for the output players to choose the functionality that is computed.
However, a corrupt behaviour of these parties can easily render the computa-
tion useless or insecure. For example, if the result parties are allowed to propose
queries or algorithms for the computation then such corrupted parties might try
to learn more outputs than originally intended. In this case, the computing par-
ties should verify that it is safe to run each piece of the computation. On the
other hand, input parties might try to corrupt the computation by giving in-
valid inputs. To that end, the computing parties should obliviously verify that
the inputs fall to the desired bounds or have the desired format and discard
invalid inputs and outliers from the computation. Furthermore, the input and
result parties should have means to check that the outputs are correct and the
computation really followed the safe procedure.

There are several major technologies that are used for secure computation,
on which we elaborate in the next sections. In case there is one well equipped
server, fully homomorphic encryption (FHE) can be deployed. Two-party com-
putation is well supported by garbled circuits (GC) as well as linear secret shar-
ing (LSS). However, the latter also allows for secure multi-party computation,
involving more than two parties (GC can also be applied in the multi-party set-
ting [BMR90, BNP08], but most of the research on GC focuses on the two-party
setting). We note that there are additional technologies for secure computation,
but they have received less attention both in the theoretical literature and with
developers.

2.1 Homomorphic Encryption

Homomorphic encryption (HE) is an encryption scheme that enables computa-
tions on encrypted values. Figuratively, HE is a opaque locked glovebox [Gen09a].
A party can input its valuables to the box and lock it. Anyone with the box
can use the gloves to manipulate the items inside, but only the box owner has
the key to open the box and take the contents out. Hence, HE is an encryption
with means to combine ciphertexts so that the result is a meaningful operation
like addition or multiplication on plaintexts. These operations can be applied
to the ciphertexts even without knowing the decryption key. Commonly HE
is considered in a two-party setting where the client (input and result party)
has the keys and outsources some computation to the server (the computing
party) by providing it with the encrypted inputs. Such division of the roles is
represented by Fig. 1a. At its best, HE requires interaction only for sending the
inputs and retrieving the outputs, making it very communication efficient.

Many schemes allow to compute one kind of operation over encrypted data,
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for example addition in the Paillier encryption scheme [Pai99] or multiplica-
tion in the Elgamal [Elg85] scheme. Somewhat homomorphic encryption (SHE)
allows for computing both operations, but only a limited amount of one of
them. Usually operations introduce noise to the ciphertext and after some op-
erations the level of noise is too high for successful decryption. However, starting
with seminal work of Gentry [Gen09a, Gen09b], fully homomorphic encryption
(FHE) schemes that allow for unlimited number of both operations have become
feasible. Remarkably, these two operations enable to compute any arithmetic
functionality. In general, FHE is achieved from SHE by introducing bootstrap-
ping phase that resets the noise to a low level. FHE schemes used in secure
computation include DGHV [VDGHV10], NTRU [HPS98] and BGV [BGV12].
As a practical example, NTRU has been used for secure teleconferencing and
e-mail filtering [AR15].

2.2 Garbled Circuits

The first secure computation method was Yao’s GC [Yao82, LP09, BHR12]
proposed in 1982. Garbled circuits are like integrated digital circuits where it is
hard to observe the values carried between single gates and only the output of
the total circuit is revealed. Moreover, the materials used in the construction are
fragile and dissolve after one use. Hence, although the circuit diagram remains
the same a circuit one needs to be built for every evaluation.

In more detail, the idea is to evaluate boolean circuits by encoding wire values
as random strings and encrypting the truth tables of each gate. The encodings
of the input wires of a gate can be used to decrypt the encoding corresponding
to the gate output. The first party, the garbler, chooses the encodings, generates
the encrypted truth tables and forwards the circuit to the evaluator. The other
party, the evaluator, obtains the encodings corresponding to the secret inputs
and uses them to decode the encrypted truth tables and obtain the output. Both
parties have the role of the computing party and usually both also provide inputs
and obtain the outputs as on Fig. 1c, however this may vary. Furthermore the
process can be modified to allow external input and result parties. The basic
method is secure against passive adversaries, however, recent research mostly
considers active security [LP07, NO09, LP11, Lin13, MR13].

The GC approach excels in high latency networks as it requires a small
number of rounds of interaction. It is straightforward to securely compute any
functionality as there exist several compilers (e.g. [HFKV12, KMsB13]) that
produce optimized circuits and software libraries implementing GC computa-
tion. On the downside, many interesting functionalities have huge boolean cir-
cuits and thus require a lot of bandwidth to transfer the garbled circuit. GC is
deployed, for example, for safeguarding cryptographic keys from corrupt admin-
istrators by splitting them between several servers and computing encryption
without storing the keys in a single location [Sec14] and for finding common
contacts between Android users1.

1CommonContacts: http://mightbeevil.com/contacts/
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2.3 Linear Secret Sharing

Secret sharing was proposed in 1979 [Sha79, Bla79] and is the basis for a prolific
branch in secure computation with seminal works [GMW87, BGW88, CCD88].
To illustrate LSS-based computation, consider a set of interconnected gloveboxes
with input hatches. Any party can distribute their valuables between the boxes
through the hatches. Afterwards the box operators can exchange pieces and
manipulate the inputs using the gloves. However, the final product is obtained
only when all boxes are opened and their results are combined.

More concretely, LSS enables parties to divide secrets to multiple shares
where any unqualified set of shares does not reveal information about the secret.
Each share is given to a different party. Homomorphic properties of the sharing
are used to apply arithmetic operations without revealing the shared values.
Each arithmetic operation is computed collaboratively by a dedicated interactive
protocol that is run between the computing parties and large functionalities
can be combined from basic operations or have a new specialized protocols.
The strength of LSS is allowing reactive protocols where new inputs depend
on the previous outputs, as well as securely storing intermediate results. The
computing parties carry out the interactive protocols, however especially in the
case of passive security it is straightforward to incorporate external input and
result parties as on Fig. 1b.

A significant advancement of SC was LSS-based computation deployment
for the Danish sugar beet auction [BCD+09] in 2008. Current practical im-
plementations of LSS-based secure computation include Sharemind [BLW08,
Bog13] and ShareMonad [LDDAM12] for passive security and SPDZ [DPSZ12,
DKL+13] and TinyOT [NNOB12, LOS14] for active security. ShareMonad is
used for spam filtering and secure teleconference [LADM14, AR15]. SPDZ is
deployed to secret share cryptographic keys and compute cryptographic op-
erations using secure computation thereby mitigating threats from corrupted
servers [Sec14]. Sharemind has been deployed to analyse ICT companies eco-
nomic indicators [BTW12], perform genome-wide association studies [KBLV13],
run government statistics [Kam15] and detect tax fraud [BJSV15].

3 Security Properties and Comparison Criteria

The main goal of SC is to enable useful and potentially collaborative computa-
tions while hiding the private data of the input parties. A protocol is considered
secure if the only thing revealed in the computation is the output (and, of course,
whatever information that can be deduced from the output). Although all SC
protocols follow this general definition, the settings in which they are proposed
differ significantly. This section mentions important theoretical criteria that can
be used to label SC protocols as well as points out common properties of differ-
ent paradigms where possible. We base this section on a recent classification by
Perry et al [PGFW14]. In the following, Sec. 4 considers a classification from a
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more practical perspective.
As introduced in Sec. 2, two important criteria for characterizing secure com-

putation are the computation technology, where we consider FHE, GC and LSS,
and the adversarial model which is either active, passive or covert. Character-
istics that are tightly coupled with the computation paradigm are the model of
computation and the number of communication rounds. Common computation
models include boolean and arithmetic circuits, although other models such as
random access machines and Turing machines are also occasionally used. The
garbled circuits method is mostly described for boolean circuits whereas LSS is
applied to arithmetic circuits (although both methods can also be applied to
the other kind of circuits). FHE schemes support either one of the circuit mod-
els depending of the concrete scheme. GC and FHE have a constant number
of communication rounds while the number of communication rounds of LSS
schemes is linear in the depth of the circuit that is computed.

Different schemes can also be compared based on the desired deployment
scenario. A central property is the number of computing parties required for
the computation coupled with the fraction of tolerated corrupted parties for
which the protocol is still secure. FHE and GC focus on two party computation
where one party is allowed to be corrupted. LSS works for any number of parties
but a common model used in practice is two or three computing parties with
one corrupted party. A significant exception is the SPDZ model that allows to
corrupt all but one of the participants.

The communication model can assume that all parties have point-to-point
connections or that there exists a broadcast channel (a broadcast channel is rel-
evant in the case that there are more than two parties). All considered schemes
except SPDZ work in a point-to-point setting. SPDZ requires a broadcast chan-
nel but also discusses the possibility of obtaining broadcast via a specific pro-
tocol in a point-to-point setting. In addition, it is often meaningful to divide
computation to a preprocessing phase that does not require any knowledge of
the actual inputs and an online phase that uses preprocessing results and the
actual inputs to efficiently compute the result. This setting is applicable when
it is known beforehand that some computations are coming up. Out of the
aforementioned schemes, TinyOT and SPDZ use preprocessing.

From a programming perspective it is important to consider handling condi-
tional statements. Conditional statements with secret conditions are commonly
processed by evaluating all branches and obliviously choosing the right outcome.

Many properties describe the behaviour of the adversary or the possible
outcomes for the corrupted parties.

• Commonly the model of corruption is static meaning that corrupted par-
ties are fixed ahead of the protocol, but it is also possible to consider
adaptive adversaries that decide during the protocol execution which par-
ties to corrupt.

• A protocol is fair if whenever an output is obtained all parties are guar-
anteed to receive it (rather than the adversary being able to obtain the
output while keeping other participants from learning it).
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• An abort capability means that a protocol run can be interrupted without
leaking information about the input. The reconstruction capability means
that it is possible for honest parties to restore the output even if corrupted
parties stop participating in the protocol. Schemes considered in this
paper are capable of abort but not of reconstruction.

• Interesting but more theoretical properties include the security assump-
tions and whether security is preserved in a concurrent execution. For
example, security can be information theoretic meaning that it is infeasi-
ble for any adversary (even with infinite computation powers) to break the
scheme. Alternatively, security can be based on computational assump-
tions, meaning that breaking security in reasonable time is equivalent to
breaking some well known hardness assumption (such as the hardness
of factoring large numbers). Information theoretic security can only be
achieved if a majority of the parties are honest. Passively secure LSS-
based multi-party computation usually has information theoretic security
whereas all two-party computation schemes offer only computational se-
curity.

• The security level estimates the expected number of operations required to
break the scheme (say, by doing a brute-force search over all possible keys).
The level of security is measured in bits where b-bit security means that
the attack is expected to take 2b operations. It is customary to support
at least 80 bit or 128 bit of security.

Most of the research on SC focuses on the computing parties. The input or
result parties could also be computing parties or could alternatively outsource
the computation. In particular, it is often reasonable to consider settings where
the computing parties are some fixed entities to whom input parties can send
private data and from whom result parties can request queries. In this con-
text, it is also possible to ask which guarantees regarding the correctness or
privacy of the computation can be given to the input and result parties that
do not take part in the computation. For example, these parties may be able
to verify the correctness of the result or audit the computation process. In
theory public verification is possible for all SC protocols, however doing so ef-
ficiently is currently an open question. Auditing the computation process has
been studied for Sharemind [Pik14] and verification of outputs has been stud-
ied for SPDZ [BDO14]. FHE-based SC is also well suited for outsourcing and
achieving verifiability although no practical auditing solutions have currently
been implemented.

4 Maturity Taxonomy

This section provides a taxonomy for secure computation techniques that aims
to summarize various aspects of real world use of SC. We consider five different
features — the usage model, programming paradigm, implementation matu-
rity, developer tool maturity and performance. This section focuses on aspects
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of practical usability complementing the formal characterization criteria from
Sec. 3.

I R SC  C 

(a) Outsourced processing

I SC   R

iC
(b) Outsourced services

I C R SC

(c) Joint processing

Figure 1: Party roles and communication in abstract usage models of SC

Not all secure computation techniques are well-suited for all kinds of ap-
plications. We define three general usage models that describe how data is
obtained and used by the application. Each of these is illustrated in Table 1
by well-known services that could be replaced with analogous privacy preserv-
ing tools. The separation of the expected roles of the parties together with
the direction of communication is illustrated by Fig. 1. Out of the consid-
ered secure computation techniques, HE is well suited for outsourced processing
whereas LSS and GC are better for outsourced services and joint computations.
A developer considering the use of secure computation should also be aware of
possible programming paradigms for a chosen method. Either the programmer
designs boolean or arithmetic circuits or is able to write programs that will be
interpreted by the computation framework. The programming paradigms for
different secure computation techniques are collected in Table 2.

Category Criteria of belonging Example
Outsourced
processing

A client uses external resources (e.g., a cloud)
to process its own data, and seeks protection
against resource controller.

Salesforce,
Erply

Outsourced
services

A client uses external resources (e.g., a cloud) to
process data collected from multiple data own-
ers, while protecting this data from the resource
controller and from itself.

Google
Forms,
Survey-
Monkey.

Joint pro-
cessing

Multiple clients collaborate to process data col-
lected from among themselves, protecting their
own data from each other.

Tinder,
Doodle

Table 1: Usage model for secure computing systems

Different SC paradigms are represented by various concrete protocol sets and
frameworks for secure computation. We describe these using an implementa-
tion maturity category in Table 3 together with a Technological Readiness Level
(TRL)2. This category indicates the engineering level of the best publicly known

2U.S. Department of Defense Technological Readiness Assessment (TRA) Guidance. Avail-
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Category Criteria of belonging Example
Circuits Task expressed as a fully formed boolean or

arithmetic circuit.
Yao-style
GC

Programs Task expressed as a continuously interpreted
program of arbitrarily complex primitive oper-
ations.

LSS-based
SC

Table 2: Programming paradigm used by secure computing systems

implementations of different paradigms. Currently, LSS is the most used secure
computation method, however GC approaches are also featured in market-ready
and real-world deployment levels. Similarly, we describe the developer tool ma-
turity in Table 4 to show which tools are available for developing applications
with different SC frameworks. Most systems propose a special language that
can be used to program applications but some also provide various levels of
libraries to ease the development.

Level Criteria of belonging Examples
Academic
prototype

Implementation demon-
strated in a laboratory
setting (TRL 1-4).

Fairplay (GC) [MNPS04, BNP08],
HElib (FHE) [HS14],
SEPIA (LSS) [BSMD10],
TASTY (GC & HE) [HKS+10],
ShareMonad (LSS),
VIFF (LSS) [DGKN09]

Real-world
deployment

Implementation demon-
strated in a real-world
setting (TRL 5-6).

FastGC (GC) [HEKM11],
FRESCO (LSS) [Han15]

Market-
ready

Commercial services
available based on
technology (TRL 7-9).

Dyadic (GC & LSS), Partisia
(LSS), Sharemind (LSS)

Table 3: Implementation maturity of secure computation systems

There are many secure computation frameworks proposed in the literature,
but not all of them have practical implementations in software or hardware. The
classification in Table 5 assigns the performance level category to secure compu-
tation frameworks to denote the performance level of more mature implemen-
tations available in practice. In the following, Sec. 5 compares the performance
of different systems in more depth based on concrete benchmarks.

able at http://www.acq.osd.mil/chieftechnologist/publications/docs/TRA2011.pdf
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Level Criteria of belonging Examples
Programming
library

A hand-modified implementa-
tion or a library of primitives
for integration.

FRESCO, HElib, Share-
Monad, SEPIA, VIFF

Domain-
specific
language

An embedded or compilable
domain-specific language tar-
geted to secure computing.

L1 [SKB+09, SKM11],
OblivC [ZE15],
PCF [KMsB13],
SecreC [Jag10, BLR14],
SFDL [MNPS04, BNP08]

High-level
libraries &
tools

Reusable application-specific
functionalities or tool integra-
tions.

SecreC standard library,
Rmind [BKLS14]

Table 4: Developer tool maturity of secure computation systems

Level Criteria of belonging Examples
Single-
operation-
level

Performed primitive operations on input
arrays of non-trivial size.

HElib [GHJR14]

Algorithm-
level

Runs an algorithm built of multiple prim-
itive operations on an input structure of
non-trivial size.

FRESCO
[DDN+15],
SEPIA
[BD11, MBD12]

Business-
process-level

Runs a multi-algorithm business process
on an input database of non-trivial size.

Sharemind
[Kam15,
Sec. 6.4]

Table 5: Performance levels of secure computing systems
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5 Performance of SC Implementations

A comprehensive survey performed near the end of the DARPA PROCEED
program characterized the performance of the three SC paradigms described in
Sec. 2. We describe salient results of that survey here. First, we aim to provide
a pragmatic answer to the question, ”How fast is FHE anyway?” using a number
of benchmarks. Second, we aim to compare all three SC paradigms using the
comparison benchmark of computing the AES-128 cipher.

5.1 How Fast is FHE?

Table 6 shows results from several publications on FHE performance for basic al-
gorithms. The artifacts referenced here were all created using fully homomorphic
(FHE) techniques. In each case, the artifact is tolerant of passive adversaries.
Results show a wide range of performance for the same operation computed
using different FHE approaches, as shown in the first two table entries. Other
results in this table show that the relative performance for different artifacts
using the same FHE method is sometimes non-intuitive. For example, the dif-
ference of 3 orders of magnitude between 32-bit addition and multiplication is
not analogous to typical computation results “in the clear”.

FHE
Method

Security
level, bits

Operation Time in
seconds

Platform

[XBY12] 80 32-bit add 0.0001 2.1GHz
Core2 Duo

[BLLN13] 80 32-bit add 0.000024 2.9GHz
Core i7

[FSF+13] 40 quadratic discriminant 108 2.0GHz
Core2 Duo

[XBY12] 80 32-bit multiply 0.108 2.1GHz
Core2 Duo

[FSF+13] 40 sum ten 4-bit numbers 36.3 - 51.2 2.0GHz
Core2 Duo

[LN14] 80 SIMON 32/64 cipher,
per block

0.8-1.1 3.4GHz
Core i7

[LN14,
Gal14]

128 SIMON 64/128 cipher,
per block

2-8 3.4GHz
Core i7

Table 6: Performance of FHE on various benchmarks

Although details are somewhat non-intuitive, the table offers an intuitive
feel for current FHE performance. This and other data gathered during the
PROCEED program suggest that as of early 2015, FHE computation is often
between 5 and 10 orders of magnitude slower than computing “in the clear”.
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5.2 Cross-paradigm SC Performance on AES-128

The computation of the AES cipher (represented as a circuit) is a convenient
benchmark for comparing the performance of SC techniques. For example,
Damg̊ard et al. report on a pre-2012 comparison of several GC and linear secret
sharing systems, comparing them by AES performance [DKL+12]. In Fig. 2,
we report on results from the 2012-2015 time frame. Across a range of 9-bit
to 128-bit security levels, performance results span almost seven orders of mag-
nitude, from roughly 50 microseconds per block to roughly 200 seconds per
block. (Note that some of these results are based on running multiple threads
in parallel or need a preprocessing computation which is not included in the
online runtime.) LSS implementations tend to achieve the highest through-
puts shown on the chart, ranging from roughly 50 microseconds to 0.5 seconds
per block [NNOB12, Gal13a, DKL+12, LTW13, Cyb15]. GC implementations
cover the middle range of performance shown, ranging from roughly 20 millisec-
onds per block to 60 seconds per block [FN13, HS13, KsS12, HKE12, sS13].
FHE implementations demonstrate the slowest throughputs in the time frame
of our comparison, ranging from roughly 8 seconds per block to 200 seconds per
block [DHS14, CLT14b, GHS15].

5.3 Levenshtein Distance Computation

Edit distance, particularly using the Levenshtein algorithm, was useful as a SC
benchmark in the PROCEED program, though we found no other published re-
sults on this benchmark. In Fig. 3, we compare performance results as a function
of input string length for linear secret sharing and garbled circuit constructions.
In the chart, the red datapoints represent a ShareMonad (LSS) solution devel-
oped by Galois, Inc., the blue data points represent a Sharemind (LSS) solution
developed by Cybernetica, and the green points represent a GC solution de-
veloped by a team at University of Oregon and Georgia Tech. Measurements
were made on a 2.1GHz Intel e7 (Xeon) CPU with 1TB physical memory. The
consistency of the results is surprising, given the variability of FHE-specific data
and of the AES comparisons discussed above.

5.4 SC in Complex Applications

Applications more complex than simple operations or algorithms are difficult
to compare across SC paradigms. Partly, because the choice of underlying al-
gorithms can vary substantially between implementations, since SC is typically
not the only measurable contributor to performance in such applications. In ad-
dition, user expectations of performance of complex applications are typically
subjective rather than absolute. Thus in this paper we list complex applications
that have been successfully implemented in SC with “reasonable” performance,
but do not report on specific performance measurements of those implemen-
tations. In Table 7 we show for each considered SC paradigm a selection of
complex applications that have been implemented.
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Figure 2: Comparison of SC paradigms using the AES-128 block cipher
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Figure 3: Comparison of SC paradigms using Levenshtein edit distance compu-
tation

LSS

VoIP with encrypted server signal processing [LADM14, AR15]
E-mail filtering using regular expressions [LADM14, AR15]
Naive Bayes spam filtering [Cyb15]
Linear best-fit regression [NWI+13] [Gal13b]
Satellite collision analysis [KW14]
SHA2-based web service authentication [Gal13b]
Genome SNP correlation to medical conditions [KBLV13]
Tax fraud detection [BJSV15]
Private statistics to analyse ICT students dropping out and work-
ing during studies [Kam15, Sec. 6.4]
Linear programming based credit ranking [DDN+15]

GC
Route mapping [CLT14a]
Fingerprint identification [BS15]
Finding similar patients [WHZ+15]

FHE

VoIP with encrypted server voice addition [AR15]
E-mail filtering using string match only [AR15]
Genetic association study algorithms [LLAN15]
Forensic image recognition [BPHJ14]

Table 7: Complex SC applications implemented with reasonable performance
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6 Maturity of Secure Computation

We collected information on the performance results and published prototypes
and used it to estimate the maturity of programmable secure computation tech-
niques. Table 8 evaluates the five most popular technologies with their current
state of the art estimations. The schemes that achieve practical efficiency are
currently mostly passively secure. Hence, currently secure computation is a
good approach for tasks with multiple parties who trust each other to behave
honestly but still need to deploy means to ensure the privacy of the computa-
tions. However, ongoing research and development is largely focused on active
security and it is likely to gain more efficiency in the near future.

It is still not clear, which fields will benefit the most from programmable
secure computation or whether it will find industrial acceptance. However, con-
tinued research in the field as well as increasingly larger real-world deployments
suggest that anyone looking for privacy-preserving computing technology keep
an eye on the development of secure computation.
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[CCD88] David Chaum, Claude Crépeau, and Ivan Damg̊ard. Multiparty
Unconditionally Secure Protocols. In Proceedings of the Twentieth
Annual ACM Symposium on Theory of Computing, STOC ’88,
pages 11–19, New York, NY, USA, 1988. ACM.

[CLT14a] Henry Carter, Charles Lever, and Patrick Traynor. Whitewash:
outsourcing garbled circuit generation for mobile devices. In Pro-
ceedings of the 30th Annual Computer Security Applications Con-
ference, pages 266–275. ACM New York, NY, USA, 2014.

18
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