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Abstract

Known Oblivious RAM (ORAM) constructions achieve either optimal bandwidth blowup or
optimal latency (as measured by online roundtrips), but not both. We are the first to demonstrate
an ORAM scheme, called Bucket ORAM, which attains the best of both worlds. Bucket ORAM
simultaneously achieves a single online roundtrip as well as constant overall bandwidth blowup.

1 Introduction

Oblivious RAM, initially proposed by Goldreich and Ostrovsky [18,19,32], is a useful cryptographic
building block that allows a client to outsource data to an untrusted server, while hiding both
data contents as well as access patterns from the untrusted server. Since the original work
by Goldreich and Ostrovsky [18, 19, 32], many subsequent works have demonstrated improved
constructions [3, 6, 8, 10–12,20,22,24,33,34,37,41–46].

The cost of Oblivious RAM constructions can be characterized by several related but different
metrics. Two of the most important metrics are

1. The bandwidth blowup of the ORAM scheme, i.e., for the client to access a single block, how many
blocks on avarage must be transmitted between the client and the server to hide the true block of
intent. This metric usually accounts for both online and offline traffic, and hence is sometimes
referred to as overall bandwidth blowup. Bandwidth blowup is closely related to the throughput of
the ORAM under maximum load [39]; and

2. The response time or latency of the ORAM, i.e., the minimum delay from a client’s request till the
block is retrieved. The second metric is important for characterizing the ORAM’s user-perceived
performance under real-life, bursty traffic [11].

These cost metrics typically depend on how much private storage the client has. In this paper
we focus on the small client storage case, assuming that the client can store up to (poly)-logarithmic
number of blocks.

Recent works have endeavored to optimize each of the above metrics separately. On the
bandwidth side, recent ORAM schemes [41, 42] achieved O(logN) bandwidth blowup, with the
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Construction Latency Client store BW blowup Server I/O Block size
(RTs) (blocks) (blocks) (bits)

Path ORAM [41] O(logN) O(logN)ω(1) O(logN) O(logN) Ω(log2N)

SR-ORAM [44] 1 O(1) O(log2N) O(log2N) ω(log2N)

Onion ORAM [12] O(logN) O(1) O(1) O(logN) Ω̃(log6N)

Bucket ORAM 1 O(logN)ω(1) O(logN) O(logN) ω(log3N)

Bucket ORAM 1 O(1) Õ(logN) Õ(logN) ω( log3 N
log logN )

Bucket ORAM
1 O(1) O(1) O(logN) Ω̃(log6N)+ AHE

Table 1: Comparison of Bucket ORAM and known constructions. Õ and Ω̃ hides log logN
to poly(log logN) factors. Asymptotical costs listed here are for malicious security. The security
of all schemes are parameterized to have neligible in N failure probability. Server I/O counts the
amortized number of blocks the server touches per access.

hidden constant also highly optimized to approach 2 [35]. More recently, ORAM schemes with
constant bandwidth blowup have been constructed using either fully homomorphic encryption [3],
or additively homomorphic encryption [12, 31]. Although on the surface these results seem to
contradict the logarithmic lower bound on ORAM bandwidth blowup shown by Goldreich and
Ostrovsky [18, 19, 32], it is now well-understood that this lower bound can be circumvented by
leveraging server-side computation. On the other hand, to best optimize the latency metric, recent
works [11,44] showed how to construct ORAMs with a single online roundtrip, i.e., only a single
client-server interaction is needed to fetch a block (not counting offline shuffling).

Among all the above works, however, the constructions with promising bandwidth results do not
try to optimize roundtrips, while the constructions with single roundtrips incur at least Ω(log2N)
bandwidth blowup. Given such separate encouraging new progress, a natural question is whether we
can achieve the best of both worlds, that is, can we construct an ORAM scheme that simultaneously
achieves optimal online roundtrips as well as optimal bandwidth blowup?

Our results and contributions. We give a positive answer to the above challenge by constructing
a new ORAM scheme called Bucket ORAM. Bucket ORAM (with the use of additively homomorphic
encryption) achieves a single online roundtrip, and O(1) bandwidth blowup. Without additively
homomorphic encryption, Bucket ORAM has Õ(logN) bandwidth blowup, still a significant im-
provement over SR-ORAM [44], the best existing construction with a single online roundtrip. We
refer the reader to Table 11 for a more detailed comparison with the state-of-the-art ORAM schemes.

1.1 Technical Highlights

We carefully design the Bucket ORAM protocol to achieve bandwidth efficiency, and at the same
time to be compatible with known techniques for both single online roundtrip as well as constant
bandwidth blowup. In the process, we also uncover interesting new hybrid techniques in ORAM
construction that may be of independent interest: Bucket ORAM is a hybrid between two ORAM
frameworks and enjoys nice properties of both.

1Throughout the paper, we say that a scheme’s cost is f(N) = O(g(N))ω(1), iff for any α(N) = ω(1), there exists
a scheme whose cost is O(g(N)α(N)).
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Roughly speaking, two types of ORAM constructions have been proposed in the past, 1) those
based on the hierarchical framework initially proposed by Goldreich and Ostrovsky [19]; and 2)
those based on the tree-based framework initially proposed by Shi et al. [37].

Both hierarchical ORAMs and tree-based ORAMs share the common feature of having exponen-
tially growing levels. One fundamental difference between these two frameworks is whether they
impose restrictions on a block’s location within a level, and how they treat shuffling of data blocks
(also referred to as eviction).

Global vs. local data shuffles. Hierarchical ORAMs impose no restriction on a block’s location
within a level. A block can reside anywhere within the level and its location is typically computed
by a pseudorandom function. Correspondingly, shuffling is performed globally on all data blocks
within a level, and requires a global oblivious sort on all data blocks within the level. Each level is
rebuilt periodically, and larger levels are rebuilt exponentially less often than smaller levels.

By contrast, tree-based ORAMs restrict a block’s location to a tree path as the block travels
down levels of the hierarchy. This allows tree-based schemes to rely on local evictions to perform
data shuffles. Each atomic eviction operation typically touches only a small number of blocks (e.g.,
a path in the tree). One or a small number of such atomic evictions happen after each data access.

It is known that tree-based ORAMs’ local eviction strategy helps improve bandwidth by avoiding
oblivious sorts on a large number of blocks. Indeed, the most bandwidth efficient (both asymptotically
and empirically) ORAMs so far are all tree-based ORAM [35,41,42], assuming realistic block sizes.

On the other hand, the level-rebuild-style shuffling strategy of hierarchical ORAMs have certain
desirable properties. In particular, Williams and Sion show a technique to construct a single online
roundtrip ORAM [44], and their technique is only compatible with level-rebuild-style eviction, but
not tree-based ORAM eviction algorithms. Besides this, level-rebuild-style eviction naturally achieves
steady progress, i.e., blocks will not linger in smaller levels during eviction. In the Onion ORAM
work, Devadas et al. [12] showed a technique that leverages additively homomorphic encryption
to achieve constant bandwidth blowup, and their technique works only with ORAMs with steady
progress. Level-rebuild-style shuffles also achieve predictive time, i.e., it is known when each block
was written back to a server, and predictive-time ORAMs have theoretical applications such as in
the construction of (reusable) Garbled RAM schemes [15–17,28].

A hybrid between hierarchical ORAM and tree-based ORAM. Bucket ORAM adopts the
level-rebuild-style data shuffling of hierarchical ORAMs, where larger levels are rebuilt exponentially
less often than smaller levels. At the same time, Bucket ORAM also places restrictions where blocks
can reside in a level much as in tree-based ORAMs. In this way, Bucket ORAM’s level rebuild
eviction involves the client performing local operations on O(1) number of buckets at a time, and
there is no need to perform global oblivious sortings on entire levels.

Section 2 describes this basic hybrid ORAM construction. Later in Sections 3, we show that
this hybrid ORAM construction can be further optimized to achieve the efficiency of tree-based
ORAM. Further, since the construction preserves nice properties of the hierarchical ORAM such as
steady progress and predictive time, we are able to adapt known techniques [12,44] for making it
both single round and constant bandwidth blowup (see Sections 4 and 5).

1.2 Related Work

Oblivious RAM was first proposed by Goldreich and Ostrovsky [18,19,32] who also proposed the well-
known hierarchical framework for constructing ORAMs. Hierarchical constructions were subsequently
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improved in numerous works [20, 24,33,34, 43–46]. More recently, a new, tree-based framework for
constructing ORAMs was proposed [37], and later improved in numerous works [8, 12,35,41,42].

Classically, ORAM was formulated in a setting without server-side computation. In this setting,
a logarithmic lower bound was shown by Goldreich and Ostrovsky [18,19,32]. Wang et al. show that
this lower bound is in some sense tight in a setting without server-side computation [42]. Several
recent works [3,12,30] show how to leverage server-side computation to achieve constant bandwidth
blowup, circumventing this logarithmic lower bound. Notably, the techniques by Devadas et al. [12]
rely on only additive homomorphic encryption (rather than fully-homomorphic encryption), and
achieve malicious security with standard assumptions (without expensive SNARKs). Devadas et
al. explain that to apply their techniques, the underlying ORAM must satisfy a property called
“steady progress”, requiring that blocks do not linger in smaller levels during eviction.

Williams and Sion recently proposed SR-ORAM, a small client-storage ORAM with a single
online roundtrip [44]. Their construction is built atop the hierarchical framework, which naturally
satisfies the “steady progress” property. Although with some careful work, it might be possible to
adapt the constant bandwidth technique by Devadas et al. [12] to the SR-ORAM, it is apparent that
doing so would result in at least O(log2N) server I/O cost. In comparison, our Bucket ORAM relies
on a new hybrid ORAM and achieves O(logN) server I/O cost (see Table 1). Besides SR-ORAM,
Burst ORAM [11] also attains single online roundtrip but requires storing a linear amount of
metadata on the client side.

Numerous applications of ORAM have been proposed. For example, recent works have demon-
strated the practicality of implementing ORAMs in secure processor architectures to defend against
physical probing of memory and buses [13,14,25,29,36]. Numerous works explored implementing
ORAM for privacy-preserving storage outsourcing [11, 39, 45, 46]. Oblivious RAM has also been
implemented for RAM-model secure multiparty computation [2, 26,27].

2 Basic Construction: A Hybrid between Tree-based and Hierar-
chical ORAM

Bucket ORAM: level-rebuild-style, local shuffles. Bucket ORAM features level-rebuild style
shuffling just like in hierarchical ORAMs, but avoids having to perform oblivious sorts globally on
all blocks within a level. Instead, blocks within a level are divided into ω(logN)-sized buckets, and
the client works on four buckets at a time during the level rebuild.

We present the basic, interactive version of the Bucket ORAM algorithm below. Later in
Section 3 and 4, we show how to achieve single online roundtrip.

2.1 Server- and Client-Side Data Structures

Server layout. Sever storage is organized into L = O(logN) levels where level ` contains 2`

buckets for ` ∈ {0, 1, . . . , L− 1}. Each bucket stores Z blocks, and each block is of B bits in length.
Each block is either a real block or a dummy block, and if the number of real blocks is < Z, we fill
the rest of the bucket with dummies.

To help achieve local shuffles, we will treat the server storage as a binary tree where each bucket
is a node in the tree. We get a tree structure by first labeling each bucket in level ` with a unique
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ORAM.Request(op, idx, data): // Precondition: ebuffer is not full

1: label∗ ← UniformRandom({0, 1}2L−1))
2: label← position[idx], position[idx]← label∗

3: block← ⊥
4: for each bucket on ebuffer ∪ P(label) do // path from leaf label to root

5: if (block0 ← bucket.ReadAndRemove(idx)) 6= ⊥ then
6: block← block0

7: end if
8: end for
9: If op is “write”: block.data← data

10: block.label← label∗

11: ebuffer← ebuffer ∪ {block}
12: return block.data

Figure 1: Algorithms for the request phase (basic, interactive version).
bucket.ReadAndRemove scans through the bucket, fetches and removes a block identified by idx from
a bucket.

identifier i ∈ {0, 1, . . . , 2` − 1}. Then, we say each bucket in level ` < L− 1 has two distinct child
buckets in level `+ 1, whose respective identifiers are 2i and 2i+ 1.

Client storage. Like in tree-based ORAM schemes, the client stores an O(N logN)-bit position
map indicating a bucket in level L− 1 to which each block is mapped. The client also stores an
eviction buffer of size Z ′ = Z/O(1) (denoted ebuffer) containing blocks that have not been evicted
yet.

Block metadata. To enable all ORAM operations, each block carries with it some metadata
besides it payload. For the purpose of this section, each block’s metadata include its type (either
“real” or “dummy”), and for a real block, its logical address idx and path label it’s mapped to.
Therefore, block formats are as below:

Real block: (“real”, data, idx, label)
Dummy block: (“dummy”, data = , idx = , label = )

In Sections 3 and 4 we will introduce additional metadata for blocks, as well as other auxiliary
metadata to enable single roundtrips.

2.2 Algorithm Invariants and Operations

Main Invariant. Like in tree-based ORAMs, every block is assigned a position label indicating
a leaf node in the tree. A block always resides along the path to its designated leaf node. As
mentioned earlier, the leaf position of a block is stored in a client-side data structure called the
position map.

Recursion. The main client storage is the O(N logN)-bit position map. The client can reduce
this local storage to O(1) bits by recursively storing the position map in other smaller ORAMs
using the standard recursion technique [37,41], Unfortunately, recursion increases the number of
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ORAM.Eviction(block): // happens every Z ′ requests

1: Pad ebuffer with Z − Z ′ or more dummy blocks such that its size is Z
2: if AllLevels[0] is empty on server then
3: Write back ebuffer to AllLevels[0]
4: return
5: end if
6: Let level← (ebuffer)
7: Let `∗ := first empty level or L− 1 if all levels are full
8: for ` = 0 to `∗ − 1 do
9: level← Merge(level,AllLevels[`])

10: end for
11: if AllLevels[`∗] is empty then
12: AllLevels[`∗] := level
13: else // `∗ must be L− 1

14: AllLevels[`∗] := MergeInPlace(AllLevels[`∗], level)
15: end if

Merge(level, level): // level and level each contains m buckets and resides on server

1: Initialize an empty new levelnew of size 2m on server
2: for i ∈ {0, 1, . . . ,m− 1} do
3: Fetch level[i] and level[i] from server
4: mid← (2i+ 1)N/2m
5: SL ← Left(level[i],mid) ∪ Left(level[i],mid)
6: SR ← Right(level[i],mid) ∪ Right(level[i],mid)
7: bucketL ← ConstructBucket(SL), bucketR ← ConstructBucket(SR)
8: Write back bucketL to levelnew[2i].
9: Write back bucketR to levelnew[2i+ 1].

10: Return (a pointer to) levelnew

11: end for

MergeInPlace(level, level): // level and level each contains m buckets

1: Initialize an empty new levelnew of size m on server
2: for i ∈ {0, 1, . . . ,m− 1} do
3: Fetch level[i] and level[i] from server
4: bucket← ConstructBucket(level[i] ∪ level[i])
5: Write back bucket to levelnew[i].
6: end for

Left(bucket,mid):

1: Return {block : (block ∈ bucket) ∧ (block is “real”) ∧ (block.label < mid)}

Right(bucket,mid):

1: Return {(block : (block ∈ bucket) ∧ (block is “real”) ∧ (block.label ≥ mid)}

Figure 2: Algorithms for eviction phase (basic, interactive version). ConstructBucket(S)
pads S with dummy blocks up to size Z and returns the new bucket.6



roundtrips. Later in Section 3, we will describe techniques such that the client can reduce client
storage without resorting to recursion.

Requesting a block. In the basic Bucket ORAM construction, a client requests (either to read or
to update) a block like in any tree-based ORAM (see Figure 1). To request a block with logical
address idx, the client looks up the position map to identify the path where the block resides. The
client then reads every block in the eviction buffer and on the corresponding path. The client is
guaranteed to find the block idx in the process. Finally, the requested block (possible updated by
the client) is appended to the client’s local eviction buffer.

Eviction. After Z ′ requests, the client-side eviction buffer may be full and we will call an eviction
routine (Figure 2). The goal of the eviction step is to write the blocks in the eviction buffer back to
the server. We describe a novel eviction routine that achieves hierarchical ORAM’s level rebuild
using only local reshuffle. Therefore, we do not require large client storage or global oblivious sorting
on a large set of blocks.

2.3 New Level Rebuild based on Local Shuffle

When the eviction buffer is full (contains Z ′ blocks), an eviction takes place. An eviction causes a
series of cascading Merge operations. The `-th Merge operation (where 0 ≤ ` < L− 1) merges two
levels each containing 2` buckets into a new level containing 2`+1 buckets. One of the two levels is a
persistent copy corresponding to the `-th level in the server’s main ORAM data structure, and the
other copy is a transient one created during the previous cascading Merge.

Just like in hierarchical ORAM scheme, the cascading merge behaves like a binary counter. Let
T denote the current time, where time is characterized by the number of ORAM operations thus
far. Let T := tL−1tL−2 . . . t0 mod 2L denote the binary representation of T modulo 2L where L is
the number of levels. Then, T defines the current state of all levels. ti = 1 means that the i-th level
is currently occupied, and ti = 0 means that the i-th level is currently empty. Suppose that levels
0, 1, . . . `− 1 are consecutively full levels, and that ` < L is the first empty level. Then, an eviction
operation would cause ` number of cascading merges until blocks get written to the `-th level.

If all levels are full, then the cascading merges stop at the largest level L− 1. In other words,
two levels of size 2L−1 will get merged into a level of size 2L−1, rather than a level of size 2L. This
is OK because the largest level must have enough space for all the blocks in the ORAM.

Quadruplet merge. Suppose we need to merge two levels level, level each containing m buckets into
a larger level levelnew with 2m buckets. We do this by operating on four buckets at a time as shown
in Figure 3, henceforth referred to as the quadruplet merge algorithm. Buckets {level[2i], level[2i+1]}
are constructed from buckets {level[i], level[i]} by moving blocks one level up along their desired
paths. In other words:
• The blocks from buckets level[i] and level[i] that want to go left are placed into bucket

levelnew[2i].
• The blocks from buckets level[i] and level[i] that want to go right are placed into bucket

levelnew[2i+ 1].
If the client has a transient buffer as large as the capacity of two buckets, the quadruplet merge

algorithm can be performed by having the client download a pair of buckets {level[i] and level[i]} at
a time, rearrange the blocks locally as mentioned above to form levelnew[2i] and levelnew[2i+ 1] and
then writing the new buckets back to the server.
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Occupied level

Empty level
Transient level created during shuffle

Buckets

Copy

Figure 3: Writing back a bucket to the server causes a sequence of cascading level
merges. Each level merge combines two levels of the same size into a bigger level of twice the size.
Level merge is performed with a sequence of quadruplet merges, where the client operates on four
buckets at a time.

For a client with constant local storage, the quadruplet merge algorithm can be performed using
oblivious sorting, incurring an extra O(logZ) = O(log logN) multiplicative bandwidth overhead.

2.4 Bounding Overflow and Cost Analysis

Lemma 1. With bucket size Z, eviction buffer size Z ′ and number of levels L ≥ log2(2N/Z ′), the

probability of any bucket overflowing is at most e−
Z−Z′
3Z′ .

Proof. Level ` is rebuilt every Z ′ · 2` accesses. There are at most 2`Z ′ incoming blocks, and each
incoming block makes an independent choice in one of the 2` buckets. A simple Chernoff bound
completes the proof.

Following most prior works, we will set Z = 2Z ′ = O(logN)ω(1), giving N−ω(1) overflow
probability (negligible in N). We can also set Z = 2Z ′ = Θ(λ) if one needs overflow probability
exponentially small in the security parameter λ.

Our basic Bucket ORAM algorithm described in this section has the following cost profile.

Client storage. The position map is N · logN bits in size, but can be recursively stored until it
becomes O(1) in size. A transient storage of O(1) buckets is required to perform the quadruplet
merge operations during level rebuilding. Therefore, overall, the client storage is O(logN)ω(1)
blocks plus the position map.

Online bandwidth. To request a block, the client reads an entire path containing ZL =
O(log2N)ω(1) blocks. Therefore, the online bandwidth blowup is O(log2N)ω(1).
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We remark that the permuted bucket technique from Ring ORAM [35] can reduce the online
cost to O(logN) (or even O(1) if server computation is allowed), but at the expense of a constant
factor number of additional roundtrips. We will not go into any details of those techniques as they
are not needed in our main constructions in later sections.

Offline bandwidth. Rebuilding a level of with n blocks requires reading and writing O(n) blocks.
It is not hard to see that the amortized offline bandwidth blowup is O(logN) since a level containing
Z · 2l slots is evicted to once every Z ′ · 2l requests where Z ′ = Θ(Z).

Comparison to hierarchical ORAM schemes. In a traditional hierarchical ORAM scheme,
rebulding a level containing n blocks involves an oblivious sort on all data blocks within the level.
This requires reading and writing O(n log n) blocks. Our quadruplet merge algorithm asymptotically
reduces the level rebuild cost with only Θ(Z) = O(logN)ω(1) blocks of transient client storage.

As mentioned earlier, in case the client has only O(1) storage, our quadruplet merge algorithm
can also be achieved by performing oblivious sorts on O(Z) blocks at a time, incurring an extra
O(log logN) multiplicative factor in offline bandwidth.

3 Improved Construction with No Position Map

The standard recursion techniques [12,37,40–42] in the basic construction requires multiple O(logN)
interactions with the server for the online phase. In this section, we describe techniques that will
allow us to get rid of the client-side position map (hence recursion is not needed).

Clarifications. From this section onward, our techniques require that the server perform computa-
tion. Therefore, strictly speaking, we are in the setting of (Verifiable) Oblivious Storage as phrased
by Apon et al. [3]. Many ORAM schemes [11, 12, 35], including SR-ORAM [44] also leveraged
server computation without explicitly mentioning the change of model. In comparison, classical
ORAM [18,19, 32] assumes a setting where the server is a passive storage device that only supports
read and write requests.

3.1 Intuition

Real, mask, and dummy blocks. In our new scheme, we develop techniques so that the client
can read exactly one block per level (thereby improving online bandwidth) yet be able to execute
the entire request operation in a single roundtrip. For this purpose, we need each block to be one of
three types, a real block, a mask block, and a dummy block. A dummy block signals an empty slot in
the level data structure. Real blocks are the same as before. However, here we additionally introduce
a new type of block called a mask block. Upon being rebuilt, a level will have Z ′ · 2` mask blocks (as
many as there are real blocks), and every mask block has a counter maskcnt ∈ {1, 2, . . . , Z ′ · 2`}.
The format of different blocks are summarized below where denotes “don’t care” fields for each
type of block:

Real block: (“real”, data, idx, label, maskcnt = )
Mask block: (“mask”, data = , idx = , label = , maskcnt)

Dummy block: (“dummy”, data = , idx = , label = , maskcnt = )

As in hierarchical ORAM and Ring ORAM [35], during each request the client will download the
requested (real) block from a level if it is present, or a previously un-read mask block otherwise. For
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security, the distribution of the mask blocks within the level must be identical to the distribution of
real blocks in the level. And obviously each level must be rebuilt before all the mask blocks can
possibly be consumed. Dummy blocks simply fill in the remaining empty spaces.

Server stores blocks in a hash table. To find the real block (or next mask block) in each level,
we leverage a server-side hash table technique first proposed by Williams and Sion [44,45]. For every
(encrypted) block stored on the server, either real, mask, or dummy, the client uses a pseudo-random
function to compute a hash key (denoted hkey henceforth), and reveals hkey to the server. The
server builds a hash table over the blocks, such that blocks can be looked up by their hkey. Now, to
read a block from a level, the client would perform a sequence of actions at the end of which the
client can compute the hkey of the block to be retrieved. Specifically, if the block to be retrieved
is within the current level, the client computes the real hkey of the block. If the block is not in
the current level, the client would compute the hkey for the next mask block. As in the previous
paragraph, for security we guarantee that the client will ask for each hkey only once before the hash
table is rebuilt.

The client now reveals the hkey to the server to fetch this block. In this way, the client only
fetches a single block from each level instead of Z. For security, it is important that hkey be
pseudorandom and time-dependent. In other words, the same block will have a different hkey when
it is written to the server again in the future.

Bloom filter. Accompanying the hash table trick, we also adopt a standard bloom filter trick first
introduced by Williams and Sion [44, 45]. To allow the client to determine whether a level contains
the desired block, each level has a auxiliary (encrypted) bloom filter. To look up a block in a level,
the client looks up k locations in the the bloom filter first to determine if the level contains the
desired block. For security, if the desired block has been found in smaller levels, the client looks up
k random locations in the bloom filter. Otherwise, it looks up k real locations.

Oblivious sorts on metadata during level rebuilding. During a level rebuilding, the client
performs O(1) number of oblivious sorts on metadata to achieve the following goals:

• Rebuild the encrypted bloom filter in synchrony with the new level being rebuilt.

• Randomly distribute mask blocks to all buckets in a level, and assign unique mask counters.

Note that we will not need to oblivious sort data blocks at any point.

3.2 Detailed Algorithm for the Requests (Online Phase)

Notations. We use sk to denote a client secret key that is kept confidential from the server. We
use PRFsubscript to denote different pseudo-random functions employed by the client.

Pseudo-random hash keys for blocks. Level ` has Z ′ · 2` mask blocks, and every mask block
has a unique mask counter denoted maskcnt ∈ {1, . . . , Z ′ · 2`}. This guarantees that each level has
at least as many mask blocks as there are real blocks. As will be obvious later, for security, the
mask counters for all mask blocks within a level must be (pseudo-)randomly distributed to buckets.

Then the every block has a hash key defined as follows:

hkey(block) :=


PRFH(sk, T ||block.idx) if real block

PRFH(sk, T ||“mask”||maskcnt) if mask block

random string o.w.
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For each level `, the client stores a current mask counter denoted maskcnt`. When a level ` is
rebuilt, its mask counter is reset, i.e., maskcnt` := 0.
To look up a block idx, the client does the following: First, initialize found := false.

Next, for each level ` = 0 to L− 1:

Look up bloom filter:

– If not found, look up k real locations in the this level’s bloom filter, where location i is
computed as in Equation (1). If all k locations are 1, conclude that the block is in this level,
and set found := true.

– Else if found, look up k random locations in this level’s bloom filter.

Compute and reveal hash key to server:

– If block idx is in level `, then reveal the real hkey := PRFH(sk, T ||block.idx) to the server,
where T denotes the last time level ` was rebuilt.

– If block idx is not level `, reveal a mask hkey := PRFH(sk, T ||“mask”||maskcnt`) to the server,
and then increment maskcnt`.

Retrieve block:

– The server now returns the block with the specified hkey to the client (along with the block’s
location within the level). The online phase ends here.

– In an offline roundtrip, the client marks the block fetched invalid, by setting block.type :=
“dummy”.

Figure 4: New block access algorithm that fetches only one block per-level.

where T denotes the time step when the level was rebuilt. We note that the level number can be
uniquely inferred by the timestamp T , and therefore we do not separately include the level number
in the PRF’s input.

Leverage a per-level Bloom Filter to compute the hkey of block to fetch. To allow the
client to efficiently query whether a block is contained in a specific level, the client stores an auxiliary
data structure, a(n encrypted) bloom filter on the server. To check if a block is within a specific
level, the client computes k locations in the bloom filter as

loci := PRFBF(sk, T ||block.idx||i) (1)

where 1 ≤ i ≤ k, and T denotes the last time this level was rebuilt (and the level number can be
uniquely inferred from T ). However, the moment that a block is found in a level, for all future
levels, the client looks up k random locations instead. See Figure 4.

Algorithm for requesting a block. Putting everything together, the new algorithm for requesting
a block is described in Figure 4. In this algorithm, the client fetches only one block per-level during
a request.
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Input: A level containing m buckets, where each bucket contains Z blocks, either real or dummy.

Output: A new level, where real blocks reside at random locations in the same bucket. Let
n1, . . . , n2` be random variables denoting the number of balls in each bin when we throw Z ′ · 2`
balls into 2` bins. Each bucket i ∈ [2`] has exactly ni mask blocks residing at random locations,
where each mask block has a unique mask counter maskcnt ∈ {1, 2, . . . , Z ′ · 2`}. The remainder
empty slots in each bucket are populated with dummy blocks.

Algorithm:

1. Metadata array creation. Create an array containing all blocks’ metadata. Make a linear
scan over the level and for each bucket i = 1 to 2`, append (“dummy”, , i) for each dummy
block and (“real”, , i) for each real block. Then, for i = 1 to Z ′ · 2`: pick a random bucket r
within this level, and append the metadata entry (“mask”, i, r) to the array. The tuple stipulates
the “mask” block with maskcnt = i will end up in bucket r. Note that the number of metadata
entries assigned to each bucket is guaranteed to be ≥ Z at this point.

2. O-sort metadata. Oblivious sort the above array based on increasing order of bucket number
(the last element in the tuple). For the same bucket number, place real block before mask blocks
before dummy blocks.

3. Linear scan. Make a linear scan over the array, and for each bucket number: preserve the first
Z entries and rewrite all remaining entries as (“dummy”, ,∞).

4. O-sort metadata. Oblivious sort the above array based on increasing order of bucket number.
When sorted, preserve the first Z · 2` entries and discard the remainder of the array.

5. Permute blocks within each bucket. One bucket at a time, read the next Z entries from
the array (metadata for real, dummy and mask blocks) and all Z data blocks in the bucket
(some of which will be real blocks). Randomly permute blocks and metadata within the bucket
(on the client side), and write the bucket back.

Figure 5: Randomly distribute mask blocks to buckets during level rebuilding.

3.3 Detailed Algorithm for Eviction/Level-Rebuild

The algorithm for evicting back blocks to the server and rebuilding levels proceeds in a similar
fashion as in Section 2.3. However, now the client has to additionally 1) obliviously rebuild metadata
for this level; and 2) randomly distribute mask blocks to buckets, and assign a unique mask counter
maskcnt from the range {1, 2, . . . , Z ′ · 2`} to each mask block. The random redistribution of mask
blocks to buckets is required to ensure the mask blocks in the rebuilt level have the same distribution
as real blocks from the server’s perspective.

We note that only the rebuilt level requires the above two steps, i.e., rebuilding of metadata
and redistribution of mask blocks. Intermediate levels created during the cascading merge will be
empty after the eviction completes and will not be touched during request operations until they
themselves are rebuilt. At a high level, the new level rebuild algorithm works as follows.

Quadruplet merges on data blocks. First, the client performs quadruplet merges as in Sec-
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Input: The metadata of all real, mask, and dummy blocks within a level, residing on the server
side.

Output: A bloom filter for this level, residing on the server side.

Algorithm:

1. Initialization. Make a linear scan over the metadata. For each block:

• If block is real: create k pairs (on server): {(loci, 1)}i∈[k] where loci (Equation (1)) denotes
a location in the bloom filter that should be set to 1.

• Else if block is mask or dummy: create k pairs (on server): {(⊥,⊥), . . . , (⊥,⊥)}.

2. Padding. Let m be the total number of blocks (all three types) in a level. At the end
of the last step, we have an array containing k · m pairs. Pad this array with the pairs
(1,⊥), (2,⊥), . . . , (BFSize,⊥), where BFSize is the bloom filter size.

3. O-sort array. Oblivious sort the padded array lexigraphically where ⊥ is is considered
lexigraphically larger than everything else. In the sorted array, all entries (i, ) appear before
(j, ) if i > j where denotes wildcard. Further, all (i, 1) pairs appear before the (i,⊥) pair.
All (⊥,⊥) pairs appear at the end.

4. Deduplicate pairs. In a linear scan, preserve only the first occurence of each (i, ), and
rewrite all other occurrences as (⊥,⊥).

5. O-sort array. Oblivious sort the resulting array lexigraphically. The sorted result should be
of the format

(1, ), (2, ), . . . , (m, ), (⊥,⊥), . . . , (⊥,⊥)

where each (i, ) is either (i, 1) denoting that the i-th bit of the bloom filter should be set, or
(i,⊥) denoting that the i-th bit of the bloom filter should be clear.

6. Finalize bloom filter. In a synchronized scan of the above array and the bloom filter,
sequentially set all bits of the bloom filter as indicated.

Figure 6: Obliviously rebuild bloom filter in synchrony with a newly rebuilt level.
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tion 2.3 until the level being rebuilt is fully populated (i.e., perform all of ORAM.Eviction() in
Figure 2). At this moment, the hkeys of the blocks have not been revealed to the server.

Assign mask counters, and randomly distribute mask blocks to buckets. When a rebuilt
level is being accessed in the future, it is crucial for security that from the server’s perspective, every
real or mask block is assigned to a random bucket, and then a random location within the bucket.
Real blocks that get merged in the level have random leaf labels whose values have not been revealed
to the server earlier. And this guarantees that every real block is residing in a random bucket from
the server’s perspective. We wish for mask blocks to have this same distribution over the buckets
in the level. Every mask block must also be assigned a unique maskcnt from a contiguous range
{1, 2, . . . , Z ′ · 2`}.

We describe an oblivious procedure for achieving the above in Figure 5. This algorithm relies on
O(1) oblivious sorting operations on metadata to distribute all mask blocks to random buckets.

Finally, at the end of this step, hkeys of blocks are revealed sequentially to the server.

Rebuild bloom filter. Whenever a level is being rebuilt, the client rebuilds the level’s bloom filter
in synchrony with the new level. Doing so would require O(1) oblivious sorts on metadata only as
shown in Figure 6. This algorithm is standard and a similar version was described by William and
Sion [44,45].

3.4 Parameter Choices and Cost Analysis

Bucket size. Originally, each bucket contains on average Z ′ real blocks, but needs Z slots to avoid
overflow. Our new construction must guarantee that the sum of real and mask blocks per bucket
does not exceed the bucket capacity Z. We accomplish this by decreasing Z ′ relative to Z. Since
the number of mask blocks per level is set to the maximum number of real blocks per level, the
analyis from Section 2.4 tells us Z ′ only needs to decrease by a constant factor for this purpose.

Bloom filter parameterization. We need to parameterize the bloom filter to have negligible
security failures. Based on the well known bloom filter analysis [1], for a bloom filter containing n
elements, we can let the bloom filter size BFsize := O(nλ) and let the number of hashes k := O(λ)
to obtain a 2−O(λ) security failure probability.

Online cost. It is not hard to see that to request a block, the client reads one block per level, i.e.,
a total of O(logN) blocks. Further, the client reads k encrypted bloom filter bits per level, and
sends one hkey to the server per level. The total cost of metadata is therefore O(λ logN) to attain
a security failure of 2−O(λ).

Offline cost. Assume that the client can store a constant number of buckets. To shuffle a level of
size n, the client and the server need to transmit O(n) blocks in between. The bloom filter creation
requires O(1) oblivious sorts on O(λn) words, each O(log(λN)) bits in length. Other metadata
(aside from the bloom filter) are O(log n) bits per block. Oblivious sorts on these metadata (e.g., for
distributing mask blocks) consume O(n log2 n) bits of bandwidth, which is dominated by the cost of
bloom filter creation. Therefore, rebuilding a level of size n requires transmitting O(n) blocks and
O(λn log2(λN)) bits of metadata. The amortized offline shuffling cost is therefore O(logN) blocks
and O(λ logN log2(λN)) bits of metadata.

Block size for attaining O(logN) bandwidth blowup. To attain a security failure negligible
in N , we let λ := O(logN)ω(1). In this case, when the block size is ω(log3N), the cost of metadata
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gets absorbed, and the overall bandwidth blowup would be O(logN).

3.5 Obliviousness

Lemma 2 (Distribution of block locations within a level). From the server’s perspective, after a
level is rebuilt, every real and mask block resides in an independent, random bucket.

Proof. First, every real block is assigned a fresh, random leaf label when the block was last fetched.
This random choice of leaf label is kept hidden from the server until the block is next requested.
This leaf label places a real block in a random bucket within the level. Second, mask blocks are
distributed to random buckets during the level rebuild procedure.

Lemma 3 (Every hkey is fetched only once from the server). Every hash key hkey for a real or
mask block is fetched only once by the server before the level is rebuilt. Further, the request phase
will not run out of mask blocks, i.e., will not attempt to read a mask block whose maskcnt is greater
than the number of mask blocks within the level.

Proof. First, the mask counter for a given level is always incremented whenever a mask block is
fetched, such that the next time, the client would be trying to fetch the next mask block. Second,
when a real block is fetched from a level `, it is logically removed from the level `. Until the next
time the level ` is rebuilt, the same block will be found in a level `′ < `. Therefore, the next time
the client seeks the same real block, it will have been found in a smaller level `′, and the client
would be reading the next mask block from level `.

Recall that every time a level is rebuilt, all mask blocks and real blocks in this level obtain fresh
hkeys since the hkeys are computed in a time-dependent manner. As mentioned earlier, each level
` is rebuilt with Z ′ · 2` mask blocks. We also know that level ` will be rebuilt every Z ′ · 2` time
steps. Therefore, the mask blocks will not run out before the next rebuild. When the next rebuild
happens, the level’s mask counter is reset to 0.

Lemma 4 (Bloom filter reads are oblivious). From the perspective of the server, the client reads k
independent, (pseudo-)random locations in the bloom filter every time.

Proof. If a block has been found in smaller levels, the client reads k fresh, random locations in a
level’s bloom filter. If the block has not been found in smaller levels, the client reads k real locations
computed with a pseudorandom function PRFBF. Assuming security of the PRFBF, we can pretend
that these are random locations, and further it is important to observe that these locations have not
been disclosed to the server before. In particular, observe that if the client reads k real locations in
level `’s bloom filter looking for a specific block idx. This means that block idx resides in a level
`′ ≥ `. At the end of the present read operation, the block idx will be relocated to a level `∗ ≤ `.
Until the next time level ` is rebuilt, block idx will always exist in a smaller level than `. This means
that the client will never look for block idx in level ` again till the next time level ` is rebuilt. As a
result, when the client discloses the real bloom filter locations to the server, these locations cannot
have been disclosed before.

Lemma 5 (Offline shuffling is oblivious). The level rebuilding algorithm has deterministic, predictable
access patterns.

Proof. Straightforward from the description of the algorithms.
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Theorem 1 (Obliviousness of the ORAM scheme). Assume that the symmetric-key encryption
scheme used to encrypt data and metadata satisfies semantic security and that PRFH and PRFBF

are secure pseudorandom functions. Then, the ORAM scheme described in this section satisfies
semi-honest security (i.e., replace Definition 2 of Appendix B with a semi-honest adversary).

Proof. Based on the set of lemmas above, it is straightforward to construct an ideal-world simulator
for a semi-honest, real-world adversary. Since the symmetric-key encryption scheme is semantically
secure, the simulator simulates all ciphertexts by random encryptions of 0 of appropriate length.
The time step T and the occupied/empty status of each level is known by the simulator, and the
access patterns of the offline shuffling is deterministic and predictable. Therefore, the simulator
can easily simulate the offline shuffling. For the online request phase, the simulator simulates by
reading k random locations in the bloom filter in each level. The simulator also discloses the hkey
of a random block in this level to the real-world adversary. Each block’s hkey is simulated by
picking a fresh random string of appropriate length. It is not hard to argue that no polynomial-time
environment can distinguish the real- and the ideal-worlds.

3.6 Malicious Security

Due to lack of space, we give our construction for malicious security in Appendix C. We remark
that it uses a combination of standard MAC and merkle tree techniques.

4 Making it Single Online Roundtrip

We now demonstrate how to achieve single online roundtrip. The idea is to rely on a garbling scheme
for layered branching programs. We observe that the online phase of the block access algorithm
(Figure 4) can be expressed efficiently as a layered branching program parameterized by the block
idx to be accessed as well as the current time T . The inputs to this branching program are bloom
filter bits.

Previously, the online phase of the block access algorithm (Figure 4) was evaluated by the client,
fetching data from the server as necessary — and thus introducing multiple roundtrips. A garbling
scheme will allow the client to outsource this work entirely to the server. Basically, the client garbles
both the bloom filter bits as well as the branching program and send the garbled versions to the
server. Now, the server evaluates the block access algorithm (Figure 4) by itself, without help from
the client.

We note that Williams and Sion [44] construct a customized garbling scheme for a special
branching program similar to Figure 4. However, their treatment of garbled branching programs
is not formal or general. In the subsections below, we first give a generic abstraction and formal
definition for garbled branching programs. We then show how to express the block access algorithm
(Figure 4) as a layered branching program such that we can apply the garbling scheme.

4.1 Definitions for Branching Programs

Branching program. We consider a standard definition of a branching program. A branching
program denoted bp is a fanout-2 directed acyclic graph with a single source and a number of sinks,
and where each non-sink node is labeled a variable from an input string x := (x1, . . . , xm) ∈ {0, 1}m.
Every node v ∈ bp can be labeled with some payload string v.payload ∈ {0, 1}∗. The two edges
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going out of each internal node are labeled with 0 and 1 respectively. Computation starts from the
source node. In each step, the branching program looks a bit in the input sequence x = (x1, . . . , xm)
and based on its value, decides which edge to follow. Let (v1, . . . , vt) denote the sequence of nodes
encountered when evaluating bp on input x. Finally, the branching program outputs:

bp(x) := (v1.payload, v2.payload, . . . , vt.payload)

Layered branching program. A layered branching program is a branching program, but the
nodes of the graph form layers such that the source is at layer 0, and the sinks are in the final
layer. Nodes from layer i − 1 have outgoing edges only into layer i. Henceforth, we will focus
our discussions on layered branching programs. We refer to the number of layers as the depth of
the layered branching program, and the number of nodes in each layer as the width of the layered
branching program.

Trace function. We would like to define a garbling scheme for a layered branching program bp
and some input x, such that an evaluator can evaluate the garbled bp on the garbled input, leaking
only some trace and nothing else. Below we define this trace function.

Let BP[m,n1, n2, . . . , nD] denote the family of layered branching programs that computes on
inputs of m bits, contains D layers, and where each layer i has ni nodes. Given a layered branching
program bp ∈ BP [m,n1, n2, . . . , nD], and some input x := (x1, x2, . . . , xm), Let vi denotes the node
in layer i encountered on the evaluation path for input x, let D denote the total number of layers. We
now define the trace function to contain the locations of the input bits looked at on the evaluation
path, as well as the outcome bp(x).

tr(bp, x) := (v1.addr, v2.addr, . . . , vD.addr, bp(x))

4.2 Garbling Scheme for Layered Branching Programs

A garbling scheme for the family BP[m,n1, n2, . . . , nD] contains the following algorithms:

• sk← KeyGen(1λ): On input 1λ, generates a secret key sk.

• x← GarbleData(sk, x): Given secret key sk and input x ∈ {0, 1}m, outputs the garbled input x.

• bp ← GarbleProg(sk, bp): Given a secret key sk and a layered branching program bp ∈
BP[m,n1, . . . , nD], outputs a garbled branching program bp.

• res← Eval(bp, x): Given garbled bp, and garbled input x, evaluates the outcome res.

Correctness. Correctness is defined in the obvious manner. We say that a garbling scheme for the
family BP [m,n1, . . . , nD] is correct, if for any bp ∈ BP[m,n1, . . . , nD], and for any x ∈ {0, 1}m, we
have that

Pr

 sk← KeyGen(1λ),
x← GarbleData(sk, x),

bp← GarbleProg(sk, bp)

: Eval(bp, x) = bp(x)

 = 1

Security. We say that a garbling scheme for the layered branching program family BP [m,n1, . . . , nD]
is secure, if there exists a probabilistic polynomial-time stateful simulator Sim, such that no
probabilistic polynomial-time adversary can distinguish whether it is in Exptreal or Exptsim except
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with negligible probability, i.e., Specifically, in Exptreal, the adversary is interacting with the real-
world algorithms, whereas in Exptsim the adversary is interacting with a simulator Sim that sees
only tr(bp, x), but not the bp or x themselves.

Exptreal

sk← KeyGen(1λ)
x← A(1λ)
x← GarbleData(sk, x)
bp← A(x)

bp← GarbleProg(sk, bp)

b← A(bp)

Exptsim

x← A(1λ)
x← Sim(1λ)
bp← A(x)

bp← Sim(tr(bp, x))

b← A(bp)

Garbling layered branching programs: construction. Figure 7 shows a construction for
garbling layered branching programs. The idea is that each non-sink node contains a tuple(

v.addr, v.payload, EL0(skv0), EL1(skv1)
permute

)
where v.addr denotes the address in the input this node looks at, v.payload denotes the payload of this
node, and EL0(skv0), EL1(skv1) are two ciphertexts that can be decrypted with the a corresponding
garbled label for input bit xi. Depending on whether xi = 0 or xi = 1, its garbled label can decrypt
exactly one of these ciphertexts, to obtain skv0 or skv1 . Then, skvb will inductively be used to encrypt
the b-th child node of v for b ∈ {0, 1}. For security, it is important that the two ciphertexts be
permuted in random order.

Given this garbling scheme, evaluation is defined in the obvious manner: given a secret key skv
to a node v, the evaluator first decrypts the current node, which reveals an input bit to look at. The
evaluator grabs the corresponding garbled label for the input bit, decrypts one of the ciphertexts,
and obtains a secret key for decrypting one node in the next layer. We stress that the evaluator
can decrypt only the nodes on the evaluation path, and thus learns these nodes’ payload and input
addresses. The evaluator cannot decrypt any non-evaluation-path nodes, since the evaluator knows
only one garbled label for each input bit.

Optimizations. We can apply standard optimizations described by Bellare et al. [5] such that the
decryptor need not use trial-and-error during decryption, but will know exactly which child node
to decrypt. Another optimization they describe [5] avoids the ciphertext having to carrying the
nonce term which causes ciphertext expansion. To keep our notations simple, we did not include
these optimizations in our basic exposition, but we suggest that they be applied in a practical
implementation.

Theorem 2. Assume that PRF is a secure pseudorandom function. Then, the garbling scheme
for layered branching programs as described in Figure 7 satisfies both correctness and security
requirements.

Proof. We construct the simulator in Figure 9.

Simulator for garbling input. When the simulator is asked to garble an input, the simulator
cannot see the input. The simulator simply picks random strings from xi := {0, 1}λ and returns
them. The simulator also remembers xi.
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Garbling Scheme for Layered Branching Programs

• KeyGen(1λ): Output a random sk← {0, 1}λ.

• GarbleData(sk, x): For each input bit xi, compute xi := PRF(sk, i||xi). Output x := (x1, . . . , xm).

• GarbleProg(sk, bp): Let S denote the source node. Call GarbleNode(sk, S), and output

(skS , {v : ∀v ∈ bp})

where skS and v are generated and saved during recursive call to GarbleNode(sk, S). Further,
the garbled nodes are output layer by layer, where nodes in each layer are output in a random
order.

• Eval(bp, x): Output EvalOnce(1, skS , bp, x) — see Figure 8 for the definition of EvalOnce.

GarbleNode(sk, v)

• If node v has been garbled before, just return the same answer as before.

• If v is a sink node: pick a random key skv ∈ {0, 1}λ, and return (skv, v) where the garbled node
v is defined as follows:

v := Eskv(v.payload)

• If v is not a sink node, let v0 denote the child of v following the 0 edge, and let v1 denote the
child of v following the 1 edge.

– Call (skv0 , v0) := GarbleNode(v0) and (skv1 , v1) := GarbleNode(v1). In other words, recursively
call GarbleNode to garble both of v’s children.

– Recall that node v looks at input bit x[v.addr]a. Let L0 denote the garbled label for x[v.addr] =
0, and L1 denote the garbled label for x[v.addr] = 1. More formally, let Lb := PRF(sk, v.addr||b)
for b ∈ {0, 1}. Pick a random encryption key skv ∈ {0, 1}λ, and compute

v := Eskv

(
v.addr, v.payload, EL0(skv0), EL1(skv1)

permute

)
where v.payload is also leaked by tr(bp, x), and permute denotes two terms in randomly
permuted order.

– Return (skv, v).

ax[v.addr] denotes the input bit xi where i = v.addr

EL(m)

• Let PRF : {0, 1}|L| × {0, 1}λ → {0, 1}|m| denote a pseudorandom function.

• Output (PRF(L, nonce)⊕m, nonce) where nonce ∈ {0, 1}λ is a freshly generated nonce.

Figure 7: Garbling scheme for layered branching programs, with subroutine GarbleNode recursively
defined.
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EvalOnce(d, skv, bp, x)

• Find a node v at layer d such that v can be correctly decrypted with skv.

– If d is the sink level, then return the decrypted v.payload.

– Else let (v.addr, v.payload,EL0(skv0),EL1(skv1)) denote the decryted tuple.

• Use the garbled input x[v.addr] to decrypt one of EL0(skv0) and EL1(skv1), and obtain a new
secret key sk.

• Return
(
v.payload,EvalOnce(d+ 1, sk, bp, x)

)
.

Figure 8: Evaluate the garbled branching program at one level, recursively defined.

Simulator for garbling branching program. When the simulator is asked to garble a branching
program, the simulator is only given tr(bp, x), but not bp or x. The simulator picks a random
evaluation path containing a random node from each level. For nodes on the evaluation path,
the simulator garbles them by making a recursive call to the following SimGarbleNode(S) where S
denotes the source:

To garble all other nodes in the bp, the simulator outputs random strings of appropriate length.

Indistinghishability of the two experiments. Indistinguishability of the two experiments is
not hard to show by defining a sequence of hybrid games. The proof technique is standard and is
similar to that of Bellare et al. [5]. First, the garbled inputs computed from pseudorandom functions
are now replaced with true randomness as in the simulation, assuming that the pseudorandom
function PRF is secure. Next, for all encryptions under garbled labels that are not given out as part
of the garbled input, replace these ciphertexts with random. Next, the ciphertexts corresponding to
non-excution paths in the garbled branching program are replaced one by one from real to random,
going from the source level to the sink level. Adjacent hybrid games are indistinguishable following
the security of the PRF function.

4.3 Extension: Temporal Garbling of Layered Branching Programs

Later in our application of garbled branching programs, the inputs of the branching program are
bloom filter bits, and the branching program itself depends on the logical index of memory to be
accessed. It is easy to assign all bloom filter bits a globally unique address (unique over the lifetime
of the ORAM). However, we observe that both the inputs (i.e., bloom filter bits) and the branching
programs themselves are generated adaptively over time. We stress that at any time, the branching
program to be queried depends only on the input bits that have already been generated — this lets
us get around an adaptive security issue easily.

Therefore, we extend our basic garbled branching program to a temporal version to suit the
needs of the application. A temporal garbling scheme for the family BP [m,n1, n2, . . . , nD] contains
the following algorithms:

• sk← KeyGen(1λ): On input 1λ, generates a secret key sk.

• xi ← GarbleData(sk, i, x): Given secret key sk and the i-th bit of input xi, outputs the garbled
input bit xi.
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SimGarbleNode(v)

• If v is a sink node: pick a random key skv ∈ {0, 1}λ, and return (skv, v) where the garbled node
v is defined as follows:

v := Eskv(v.payload)

• If v is not a sink node, let u denote the child of v along the chosen evaluation path.

– Let (sku, u) := SimGarbleNode(u).

– Observe that i := v.addr is leaked by tr(bp, x). Let xi denote the garbled label for xi computed
by the simulator when garbling the input. Pick a random encryption key skv ∈ {0, 1}λ, and
compute

v := Eskv

(
v.addr, v.payload, Exi(sku), ρ

permute

)
where ρ is a random string of appropriate length.

– Return (skv, v).

Figure 9: A simulator for garbling a node on the simulated evaluation path.
.

• bp ← GarbleProg(sk, bp): Given a secret key sk and a layered branching program bp ∈
BP[m,n1, . . . , nD], outputs a garbled branching program bp.

• res← Eval(bp, x): Given garbled bp, and garbled input x, evaluates the outcome res.

Correctness is defined in a similar way as before. We modify the security definition as follows,
where we allow the adversary to adaptively specify input bits and programs to garble, however,
with the following restrictions:

• Every branching program specified by the adversary must depend only on the inputs submitted
earlier by the adversary. Specifically, we use the notation x|t to denote the input string restricted
to the addresses queried thus far by the adversary.

• The adversary must not query both bits for the same input address i.

If a probablistic polynomial-time adversary satisfies the above constraints, we say that it is a
compliant adversary.

Exptreal

sk← KeyGen(1λ), bp := ⊥
For t = 1, 2, . . . , poly(λ):

(i, xi)← A(1λ, bp)
xi ← GarbleData(sk, i, xi)
bp← A(xi)

bp← GarbleProg(sk, bp)

b← A(bp)

Exptsim

bp = ⊥
For t = 1, 2, . . . , poly(λ):

(i, xi)← A(1λ, bp)
xi ← Sim(1λ)
bp← A(xi)

bp← Sim(tr(bp, x|t))

b← A(bp)
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Figure 10: Block request algorithm as a layered branching program.

We say that a temporal garbling scheme for layered branching programs is secure, if there exists
a probabilistic polynomial-time simulator Sim, such that no compliant probabilistic polynomial-time
adversary can distinguish Exptreal and Exptsim except with negligible probability.

Construction and proof. Construction and proof of the temporal version follow in a straight-
forward manner from our basic construction described in Section 4.2. Because our security game
requires that every branching program submitted by the adversary depend only on input bits that
have been queried before, there is no adaptive security issue, and the proof of Theorem 2 can be
extended trivially for the temporal version.

4.4 Block Request as a Layered Branching Program

We now describe why the block request algorithm (online phase) can be modeled as a layered
branching program.

Theorem 3. The block access algorithm (online phase) as described in Figure 4 is a layered
branching program with O(1) width, and O(kL) depth, where k is the number of hashes in the bloom
filter, and L is the number of levels in the ORAM hierarchy.

Proof. To show this, we describe what the inputs to the branching program are, and how the
branching program is constructed.

Inputs of the layered branching program. The inputs of this branching program are bloom
filter bits. For the entire lifetime of the ORAM, we assign a globally unique address to every bloom
filter bit:

[global address of BF bit] := (T, BFOffset)

where T denotes the time at which the level is rebuilt (note that T implies the level number), and
BFOffset is the offset of the bit within the bloom filter.

Branching program. Our “block request” branching program is parameterized by the logical
index denoted idx of the block to be requested, as well as the current time T . Given idx and T , the
branching program is fixed, and can be constructed as in Figure 10. Each blue or red rectangle is a
super node that denotes the behavior of the branching program at one level in the ORAM hierarchy.
If a block has been found in a level, then the branching program will permanently transition into
red supernodes, in which the branching program will look at k random addresses in the bloom filter.
Inside each blue super-node, however, the branching program looks at k real locations in the bloom
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filter where the locations are pre-computable given the block idx to be requested, and the current
time T . Each blue or red supernode looks at k locations in the bloom filter one by one, thus each
supernode has k internal layers to keep track of whether a bloom filter bit of 0 has been encountered.
At the end of the k layers inside a supernode, we enter a state which either discloses the real hkey
or a mask hkey, both of which can be precomputed knowing the block idx and the current time T .

For convenience, Figure 10 introduceds a special type of edge called a shortcut edge. A shortcut
edge does not read any input bits, but simply shortcuts into the next node. Shortcut edges can be
easily supported if we add some fake bits into the input stream, and the shortcut edges basically
transition into the next node regardless of whether the fake input bits are 0 or 1.

4.5 Single Online Roundtrip with Garbled Branching Programs

Garbling transformation. It suffices to make the following modifications to the ORAM algorithm
described in Section 3.

• When performing oblivious rebuild of a level’s bloom filter (see Figure 6), instead of using
encrypted bits for each bloom filter bit, we replace each encrypted bit with its corresponding
garbled label.

• For the online phase of block request algorithm (Figure 4), instead of the client evaluating the
algorithm of Figure 4 fetching data from the server as necessary, the client now treats the program
in Figure 4 as a layered branching program, garbles it, and sends the garbled version to the server.

• The server now evaluates the garbled branching program representing the client’s query, and
obtains exactly one hkey for each level of the ORAM hierarchy.

Corollary 1 (Garbling transformation preserves security). Assume that the temporal garbling
scheme for layered branching programs satisfies simulation security as described in Section 4.3. If
the underlying ORAM scheme described in Section 3 achieves malicious security by Definition 2
(see Appendix B), then the transformed scheme as described above also achieves malicious security
by Definition 2.

Proof. (sketch.) Let A denote any probabilistic polynomial-time adversary for the transformed,
single-round scheme. We now consider the following adversary A′ for the underlying ORAM scheme.
Let Sim denote the simulator for the garbling scheme. Roughly speaking, A′ receives protocol
messages (consisting of physical addresses or hkeys to fetch), and the A′ runs Sim whose output,
containing garbled bloom filter bits and garbled programs, will be relayed to A whenever appropriate
(in place of the encrypted bloom filter bits and trace of the branching program evaluation). Now
whatever A outputs, A′ simply relays it back to the honest client (or the ideal-world simulator S
during a simulation). Now if S corresponds to an ideal-world simulator for A′ for the underlying
ORAM scheme, it is not hard to see that the union of S and the garbling scheme’s Sim would be an
ideal-world simulator for A for the transformed, single-round scheme.

4.6 Cost Analysis

Offline cost. The offline cost is almost the same as in Section 3, except that now, in the last step
of the bloom filter creation, the client sequentially writes garbled labels for each bloom filter bit,
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incurring an extra O(λ2n) bits in bandwidth cost, where n is the size of the level being rebuilt, and
λ decides the security failure 2−O(λ). For simplicity, here we assume that a garbled label of O(λ)
bits has a security failure probability of 2−O(λ) for the garbling scheme.

Online cost. The client still retrieves O(logN) blocks in the online phase. We now analyze the
cost of metadata for the online request phase. The metadata is for sending a garbled branching
program of O(1) width and kL depth. Each garbled node incurs O(λ) bits in length. For simplicity,
here we assume that the PRF and the encryption schemes have O(λ)-bit inputs and outputs, and
attain a security failure of 2−O(λ). The total length of this garbled branching program is thus
O(λkL) = O(λ2 logN).

Block size for attaining O(logN) bandwidth blowup. To achieve a security failure negligible
in N , we let λ := O(logN)ω(1). In this case, the extra online/offline costs mentioned above are
absorbed asymptotically in comparison with the cost of bloom filter rebuilding.

Therefore, if we set the block size to be ω(log3N), the total cost of metadata gets absorbed in
the asymptotics, and we obtain O(logN) bandwidth blowup.

5 Constant Bandwidth Blowup, Single Online Roundtrip ORAM

We show how to extend our construction to achieve constant bandwidth blowup borrowing techniques
from Onion ORAM by Devadas et al. [12].

The basic idea of Onion ORAM is to have the server select blocks in a PIR (Private Information
Retrieval) fashion to save bandwidth on both requests and eviction. On a request, the client uses
PIR to retrieve the block of interest instead of downloading O(logN) blocks. On evictions, the
operation is similar to PIR, except that the server simply moves the output block to the eviction
destination (the rebuilt level for Bucket ORAM), and does not need to return anything to the client.
Every such eviction operation will add an additional layer of encryption to the blocks involved.
Onion ORAM proposed a new eviction strategy that ensures “steady progress” (i.e., blocks do
not get stuck during evictions), and showed that with such an eviction strategy, the number of
encryption layers can be bounded.

Interestingly, Bucket ORAM’s level rebuild also has the “steady progress” property since blocks
always move to the newly rebuilt layer and never get stuck. Therefore, we can directly adopt Onion
ORAM’s eviction techniques to get constant bandwidth blowup on evictions. The only challenge is
on requests: a standard PIR protocol requires multiple roundtrips. We will address this problem by
including the PIR help data in block metadata. Below we explain Onion ORAM’s techniques and
how to adopt them to Bucket ORAM.

5.1 Building Block: PIR using Additively Homomorphic Encryption

In the PIR setting, a server holds m data blocks block1, block2, · · · , blockm, a client wishes to
download blocki∗ without revealing i∗. One simple way to implement PIR is to use an addi-
tively homomorphic encryption (AHE) scheme E(·). The client sends an encrypted select vector
{E(x1), E(x2), · · · , E(xm)} where xi = 1 iff i = i∗ and xi = 0 otherwise. The server breaks
up each block into multiple chunks blocki = {blocki[1], blocki[2], · · · } where each chunk is in
the plaintext space of E(·). Then for each chunk, the server evaluates

⊕
i (E(xi)⊗ blocki[j]) =

E (
∑

i(xi · blocki[j])) = E(blocki∗ [j]). The output is the encrypted j-th chunk of the requested
blocki∗ . The server just aggregates all the chunks and returns the requested block to the client.
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When the block size is sufficiently large and dominates all the encrypted select bits, the bandwidth
blowup is O(1).

Note that we assumed plaintext input blocks above, and the ouput is the encrypted block of
interest. If the input blocks are already encrypted, then the output will acquire an additional layer
of encrpytion. In fact, we will see below that in Onion ORAM and Bucket ORAM, blocks become
onion-encrypted as the above PIR operation is performed repeatedly.

5.2 Constant Bandwidth Blowup for Eviction/Level Rebuild

Like Onion ORAM, we require L + 1 additively homomorphic encryption schemes
{E0(·), E1(·), · · · , EL(·)} where the ciphertext space of E`−1 is in the plaintext space of E` for
all 1 ≤ ` ≤ L. Then a block can be onion-encrypted using these encryption schemes in increasing
order, i.e., E`(E`−1(. . . E0(·))). We will use E`(·) as a shorthand notation for the above layered
encryption.

Assume blocks at level ` have ` layers of encryption (will be shown using induction). When
rebuilding level `+ 1 < L, each slot in level `+ 1 will be taken by one of the 2Z = O(logN)ω(1)
blocks at level ` (Z from the real level ` and Z from the transient level `). Denote them
E`(block1), E`(block2), · · · , E`(block2Z). A PIR-like protocol can obliviously move any i∗-th candi-
date block into the slot without revealing i∗. The client sends encrypted select bits E`+1(xi) (not
onion encrypted) to the server, where each xi is encoded as described above. The server evaluates for
each chunk j,

⊕
i

(
E`+1(xi)⊗ E`(blocki[j])

)
, which yields E`+1(E`(blocki∗ [j])) = E`+1(blocki∗ [j]).

This shows that blocks at level `+ 1 have `+ 1 layers of encryption and completes the induction.
Rebuilding the last level (level L− 1) requires additional care. Unlike all the other levels, level

L− 1 is not empty before rebuilding, and some blocks may remain in the rebuilt last level (violating
“steady progress”). If we simply include blocks in level L− 1 as the input of PIR, the number of
encryption layers at level L− 1 will increase by one after each level rebuild and grow unbounded.
To get around this issue, we need the client to preprocess each slot in level L− 1 before rebuilding it
(similar to leaf postprocessing in Onion ORAM). The preprocessing step simply requires the client
to download the slot, peel off 2 layers and reencrypt with EL−2, and send it back to the server.
The EL−2 ciphertexts can be safely included as input to the PIR protocol. The bandwidth blowup
introduced by the preprocessing is amortized O(1), since level L− 1 is rebuilt only every Θ(2L−1Z ′)
accesses, on the same order of the total number of slots in the level.

5.3 Constant Bandwidth Blowup for Requests

Block requests can be posed as a PIR problem. The server is holding Θ(logN) candidate blocks
(one per level); the client only wants one of them, but does not want to reveal which one. Blocks
from different levels will have different number of layers, but the server can “lift” all blocks to
EL−1(·) by repeatedly encrypting them.

The remaining challenge for Bucket ORAM is how the server gets the encrypted select bits. In
Onion ORAM, the client just downloads the metadata for all Θ(logN) blocks to figure out which
block she wants, and can then easily construct the encrypted select bits and send to the server. But
this would require multiple roundtrips.

Instead, on every level rebuild, we introduce a new field in the metadata for each block: an
AHE encrypted valid bit EL(isvalid). Real blocks have isvalid = 1, mask blocks have isvalid = 0, and
dummy blocks have “don’t care” values for this field — since dummy blocks will not be fetched
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during the online phase. The reason we use EL(·) is that all the lifted blocks live in the ciphertext
space of EL−1(·). Recall that out of the candidate blocks, only the block of interest is valid (has
EL(1)), all the other blocks are mask blocks (have EL(0)), so these encrypted valid bits can be
directly used in the PIR protocol. Since a real block will be read only once before the level is rebuilt,
there is no need to update EL(isvalid) other than during level rebuild.

5.4 Encryption Details

For a block at level `, its payload is homomorphically encrypted in ` onion layers. To get constant
bandwidth, we require a constant ciphertext expansion after up to L layers of encryption. As noted
in the Onion ORAM paper [12], the Damg̊ard-Jurik cryptosystem [9] has an additive ciphertext
expansion per layer and satisfies this property. For every block (at whichever level), its valid bit is
homomorphically encrypted using EL (not onion-encrypted), and the other metadata is encrypted
simply using a symmetric-key encryption like AES. Specifically, let E be the Damg̊ard-Jurik
encryption scheme,

block := data||metadata
encrypt
=⇒

(
E`(data), EL(isvalid),AES(other metadata)

)
In the above, we omit writing the encryption keys for simplicity.

Other auxiliary data, such as the server-side garbled bloom filter will be constructed in the same
way as in Section 4

5.5 Putting it Together and Malicious Security

Theorem 4. Assuming pseudorandom functions exist and Decisional Composite Residuosity (DCR)
is hard, the construction in this section is a server-computation ORAM with single online roundtrip,
O(1) bandwidth blowup, O(1) blocks of client storage, O(N) blocks of server storage, when the block
size is Ω̃(log5N). Assuming the existence of collision-resistant hash functions, the construction can
be extended to a malicious server with the same performance when the block size is Ω̃(log6N).

We refer the readers to [12] for a detailed analysis on block size requirements and how to achieve
security under a malicious server.
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A Notations

Table 2 is a notation table containing the global variables adopted in this paper.
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Table 2: Notations

Variable Meaning

λ security parameter to obtain 2−O(λ) a security failure probability
N total number of real blocks

L = O(logN) number of levels in the ORAM hierararchy
B number of bits in each block
T time a block is last written, a level was last rebuilt, or the current time

label leaf label for a block
k = O(λ) number of hashes for the bloom filter

Z = O(logN)ω(1) bucket size
Z ′ = Z/O(1) size of the client’s local eviction buffer

B Definition of Server-Computation ORAM

We directly adopt the definitions and notations used by Apon et al. [3] who are the first to define
server-computation ORAM as a reactive two-party protocol between the client and the server, and
define its security in the Universal Composability model [7]. We use the notation

((c out, c state), (s out, s state))← protocol((c in, c state), (s in, s state))

to denote a (stateful) protocol between a client and server, where c in and c out are the client’s
input and output; s in and s out are the server’s input and output; and c state and s state are the
client and server’s states before and after the protocol.

We now define the notion of a server-computation ORAM, where a client outsources the storage
of data to a server, and performs subsequent read and write operations on the data.

Definition 1 (Server-computation ORAM). A server-computation ORAM scheme consists of the
following interactive protocols between a client and a server.

((⊥, z), (⊥, Z))← Setup(1λ, (D,⊥), (⊥,⊥)): An interactive protocol where the client’s input is a
memory array D[1..n] where each memory block has bit-length β; and the server’s input is ⊥.
At the end of the Setup protocol, the client has secret state z, and server’s state is Z (which
typically encodes the memory array D).

((data, z′), (⊥, Z ′))← Access((op, z), (⊥, Z)): To access data, the client starts in state z, with an
input op where op := (read, addr) or op := (write, addr, data); the server starts in state Z, and
has no input. In a correct execution of the protocol, the client’s output data is the current
value of the memory D at location addr (for writes, the output is the old value of D[addr]
before the write takes place). The client and server also update their states to z′ and Z ′

respectively. The client outputs data := ⊥ if the protocol execution aborted.

We say that a server-computation ORAM scheme is correct, if for any initial memoryD ∈ {0, 1}βn,
for any operation sequence op1, op2, . . ., opm where m = poly(λ), an op := (read, addr) operation
would always return the last value written to the logical location addr (except with negligible
probability).
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B.1 Security Definition

We adopt a standard simulation-based definition of secure computation [7], requiring that a real-world
execution “simulate” an ideal-world (reactive) functionality F .

Ideal world. We define an ideal functionality F that maintains an up-to-date version of the data
D on behalf of the client, and answers the client’s access queries.

• Setup. An environment Z gives an initial database D to the client. The client sends D to
an ideal functionality F . F notifies the ideal-world adversary S of the fact that the setup
operation occurred as well as the size of the database N = |D|, but not of the data contents
D. The ideal-world adversary S says ok or abort to F . F then says ok or ⊥ to the client
accordingly.

• Access. In each time step, the environment Z specifies an operation op := (read, addr) or
op := (write, addr, data) as the client’s input. The client sends op to F . F notifies the ideal-
world adversary S (without revealing to S the operation op). If S says ok to F , F sends
D[addr] to the client, and updates D[addr] := data accordingly if this is a write operation.
The client then forwards D[addr] to the environment Z. If S says abort to F , F sends ⊥ to
the client.

Real world. In the real world, an environment Z gives an honest client a database D. The honest
client runs the Setup protocol with the server A. Then at each time step, Z specifies an input
op := (read, addr) or op := (write, addr, data) to the client. The client then runs the Access protocol
with the server. The environment Z gets the view of the adversary A after every operation. The
client outputs to the environment the data fetched or ⊥ (indicating abort).

Definition 2 (Simulation-based security: privacy + verifiability). We say that a protocol ΠF securely
computes the ideal functionality F if for any probabilistic polynomial-time real-world adversary (i.e.,
server) A, there exists an ideal-world adversary S, such that for all non-uniform, polynomial-time
environment Z, there exists a negligible function negl such that

|Pr [RealΠF ,A,Z(λ) = 1]− Pr [IdealF ,S,Z(λ) = 1]| ≤ negl(λ)

At an intuitive level, our definition captures the privacy and verifiability requirements for an
honest client (the client is never malicious in our setting), in the presence of a malicious server. The
definition simultaneously captures privacy and verifiability. Privacy ensures that the server cannot
observe the data contents or the access pattern. Verifiability ensures that the client is guaranteed to
read the correct data from the server — if the server cheats, the client can detect it and abort the
protocol.

C Malicious Security for the Scheme in Section 3

We can obtain malicious security with standard techniques. Most of our data and metadata satisfy
predictive time, i.e., the client can efficiently compute the time at which this block (or metadata)
was last written to the server during a level rebuild.

With the exception of some metadata, we can, for the most part, use time- and location-aware
message authentication codes to achieve malicious security (and there is no need for building a
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Merkle-hash tree). Upon retrieving a block from the server, the client always verifies the message
authentication code, and rejects block if the verification fails.

In our ORAM scheme in this section, block data can be accessed in two modes:

1. By their hkeys during the online phase of the block access algorithm;

2. By their explicit physical addresses on the server (typically containing the level number, the
bucket number, and the offset within the bucket) during the offline shuffling phase.

All auxiliary metadata (including the per-level bloom filters and transient metadata created during
level rebuilding, not including metadata attached to blocks) are always accessed by their explicit
physical addresses.

Therefore, below we discuss how to authenticate auxiliary metadata and block data separately.

Authenticating auxiliary metadata. Observe that in our scheme described in this section, all
auxiliary metadata (including the per-level bloom filters and transient metadata created during
level rebuilding, not including metadata attached to blocks) are accessed by their explict addresses.
Further, all metadata touched during level rebuilding is written to the server via linear scans or
oblivious sorting. Both of these operations perform each write to each physical location at public
and pre-determined times.

Putting the above observations together, the client can attach a time- and location-sensitive
message authentication code MAC(sk, T ||phys addr||metadata) to every auxiliary metadata chunk,
where T is the time metadata was last written to the server.

Authenticating block data. Block data (including most directly attached to the block, such as
idx the leaf label) can be accessed by either their hkey or their physical address on the server. Block
data are authenticated also using a time- and location-aware MAC:

MAC(sk, T ||phys addr||block)

where T denotes the last time the block was written, and phys addr typically contains the level
number, bucket number, and offset within the bucket.

The only subtlety is that when the block is accessed by its hkey, the server needs to additionally
return the block’s phys addr to the client, such that the client is able to verify the MAC.

Subtlety. The only exception to this “predictive time” rule is the client invaldating blocks fetched
in the online phase, by setting block.type := “dummy”. Therefore, the client can employ a merkle
hash tree to authenticate dummy bits attached to blocks.

Corollary 2. Assuming that the underlying ORAM scheme described in Section 3 has semi-honest
security (i.e., replace Definition 2 in Appendix B with a semi-honest adversary A), and that MAC is
a secure message authentication scheme, then the augmented scheme with time- and location-aware
message authentication codes (as described above) satisfies malicious security by Definition 2.

Proof. (sketch.) The simulator is simulating interactions with a real-world adversary A. For
every block (or metadata) the semi-honest simulator intends to send to the semi-honest real-world
adversary, now the simulator interacting with a malicious A additionally authenticates the block
(or metadata) with time- and location-aware message authentication code. Whenever A returns
a block (or metadata), the simulator verifies the message authentication code. If the verification
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fails, the simulator simply aborts. Effectively, any deviation of from the correct behavior by A can
be detected except with negligible probability. Therefore, any deviation from the correct behavior
translates to an aborting attack in the ideal world.

Cost of malicious security. With malicious security, we need to add extra message authentication
codes to data and metadata. However, it is not hard to see that while these message authentication
codes increase the concrete cost, the same asymptotics are maintained.

33


	Introduction
	Technical Highlights
	Related Work

	Basic Construction: A Hybrid between Tree-based and Hierarchical ORAM
	Server- and Client-Side Data Structures
	Algorithm Invariants and Operations
	New Level Rebuild based on Local Shuffle
	Bounding Overflow and Cost Analysis

	Improved Construction with No Position Map
	Intuition
	Detailed Algorithm for the Requests (Online Phase)
	Detailed Algorithm for Eviction/Level-Rebuild
	Parameter Choices and Cost Analysis
	Obliviousness
	Malicious Security

	Making it Single Online Roundtrip
	Definitions for Branching Programs
	Garbling Scheme for Layered Branching Programs
	Extension: Temporal Garbling of Layered Branching Programs
	Block Request as a Layered Branching Program
	Single Online Roundtrip with Garbled Branching Programs
	Cost Analysis

	Constant Bandwidth Blowup, Single Online Roundtrip ORAM
	Building Block: PIR using Additively Homomorphic Encryption
	Constant Bandwidth Blowup for Eviction/Level Rebuild
	Constant Bandwidth Blowup for Requests
	Encryption Details
	Putting it Together and Malicious Security

	Notations
	Definition of Server-Computation ORAM
	Security Definition

	Malicious Security for the Scheme in Section 3

