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Abstract. The possibility of basing the security of cryptographic ob-
jects on the (minimal) assumption that NP ⊈ BPP is at the very heart
of complexity-theoretic cryptography. Unfortunately, most known results
along these lines are negative, showing that, assuming widely believed
complexity-theoretic conjectures, there are no reductions from an NP-
hard problem to the task of breaking certain cryptographic schemes. For
example, the work of Brassard (FOCS 1979) showed that one-way permu-
tations cannot be based on NP-hardness; Akavia, Goldreich, Goldwasser
and Moshkovitz (STOC 2006) and Bogdanov and Brzuska (TCC 2015)
showed that size-verifiable one-way functions cannot be based on NP-
hardness; and Bogdanov and Lee (CRYPTO 2013) showed that even sim-
ple homomorphic encryption schemes cannot be based on NP-hardness.

We make progress along this line of inquiry by showing that single-server
private information retrieval schemes cannot be based on NP-hardness,
unless the polynomial hierarchy collapses. Our result is tight in terms of
both the correctness and the privacy parameter of the PIR scheme.

1 Introduction

The possibility of basing the security of cryptographic objects on the (minimal)
assumption that NP ⊈ BPP is at the very heart of complexity-theoretic cryp-
tography. To be somewhat more precise, “basing primitive X on NP-hardness”
means that there is a construction of primitive X and a probabilistic polynomial-
time oracle algorithm (a reduction) R such that for every oracle A that “breaks
the security of X”,

Pr[RA(ϕ) = 1] ≥ 2/3 if ϕ ∈ SAT

Pr[RA(ϕ) = 1] ≤ 1/3 if ϕ /∈ SAT
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Most results on the problem of basing cryptography on NP-hardness have
been negative. That is, the results show that certain cryptographic primitives
cannot be based on NP-hardness, under widely believed complexity-theoretic
conjectures (for example, that NP ̸= coNP, or that the polynomial hierarchy
does not collapse).

– Brassard [Bra79] showed that one-way permutations cannot be based onNP-
hardness. Subsequently, Goldreich and Goldwasser [GG98], in the process of
clarifying Brassard’s work, showed that public-key encryption schemes that
satisfy certain very special properties cannot be based on NP-hardness.

– Akavia, Goldreich, Goldwasser and Moshkovitz [AGGM06], and later Bog-
danov and Brzuska [BB15], showed that a special class of one-way functions
called size-verifiable one-way functions cannot be based on NP-hardness.
Roughly speaking, a size-verifiable one-way function is one in which the size
of the set of pre-images can be efficiently approximated via an AM protocol.

– Most recently, Bogdanov and Lee [BL13a] showed that (even simple) ho-
momorphic encryption schemes cannot be based on NP-hardness. This in-
cludes additively homomorphic encryption as well as homomorphic encryp-
tion schemes that only support the majority function, as special cases.

Several works have also explored the problem of basing average-case hardness
on (worst case) NP-hardness, via restricted types of reductions, most notably
non-adaptive reductions that make all its queries to the oracle simultaneously.
The work of Feigenbaum and Fortnow, subsequently strengthened by Bogdanov
and Trevisan [BT06], show that there cannot be a non-adaptive reduction from
(worst-case) SAT to the average-case hardness of any problem in NP, unless
PH ⊆ Σp

2 .
In a nutshell, while there are a handful of impossibility results for basing

various types of cryptographic primitives on NP-hardness, our understanding of
this question at this point is rather minuscule. In this work, we make progress
along these lines of inquiry by showing that (single server) private information
retrieval (PIR) schemes cannot be based on NP-hardness, unless the polynomial
hierarchy collapses.

Main Theorem 1 (Informal) If there is a probabilistic polynomial time re-
duction from solving SAT to breaking a single-server, one round, private infor-
mation retrieval scheme, then PH ⊆ Σp

2 .

Our result is tight in terms of both the correctness and the privacy parameter
of the PIR scheme. Namely, information-theoretically secure PIR schemes exist
for the choice of these parameters that are not ruled out by our result. We refer
the reader to Section 3 for a formal statement of our result.

Private information retrieval (PIR) is a protocol between a database D hold-
ing a string x ∈ {0, 1}n, and a user holding an index i ∈ [n]. The user wishes
to retrieve the i-th bit xi from the database, without revealing any information
about i. Clearly, the database can rather inefficiently accomplish this by send-
ing the entire string x to the user. The objective of PIR, then, is to achieve



On Basing Cryptography on NP-hardness: The Case of Single-Server PIR 3

this goal while communicating (significantly) less than n bits. Chor, Goldre-
ich, Kushilevitz and Sudan [CKGS98], who first defined PIR, also showed that
non-trivial PIR schemes (with communication less than n bits) require com-
putational assumptions. Subsequently, PIR has been shown to imply one-way
functions [BIKM99], oblivious transfer [CMO00] and collision-resistant hash-
ing [IKO05], placing it in cryptomania proper.

On the other hand, there have been several constructions of PIR with de-
creasing communication complexity under various cryptographic assumptions
[KO97,CMS99,Lip05,BGN05,GR05,Gen09,BV11], starting from the work of Kushile-
vitz and Ostrovsky [KO97] who showed a construction of PIR with O(nϵ) com-
munication (for any constant ϵ > 0) assuming the existence of additively homo-
morphic encryption schemes.

Notably, some of the later constructions of PIR [CMS99,Lip05,GR05] achieve
better efficiency under number-theoretic assumptions such as the Phi-hiding as-
sumption that are not known to imply (even additive) homomorphic encryption.
In short, while additively homomorphic encryption gives us a PIR scheme, no
implication in the other direction is known.

2 Definitions

2.1 Information Theory Notations

A random variable X over a finite set S is defined by its probability mass function
pX : S → [0,+∞) that

∑
x∈S pX(x) = 1. We use uppercase letter to denote a

random variable.

The Shannon entropy of a random variable X, denoted H(X), is defined
as H(X) =

∑
x pX(x) log2

1
pX(x) , which measures the uncertainty of X. Let

h(p) = H(Bern(p)) = p log2
1
p + (1− p) log2

1
1−p denote the Shannon entropy of

Bernoulli distribution Bern(p).

Assume random variables X,Y satisfies a joint distribution. The conditional
entropy of random variable Y givenX, denotedH(Y |X), is defined asH(Y |X) =
H(XY )−H(X), which measures the uncertainty of Y given X is known.

The mutual information between random variables X and Y is I(X;Y ) =
H(X) +H(Y )−H(XY ), which measures the information shared by X and Y .
In particular H(Y ) = I(X;Y ) +H(Y |X).

Let X ∼ Bern( 12 ) be a random variable uniformly distributed in {0, 1}, let
N ∼ Bern(ε) be a noise that is independent from X, and let X̂ = X ⊕N be the
noisy version of X. Then I(X̂;X) = 1−h(ε). Moreover, for any random variable
X ′ satisfying Pr[X ′ = X] ≥ 1− ε,

I(X ′;X) = H(X)−H(X|X ′) = 1−H(X ⊕X ′|X ′) ≥ 1−H(X ⊕X ′) ≥ 1−h(ε)

So random variable X̂ = X⊕N minimize the mutual information I(X̂;X) under
constraint Pr[X̂ = X] ≥ 1− ε.
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2.2 Single-server One-round Private Information Retrieval

In a single-server private information retrieval (PIR) protocol, the database holds
n bits of data x ∈ {0, 1}n. The user, given an index i ∈ [n], would like to retrieve
the i-th bit from the server. In the meanwhile, the user want to prevent the server
from learning any information about index i. The user does so by generating a
query based on i using a randomized algorithm; the server responds to the query
with an answer. The user, given the answer, should be able to learn the i-th bit
xi.

Definition 2.1 (Private information retrieval). A single-server single-round
private information retrieval (PIR) scheme is a tuple (Qry,Ans,Rec) of algo-
rithms such that

– Query algorithm Qry: A probabilistic polynomial-time algorithm Qry that
Qry(1n, i)→ (q, σ), where i ∈ [n].

– Answer algorithm Ans : A probabilistic polynomial-time algorithm Ans that
Ans(x, q) → a, where x ∈ {0, 1}n. Let ℓ denote the length of the answer,
i.e. a ∈ {0, 1}ℓ.

– Reconstruction algorithm Rec: A probabilistic polynomial-time algorithm
Rec that Rec(a, σ)→ b s.t. b ∈ {0, 1}.

Correctness A PIR scheme (Qry,Ans,Rec) is (1 − ε)-correct if for any x ∈
{0, 1}n, for any i,

Pr
[
Qry(1n, i)→ (q, σ),Ans(x, q)→ a : Rec(a, σ) = xi

]
≥ 1− ε(n)

where the randomness is over the random tapes of Qry,Ans,Rec.

Privacy Computational privacy requires that the database cannot efficiently
distinguish between queries for different indexes. Formally, a PIR scheme is δ-
privacy (for some δ = δ(n)) if for any probabilistic polynomial-time algorithm
A1,A2, there exists a negligible function δ such that

Pr


A1(1

n)→ (i0, i1, τ)

b
$← {0, 1}

Qry(1n, ib)→ (q, σ)

A2(1
n, q, τ)→ b′

: b′ = b

 <
1

2
+ δ(n) (1)

The adversary in this privacy definition is interactive, which introduces dif-
ficulties in defining an oracle that breaks PIR. To make our task easier, we
consider an alternative, non-interactive definition which is equivalent to (1).

Our non-interactive definition postulates that given k = k(n), for any prob-
abilistic polynomial-time algorithm A, there exists a negligible function δ such
that

Pr

 j
$← [n]

Qry(1n, j)→ (q, σ)

A(1n, q)→ j′

: j′ = j

 <
1

n

(
1 + δ(n)

)
(2)
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These two definitions of privacy are equivalent up to a polynomial factor on δ.

Proposition 2.2. If a PIR scheme is δ1-private according to definition (1), then
it is δ2-private according to Definition (2), where δ2 = nδ1. Similarly, if a PIR
scheme is δ2-private according to definition (2), then it is δ1-private according
to Definition (2), where δ1 = δ2/2.

Proof. Assume that a probabilistic polynomial-time adversary algorithm A dis-
proves δ2-private according to definition (2). Construct an adversary (A1,A2)
such that algorithm A1(1

n) pick random indexes i0, i1 and output i0, i1, τ =
(i0, i1), algorithm A2(1

n, q, τ = (i0, i1)) call A(1n, q) → i and output 0 if and
only if i = i0. Then (A1,A2) disprove

δ2
n -private according to definition (1) as

Pr


A1(1

n)→ (i0, i1, τ)

b
$← {0, 1}

Qry(1n, ib)→ (q, σ)

A2(1
n, q, τ)→ b′

: b′ = b

 = Pr


i0, i1

$← [n]

b
$← {0, 1}

Qry(1n, ib)→ (q, σ)

A(1n, q)→ i

:

i = i0, b = 0

or

i ̸= i0, b ̸= 0



=
1

2
Pr

 i0, i1
$← [n]

Qry(1n, i0)→ (q, σ)

A(1n, q)→ i

: i = i0

+
1

2
Pr

 i0, i1
$← [n]

Qry(1n, i1)→ (q, σ)

A(1n, q)→ i

: i ̸= i0


≥ 1

2

1

n

(
1 + δ2(n)

)
+

1

2

(
1− 1

n

)
=

1

2

(
1 +

1

n
δ2(n)

)
Assume probabilistic polynomial-time adversary algorithm (A1,A2) disprove

δ1-private according to definition (1), construct an adversaryA that call (i0, i1, τ)←
A1(1

n), b ← A2(1
n, q, τ) and output ib. Then A disprove 2δ1-private according

to definition (2) as

Pr

 j
$← [n]

Qry(1n, j)→ (q, σ)

A(1n, q)→ j′

: j′ = j

 = Pr


A1(1

n)→ (i0, i1, τ)

j
$← [n]

Qry(1n, j)→ (q, σ)

A2(1
n, q, τ)→ b

: j = ib



=
2

n
Pr


A1(1

n)→ (i0, i1, τ)

j
$← {i0, i1}

Qry(1n, j)→ (q, σ)

A2(1
n, q, τ)→ b

: j = ib

 ≥ 2

n

(1
2
+ δ1(n)

)
=

1

n

(
1 + 2δ1(n)

)

We consider a weaker privacy definition: for any probabilistic polynomial-
time algorithm A, there exists a negligible function δ such that

Pr

 j
$← [n]

Qry(1n, j)→ (q, σ)

A(1n, q)→ J
:

j ∈ J
|J | ≤ k

 <
k

n

(
1 + δ(n)

)
= α(n) (3)
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Define a PIR scheme (Qry,Ans,Rec) to be (p, k, α)-private if (3) holds for
any adversary A of running time p(n). A PIR scheme is said to be (k, α)-private
if (3) holds for any (computationally unbounded) adversary A.
Proposition 2.3. For k′ ≤ k, (p, k′, α)-privacy implies (p, k, k

k′α)-privacy

Proof. Assume there exists an adversary A disprove the (p, k, k
k′α)-privacy of

the PIR scheme; construct an adversary A′ that first executes J ← A(1n, q),
then outputs a random size k′ subset of J ; then A′ disprove the (p, k′, α)-privacy
of the PIR scheme.

Answer Communication Complexity In Definition 2.1, ℓ is defined as the length
of server’s answer. We say ℓ is the answer communication complexity. Similarly,
the length of the query can be named as the query communication complexity,
and their sum is the communication complexity. In this work, we are only in-
terested the answer communication complexity, which is an upper bound of the
information flowing from the server to the user.

Typically, people are only interested in PIR scheme such that answer commu-
nication complexity ℓ = o(n). Otherwise, e.g. when ℓ = n, there exists a trivial
PIR protocol with perfect privacy, where the user sends a meaningless query and
the server sends the whole database x. The following proposition shows that the
PIR scheme can trivially achieve good privacy if the answer communication
complexity ℓ is large.

Proposition 2.4. There exists a PIR scheme satisfying perfect information-
theoretical privacy with answer communication complexity ℓ = n · (1 − h(ε) +
O(n−1/4)). Similarly, for any α ≥ k/n, there exists a PIR scheme satisfy-
ing (k, α)-privacy with answer communication complexity ℓ = k

α (1 − h(ε) +

O(( kα )
−1/4)).

Proof. Consider a PIR scheme such that the query contains no information about
the index i, therefore perfect privacy is achieved. If the server sends the whole
database to the user, n bits answer communication complexity is necessary.
While the server could somehow compress the database into an ℓ-bit answer,
such that the user could still recover the database with at most ε fraction of
distortion.

Such task is called “lossy source coding” [Sha59], which is one of the funda-
mental problems of information theory. Let X be a uniform random Bernoulli
variable, then Pr[X̂ = X] ≥ 1− ε implies I(X̂,X) ≥ 1− h(ε). Therefore, if you
want to compress a random binary string, and are able to recover the string from
the lossy compression with (1− ε) accuracy, then the compression ratio need to
be at least 1− h(ε).

There exists a lossy source coding scheme almost achieves the information
theoretical bound [Ari09,KU10], i.e. when ℓ = n · (1 − h(ε) + O(n−1/4)), there
exists efficient algorithms E : {0, 1}n → {0, 1}ℓ and D : {0, 1}ℓ → {0, 1}n, such
that for randomly chosen X ∈ {0, 1}n and for any index i ∈ [n],

Pr
X
[X̂ = D(E(X)) : X̂i = Xi] ≥ 1− ε.
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Therefore, if the server sends E(x) as the answer, then the PIR scheme could
achieve (1−ε) correctness on random database. Moreover, we could consider the
following scheme,

– User sends a query m, which is a random string in {0, 1}n;
– Server answers by a = E(m⊕ x);
– User retrieve the whole database by x̂ = D(a)⊕m.

Then for any index i ∈ [n], Pr[x̂i = xi] ≥ 1− ε.
Similarly, if ℓ = k

α (1 − h(ε) + O(( kα )
−1/4)), the user could pick a random

subset J ∋ i of k
α indexes, the server uses lossy source code to encode {xj}j∈J

in ℓ bits. Based on the query, we know nothing about the index i besides i ∈ J ,
so (k, α)-privacy is achieved.

Reduction to breaking PIR. What does it mean for a reduction to decide a
language L assuming that there is a p.p.t. adversary that breaks PIR? For any
language L, we say L can be reduced to breaking the (k, α)-privacy of PIR
scheme (Qry,Ans,Rec) if there exists a probabilistic polynomial-time oracle
Turing machine (OTM) M such that

Pr[MO(x) = 1] ≥ 2/3 if x ∈ L

Pr[MO(x) = 1] ≤ 1/3 if x /∈ L

for all x, for all oracle O such that

Pr

 j ← [n]

Qry(1n, j)→ (q, σ)

O(q)→ J
:

j ∈ J
|J | ≤ k

 ≥ α (4)

2.3 Entropy Difference Oracle

Entropy Difference (ED) is a complete problem of SZK [GV99]. Entropy Differ-
ence is a promise problem defined as

– YES instances: (X,Y ) such that H(X) ≥ H(Y ) + 1
– NO instances: (X,Y ) such that H(Y ) ≥ H(X) + 1

where X and Y are distributions encoded as circuits which sample from them.
Given an entropy difference oracle, a polynomial-time algorithm would be

able the differ the entropy of two circuits up to any inverse-polynomial precision.
For example, for distributions X,Y , we query the Entropy Difference oracle
with (X1 . . . Xs, Y1 . . . Ys), where Xi ∼ X,Yi ∼ Y and X1, . . . , Xs are i.i.d. and
Y1, . . . , Ys are i.i.d. Then we would be able to distinguish between H(X) ≥
H(Y ) + 1

s and H(Y ) ≥ H(X) + 1
s .

Similarly, polynomial-time algorithm could use Entropy Difference oracle to
distinguish between H(X) ≥ ĥ+ 1

s and H(X) ≥ ĥ+ 1
s . Construct a distribution



8 Tianren Liu and Vinod Vaikuntanathan

Y that 2sĥ − 1 < H(Y ) < 2sĥ + 1 and query Entropy Difference oracle with
(X1 . . . X2s, Y ), where X1, . . . , X2s are independent copies of X.

Therefore, a polynomial-time algorithm given Entropy Difference oracle could
estimate H(X) to any inverse-polynomial precision by binary search. Assume
X,Y satisfies a joint distribution encoded as a circuit which samples from it,
then a polynomial-time algorithm given Entropy Difference oracle could esti-
mate conditional entropy H(X|Y ), mutual information I(X;Y ) to any inverse-
polynomial precision. Here the precision is measured by absolute error.

3 PIR and NP-hardness

Theorem 3.1 (Main Theorem). For any (1 − ϵ)-correct PIR scheme Π =
(Qry,Ans,Rec) with n-bit databases and answer communication complexity ℓ,
for any language L, if:

1. there exists a reduction from L to breaking the PIR δ-privacy (in the sense
of Equation (2)); and

2. there is a polynomial p(n) such that

ℓ · (1 + δ) ≤ n · (1− h(ε))− 1/p(n)

then L ∈ AM ∩ coAM.

We prove our main theorem by combining the following two lemmas. The
first lemma is our main ingredient, and says that if there is a reduction from
breaking a PIR scheme to deciding a language L, and the PIR scheme has a low
answer communication complexity, then L can be reduced to the entropy differ-
ence problem (see Section 2.3). For the proof of this lemma, we find it somewhat
convenient to go through the intermediate and weaker notion of (k, α)-privacy
(see Equation (4)), which makes the lemma statement somewhat stronger. In-
deed, as Proposition 2.4 shows, the bound in the lemma is tight, since there is
in fact an information-theoretic PIR protocol with a matching answer commu-
nication complexity.

Lemma 3.2 (BPP(k, α)-breaking PIR ⊆ BPPED). For any (1 − ϵ)-correct PIR
scheme, for any language L, if there exists a reduction from L to (k, α)-breaking
the PIR privacy such that

– k ≤ ℓ; and

– there is a polynomial p(n) such that

α+
1

p(n)
≤ k(1− h(ε))

ℓ

then there exists a reduction from L to ED.
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As noted above, this condition is quite tight when k ≤ ℓ, as there exists a

PIR scheme achieving (k, α)-privacy if ℓ ≈ k(1−h(ε))
α .

Our next lemma shows that any language decidable by a randomized oracle
machine with access to an entropy difference oracle, is in AM ∩ coAM. Similar
statements have been shown in several previous works (e.g.,[MX10,BL13b]), and
we include a proof here for completeness.

Lemma 3.3 (BPPED ⊆ AM ∩ coAM). For any language L, if there exists an
OTM M such that for any oracle O solving entropy difference

Pr[MO(x) = 1] ≥ 2/3 if x ∈ L

Pr[MO(x) = 1] ≤ 1/3 if x /∈ L,

then L ∈ AM ∩ coAM.

3.1 Proof of the Main Theorem

Assume there exists a reduction from L to breaking PIR with parameter as
stated in Theorem 3.1. This is a reduction from L to (1, α)-breaking PIR where

α =
1

n
(1 + δ) ≤ 1− h(ε)

ℓ
− n

ℓ · p(n)
.

Then by Lemma 3.2, there exists a reduction from L to ED. Combining Lemma
3.3, we can deduce that L ∈ AM ∩ coAM.

3.2 Proof of the Lemma 3.2

Consider a PIR scheme (Qry,Ans,Rec) which is (1 − ε)-correct. For any x ∈
{0, 1}n, for any index i,

Pr
[
Qry(1n, i)→ (q, σ),Ans(x, q)→ a : Rec(a, σ) = xi

]
≥ 1− ε(n),

the randomness is over the random tapes of Qry,Ans,Rec.
Consider a random database, that is, the dataX is a uniform random variable

over {0, 1}n. For any fixed index i, the pair (Q,Σ) ← Qry(1n, i) satisfies a
joint distribution independent from X. Similarly, define random variable A ←
Ans(X,Q), X̂i ← Rec(A,Σ).

As the PIR scheme is (1−ε)-correct, Pr[X̂i = Xi] ≥ 1−ε. As Xi is a uniform
Bernoulli, I(X̂i;Xi) ≥ 1− h(ε). As Σ is independent from Xi,

I(A;Xi) ≥ I(X̂i;Xi) ≥ 1− h(ε).

As Q is independent from Xi,

I(A;Xi|Q) = H(Xi|Q)−H(Xi|AQ) ≥ H(Xi)−H(Xi|A) = I(A;Xi) ≥ 1−h(ε).
(5)
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Remind that, by definition,

I(A;Xi|Q) = E
Q

[
I(A;Xi|Q = Q)

]
=

∑
q

I(A;Xi|Q = q) Pr[Q = q]

For any potential query q, the event Q = q is independent from X. In partic-
ular, for any index j, random variable Xj is independent from X1 . . . Xj−1 given
Q = q. So for any q,

n∑
j=1

I(A;Xj |Q = q) ≤
n∑

j=1

I(A;Xj |X1 . . . Xj−1, Q = q)

= I(A;X1 . . . Xn|Q = q) ≤ H(A|Q = q) ≤ ℓ (6)

The first inequality is implied by the fact that I(Z;X|Y )−I(Z;X) = I(X;Y |Z)−
I(X;Y ) for arbitrary random variables X,Y, Z, and is non-negative if X,Y are
independent. So

I(A;Xj |X1 . . . Xj−1, Q = q)−I(A;Xj |Q = q) = I(X1 . . . Xj−1, Xj |A,Q = q) ≥ 0.

Equations (5) and (6) are the core in the proof of Lemma 3.2. Equation
(5) shows that, when retrieve the i-th bit, the mutual information between Xi

and server’s answer A is large. Equation (6) shows that, the sum of mutual
information between each bit Xj and server’s answer A is bounded. Therefore,
if we could measure the mutual information by an Entropy Difference oracle, we
would have a good knowledge of i.

(Qry,Ans,Rec) is an (1− ε)-correct PIR scheme. Assume language L can
be solved by a probabilistic polynomial-time oracle Turing machine M given
any oracle (k, α)-breaking PIR scheme (Qry,Ans,Rec) such that k, α satisfies
k ≤ ℓ and

α+
1

p(n)
≤ k(1− h(ε))

ℓ
(7)

where p(·) is a fixed polynomial. We construct an efficient oracle algorithm solv-
ing L given an Entropy Difference oracle (Algorithm 1).

Whenever O(q) is simulated,

|J | =
⌈sn − ρ

B

⌉
≤ sn

B
=

1

B

n∑
j=1

µ̂j ≤
1

B

n∑
j=1

(
µj+

1

2n · p(n)

)
≤ 1

B

(
ℓ+

1

2 · p(n)

)
= k

For any query q and index i, when O(q) is simulated,

Pr
[
J ← O(q) : i ∈ J

]
=

µ̂i

B
≥

µi − 1
2n·p(n)

B
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Algorithm 1 Solving L given ED oracle on input x

1. Simulate MO(x)
2. Whenever M query O(q)

(a) For each index j = 1, . . . , n, use entropy difference oracle to estimate

µj = I(A;Xj |Q = q)

to 1
2n·p(n)

precision. More precisely, construct circuit C that C(x, r) 7→
(xj ,Ans(x, q, r)), and estimate the mutual information between the two com-
ponents of C’s output. Let µ̂j ∈ [0, 1] denote the estimation.

(b) Define sk =
∑k

j=1 µ̂j , B = (ℓ+ 1
2p(n)

)/k

(c) Choose a random value ρ ∈ [0, B)
(d) Let J = {j|∃z ∈ Z, sj−1 ≤ zB + ρ < sj}
(e) Answer M’s query by J

3. Output what M output

Assuming q is generated from q ← Qry(1n, i), then E[µi] ≥ 1− h(ε). So

Pr
[
q ← Qry(1n, i),J ← O(q) : i ∈ J

]
= E

q←Qry(1n,i)

[
Pr[i ∈ J |Q = q]

]
≥ E

q←Qry(1n,i)

[µi − 1
2n·p(n)

B

]
=

Eq←Qry(1n,i)[µi]− 1
2n·p(n)

B
≥

1− h(ε)− 1
2n·p(n)

(ℓ+ 1
2p(n) )/k

≥ α (8)

The last inequality is a consequence of constraint (7),

α
(
1 +

1

2p(n)

)
≤ α+

1

2p(n)
≤ 1− h(ε)

ℓ/k
− 1

2n · p(n)
≤

1− h(ε)− 1
2n·p(n)

ℓ/k

α ≤
1− h(ε)− 1

2n·p(n)

ℓ(1 + 1
2p(n) )/k

≤
1− h(ε)− 1

2n·p(n)

(ℓ+ 1
2p(n) )/k

4 Conclusions

We show that for any non-trivial single-server single-round PIR scheme Π =
(Qry,Ans,Rec), its privacy can be broken in SZK. Therefore, assume there
is an polynomial time, adaptive reduction from L to breaking the privacy of
Π, then L ∈ AM ∩ coAM. Such results rule out the possibility that there is
a reduction from NP-complete problems to breaking single-server single-round
PIR.

We observes that the ability of “rerandomization” is critical in our proof.
Let Π be a single-server single-round PIR scheme. The adversary is given the
transcript of an execution where the user wants to query the i-th bit. Based on
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that, the adversary could generate a distribution over the transcripts where the
user query that same index and the database is uniformly random. The ability
to generate a transcript distribution of the same index and random database
allows the adversary to break PIR scheme Π with a SZK oracle. In particular,
the circuit generating the transcript distribution will be fed to SZK oracle as
input.

Similar technique shows that breaking homomorphic encryption is not NP-
hard [BL13b]. Assume an encryption schemeΠ allows rerandomization, i.e. given
a ciphertext, you are able to generate a ciphertext distribution of the same mes-
sage that is statically close to a fresh encryption. Then adversary could break Π
with a SZK oracle. ElGamal encryption is an example that allows rerandomiza-
tion. [BL13b] shows that homomorphic encryption implies rerandomization, i.e.
if a encryption scheme supports homomorphic evaluation (and the homomorphic
evaluation produces a ciphertext that is statically close to a fresh encryption),
then the encryption scheme also allows rerandomization.

We have explored whether same technique applies to single-server multiple-
round PIR. In the multiple-round case, assume you are given several transcripts
where the user queries the i-bit, and index i is unknown. It’s not clear at all how
to generate a valid transcript other than the given ones where the user queries
the same index.

One open problem is to show there exists no reduction from NP-hard prob-
lems to breaking single-server multiple-round PIR. As multiple-round introduces
great difficulty, it’s worth exploring similar statements for any multiple-round
cryptographic primitives.

Acknowledgments:We would like to thank Jayadev Acharya for valuable com-
ments about lossy source coding and polar codes.
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A BPPED ⊆ AM ∩ coAM

In this section we’ll prove Lemma 3.3. Lemma 3.3 is a direct corollary of BPPSZK ⊆
AM ∩ coAM [MX10]. We include the proof to be self-contained.

LetM be an probabilistic polynomial-time oracle Turing machine that solves
promise problem L = (LY , LN ) with bounded error

x ∈ LY =⇒ Pr
[
MO(x) = 1

]
≥ 8

9

x ∈ LN =⇒ Pr
[
MO(x) = 1

]
≤ 1

9

(9)

given any Entropy Difference oracle O. It’s sufficient to prove L ∈ AM. By
applying the same argument to L = (LN , LY ) we also get L ∈ coAM.

Let T (n) be a polynomial upper bound the running time of M. W.l.o.g.
assumeM never make same query twice.

We’ll construct an AM protocol solving L by simulating the execution of
MO(x). First we should specify the oracle. When simulate execution MO(x)
that |x| = n, consider the following randomized ED oracle D.

When no duplicated query is make, D is equivalent to Of when f : {0, 1}∗ →
{1, . . . , 9 · T (n)} is a randomly picked function. As (9) is satisfied when O =
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Entropy Difference oracle D on input (X,Y )

1. Choose a random integer k ∈ {1, . . . , 9 · T (n)}
2. Accept if and only if H(X) > H(Y )− 1 + 2k−1

9·T (n)

Entropy Difference oracle Of on input (X,Y )

1. Let k = f(X,Y )
2. Accept if and only if H(X) > H(Y )− 1 + 2k−1

9·T (n)

Of for any f , condition (9) is also satisfied when O = D, in which case the
randomness is over the random tape ofM and D.

We construct a decision protocol SP that simulateMD(x) to solve L in AM.

Decision protocol SP solving L = (LY , LN ) on input x ∈ {0, 1}n

V: Sample and send random tape r ∈ {0, 1}T (n) and random integer k1, . . . , kT (n) ∈
{1, . . . , 9 · T (n)}T (n)

P: Send query-answer sequence ((X1, Y1), a1, (X2, Y2), a2, . . . , (Xq, Yq), aq) where ai ∈
{0, 1}

V: Check query-answer sequence satisfies
1. For every i ∈ {1, . . . , q}, if MO(x) is run with random tape r and the oracle

answer the first i− 1 queries by a1, . . . , ai−1, then the next query is (Xi, Yi)
2. If MO(x) is run with random tape r and the oracle answer the q queries by

a1, . . . , aq, then M should accept x
Reject if not

P,V: For each i ∈ {1, . . . , q}, using SZK protocol to distinguish H(Xi) − H(Yi) ≥
2ki

9·T (n)
−1 and H(Xi)−H(Yi) ≤ 2(ki−1)

9·T (n)
−1. More precisely, use Entropy Difference

protocol for (
X

(i)
1 . . . X

(i)

9·T (n)︸ ︷︷ ︸
i.i.d. duplicates of Xi

U9·T (n), Y
(i)
1 . . . Y

(i)

9·T (n)︸ ︷︷ ︸
i.i.d. duplicates of Yi

U2k−1

)

if ai = 1, for its inverse if ai = 0, where Um is uniform distribution over {0, 1}m.
Repeat O(n) times in parallel and take majority so that the error probability at
most 1

9·T (n)
. Reject if the Entropy Difference protocol rejects.

Now fix any x ∈ {0, 1}n. For r ∈ {0, 1}T (n), k1, . . . , kT (n) ∈ {1, . . . , 9 ·
T (n)}T (n), let ((X1, Y1), a1, (X2, Y2), a2, . . . , (Xq, Yq), aq) be the query-answer se-
quence of executionMD(x) whenM use r as its random tape and D use ki as
the randomness to answer the i-th query. Notice that (Xi, Yi) is determined by
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x, r, k1, . . . , ki−1 and ai is determined by (Xi, Yi), ki.
ki is randomly chosen from {1, . . . , 9 · T (n)}. It specifies one of the 9 · T (n)

disjointed intervales:(
−1, 2

9 · T (n)
− 1

)
,
( 2

9 · T (n)
− 1,

4

9 · T (n)
− 1

)
,

. . . ,
(2(k − 1)

9 · T (n)
− 1,

2k

9 · T (n)
− 1

)
, . . . ,

(
1− 2

9 · T (n)
, 1
)

Query (Xi, Yi) is indenpdent from ki, and H(Xi) − H(Yi) lays in at most one

of these intervals. Due to ki’s randomness, the probability that 2(ki−1)
9·T (n) − 1 <

H(Xi) −H(Yi) <
2(ki+1)
9·T (n) − 1 is at most 1

9·T (n) . Therefore, the probability that

there exists an i that

2(ki − 1)

9 · T (n)
− 1 < H(Xi)−H(Yi) <

2(ki + 1)

9 · T (n)
− 1

is at most 1
9 .

Completeness of SP For any n-bit x ∈ LY , Pr[MD(x) = 1] ≥ 8
9 . So with

probability at least 7
9 over the randomness of r and {ki}, MD(x) = 1 and the

query-answer sequence satisfies

H(Xi)−H(Yi) /∈
(2(ki − 1)

9 · T (n)
− 1,

2(ki + 1)

9 · T (n)
− 1

)
for all i. In such case, and honest prover in SP could simply send query-answer
sequence to verifier. The query-answer sequence, together with r, determined a
valid execution in whichMD(x) = 1. And in the last step, the Entropy Difference
protocol is always run on YES instances, so the verifier would reject, which is
an error, with probability at most 1

9 .
Therefore, when x ∈ LY , protocol SP would accept x with probability 2/3

for honest prover.

Soundness of SP For any n-bit x ∈ LN , Pr[MD(x) = 1] ≤ 1
9 . So with probability

at least 7
9 over the randomness of r and {ki},MD(x) ̸= 1 and the query-answer

sequence of it satisfies

H(Xi)−H(Yi) /∈
(2(ki − 1)

9 · T (n)
− 1,

2(ki + 1)

9 · T (n)
− 1

)
for all i. Conditional on such case, let ((X̂1, Ŷ1), â1, (X̂2, Ŷ2), â2, . . . , (X̂q′ , Ŷq′), âq′)
be the query-answer sequence sent by the prover. There are a few possibility

– If this sequence is identical with ((X1, Y1), a1, . . . , (Xq, Yq), aq), then this se-
quence, together with r, determine a execution where MO(x) ̸= 1. So SP
protocol would reject.
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– If this sequence is a leading substring of ((X1, Y1), a1, . . . , (Xq, Yq), aq) or the
inverse, then this sequence doesn’t determine a valid execution of MO(x).
So SP protocol would reject.

– If there exists i such that (X̂j , Ŷj , âj) = (Xj , Yj , aj) for j < i and (X̂i, Ŷi) ̸=
(Xi, Yi), then this sequence doesn’t determine a valid execution ofMO(x),
as the next query is uniquely determined by input x, random tape r and
previous answers. So SP protocol would reject.

– If there exists i such that (X̂j , Ŷj , âj) = (Xj , Yj , aj) for j < i, (X̂i, Ŷi) =
(Xi, Yi) and âi ̸= ai, then verifier and prover would run Entropy Difference
protocol on a NO instance, which would lead to fail with high probability.
So SP protocol would reject with probability at least 1− 1

9·T (n) .

In either case, SP protocol would reject with probability at least 1− 1
9·T (n) .

Therefore, when x ∈ LN , protocol SP would accept x with probability at
most 2

9 + 1
9·T (n) , for any prover.


