
Dynamic Searchable Symmetric Encryption with
Minimal Leakage and Efficient Updates on

Commodity Hardware

Attila A. Yavuz1 and Jorge Guajardo2

1 The School of Electrical Engineering and Computer Science, Oregon State
University, Corvallis, OR 97331

attila.yavuz@oregonstate.edu,
2 Robert Bosch Research and Technology Center, Pittsburgh PA, 15203

Jorge.GuajardoMerchan@us.bosch.com

Abstract. Dynamic Searchable Symmetric Encryption (DSSE) enables
a client to perform keyword queries and update operations on the en-
crypted file collections. DSSE has several important applications such as
privacy-preserving data outsourcing for computing clouds. In this paper,
we developed a new parallelizable DSSE scheme that achieves the high-
est privacy among all compared alternatives with low information leak-
age, non-interactive and efficient updates, compact client storage, low
server storage for large file-keyword pairs with an easy design and imple-
mentation. Our scheme achieves these desirable properties with a very
simple data structure (i.e., a bit matrix supported with two static hash ta-
bles) that enables efficient yet secure search/update operations on it. We
formally prove that our scheme is secure (in random oracle model) and
demonstrated that it is fully practical with large number of file-keyword
pairs even with an implementation on simple hardware configurations.

Keywords: Dynamic Symmetric Searchable Encryption, Privacy Enhancing
Technologies, Secure Data Outsourcing, Secure Computing Clouds

1 Introduction

Searchable Symmetric Encryption (SSE) [7] enables a client to encrypt data in
such a way that she can later perform keyword searches on it via appropriate
“search tokens” [23]. Thanks to this ability, SSE finds several applications in
different domains. For instance, a prominent application of SSE is to enable
privacy-preserving keyword searches on cloud-based systems (e.g., Amazon
S3 or Google drive). With a SSE scheme, a client can store a collection of en-
crypted files remotely at the cloud and yet perform keyword searches with-
out revealing any information about the contents of either the files or the
queries [15]. Ideally, any practical SSE scheme should aim at achieving (at a
minimum) the following properties:

2

– Dynamism: It should permit securely adding new files or deleting exist-
ing files from the encrypted file collection, after the client generates the
encrypted data at set-up time.

– Computational Efficiency and Parallelization: It should have sub-linear
search and update times with respect to the total number of file-keyword
pairs in the encrypted file collection. Moreover, search and update opera-
tions should be fully parallelizable across multiple processors, as typically
available in cloud-computing environments.

– Storage Efficiency: The storage overhead of the server depends on the size
of encrypted index (i.e., the encrypted data structure that enables keyword
searches)3. To achieve scalable solutions, the number of bits that is needed
to represent a file-keyword pair in the encrypted index should be small.
Moreover, the size of encrypted index should not grow with the number
of search or update operations (which requires re-encrypting the entire
index eventually). The size of encrypted index should grow gradually with
the number of file-keyword pairs. Last, the persistent storage at the client
should be minimum (e.g., a small-constant set of secret keys).

– Communication Efficiency: A SSE scheme should support non-interactive
update/search operations to avoid the network delays. Moreover, the data
exchanged between the client and the server should be minimum.

– Security: The current standard security notion for SSE is adaptive secu-
rity against chosen-keyword attacks (CKA2) [7], which captures adaptive
search queries (see Section 3.2). This notion of SSE has been further re-
fined (e.g., [15,14,23]) to capture dynamism (i.e., updates) and interaction.
That is, the information leaked through arbitrary search and update oper-
ations (including interactions) must be precisely quantified.

Our Contributions. SSE was introduced in [21] and it was followed by sev-
eral SSE schemes (e.g., [4,7,5,17]) that could only operate on static data col-
lections. The static nature of those SSE schemes limited their applicability to
applications that require handling dynamic file collections. Moreover, some
of them (e.g., [7]) were not parallelizable. Kamara et. al. developed a Dynamic
Searchable Symmetric Encryption (DSSE) scheme in [15] that could handle
dynamic file collections via encrypted updates. However, it leaked significant
information during updates and was not parallelizable. A line of recent work
(e.g., [14,2,23,18]) followed it by providing security and performance improve-
ments for various metrics (e.g., parallelizability, search/update times, update
communication, scalability, client/server storage). This work focuses on pro-
viding efficient updates while leaking minimum information. We discuss fur-
ther related work on SSE/DSSE schemes in Section 2.

To date there is no single DSSE scheme that outperforms all other alterna-
tives for all metrics: privacy (e.g., information leak), performance (e.g., search,
update execution and communication, storage) and functionality (e.g., boolean
versus single keyword queries). Having this in mind, we develop a DSSE scheme

3 In addition to the files stored which are to be searched.

3

that achieves the highest privacy among all compared alternatives with low
information leakage (see formal leakage definitions in Section 3.2, Definition 5
and discussion in Section B), non-interactive and efficient updates (compared
to [14]), compact client storage (compared to [23]), low server storage for large
file-keyword pairs (compared to [14,23,2]) and conceptually simple and easy

Table 1. Performance Comparison of DSSE schemes. The analysis is given for the
worst-case (asymptotic) complexity. All schemes leak search and access pattern.

Scheme/Property [15] [14] [23] [2]
(∏dyn,ro

2lev

)
This Work

Security Notion CKA2 CKA2 CKA2 CKA2 CKA2
Size Pattern Privacy No No No No Yes
Update Privacy L5 L4 L3 L2 L1
Forward Privacy No No Yes Yes Yes
Backward Privacy No No No No Yes
Random Oracles Yes Yes Yes Yes Yes
Dynamic Keyword No No Yes Yes Yes
Persistent Client Storage 4κ 3κ κ log(N ′) κ · O(N ′) κ · O(n+m)
Transient Client Storage — — O(N ′α) — —
Index Size (Server Storage) z · O(m+ n) 2·O((κ+m)·n) 13κ · O(N ′) c′′/b · O(N ′) 2 · O(m · n)
Grow with Updates No No Yes Yes No

Num. Rounds Search 2 2 2 2 2
Search Time O((r/p) · logn) O((r/p) ·

log3(N ′))
O((r + dw)/p) 1/b · O(n/p)

Num. Rounds Update 1 3 3 1 1
File Update Bandwidth z · O(m′′) 2z · κ ·

O(m logn)
z ·
O(m′′ logN ′)

z ·O(m logn+
m′′)

b · O(m)

File Update Time O(m′′) O((m/p) ·
logn) +∆t

O(m′′/p ·
log2(N ′)) +∆t

O(m′′/p)+∆t b · O(m/p)

Parallelizable No Yes Yes Yes Yes

∗ Our persistent client storage is κ ·O(m+n). This can become 4κ if we store this data structure on the server
side. This, however, comes at the cost of one additional round of interaction (See Section 6.1).

– Rounds refer to the number of messages exchanged between two communicating parties. A non-
interactive search operation requires two messages (one from the client to the server with a search to-
ken and one message from the server to the client with the result of the search (i.e., an encrypted file)).
An interactive update operation (i.e., file addition or deletion) requires three messages to be exchanged.
Our main scheme, the scheme in [15] and some variants in [2] also achieve non-interactive update that
requires only single message (i.e., an update token and an encrypted file to be added for the file addition
operation) to be send from the client to the server.

– m and n are the maximum # of keywords and files, respectively.m′ and n′ are the current # of keywords
and files, respectively. We denote by N ′ = m′ · n′ the total number of keywords and file pairs currently
stored in the database. m′′ is the # unique keywords included in an updated file (add or delete). r is # of
files that contain a specific keyword.

– κ is the security parameter. p is the # of parallel processors. b is the block size of symmetric encryption
scheme. z is the pointer size in bits. ∆t is the network latency introduced due to the interactions. α is a
parameter, 0 < α < 1.

– Update privacy levels L1,...,L5 are described in Section B. In comparison with Cash et al. [2], we took
variant

∏dyn,ro
bas as basis and estimated the most efficient variant

∏dyn,ro
2lev , where dw, aw , and c′′ denote the

total number of deletion operations, addition operations, the constant bit size required to store a single
file-keyword pair, respectively (in the client storage, the worst case of aw = m). To simplify notation, we
assume that both pointers and identifiers are of size c′′ and that one can fit b such identifiers/pointers per
block of size b (also a simplification). Observe that the hidden constants in the asymptotic complexity of
the update operation is significant as the update operation of [2] requires at least six PRF operations per
file-keyword pair versus this work, which only requires one.

4

to implement (compared to [15,14,23]). Table 1 further compares our scheme
with existing DSSE schemes for various security and performance metrics.

The intuition behind our scheme is to rely on a very simple data struc-
ture that enables efficient yet secure search and update operations on it. Our
data structure is a bit matrix I that is augmented by two static hash tables
Tw and Tf . If I[i, j] = 1 then it means keyword wi is present in file fj , else
wi is not in fj . The data structure contains both the traditional index and
the inverted index representations. We use static hash tables Tw and Tf to
uniquely associate a keyword w and a file f to a row index i and a column
index j, respectively. Both matrix and hash tables also maintain certain status
bits and counters to ensure secure and correct encryption/decryption of the
data structure, which guarantees a high level of privacy (i.e., L1 as described
in Section B) with CKA2-security. Search and update operations are encryp-
tion/decryption operations on rows and columns of I, respectively. Those en-
cryption operations are also simple, easy to implement, non-interactive (for
the main scheme) and fully practical with large number of file-keyword pairs
even with an implementation on simple hardware configurations (as opposed
to high-end servers). The advantages of our scheme are summarized below:
• High Security: Our scheme achieves a high-level of update security (i.e.,

Level-1 update security), forward-privacy, backward-privacy and size pattern
privacy simultaneously (see Section 3 for security model and privacy nota-
tions). That is, we quantify the information leakage via leakage functions and
formally prove that our scheme is CKA2-secure in random oracle model [1].
• Compact Client Storage: Compared to some alternatives with secure up-

dates (e.g., Stefanov et. al. in [23]), our scheme achieves smaller client stor-
age (e.g., up to 10-15 times with similar parameters). This is an important ad-
vantage for lightweight clients such as mobile devices. The schemes in [3,23]
also require keeping state information at the client side or interaction with re-
encryption (as in our variant scheme). The schemes presented in [15,14,23]
do not keep state at the client but leak more information than ours.
• Compact Server Storage with Secure Updates: Our encrypted index size

is smaller than some alternatives with secure updates (i.e., [14,23]). For in-
stance, our scheme requires O(n · m) + κ · O(m), while the scheme in [14]
requires (4 · κ)O(n ·m) + (2 · z)O(m). Notice that the 4 · κ parameter can in-
troduce a significant difference in practice. Asymptotically, the scheme in [23]
is more (server storage) efficient for small/moderate number of file-keyword
pairs, since its data structure grows gradually. However, our scheme requires
only two bits per file-keyword pair with the maximum number of files and
keywords. Hence, it is more storage efficient for large number of file-keyword
pairs than [23] (e.g., requiring 1600 to 3200 bits for per file-keyword pair).
• Constant Update Storage Overhead: The server storage of our scheme

does not grow with update operations, and therefore it does not require re-
encrypting the whole encrypted index due to frequent updates. This is more
efficient than some alternatives (e.g., Stefanov et. al. in [23]) whose server stor-
age overhead grows linearly with the number of file deletions.

5

•Dynamic Keyword Universe: Unlike some alternatives (e.g., [7,14,15]), our
scheme does not assume a fixed keyword universe. That is, our scheme allows
any new keyword to be added to the system after initialization. This property
makes our scheme highly practical, since the content of the files is not re-
stricted to a particular pre-defined keyword set (e.g., English words) but can
be any token afterwards (encodings, identifiers, random numbers)4.
• Efficient and Non-interactive Updates: Our basic scheme achieves secure

updates non-interactively. Even with large file-keyword pairs (e.g., N = 1012),
it incurs low communication overhead (e.g., 120 KB for m = 106 keywords
and n = 106 files) by further avoiding network latencies (e.g., 25-100 ms) that
affect other interactive schemes (e.g., as considered in [14,2,18,23]). One of the
variants that we explore requires three rounds (as in other DSSE schemes), but
it still requires low communication overhead (and less transmission than that
of [14] and fewer rounds than [18]). Notice that the scheme in [18] can only
add or remove a file but cannot update the keywords of a file without removing
or adding it, while our scheme can achieve this functionality intrinsically with
a (standard) update or delete operation.
• Oblivious Updates: Our update operation takes always the same amount

of time, which does not leak timing information depending on the update. It
also prevents side-channel attacks based on timing information.
• Parallelization: Our scheme is parallelizable for both update and search

operations (unlike schemes that rely on linked-lists such as [15]).
• Forward Privacy: As in other works (e.g., [23]), we can achieve forward

privacy by simply retrieving the whole data structure and re-encrypting it. We
optimize this by retrieving the part of the data structure that has already been
queried and only re-encrypting them.

2 Related Work

The idea of SSE was first introduced by Song et. al. in [21], which proposed
two SSE schemes. The first scheme scans the whole file collection for patterns,
which incurs a linear search overhead in the collection length and therefore is
considered impractical. The second one uses an inverted index approach with
a better efficiency, but its update mechanism is shown to be insecure in [10].
Goh in [10] associates with each file an encrypted data structure that can be
tested for the occurrence of a given keyword, which achieves a search time
linear in n. Moreover, Goh in [10] introduced the first formal security notion
for SSE schemes called as security against chosen-keyword attacks (CKA1)-
security, which only provides an assurance if the search queries are indepen-
dent of the encrypted index, ciphertext and of previous search results. This is
not a realistic security assumption for most practical applications.

4 In [23], the term ”dynamic keyword” refers to the scheme storing the info about the keywords that currently
appear in the files, but does not require extra space for future keywords. In our case, it means that the key-
word dictionary is not static, meaning any keyword can be dynamically added/deleted after the initialization
of the system. However, our scheme assumes the maximum number of keywords to be used in the system is
predefined and the size of the encrypted index is set accordingly during the initialization phase.

6

Curtmola et al. in [7] associate an encrypted inverted index with the entire
file collection. This approach yields efficient schemes since the search time
is sub-linear and optimal as O(r), where r is the number of files that con-
tain a particular keyword. Moreover, [7] also improved the SSE formal security
notion by introducing the stronger adaptive security against chosen-keyword
attacks (CKA2) security definition. Unlike non-adaptive CKA1-security [10],
CKA2-security permits adaptive search queries that may depend on past qu-
eries. Despite its advantages, the approach of [7] has important limitations: (i)
It is static, meaning that it cannot handle dynamic file collections, which is a
significant drawback for applications such as cloud-computing; and (ii) it is
based on an encrypted linked list, which is inherently sequential. Hence, the
scheme in [7] can not be parallelized on multiple processors. To address this
limitation, Kamara et al. in [15] developed a Dynamic Searchable Symmetric
Encryption (DSSE) scheme that supports update operations (i.e., file addition
and deletion). The scheme relies on an inverted index approach with multiple
(encrypted) linked lists, which achieves optimal O(r) search time. However,
update operations leak significant information (e.g., which trapdoors are as-
sociated with an added or deleted file). That is, the encrypted data structures
do not serve their purposes for newly added or deleted files. Moreover, the
scheme can not be parallelized as in [7]. Kamara et al. in [14] proposed an-
other DSSE scheme, which relies on red-black trees as the main data struc-
ture. This scheme leaks much less information compared to that of [15] and
also achieves parallel search and update operations. However, unlike [15], this
scheme requires interactive updates. Moreover, it incurs in significant server
storage overhead due to its very large encrypted index size.

Recently, a series of new DSSE schemes (i.e., [23,2,18,19]) have been pro-
posed by achieving better index size and update time with less information
leakage compared to [14,15]. While being asymptotically better, those schemes
also have drawbacks. The scheme in [23] requires high storage overhead at
the client side (e.g., 210 MB for moderate size file-keyword pairs), where the
client fetches non-negligible amount of data from the server and performs an
oblivious sort on it. This scheme also requires significant amount of data stor-
age (e.g., 1600 bits) for per keyword-file pair at the server side. The scheme
in [2] extends the work in [3] that focuses on boolean queries. While showing
asymptotically better performance compared to [14], it leaks more informa-
tion compared to [23] also incurring in non-negligible server storage. Notice
that the data structure in this work grows linearly with the number of dele-
tion operations, which requires re-encrypting the data structure eventually.
The scheme in [18] uses a different approach from all the aforementioned al-
ternatives, in which the server does not perform any processing, but just acts
as a storage and transmission entity. The scheme relies on a primitive called
“blind-storage”. While the scheme shows good performance, it requires higher
interaction than its counterparts, which may introduce response delays for
distributed client-server systems. The scheme leaks less information than that
of [2], but only support single keyword queries. The scheme can add/remove

7

a file but it cannot update the content of a file. Because of all these signifi-
cant differences, we have not included it in Table 1. The scheme presented
in [19] supports conjunctive queries but its update functionality is not oblivi-
ous5. The authors solve the leakage problem due to non-oblivious updates by
periodically reencrypting the entire index. A major difference, with respect to
our work and other previous work, is that the scheme in [19] requires three
parties (one of them acts as a semi-trusted party) instead of two. Their perfor-
mance numbers are also hard to compare to ours given that [19] uses server
hardware as opposed to our implementation on a commodity platform.

Alternative Approaches. Information processing on encrypted data can be
achieved via general purpose solutions such as Fully-Homomorphic Encryp-
tion (FHE) [9]. However, despite several improvements (e.g., [20]), FHE re-
mains extremely computational and storage costly, and therefore it is consid-
ered impractical today. Another general purpose solution is Oblivious RAM
(ORAM) [11], which can be used as a black-box to achieve a strong level of se-
curity for encrypted searches (the server learns nothing apart from the size of
the file collection). Recent work (e.g., [22]) significantly improved the perfor-
mance of ORAM. However, ORAM solutions are still communication and/or
storage intensive [23].

3 Preliminaries and Models

We first give basic notation, primitives and definitions used by our scheme. We
then provide the leakage and security models to prove security of our scheme.

Notation. Operators || and |x| denote the concatenation operation and the bit

length of variable x, respectively. x $← S denotes that variable x is randomly

and uniformly selected from set S. For any integer l, (x0, . . . , xl)
$← S means

(x0
$← S, . . . , xl

$← S). |S| denotes the cardinality of set S. {xi}li=0 denotes
(x0, . . . , xl). We denote by {0, 1}∗ the set of binary strings of any finite length.
bxc denotes the floor of x and dxe denotes the ceiling of x. The set of items qi
for i = 1, . . . , n is denoted by 〈q1, . . . , qn〉. Given a bit a, a means the comple-
ment of a. Variable κ is an integer and it is used to denote the security param-
eter. log x means log2 x. Given a matrix I, I[∗, j] and I[i, ∗] mean accessing all
elements in the j’th column and the i’th row of I, respectively. I[i, ∗]T denotes
the transpose of the i’th row of I.

Basic Cryptographic Primitives. An IND-CPA secure private key encryption
scheme is a triplet E = (Gen,Enc,Dec) of three algorithms as follows: k1 ←
E .Gen(1κ) is a Probabilistic Polynomial Time (PPT) algorithm that takes a se-
curity parameter κ and returns a secret key k1; c← E .Enck1(M) takes secret key

5 This is explicitly noted in [19] on page 8, footnote 2.

8

k1 and a message M , and returns a ciphertext c; M←E .Deck1(c) is a determin-
istic algorithm that takes k1 and c, and returnsM if k1 was the key under which
cwas produced. A Pseudo Random Function (PRF) is a polynomial-time com-
putable function, which is indistinguishable from a true random function by
any PPT adversary. The function F : {0, 1}κ × {0, 1}∗ → {0, 1}κ is a keyed PRF,

denoted by τ ← Fk2 (x), which takes as input a secret key k2
$← {0, 1}κ and a

string x, and returns a token τ . Similarly, G : {0, 1}κ × {0, 1}∗ → {0, 1}κ is a
keyed PRF denoted as r ← Gk3 (x), which takes as input a secret key k3 ←
{0, 1}κ and a string x and returns a key r. We denote by H : {0, 1}|x| → {0, 1} a
Random Oracle (RO) [1], which takes an input x and returns a bit as output.

3.1 Definitions

We first define generic DSSE algorithms and then describe specific data struc-
tures used by our scheme. We follow the definitions of [15,14] with some mod-
ifications: fid and w denote a file with unique identifier id and a unique (key)-
word that exists in a file, respectively. A keywordw is of length polynomial in κ,
and a file fid may contain any such keyword (i.e., our keyword universe is not
fixed). For practical purposes, n and m denote the maximum number of files
and keywords to be processed by application, respectively. f = (fid1 , . . . , fidn)
and c = (cid1 , . . . , cidn) denote a collection of files (with unique identifiers
id1, . . . , idn) and their corresponding ciphertext computed under k1 via Enc,
respectively. Data structures δ and γ denote the index (also called database in
the literature) and encrypted index, respectively.

Definition 1. A Dynamic Searchable Symmetric Encryption (DSSE) scheme is
a tuple of nine polynomial-time algorithms DSSE = (Gen,Enc,Dec,SrchToken,
Search,AddToken,Add,DeleteToken,Delete) such that:

1. K←Gen(1κ): is a probabilistic algorithm that takes as input a security pa-
rameter κ and outputs a secret key K.

2. (γ, c)←EncK (δ, f): is a probabilistic algorithm that takes as input a secret
keyK, an index δ and files f , from which δ constructed. It outputs encrypted
index γ and ciphertexts c.

3. fj ← DecK (cj): is a deterministic algorithm that takes as input a secret key
K and a ciphertext cj and outputs a file fj .

4. τw←SrchToken(K,w): is a (possibly probabilistic) algorithm that takes as
input a secret key K and a keyword w. It outputs a search token τw.

5. idw ← Search(τw, γ): is a deterministic algorithm that takes as input a search
token τw and an encrypted index γ. It outputs identifiers idw ⊆ c.

6. τf ← AddToken(K, fid): is a (possibly probabilistic) algorithm that takes as
input a secret key K and a file fid with identifier id to be added. It outputs
an addition token τf .

7. (γ′, c′)← Add(γ, c, τf): is a deterministic algorithm that takes as input an
encrypted index γ, ciphertexts c, an addition token τf . It outputs a new en-
crypted index γ′ and ciphertexts c′.

9

8. τ ′f←DeleteToken(K, f): is a (possibly probabilistic) algorithm that takes as

input a secret key K and a file fid with identifier id to be deleted. It outputs
a deletion token τ ′f .

9. (γ′, c′)← Delete(γ, c, τ ′f): is a deterministic algorithm that takes as input an

encrypted index γ, ciphertexts c, and a deletion token τ ′f . It outputs a new
encrypted index γ′ and new ciphertexts c′.

Definition 2. Let DSSE be a dynamic SSE scheme consisting of the tuple of nine
algorithm as given in Definition 1. A DSSE scheme is correct if for all κ, for all
keys K generated by Gen(1κ), for all f, for all (γ, c) output by EncK (δ, f), and for
all sequences of add, delete or search operations on γ, search always returns the
correct set of identifier idw.

3.2 Leakage and Security Models

Most known efficient SSE schemes (e.g., [10,15,3,14,23,2,18]) reveal the access
and search patterns that are defined below.

Definition 3. Search pattern P(δ,Query, t) is defined as follows: Given search
query Query = w at time t, the search pattern is a binary vector of length twith a
1 at location i if the search time i ≤ twas for w, 0 otherwise. The search pattern
indicates whether the same keyword has been searched in the past or not.

Definition 4. Access pattern ∆(δ, f, wi, t) is defined as follows: Given Query =
w at time t, the access pattern is identifiers idw of files f, in which w appears.

To capture information leak during the execution of DSSE algorithms, we
follow the approach of [15,14,23,2] by defining leakage functions that capture
what is being leaked by the scheme. Specifically, we consider the following
leakage functions, in the line of [14] that captures dynamic file addition and
deletion in its security model as we do, but we leak less information compared
to [14] as discussed in Section B.

Definition 5. Leakage functions (L1,L2) are defined as follows:

1. (m,n, idw, 〈|fid1 |, . . . , |fidn |〉) ← L1(δ, f): Given the index δ and the set of
files f (including their identifiers), L1 outputs the maximum number of
keywords m, the maximum number of files n, the identifiers idw = (id1,
. . . , idn) of f and the size of each file |fidj |, 1 ≤ j ≤ n (which also implies the
size of its corresponding ciphertext |cidj |).

2. (P(δ,Query, t), ∆(δ, f, wi, t)) ← L2(δ, f, w, t): Given the index δ, the set of
files f and a keywordw for a search operation at time t, it outputs the search
and access patterns.

Remark 1. In our definition of security model below, we adapt the notion of
dynamic CKA2-security from [14], which captures the file addition and dele-
tion operations by simulating corresponding tokens τf and τ ′f , respectively
(see Theorem 1 in Appendix A.2 for further details). Hence, our security model
captures possible leakage due to update operations. Note that unlike [14], our
main scheme is non-interactive and leaks less information (see Section B).

10

Definition 6. Let DSSE be a DSSE scheme consisting of the tuple of nine algo-
rithms as defined in Definition 1. Let A be a stateful adversary and S be a
stateful simulator. Consider the following probabilistic experiments:

RealA(κ): The challenger executes K ← Gen(1κ). A produces (δ, f) and re-
ceives (γ, c)← EncK (δ, f) from the challenger.A makes a polynomial num-
ber of adaptive queries Query ∈ (w, fid, fid′) to the challenger. If Query = w
thenA receives a search token τw ← SrchToken(K,w) from the challenger.
If Query = fid is a file addition query then A receives an addition token
τf ← AddToken(K, fid) from the challenger. If Query = fid′ is a file deletion
query then A receives a deletion token τ ′f ← DeleteToken(K, fid′) from the
challenger. Eventually,A returns a bit b that is output by the experiment.

IdealA,S(κ): A produces (δ, f). Given L1(δ, f), S generates and sends (γ, c) to
A .A makes a polynomial number of adaptive queries Query ∈ (w, fid, fid′)
to S . For each adaptive query, S is given L2(δ, f, w, t). If Query = w then
S returns a simulated search token τw. If Query = fid or Query = fid′ , S re-
turns a simulated addition token τf or deletion token τ ′f ,respectively. Even-
tually,A returns a bit b that is output by the experiment.

ADSSE is said (L1,L2)-secure against adaptive chosen-keyword attacks (CKA2-
security) if for all PPT adversariesA , there exists a PPT simulator S such that

|Pr[RealA(κ) = 1]− Pr[IdealA,S(κ) = 1]| ≤ neg(κ)

4 Our Scheme

In this section, we introduce our main scheme. We first describe our new data
structure and then introduce the algorithms which make up the scheme. In
Section 6, we also discuss variants and optimizations of the main scheme.

As in other index-based schemes, our DSSE scheme has an index δ repre-
sented by am×nmatrix, where δ[i, j] ∈ {0, 1} for i = 1, . . . ,m and j = 1, . . . , n.
Initially, all elements of δ are set to 0. I is am×nmatrix, where I[i, j] ∈ {0, 1}2.
I[i, j].v stores δ[i, j] in encrypted form depending on state and counter infor-
mation. I[i, j].st stores a bit indicating the state of I[i, j].v. Initially, all ele-
ments of I are set to 0. I[i, j].st is set to 1 whenever its corresponding fj is up-
dated, and it is set to 0 whenever its corresponding keywordwi is searched. For
the sake of brevity, we will often write I[i, j] to denote I[i, j].v. We will always
be explicit about the state bit I[i, j].st. The encrypted index γ corresponds to
the encrypted matrix I and a hash table. We also have client state informa-
tion6 in the form of two static hash tables (defined below). We map each file
fid and keyword w pair to a unique set of indices (i, j) in matrices (δ, I). We

6 It is always possible to eliminate client state by encrypting and storing it on the server side. This comes at
the cost of additional iteration, as the client would need to retrieve the encrypted hash tables from the server
and decrypt them. Asymptotically, this does not change the complexity of the schemes proposed here.

11

use static hash tables to uniquely associate each file and keyword to its corre-
sponding row and column index, respectively. Static hash tables also enable to
access the index information in (average) O(1) time. Tf is a static hash table
whose key-value pair is {sfj , 〈j, stj〉}, where sfj ← Fk2(idj) for file identifier
idj corresponding to file fidj , index j ∈ {1, . . . , n} and st is a counter value.
We denote access operations by j ← Tf (sfj) and stj ← Tf [j].st. Tw is a static
hash table whose key-value pair is {swi , 〈i, sti〉}, where token swi ← Fk2(wi),
index i ∈ {1, . . . , n} and st is a counter value. We denote access operations by
i← Tw(swi) and sti ← Tw[i].st. All counter values are initially set to 1.

We now describe our main scheme in detail. Our DSSE scheme is com-
prised of nine algorithms (see Definition 1) (Gen,Enc,Dec,SrchToken,Search,
AddToken,Add,DeleteToken, Delete) defined as follows:

K←Gen(1κ): The client generates private keys k1←E .Gen(1κ), (k2, k3)
$← {0, 1}κ

and sets K ← (k1, k2, k3).

(γ, c)←EncK (δ, f): The client generates (γ, c) as follows:
1. Extract all unique keywords (w1, . . . , wm′) from files f = (fid1 , . . . , fidn′),

where n′ ≤ n and m′ ≤ m. Initially, set all the elements of δ to 0.
2. Construct δ for j = 1, . . . , n′ and i = 1, . . . ,m′:

(a) swi ← Fk2 (wi) and xi ← Tw(swi).
(b) sfj ← Fk2 (idj) and yj ← Tf (sfj).
(c) If wi appears in fj set δ[xi, yj]← 1.

3. Encrypt δ for j = 1, . . . , n and i = 1, . . . ,m:
(a) Tw[i].st← 1 and Tf [j].st← 1.
(b) ri ← Gk3 (i||sti), where sti ← Tw[i].st.
(c) I[i, j]← δ[i, j]⊕H(ri||j||stj), where stj ← Tf [j].st.
(d) I[i, j].st← 0.

4. cj ← E .Enck1(fidj) for j = 1, . . . , n′ and c← {〈c1, y1〉, . . . , 〈cn′ , yn′〉}.
5. Output (γ, c), where γ ← (I, Tf). The client gives (γ, c) to the server,

and keeps (K,Tw, Tf).

fj←DecK (cj): The client obtains the file as fj ← E .Deck1(cj).

τw←SrchToken(K,w): The client generates a search token τw for w as follows:
1. swi ← Fk2 (w), i← Tw(swi), sti ← Tw[i].st.
2. ri ← Gk3 (i||sti).
3. If sti = 1 then τw ← (i, ri) . Else (if sti > 1), ri ← Gk3 (i||sti − 1) and
τw ← (i, ri, ri).

4. Tw[i].st← sti + 1.
5. Output τw. The client sends τw to the server.

idw←Search(τw, γ): The server finds indexes of ciphertexts for τw as follows:
1. If ((τw = (i, ri)∨ I[i, j].st) = 1) hold then I ′[i, j]← I[i, j]⊕H(ri||j||stj),

else set I ′[i, j] ← I[i, j]⊕ H(ri||j||stj), where stj ← Tf [j].st for j =
1, . . . , n.

12

2. I[i, ∗].st← 0.
3. Set l′ ← 1 and for each j satisfies I ′[i, j] = 1, set yl′ ← j and l′ ← l′ + 1.
4. Output idw ← (y1, . . . ,yl). The server returns (cy1 , . . . , cyl) to the client,

where l← l′ − 1.
5. After the search is completed, the server re-encrypts row I ′[i, ∗] with ri

as I[i, j] ← I ′[i, j] ⊕ H(ri||j||stj) for j = 1, . . . , n, where stj ← Tf [j].st
and sets γ ← (I, Tw)

7.

τf ← AddToken(K, fidj): The client generates τf for a file fidj as follows:
1. sfj ← Fk2 (idj), j ← Tf (sfj), Tf [j].st← Tf [j].st+ 1, stj ← Tf [j].st.
2. ri ← Gk3 (i||sti), where sti ← Tw[i].st for i = 1, . . . ,m.
3. Extract (w1, . . . , wt) from fidj and compute swi ← Fk2 (wi) and xi ←
Tw(swi) for i = 1, . . . , t.

4. Set I[xi]← 1 for i = 1, . . . , t and rest of the elements as {I[i]← 0}mi=1,i/∈{x1,...,xt}.

5. I ′[i]← I[i]⊕H(ri||j||stj) for i = 1, . . . ,m.
6. c← E .Enck1(fidj).
7. Output τf ← (I ′, j). The client sends (τf , c) to the server.

(γ′, c′)←Add(γ, c, τf): The server performs file addition as follows:
1. I[∗, j]← (I ′)T , I[∗, j].st← 1 and increment Tf [j].st← Tf [j].st+ 1.
2. Output (γ′, c′), where γ′ ← (I, Tf), c′ is obtained by adding (c, j) to c.

τ ′f←DeleteToken(K, f): The client generates τ ′f for f as follows:
1. Execute steps (1-2) of AddToken algorithm, which produce (j, ri, stj).
2. I ′[i]← H(ri||j|stj) for i = 1, . . . ,m 8.
3. Output τ ′f ← (I ′, j). The client sends τ ′f to the server.

(γ′, c′)←Delete(γ, c,τ ′f): The server performs file deletion as follows:

1. I[∗, j]← (I ′)T , I[∗, j].st← 1 and increment Tf [j].st← Tf [j].st+ 1.
2. Output (γ′, c′), where γ′ ← (I, Tf), c′ is obtained by removing (c, j)

from c.

Keyword update for existing files: Some existing alternatives (e.g., Naveed et.
al. [18]) only permit adding a new file or deleting an old file, but do not per-
mit updating keywords in an existing file. Our scheme enables keyword up-
date in an existing file. That is, to update an existing file f by adding new key-
words or removing existing keywords, the client just prepares a new column
I[i] ← bi, i = 1, . . . ,m, where bi = 1 if wi is added and bi = 0 otherwise (as in
AddToken, step 4). The rest of the algorithm is similar to AddToken algorithm.

Variants: We developed several variants of our main scheme, which are fur-
ther discussed in Section 6 and Appendix C.

7 This provides privacy if the server is compromised by an outsider after a search operation occurs (the server
deletes ri from the memory after the step 5 is completed). It also keeps I consistent for consecutive search
operations performed on the same keyword.

8 This step is only meant to keep data structure consistency during a search operation.

13

5 Security Analysis

We prove that our main scheme is secure with the following theorem (it is
straightforward to extend the proof for our variant schemes):

Theorem 1 If Enc is IND-CPA secure, (F,G) are PRFs and H is a RO then our
DSSE scheme is (L1,L2)-secure in ROM according to Definition 6 (CKA-2 secu-
rity with update operations).

Proof: We give the proof of correctness of our scheme in Appendix A.1. The
security proof and simulators are presented in Appendix A.2.

6 Evaluation and Discussion

We have implemented our scheme in a stand-alone environment using C/C++.
By stand-alone, we mean we run on a single machine, as we are only interested
in the performance of the operations and not the effects of latency, which will
be present (but are largely independent of the implementation9.) For crypto-
graphic primitives, we chose to use the libtomcrypt cryptographic toolkit ver-
sion 1.17 [8] and as an API. We modified the low level routines to be able to
call and take advantage of AES hardware acceleration instructions natively
present in our hardware platform, using the corresponding freely available
Intel reference implementations [13]. We performed all our experiments on
an Intel dual core i5-3320M 64-bit CPU at 2.6 GHz running Ubuntu 3.11.0-14
generic build with 4GB of RAM.

Our cryptographic primitives were chosen as follows. For file encryption
we chose 128-bit CCM and for encrypting our data structure we used AES-128
CMAC. Key generation was implemented using the expand-then-extract key
generation paradigm analyzed in [16]. However, instead of using a standard
hash function, we used AES-128 CMAC for performance reasons. Notice that
this key derivation function has been formally analyzed, its security proper-
ties are well-understood, and it is standardized. Our use of CMAC as the PRF
for the key derivation function is also standardized [6]. Our random oracles
were all implemented via 128-bit AES CMAC. For hash tables, we took advan-
tage of Google’s freely available C++ sparse hash map implementation [12]
but instead of using the standard hash function implementation, we called
our CMAC-based random oracles truncated to 80 bits. Our implementation
results are summarized in Table 2.

Performance Comparison. Our experiments were performed using the En-
ron database of emails as in [15]. Table 2 summarizes results for three types
of experiments: (i) cases were we have large number of files and large number
of keywords, (ii) cases where we have large number of files but comparatively

9 As it can be seen from Table 1, our scheme is optimal in terms of the number of rounds required to perform
any operation. Thus, latency will not affect the performance of the implementation anymore than any other
competing scheme. This replicates the methodology of Kamara et al. [15].

14

small number of keywords and (iii) cases where we have large number of key-
words but small number of files. In all cases, the combined number of key-
word/file pairs is between 109 and 1010, which surpass the experiments in [15]
by about two orders of magnitude and are comparable to the experiments in
[23,2]. One key observation is that in contrast to [23,2], we do not use server-
level hardware but a rather standard commodity Intel platform with limited
RAM memory. From our results, it is clear that for large databases the process
of generating the encrypted representation is relatively expensive, however,
this is a one-time only cost. The cost per keyword search depends linearly as
O(n)/128 on the number of files in the database and it is not cost-prohibiting
(even for the large test case of 1010 keyword/file pairs, searching takes only a
few msec). We observe that despite this linear cost, our search operation is ex-
tremely fast comparable to the work in [15]. The costs for adding and deleting
files (updates) is similarly due to the obliviousness of these operations in our
case. Except for the cost of creating the index data structure, all performance
data extrapolates to any other type of data, as our data structure is not data
dependant and it is conceptually very simple. We observe that we still have
room for improvement since have not taken advantage of parallelization.

Table 2. Performance of our DSSE scheme operations. w.: # of words, f.: # of files

Operation Time (msec)
w. f. w. f. w. f.

2 · 105 5 · 104 2000 2 · 106 1 · 106 5000

Building searchable representation (offline, one-time cost at initialization)

Keyword-file map-
ping, extraction

6.03 sec 52 min. 352 msec

Encrypt searchable
representation

493 msec 461 msec 823 msec

Search and Update Operations (online, after initialization)

Search for single
key word

0.3 msec 10 msec 0.02 msec

Add file to
database

472 msec 8.83 msec 2.77 sec

Delete file from
database

329 msec 8.77 msec 2.36 sec

Functionality, Security, and Data Structure Comparison. Compared to Ka-
mara et al. in [15] scheme, which relies on an inverted index approach with
multiple linked lists and achieves optimal O(r) search time, our scheme has
linear search time, uses an inverted index approach with a simple matrix-
based data structure (augmented with hash tables for fast retrieval) but in
contrast we achieve completely oblivious update operations. Moreover, the
[15] can not be parallelized, whereas our scheme can. Kamara et al. [14] relies
on red-black trees as the main data structure, achieves parallel search and
oblivious update operations. However, it requires interactive updates and in-
curs in significant server storage overhead due to its very large encrypted in-

15

dex size. The scheme of Stefenavo et al. [23] requires high storage overhead at
the client side (e.g., 210 MB for moderate size file-keyword pairs), where the
client fetches non-negligible amount of data from the server and performs an
oblivious sort on it. We only require one hash table and four symmetric secret
keys storage. [23] also requires significant amount of data storage (e.g., 1600
bits) for per keyword-file pair at the server side versus 2 bits per file-keyword
pair in our scheme (and a hash table10). The scheme in [2] it leaks more infor-
mation compared to [23] also incurring in non-negligible server storage. The
data structure in [2] grows linearly with the number of deletion operations,
which requires re-encrypting the data structure eventually. Our scheme does
not require re-encryption (but we assume an upper bound on the maximum
number of files), and our storage is constant regardless of the number of ad-
ditions, deletions, or updates. The scheme in [18] requires higher interaction
than its counterparts, which may introduce response delays for distributed
client-server architectures, it leaks less information than that of [2], but only
support single keyword queries. The scheme can add/remove a file but it can-
not update the content of a file in contrast to our scheme.

6.1 Variants and Optimizations

We discuss some variants and trade-offs in our scheme, which can result in
significant performance improvements.

Variant-I: Trade-off between computation and interaction overhead. In the
main scheme, H is invoked for each column of I once, which requires O(n)
invocations in total. We propose a variant scheme that offers significant com-
putational improvement at the cost of a plausible communication overhead.

We use counter (CTR) mode of operation for the encryption function E . As-
sume that the block size of E is b. We interpret columns of I as d =

⌈
n
b

⌉
blocks

with size of b bits each. We encrypt each block Bl, l = 0, . . . , d − 1, separately
with E by using a unique block counter stl. Each block counter stl is located
at its corresponding index al (block offset of Bl) in Tf , where al ← (l · b) + 1.
The uniqueness of each block counter is achieved with a global counter gc,
which is initialized to 1 and incremented by 1 for each update operation. A
state bit Tf [al].b is stored to keep track the update status of its corresponding
block. Notice that the update status is maintained only for each block but not
for each bit of I[i, j]. Hence, in this variant, the matrix I is a just binary matrix
(unlike the main scheme, in which I[i, j] ∈ {0, 1}2). AddToken and Add algo-
rithms for the aforementioned variant are as follows (DeleteToken and Delete
follow the similar principles):

τf ← AddToken(K, fidj): The client generates τf for a file fidj as follows:

10 The size of the hash table depends on its occupancy factor, the number of entries and the size of each entry.
Assuming 80-bits per entry and a 50% occupancy factor, our scheme still requires about 2× 80 + 2 = 162
bits per entry, which is about a factor 10 better than [23]. Observe that for fixed m-words, we need a hash
table with approximately 2m entries, even if each entry was represented by 80-bits.

16

1. sfj ← Fk2 (fidj), j ← Tf (sfj), l←
⌊
j
b

⌋
, al ← (l·b)+1 and stl ← Tf [al].st.

2. Extract (w1, . . . , wt) from fidj and compute swi ← Fk2 (wi) and xi ←
Tw(swi) for i = 1, . . . , t. For i = 1, . . . ,m:
(a) ri ← Gk3 (i||sti), where sti ← Tw[i].st

11.
(b) The client requests l’th block, which contains index j of fid from

the server. The server then returns the corresponding block (I[i, al],
. . . , I[i, al+1 − 1]), where al+1 ← b(l + 1) + 1.

(c) (I[i, al], . . . , I[i, al+1 − 1])← E .Decri(I[i, al], . . . , I[i, al+1 − 1], stl).
3. Set I[xi, j]← 1 for i = 1, . . . , t and {I[i, j]← 0}mi=1,i/∈{x1,...,xt}.
4. gc← gc+ 1, Tf [al].st← gc, stl ← Tf [al].st and Tf [al].b← 1.
5. (I ′[i, al], . . . , I

′[i, al+1 − 1]) ← E .Encri(I[i, al], . . . , I[i, al+1 − 1], stl) for
i = 1, . . . ,m.

6. c← E .Enck1(fidj).
7. Output τf ← (I ′, j). The client sends (τf , c) to the server.

(γ′, c′)←Add(γ, c, τf): The server performs file addition as follows:

1. Replace (I[∗, al], . . . , I[∗, al+1 − 1]) with I ′.
2. gc← gc+ 1, Tf [al].st← gc and Tf [al].b← 1.
3. Output (γ′, c′), where γ′ ← (I, Tf), c′ is obtained by adding (c, j) to c.

Gen and Dec algorithms of the variant scheme are identical to that of main
scheme. The modifications of SrchToken and Search algorithms are straightfor-
ward (in the line of AddToken and Add) and therefore will not be repeated. In
this variant, the search operation requires the decryption of b-bit blocks for
l = 0, . . . , d− 1. Hence, E is invoked onlyO(n/b) times during the search oper-
ation (in contrast toO(n) invocation ofH as in our main scheme). That is, the
search operation becomes b times faster compared to our main scheme. The
block size b can be selected according to the application requirements (e.g.,
b = 64, b = 128 or b = 256 based on the preferred encryption function). For in-
stance, b = 128 yields highly efficient schemes if the underlying cipher is AES
by taking advantage of AES specialized instructions in current PC platforms.
Moreover, CTR mode can be parallelizable and therefore the search time can
be reduced to O(n/(b · p)), where p is the number of processors in the system.

This variant requires transmitting 2·b·O(m) bits for each update compared
toO(m) non-interactive transmission in our main scheme. However, one may
notice that this approach offers a trade-off, which is useful for some practical
applications. That is, the search speed is increased by a factor of b (e.g., b =
128) with the cost of transmitting just 2 · b ·m bits (e.g., less than 2MB for b =
128,m = 105). However, a network delay ∆t is introduced due to interaction.
We discuss three other variants of our main scheme in the appendix.

In Appendix A.2, we prove security of the main scheme and extend the
proof to this variant. We observe that encrypting multiple columns using an

11 In this variant, G should generate a cryptographic key suitable for the underlying encryption function E
(e.g., the output of KDF is b = 128 for AES with CTR mode).

17

IND-CPA encryption scheme does not leak additional information during up-
dates. In particular, the re-encryption of the b-bit block happens on the client
side at the cost of one additional and crucial round of interaction.

6.2 Limitations

The search time of our scheme is O(mp·b) and is practical as shown by the esti-
mated execution times even for very large N (e.g., N = 1011 for m = 105, n =
106). However, it is asymptotically less efficient than that of [14,23,2] schemes.
Observe that we gain the highest level of privacy, low client storage, dynamic
keyword universe with secure updates and bandwidth efficiency in exchange.
Observe that our scheme preserves its practicality in terms of search execu-
tion time as discussed (being comparably efficient to [15,14,23,2]), while gain-
ing all these advantages. Another limitation is that our scheme assumes a con-
servative upper bound on the maximum number of keywords and files to be
used in the system (as in [14] but unlike [23,2]). However, we gain low server
storage overhead for large number of file-keyword pairs (i.e., two-bits stor-
age overhead for per file-keyword pair) in exchange. Moreover, our scheme
focuses on single keyword search as in [15,14,23,18] (but unlike [2] for boolean
queries, with an exchange of more information leak). In practice the require-
ment of having to specify the upper bound in the number of files can be work
around in several ways. The most straightforward way is to define a second in-
dex data structure once the upper limit is reached in the first one. This would
not be unlike requesting an additional x GB of storage in quota-based sys-
tems. An alternative is to simply retrieve the index data structure stored in the
server and re-encrypt it. This would have the added advantage of “erasing”
the server history and any leakage associated with it. This approach is used in
ORAM to make the system oblivious and it has been proposed in other DSSE
schemes as a way to reduce leakage or to re-claim storage space [2].

References

1. M. Bellare and P. Rogaway, “Random oracles are practical: A paradigm for design-
ing efficient protocols,” in Proceedings of the 1st ACM conference on Computer and
Communications Security (CCS ’93). NY, USA: ACM, 1993, pp. 62–73.

2. D. Cash, J. Jaeger, S. Jarecki, C. Jutla, H. Krawcyk, M.-C. Rosu, and M. Steiner, “Dy-
namic searchable encryption in very-large databases: Data structures and imple-
mentation,” in 21th Annual Network and Distributed System Security Symposium
— NDSS 2014. The Internet Society, February 23-26, 2014.

3. D. Cash, S. Jarecki, C. Jutla, H. Krawczyk, M.-C. Rosu, and M. Steiner, “Highly-
scalable searchable symmetric encryption with support for boolean queries,” in
Advances in Cryptology, CRYPTO 2013, ser. Lecture Notes in Computer Science,
vol. 8042. Springer Berlin Heidelberg, 2013, pp. 353–373.

4. Y.-C. Chang and M. Mitzenmacher, “Privacy preserving keyword searches on re-
mote encrypted data,” in Proceedings of the Third International Conference on Ap-
plied Cryptography and Network Security (ACNS), ser. Lecture Notes in Computer
Science, vol. 3531. Berlin, Heidelberg: Springer-Verlag, 2005, pp. 442–455.

18

5. M. Chase and S. Kamara, “Structured encryption and controlled disclosure,” in Ad-
vances in Cryptology - ASIACRYPT 2010, ser. Lecture Notes in Computer Science,
vol. 6477, 2010, pp. 577–594.

6. L. Chen, “Nist special publicatin 800-108: Recomendation for key derivation using
pseudorandom functions (revised),” National Institute of Standards and Technol-
ogy. Computer Security Division, Tech. Rep. NIST-SP800-108, October 2009, avail-
able at http://csrc.nist.gov/publications/nistpubs/800-108/sp800-108.pdf.

7. R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky, “Searchable symmetric encryp-
tion: improved definitions and efficient constructions,” in Proceedings of the 13th
ACM conference on Computer and communications security, ser. CCS ’06. New
York, NY, USA: ACM, 2006, pp. 79–88.

8. T. S. Denis, “LibTomCrypt library,” Available at http://libtom.org/?page=
features&newsitems=5&whatfile=crypt, Released May 12th, 2007.

9. C. Gentry, “Fully homomorphic encryption using ideal lattices,” in Proceedings of
the 41st annual ACM symposium on Theory of computing, ser. STOC ’09. New
York, NY, USA: ACM, 2009, pp. 169–178.

10. E.-J. Goh, “Secure indexes,” Cryptology ePrint Archive, Report 2003/216, 2003,
http://eprint.iacr.org/.

11. O. Goldreich and R. Ostrovsky, “Software protection and simulation on oblivious
rams,” J. ACM, vol. 43, no. 3, pp. 431–473, 1996.

12. google sparsehash@googlegroups.com, “sparsehash: An extemely memory ef-
ficient hash map implementation,” Available at https://code.google.com/p/
sparsehash/, February 2012.

13. S. Gueron, “White Paper: Intel Advanced Encryption Standard (AES)
New Instructions Set,” Available at https://software.intel.com/sites/
default/files/article/165683/aes-wp-2012-09-22-v01.pdf. Software Library
available at https://software.intel.com/sites/default/files/article/181731/
intel-aesni-sample-library-v1.2.zip, Document Revision 3.01, September 2012.

14. S. Kamara and C. Papamanthou, “Parallel and dynamic searchable symmetric en-
cryption,” in Financial Cryptography and Data Security (FC), ser. Lecture Notes in
Computer Science. Springer Berlin Heidelberg, 2013, vol. 7859, pp. 258–274.

15. S. Kamara, C. Papamanthou, and T. Roeder, “Dynamic searchable symmetric en-
cryption,” in Proceedings of the 2012 ACM conference on Computer and communi-
cations security, ser. CCS ’12. New York, NY, USA: ACM, 2012, pp. 965–976.

16. H. Krawczyk, “Cryptographic extraction and key derivation: The HKDF scheme,”
in Advances in Cryptology - CRYPTO 2010, ser. LNCS, T. Rabin, Ed., vol. 6223.
Springer, August 15-19, 2010, pp. 631–648.

17. K. Kurosawa and Y. Ohtaki, “UC-secure searchable symmetric encryption,” in Fi-
nancial Cryptography and Data Security (FC), ser. Lecture Notes in Computer Sci-
ence, vol. 7397. Springer Berlin Heidelberg, 2012, pp. 285–298.

18. M. Naveed, M. Prabhakaran, and C. A. Gunter, “Dynamic searchable encryption
via blind storage,” in 35th IEEE Symposium on Security and Privacy, May 2014, pp.
48–62.

19. V. Pappas, F. Krell, B. Vo, V. Kolesnikov, T. Malkin, S. G. Choi, W. George, A. D.
Keromytis, and S. Bellovin, “Blind seer: A scalable private DBMS,” in 2014 IEEE
Symposium on Security and Privacy, SP 2014. IEEE Computer Society, May 18-21,
2014, pp. 359–374.

20. N. P. Smart and F. Vercauteren, “Fully homomorphic simd operations,” Des. Codes
Cryptography, vol. 71, no. 1, pp. 57–81, 2014.

http://csrc.nist.gov/publications/nistpubs/800-108/sp800-108.pdf
http://libtom.org/?page=features&newsitems=5&whatfile=crypt
http://libtom.org/?page=features&newsitems=5&whatfile=crypt
http://eprint.iacr.org/
https://code.google.com/p/sparsehash/
https://code.google.com/p/sparsehash/
https://software.intel.com/sites/default/files/article/165683/aes-wp-2012-09-22-v01.pdf
https://software.intel.com/sites/default/files/article/165683/aes-wp-2012-09-22-v01.pdf
https://software.intel.com/sites/default/files/article/181731/intel-aesni-sample-library-v1.2.zip
https://software.intel.com/sites/default/files/article/181731/intel-aesni-sample-library-v1.2.zip

19

21. D. X. Song, D. Wagner, and A. Perrig, “Practical techniques for searches on en-
crypted data,” in Proceedings of the 2000 IEEE Symposium on Security and Privacy,
ser. SP ’00. Washington, DC, USA: IEEE Computer Society, 2000, pp. 44–55.

22. E. Stefanov and E. Shi, “Oblivistore: High performance oblivious cloud storage,” in
Security and Privacy (SP), 2013 IEEE Symposium on, May 2013, pp. 253–267.

23. E. Stefanov, C. Papamanthou, and E. Shi, “Practical dynamic searchable encryp-
tion with small leakage,” in 21st Annual Network and Distributed System Security
Symposium — NDSS 2014. The Internet Society, February 23-26, 2014.

A Proofs

We first provide the correctness argument for our main scheme followed by
several variants of it. We then provide the formal proof of our main scheme.

A.1 Proof of Correctness of the DSSE Scheme

The correctness argument for our main scheme is as follows:

Lemma 1. (Correctness) The DSSE scheme presented above is correct according
to Definition 2.

Proof: The correctness and consistency of the above scheme is guaranteed via
state bits I[i, j].st, and counters Tw[i].st of row i and counters Tf [j].st of col-
umn j, each maintained with hash tables Tw and Tf , respectively.

The algorithms SrchToken and AddToken increase the counters Tw[i].st for
keywordw and Tf [j].st for file fj , after each search and update operations, re-
spectively. These counters allow the derivation of a new bit, which is used to
encrypt the corresponding cell I[i, j]. This is done by the invocation of ran-
dom oracle asH(ri||j||stj) with row key ri, column position j and the counter
of column j. Note that the row key ri used in H(.) is re-derived based on the
value of row counter sti as ri ← Gk3 (i||sti), which is increased after each
search operation. Hence, if a search operation is followed by an update op-
eration, algorithm AddToken derives a fresh key ri ← Gk3 (i||sti), which was
not released during the previous search as a token. This ensures that AddToken
algorithm securely and correctly encrypts the new column of added/deleted
file. Algorithm Add then replaces new column j with the old one, increments
column counter and sets all state bits I[∗, j] to 1 (indicating cells are updated)
for the consistency.

The rest is to show that algorithms SrchToken and Search produce correct
search results. If keywordw is searched for the first time, the algorithm SrchToken
derives only ri, since there were no past search increasing the counter value.
Otherwise, it derives ri with the current counter value sti and ri with the pre-
vious counter value sti − 1, which will be used to decrypt recently updated
and non-updated (after the last search) cells of I[i, ∗], respectively (i.e., step
3). That is, given search token τw, the algorithm Search step 1 checks if τw in-
cludes only one key (i.e., the first search) or corresponding cell value I[i, j]

20

was updated (i.e., I[i, j].st = 1). If one of these conditions holds, the algo-
rithm Search decrypts I[i, j] with bit H(ri||j||stj) that was used for encryption
by algorithm Enc (i.e., the first search) or AddToken (i.e., update). Otherwise, it
decrypts I[i, j] with bitH(ri||j||stj). Hence, the algorithm Search produces the
correct search result by properly decrypting row i. The algorithm Search also
ensures the consistency by setting all state bits I[i, ∗].st to zero (i.e., indicating
cells are searched) and re-encrypting I[i, ∗] by using the last row key ri (i.e.,
step 5). �

A.2 Proof of Security

We prove that our main scheme achieves adaptive security against chosen-
keyword attacks (CKA2) (with secure update operations as defined in Defini-
tion 6) as below. Note that our scheme is secure in the Random Oracle Model
(ROM) [1]. That is,A is given access to a random oracle RO(.) from which she
can request the hash of any message of her choice. In our proof, cryptographic
function H used in our scheme is modeled as a random oracle via function
RO(.).

Theorem 1. If Enc is IND-CPA secure, (F,G) are PRFs and H is a RO then our
DSSE scheme is (L1,L2)-secure in ROM according to Definition 6 (CKA-2 secu-
rity with update operations).

Proof. We construct a simulator S that interacts with an adversary A in an
execution of an IdealA,S(κ) experiment as described in Definition 6.

In this experiment, S maintains lists LR, LK and LH to keep track the
query results, states and history information, initially all lists empty. LR is
a list of key-value pairs and is used to keep track RO(.) queries. We denote
value ← LR(key) and ⊥ ← LR(key) if key does not exist in LR. LK is used to
keep track random values generated during the simulation and it follows the
same notation that ofLR.LH is used to keep track search and update queries,
S ’s replies to those queries and their leakage output from (L1,L2).
S executes the simulation as follows:

I. Handle RO(.) Queries: Function b← RO (x) takes an input x and returns

a bit b as output. Given input x, if ⊥ = LR(x) then set b $← {0, 1}, insert (x, b)
into LR and return b as the output. Else, return b← LR(x) as the output.

II. Simulate (γ, c): Given (m,n, 〈id1, . . . , idn′〉, 〈|cid1 |, . . . , |cidn′ |〉)← L1(δ, f),
S simulates (γ, c) as follows:

1. sfj
$← {0, 1}κ, yj ← Tf (sfj) and insert (idj , sfj , yj) intoLH, for j = 1, . . . , n′.

2. cyj ← E .Enck({0}
|cidj |), where k $← {0, 1}κ for j = 1, . . . , n′.

3. For j = 1, . . . , n and i = 1, . . . ,m
(a) Tw[i].st← 1 and Tf [j].st← 1.

(b) zi,j
$← {0, 1}2κ, I[i, j]← RO (zi,j) and I[i, j].st← 0.

21

4. Output (γ, c), where γ ← (I, Tf) and c← {〈c1, y1〉, . . . , 〈cn′ , yn′〉}.

Correctness and Indistinguishability of the Simulation: c has the correct
size and distribution, sinceL1 leaks 〈|cid1 |, . . . , |cidn′ |〉 andEnc is a IND-CPA se-
cure scheme, respectively. I and Tf have the correct size since L1 leaks (m,n).
Each I[i, j] for j = 1, . . . , n and i = 1, . . . ,m has random uniform distribu-
tion as required, since RO(.) is invoked with a separate random number zi,j .
Tf has the correct distribution, since each sfj has random uniform distribu-
tion, for j = 1, . . . , n′. Hence,A does not abort due toA ’s simulation of (γ, c).
The probability that A queries RO(.) on any zi,j before S provides I to A is
negligible (i.e., 1

22κ). Hence, S also does not abort.

III. Simulate τw: Assume that simulator S receives a search query w on
time t. S is given (P(δ,Query, t), ∆(δ, f, wi, t)) ← L2(δ, f, w, t). S adds these
information to LH. S then simulates τw and updates lists (LR,LK) as follows:

1. If w in list LH then fetch corresponding swi . Else, swi
$← {0, 1}κ, i ←

Tw(swi), sti ← Tw[i].st and insert (w,L1(δ, f), swi) into LH.
2. If ⊥ = LK(i, sti) then ri ← {0, 1}κ and insert (ri, i, sti) into LK. Else, ri ←
LK(i, sti).

3. If sti > 1 then ri ← LK(i||sti − 1) and τw ← (i, ri, ri). Else, τw ← (i, ri).
4. Tw[i].st← sti + 1.
5. Given L2(δ, f, w, t), S knows identifiers idw = (y1, . . . , yl). Set I ′[i, yj]← 1,
j = 1, . . . , l, and rest of the elements as {I ′[i, j]← 0}j=1,j /∈{y1,...,yl}.

6. If ((τw = (i, ri) ∨ I[i, j].st) = 1) then V [i, j] ← I[i, j]′ ⊕ I[i, j] and insert
tuple (ri||j||stj , V [i, j]) into LR for j = 1, . . . , n, where stj ← Tf [j].st.

7. I[i, ∗].st← 0.
8. I[i, j]← I ′[i, j]⊕ RO (ri||j||stj), where stj ← Tf [j].st for j = 1, . . . , n.
9. Output τw and insert (w, τw) into LH.

Correctness and Indistinguishability of the Simulation: Given any∆(δ, f, wi, t),
S simulates the output of RO(.) such that τw always produces the correct
search result for idw ← Search(τw, γ). S needs to simulate the output of
RO(.) for two conditions (as in III-Step 6): (i) The first search of wi (i.e., τw =
(i, ri)), since S did not know δ during the simulation of (γ, c). (ii) If any file fidj
containing wi has been updated after the last search on wi (i.e., I[i, j].st = 1),
since S does not know the content of update. S sets the output of RO(.) for
those cases by inserting tuple (ri||j||stj , V [i, j]) into LR (as in III-Step 6). In
other cases, S just invokes RO(.) with (ri||j||stj), which consistently returns
previously inserted bit from LR (as in III-Step 8).

During the first search on wi, each RO(.) output V [i, j] = RO (ri||j|stj) has
the correct distribution, since I[i, ∗] of γ has random uniform distribution (see
II-Correctness and Indistinguishability argument). Let J = (j1, . . . , jl) be the
indexes of files containing wi, which are updated after the last search on wi. If
wi is searched then each RO(.) output V [i, j] = RO (ri||j|stj) has the correct
distribution, since τf ← (I ′, j) for indexes j ∈ J has random uniform distri-
bution (see IV-Correctness and Indistinguishability argument). Given that S ’s

22

τw always produces correct idw for given∆(δ, f, wi, t), and relevant values and
RO(.) outputs have the correct distribution as shown, A does not abort dur-
ing the simulation due to S ’s search token. The probability that A queries
RO(.) on any (ri||j|stj) before him queries S on τw is negligible (i.e., 1

2κ), and
therefore S does not abort due toA ’s search query.

IV. Simulate (τf ,τ ′f): Assume that S receives an update request Query =

(〈Add, |cidj |〉,Delete) at time t. S simulates update tokens (τf , τ ′f) as follows:

1. If idj in LH then fetch its corresponding (sfj , j) from LH, else set sfj
$←

{0, 1}κ, j ← Tf (sfj) and insert (sfj , j, fidj) into LH.
2. Tf [j].st← Tf [j].st+ 1, stj ← Tf [j].st.
3. If ⊥ = LK(i, sti) then ri ← {0, 1}κ and insert (ri, i, sti) into LK, where
sti ← Tw[i].st for i = 1, . . . ,m.

4. I ′[i]← RO (zi), where zi
$← {0, 1}2κ for i = 1, . . . ,m.

5. I[∗, j]← (I ′)T and I[∗, j].st← 1.
6. If Query = 〈Add, |cidj |〉, simulate cj ← E .Enck({0}|cid|), add cj into c, set
τf ← (I ′, j) output (τf , j). Else set τ ′f ← (I ′, j), remove cj from c and out-
put τ ′f .

Correctness and Indistinguishability of the Simulation: Given any access
pattern (τf , τ

′
f) for a file fidj ,A checks the correctness of update by searching

all keywords W = (wi1 , . . . , wil) included fidj . Since S is given access pat-
tern ∆(δ, f, wi, t) for a search query (which captures the last update before the
search), the search operation always produces a correct result after an update
(see III-Correctness and Indistinguishability argument). Hence, S ’s update to-
kens are correct and consistent.

It remains to show that (τf , τ ′f) have the correct probability distribution.
In real algorithm, stj of file fidj is increased for each update as simulated in
IV-Step 2. If fidj is updated after wi is searched, a new ri is generated for wi
as simulated in IV-Step 3 (ri remains the same for consecutive updates but
stj is increased). Hence, the real algorithm invokes H(.) with a different input
(ri||j||stj) for i = 1, . . . ,m. S simulates this step by invoking RO(.) with zi and
I ′[i] ← RO (zi), for i = 1, . . . ,m. (τf , τ ′f) have random uniform distribution,
since I ′ has random uniform distribution and update operations are correct
and consistent as shown. cj has the correct distribution, since Enc is an IND-
CPA cipher. Hence,A does not abort during the simulation due to S ’s update
tokens. The probability that A queries RO(.) on any zi before him queries
S on (τf , τ

′
f) is negligible (i.e., 1

22·κ), and therefore S also does not abort due
toA ’s update query.

V. Final Indistinguishability Argument: (swi , sfj , ri) for i = 1, . . . ,m and j =
1, . . . , n are indistinguishable from real tokens and keys, since they are gener-
ated by PRFs that are indistinguishable from random functions. Enc is a IND-
CPA scheme, the answers returned by S toA for RO(.) queries are consistent
and appropriately distributed, and all query replies of S toA during the sim-
ulation are correct and indistinguishable as discussed in I-IV Correctness and

23

Indistinguishability arguments. Hence, for all PPT adversaries, the outputs of
RealA(κ) and that of an IdealA,S(κ) experiment are negligibly close:

|Pr[RealA(κ) = 1]− Pr[IdealA,S(κ) = 1]| ≤ neg(κ)

�

Remark 2. Extending the proof to variant I presented in Section 6.1 is straight-
forward12. In particular, (i) interaction is required because even if we need to
update a single entry (column) corresponding to a single file, the client needs
to re-encrypt the whole b-bit block in which the column resides to keep con-
sistency. This, however, is achieved by retrieving the encrypted b-bit block
from the server, decrypting on the client side and re-encrypting using AES-
CTR mode. Given that we use ROs and a IND-CPA encryption scheme (AES
in CTR mode) the security of the DSSE scheme is not affected in our model,
and, in particular, there is no additional leakage. (ii) The price that is paid for
this performance improvement is that we need interaction in the new vari-
ant. Since the messages (the columns/rows of our matrix) exchanged between
client and server are encrypted with an IND-CPA encryption scheme there is
no additional leakage either due to this operation.

B Discussion on Privacy Levels

The leakage definition and formal security model described in Section 3 im-
ply various levels of privacy for different DSSE schemes. We summarize some
important privacy notions (based on the various leakage characteristics dis-
cussed in [14,23,2,18]) with different levels of privacy as follows:
• Size pattern: It refers to the current number of file-keyword pairs stored

in the system.
• Forward privacy: It refers that a search on a keyword w does not leak the

identifiers of files matching this keyword for (pre-defined) future files.
• Backward privacy: It refers that a search on a keywordw does not leak the

identifiers of files matching this keywords that were previously added but then
deleted (leaked though additional information kept for deletion operations).
• Update privacy: Update operation may leak different levels of informa-

tion depending on the construction:

– Level-1 (L1) leaks only the time t of the update operation and an index
number. L1 does not leak the type of update due to the type operations
performed on encrypted index γ. Hence, it is possible to hide the type of
update via batch/fake file addition/deletion13. However, if the update is
addition and added file is sent to the server along with the update infor-
mation on γ, then the type of update and the size of added file are leaked.

12 This variant encrypts/decrypts b-bit blocks instead of single bits and it requires interaction for
add/delete/update operations.

13 In our scheme, the client may delete file fidj from γ but still may send a fake file f ′idj to the server as a fake

file addition operation.

24

– Level-2 (L2) leaks L1 plus the identifier of the file being updated and the
number of keywords in the updated file (e.g., as in [23]).

– Level-3 (L3) leaks L2 plus when/if that identifier has had the same key-
words added or deleted before, and also when/if the same keyword have
been searched before (e.g., as in [2]).

– Level-4 (L4) leaks L3 plus the information whether the same keyword added
or deleted from two files (e.g., as in [14]).

– Level-5 (L5) leaks significant information such as the pattern of all inter-
sections of everything is added or deleted, whether or not the keywords
were search-ed for (e.g., as in [15]).

The work of Naveed et al. [18] leaks the number of keywords that are com-
mon to all the files in a given subset. The search reveals “removed” versions
of the files in the search results. However, it does not reveal actual file iden-
tifier during the search. Observe that, in addition to achieving CKA2-security
(defined below), our construction achieves the highest level of L1 update pri-
vacy, forward-privacy, backward-privacy and size pattern privacy. Hence, it
achieves the highest level of privacy among its counterparts.

C Additional Variants of the Main Scheme

We discuss further variants of our main scheme as below.

Variant-II: Trade-off between storage and communication overhead. The
storage overhead of Tw and Tf are practically small, and therefore in our main
scheme, we assume that the client stores them to maximize the update and
search efficiency for an exchange of a small storage overhead. For instance,
(N = 1011,m = 105, n = 106), the approximate storage overhead is around
6MB 14.

It is easy to avoid storing Tf at the client, which requires three message ex-
changes, only for update operations, with a very small communication over-
head: In AddToken, given sfj , the server returns (j, stj) to the client and the
client follows the AddToken algorithm as described in the main scheme. This
twist requires transmitting log2(n) + |stj | bits (e.g., approximately 52 bits for
n = 106 and 32-bit counter) from server to the client, but reduces the client
storage up to only 1MB (which is the overhead of Tw for m = 105). Notice
that this storage requirement is plausible even for resource-constrained de-
vices such as mobile phones15. It is also possible to avoid storing Tw at the
client by accepting further communication overhead. That is, the client en-
crypts Tw and stores it at the server. Whenever a search or update is required,
the client retrieve Tw, decrypts it and then follows the main scheme.

14 The client can truncate sfj and swi (e.g., 40 bits) to further reduce the storage overhead (but with a security
trade-off).

15 The client may synchronize the encrypted version of Tw with the server from time to time to ensure that it
is backed up regularly (this can be done rarely so that its communication overhead will be negligible). In any
case, the client can always recover Tw from I(which is always stored at the server), since the client knows
the private key.

25

Variant-III: Alternative Deletion Algorithm. File deletion can be simplified
by adding just another bit to each element ofTf , which is denoted asTf [j].d, j =
1, . . . , n. Assume that file fid with corresponding index j is needed to be deleted.
The client sets Tf [j].d← 0 and then sends index j to the server. The server also
sets Tf [j].d ← 0. During a search operation, the server simply omits the col-
umn values whose deletion bits are zero. If file fid is added in the future, we
follow Add and AddToken algorithms by also setting Tf [j].d← 1. Notice that in
this variant, the update operations directly leak the type of update operation
(see Section 3.2).

Variant-IV: Reducing Row Encryption Cost. In all variants, the last step of
Search algorithm re-encrypts row i, which was decrypted during the search
operation. As discussed, this step protects I against server breaches (e.g., if the
server is compromised at time t, the attacker cannot learn past search results
conducted before t)16. It is possible to reduce the computational overhead of
re-encryption: Given row i, only the matrix cells that were encrypted with row
key ri are re-encrypted. Hence, the server can simply keep a copy of row i
before the decryption operation and re-use matrix cells that are encrypted
with row key ri (and delete the copy).

Support for Parallelization: The main scheme and all its variants can be eas-
ily parallelized, since both search and update operations involve bit opera-
tions between independent vector positions. That is, (F,G,H) and ⊕ opera-
tions can be paralelly executed by p different processors.

16 The overhead of re-encryption has not been included in the performance comparison, since all the com-
pared schemes need to re-encrypt their data structures against such server breaches.

	Dynamic Searchable Symmetric Encryption with Minimal Leakage and Efficient Updates on Commodity Hardware

