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A central tenet of theoretical cryptography is the study of the minimal assumptions required
to implement a given cryptographic primitive. One such primitive is the one-time memory
(OTM), introduced by Goldwasser, Kalai, and Rothblum [CRYPTO 2008], which is a classical
functionality modeled after a non-interactive 1-out-of-2 oblivious transfer, and which is complete
for one-time classical and quantum programs. It is known that secure OTMs do not exist in the
standard model in both the classical and quantum settings. Here, we show how to use quantum
information, together with the assumption of stateless (i.e., reusable) hardware tokens, to build
statistically secure OTMs. This is in sharp contrast with the classical case, where stateless
hardware tokens alone cannot yield OTMs. In addition, our scheme is technologically simple.
We prove security in the quantum universal composability framework, employing semi-definite
programming results of Molina, Vidick and Watrous [TQC 2013] and combinatorial techniques
of Pastawski et al. [Proc. Natl. Acad. Sci. 2012].

1 Introduction

The study of theoretical cryptography is centered around the question of building cryptographic primitives
secure against adversarial attacks. In order to allow a broader set of such primitives to be implemented, one
often considers restricting the power of the adversary. For example, one can limit the computing power of
adversaries to be polynomial bounded [Yao82, BM82], restrict the storage of adversaries to be bounded
or noisy [Mau92, CM97, DFSS05], or make trusted setups available to honest players [Kil88, BFM88,
Can01, CLOS02, IPS08, PR08, LPV09, MPR09, MPR10, MR11, KMQ11, KMPS14], to name a few. One
well-known trusted setup is tamper-proof hardware [Kat07, GKR08], which is assumed to provide a specific
input-output functionality, and which can only be accessed in a “black box” fashion. The hardware can
maintain a state (i.e., is stateful) and possibly carry out complex functionality, but presumably may be difficult
or expensive to implement or manufacture. This leads to an interesting research direction: Build cryptography
primitives using the simplest (and hence easiest and cheapest to manufacture) hardware.

In this respect, two distinct simplified notions of hardware have captured considerable interest. The first is
the notion of a one-time memory (OTM) [GKR08], which is arguably the simplest possible notion of stateful
hardware. An OTM, modeled after a non-interactive 1-out-of-2 oblivious transfer, behaves as follows: first, a
player (called the sender) embeds two values s0 and s1 into the OTM, and then gives the OTM to another
player (called the receiver). The receiver can now read his choice of precisely one of s0 or s1; after this “use”
of the OTM, however, the unread bit is lost forever. Interestingly, OTMs are complete for implementing
one-time use programs (OTPs): given access to OTMs, one can implement statistically secure OTPs for any
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efficiently computable program in the universal composability (UC) framework [GIS+10]. (OTPs, in turn,
have applications in software protection and one-time proofs [GKR08].) In the quantum UC model, OTMs
enable quantum one-time programs [BGS13]. (This situation is analogous to the case of oblivious transfer
being complete for two-party secure function evaluation [Kil88, IPS08].) Unfortunately, OTMs are inherently
stateful, and thus represent a very strong cryptographic assumption — any physical implementation of such a
device must somehow maintain internal knowledge between activations, i.e. it must completely “self-destruct”
after a single use.

This brings us to a second important simplified notion of hardware known as a stateless token [CGS08],
which keeps no record of previous interactions. On the positive side, such hardware is presumably easier to
implement. On the negative side, an adversary can run an experiment with stateless hardware as many times
as desired, and each time the hardware is essentially “reset”. (Despite this, stateless hardware has been useful
in achieving computationally secure multi-party computation [CGS08, GIS+10, CKS+14], and statistically
secure commitments [DS13].) It thus seems impossible for stateless tokens to be helpful in implementing
any sort of “self-destruct” mechanism. Indeed, classically stateful tokens are trivially more powerful than
stateless ones, as observed in, e.g. [GIS+10]. This raises the question:

Can quantum information, together with a classical stateless token, be used to simulate “self
destruction” of a hardware token?

In particular, a natural question along these lines is whether quantum information can help implement an
OTM. Unfortunately, it is known that quantum information alone cannot implement an OTM (or, more
generally, any one-time program) [BGS13]; see also Section 4 below. We thus ask the question: What are the
minimal cryptographic assumptions required in a quantum world to implement an OTM?

Contributions and summary of techniques. Our main contribution is to show that, in the quantum model,
OTMs can be constructed from stateless hardware tokens. We thus show a quantum reduction from stateful
to stateless hardware. This is in sharp contrast with the classical case, in which such a reduction is known to
be trivially impossible.
CONSTRUCTION. The construction is inspired by Wiesner’s idea for conjugate coding [Wie83]: the quantum
portion of the protocols consists in n quantum states chosen uniformly at random from {|0〉, |1〉, |+〉, |−〉}
(note this encoding is independent of the classical bits of the OTM functionality). We then couple this
n-qubit quantum state, |ψ〉, with a classical stateless hardware token, which takes as inputs a choice bit b,
together with an n-bit string y. If b = 0, the hardware token verifies that the bits of y that correspond to
rectilinear (|0〉 or |1〉, i.e. Z basis) encoded qubits of |ψ〉 are consistent with the measurement of |ψ〉 in the
computational basis, in which case the bit s0 is returned. If b = 1, the hardware token verifies that the bits
of y that correspond to diagonal (|+〉 or |−〉, i.e. X basis) encoded qubits of |ψ〉 are consistent with the
measurement of |ψ〉 in the diagonal basis, in which case the bit s1 is returned.
ASSUMPTIONS. First, crucially, the hardware token is specified to accept classical input only (i.e. it cannot
be queried in superposition). Although this may seem a strong assumption, in Section 4.1 we show that any
token which can be queried in superposition cannot be used to construct a secure OTM (with respect to our
setting in which the adversary is allowed to apply arbitrary quantum operations). Similar classical-input
hardware has previously been considered in, e.g., [Unr13, BGS13]. Second, we assume in this work that the
sender is honest (i.e. |ψ〉 and the hardware tokens are honestly produced according to the specified protocol).
SECURITY AND INTUITION. The intuition underlying security for our scheme is clear: in order for a receiver
to extract a bit sb as encoded in the OTM, she must perform a complete measurement of the qubits of |ψ〉
in order to obtain a classical key for sb (since, otherwise, she would likely fail the test as imposed by the
hardware token). But such a measurement would invalidate the receiver’s chance of extracting the bit s1−b!
This is exactly the “self-destruct”-like property we require in order to implement an OTM. This intuitive
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notion of security was already present in Wiesner’s proposal for quantum money1 [Wie83], and is often
given a physical explanation in terms of the no-cloning theorem [WZ82], or the Heisenberg uncertainty
relation [Hei27].

Formally, we show statistical or information-theoretic security in the quantum Universal Composability
(UC) framework [Unr10], which allows us to make strong security claims in terms of the composability of
our protocol within others. Such a security proof requires the construction of a simulator, such that for any
“quantum environment” wishing to interact with the OTM, the environment statistically cannot tell whether
it is interacting with the ideal OTM functionality or the real OTM instance provided by our scheme. The
security of this simulator requires a statement of the following form: Given access to a (randomly chosen)
“quantum key” |ψk〉 and corresponding stateless token Vk, it is highly unlikely for an adversary to successfully
extract keys for both the secret bits s0 and s1 held by Vk, even if the adversary is allowed to interact with Vk
multiple times. The proof of this statement proceeds in two parts. First, in Appendix B.2, we show that the
probability of an adversary succeeding with interaction with Vk is polynomially related to that of succeeding
without interaction with Vk. This part is shown using a combinatorial technique of Pastawski et al. [PYJ+12]
from the setting of quantum money. Second, in Appendix B.3, we show that the probability of succeeding
without interaction is exponentially small in n, the number of qubits in the quantum key |ψk〉. This is shown
using semidefinite programming results of Molina, Vidick and Watrous [MVW13], also from the context of
quantum money. Both of these proof steps are sketched in Section 3.3.

Summarizing, we show the following.

Main Theorem (informal). There exists a protocol Π, which together with a classical stateless token and
the ability to randomly prepare single qubits in one of four pure states, implements the OTM functionality
with statistical security in the UC framework against a corrupted receiver of the OTM.

FURTHER IMPLICATIONS. When combined with prior results, by using the quantum lifting technique of
Unruh [Unr10], our theorem above implies: quantum one-time classical programs [GIS+10], and quantum
one-time quantum programs [BGS13] (in both cases, with security against a corrupt receiver only).

Related work. Our work contributes to the growing list of functionalities achievable with quantum in-
formation, yet unachievable classically. This includes: unconditionally secure key expansion [BB84],
physically uncloneable money [Wie83, MVW13, PYJ+12], a reduction from oblivious transfer to bit com-
mitment [BBCS92, DFL+09] and to other primitives such as “cut-and choose” functionality [FKS+13],
and revocable time-release quantum encryption [Unr14]. Importantly, these protocols all make use of the
technique of conjugate coding [Wie83], which is also an important technique used in protocols for OT in the
bounded quantum storage and noisy quantum storage models [DFSS05, WST08] (see [BS15] for a survey).

A number of proof techniques have been developed in the context of conjugate coding, including
entropic uncertainty relations [WW10]. In the context of QKD, another successful technique is the use
of de Finetti reductions [Ren08] (which exploit the symmetry of the scheme in order to simplify the
analysis). Recently, semidefinite programming approaches have been applied to analyze security of conjugate
coding [MVW13]. This is the approach that we adopt for the “non-interactive” portion of our proof
(Section B.3). Reference [PYJ+12] has also made use of Gavinsky’s [Gav12] quantum retrieval games
framework.

Continuing with proof techniques, somewhat similar to [PYJ+12], Aaronson and Christiano [AC12] have
studied quantum money schemes in which one interacts with a verifier. They introduce an “inner product
adversary method” to lower bound the number of queries required to break their scheme. (In contrast, we use
the combinatorial technique of [PYJ+12].)

We remark that References [PYJ+12] and [MVW13] have studied schemes based on conjugate coding
similar to ours, but in the context of quantum money. In contrast to our setting, the schemes of [PYJ+12]

1Intuitively, quantum money aims to construct currency which is impossible to counterfeit by the laws of quantum mechanics.
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and [MVW13] (for example) involve dynamically chosen random challenges from a verifier to the holder of
a “quantum banknote”, whereas in our work here the “challenges” are fixed (i.e. measure all qubits in the Z
or X basis to obtain secret bit s0 or s1, respectively), and the verifier is replaced by a stateless token.

Also, we note that prior work has achieved oblivious transfer using quantum information, together with
some assumption (e.g. bit commitment [BBCS92] or bounded quantum storage [DFSS05]). These protocols
typically use an interaction phase similar to the “commit-and-open” protocol of [BBCS92]; because we are
working in the non-interactive setting, these techniques appear to be inapplicable.

Finally, we mention related work by Liu [Liu14a, Liu14b, Liu15], which establishes stand-alone secure
OTMs using quantum information. In contrast to our setting, in which an adversary’s allowed quantum gate
set is unrestricted, Liu’s results are set in the isolated-qubit model, which assumes that an adversary can
perform only single-qubit operations (thus, no entangling gates are permitted). We remark that, the security
notion of OTMs by Liu is much weaker than the simulation-based notion that is studied in this paper, and it is
unclear whether this type of OTM is composable; the main goal there is to show feasibility without using any
trusted setup assumptions.

Significance. Our results show a strong separation between the classical and quantum settings, since
classically, stateless tokens cannot be used to securely implement OTMs. To the best of our knowledge, our
work is the first to combine conjugate coding with stateless hardware tokens. Moreover, while our protocol
shares similarities with prior work in the setting of quantum money, building OTMs appears to be a new
focus here 2.

Our protocol has a simple implementation, fitting into the single-qubit prepare-and-measure paradigm
(in fact, one needs only the ability to prepares states |0〉, |1〉, |+〉, |−〉). Thus, our scheme is in principle
amenable to experimental implementations (the quantum portion of our protocol, could, in principle, be
implemented using current hardware for quantum key distribution [BB84]). In addition, from a theoretical
cryptographic perspective, our protocol is attractive in that its implementation requires an assumption of a
stateless hardware token, which is conceivably easier and cheaper to mass produce than a stateful token.

In terms of security guarantees, we allow arbitrary operations on behalf of a malicious quantum receiver
in our protocol (i.e. all operations allowed by quantum mechanics), with the adversary only restricted in
that the stateless token is assumed only usable as a black box. The security we obtain is statistical, with the
only computational assumption being on the number of queries made to the token (i.e. in order to break the
scheme, an adversary must make an exponential number of calls to the token, and moreover this is sufficient,
as clearly one can try all possible keys via brute force in this time). Finally, our proofs are rigorous statements
in the quantum UC framework, meaning our protocol can be easily composed with others proved secure in
this framework (e.g. combining our results with [BGS13]’s protocol immediately yields UC-secure quantum
OTPs against a dishonest receiver).

Finally, we close by remarking that our scheme is “tight” with respect to two impossibility results. First,
the assumption that the token be queried only in the computational basis cannot be relaxed: Section 4.1
shows that if the token can be queried in superposition, then an adversary in our setting can easily break
any OTM scheme. Second, our scheme has the property that corresponding to each secret bit si held by the
token, there are exponentially many valid keys one can input to the token to extract si. In Section 4.2, we
show that for any “measure-and-access” OTM (i.e. an OTM in which one measures a given quantum key and
uses the classical measurement result to access a token to extract data, of which our protocol is an example),
a polynomial number of keys implies the ability to break the scheme with inverse polynomial probability
(more generally, ∆ keys allows probability at least 1/∆2 of breaking the scheme).

Organization of the paper. The remainder of the paper is organized as follows. We begin in Section 2 with
preliminaries, including the ideal functionalities for an OTM and stateless token. In Section 3, we give our

2We remark, however, that a reminiscent concept of single usage of quantum “tickets” in the context of quantum money is very
briefly mentioned in Appendix S.4.1 of [PYJ+12].
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construction for an OTM based on a stateless hardware token; the proof ideas for security are also provided.
In Section 4, we discuss “tightness” of our construction by showing two impossibility results for “relaxations”
of our scheme. Due to space constraints, we include the description of classical UC and quantum UC in
Appendix A. Appendix B gives a formal proof upper bounding the maximum probability with which two
accepting keys for a token V can be extracted from a single quantum key |ψ〉. (These results are used to
finish the security proof in Section 3.) In addition, the security proof for a lemma in Section 4 can be found
in Appendix C.

2 Preliminaries

Notation. We say two binary distributions X and Y are indistinguishable, denoted X ≈ Y, if it holds
that |Pr(Xn = 1)− Pr(Yn = 1)| ≤ negl(n). We define single-qubit |0〉+ = |0〉 and |1〉+ = |1〉, so that
{|0〉+, |1〉+} form the rectilinear basis. We also define |0〉× = 1√

2
(|0〉+ |1〉) and |1〉× = 1√

2
(|0〉− |1〉), so

that {|0〉×, |1〉×} form the diagonal basis. For strings x = x1, x2, . . . xn ∈ {0, 1}n and θ = θ1, θ2, . . . , θn ∈
{+,×}n, we define |x〉θ =

⊗n
i=1 |xi〉θi . Finally, H denotes the standard 2 × 2 Hadamard gate H =

(1 1; 1 − 1)/
√

2 in quantum information.

Quantum universal composition (UC) framework. We consider simulation-based security in this paper.
In particular, we prove the security of our construction in the quantum universal composition (UC) frame-
work [Unr10]. Please see Appendix A for a brief description of the classical UC [Can01] and the quantum
UC [Unr10]. In the next two paragraphs, we introduce two relevant ideal functionalities of one-time memory
and of stateless hardware token.

One-time memory (OTM). The one-time memory (OTM) functionalityFOTM involves two parties, the sender
and the receiver, and consists of two phases, “Create” and “Execute”. Please see Functionality 1 below for
details; for the sake of simplicity, we have omitted the session/party identifiers as they should be implicitly
clear from the context. We sometimes refer to this functionality FOTM as an OTM token.

Functionality 1 Ideal functionality FOTM.

1. Create: Upon input (s0, s1) from the sender, with s0, s1 ∈ {0, 1}, send create to the receiver and store
(s0, s1).

2. Execute: Upon input b ∈ {0, 1} from the receiver, send sb to receiver. Delete any trace of this instance.

Stateless hardware. The original work of Katz [Kat07] introduces the ideal functionality Fwrap to model
stateful tokens in the UC-framework. In the ideal model, a party that wants to create a token, sends the Turing
machine to Fwrap. Fwrap will then run the machine (keeping the state), when the designed party will ask
for it. The same functionality can be adapted to model stateless tokens. It is sufficient that the functionality
does not keep the state between two executions. A simplified version of the Fwrap functionality as shown
in [CGS08] (that is very similar to the Fwrap of [Kat07]) is described below. Note that, again for the sake of
simplicity, we have omitted the session/party identifiers as they should be implicitly clear from the context.

Although the environment and adversary are unbounded, we specify that stateless hardware can be
queried only a polynomial number of times. This is necessary, since otherwise the hardware token model
is vacuous (with unbounded queries, the entire input-output behavior of stateless hardware can be deduced,
hence there is nothing left to hide).
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Functionality 2 Ideal functionality Fwrap.
The functionality is parameterized by a polynomial p(·), and an implicit security parameter n

1. Create: Upon input (create, M) from the sender, where where M is a Turing machine, send create to
the receiver and store M.

2. Execute: Upon input (run, msg) from the receiver, execute M(msg) for at most p(n) steps, and let
out be the response. Let out := ⊥ if M does not halt in p(n) steps. Send out to the receiver.

3 Feasibility of Quantum OTMs using Stateless Hardware

In this section, we present a quantum construction for one-time memories by using stateless hardware
(Section 3.1). We also state our main theorem (Theorem 3.1). In Section 3.2, we describe the Simulator and
prove Theorem 3.1 using the technical results of Appendix B. The intuition and techniques behind the proofs
in Appendix B are sketched in Section 3.3.

3.1 Construction

We now present the OTM protocol Π in the Fwrap hybrid model, between a sender Ps and a receiver Pr. Here
the security parameter is n.

Upon receiving input (s0, s1) from the environment where s0, s1 ∈ {0, 1}, sender Ps operates as follows:

• The sender chooses random strings x ∈R {0, 1}n and θ ∈R {+,×}n, and prepares |x〉θ . Then the
sender, based on tuple (s0, s1, x, θ), prepares the program M as in Program 1.

Program 1 Program for hardware token
Hardcoded values: s0, s1 ∈ {0, 1}, x ∈ {0, 1}n, and θ ∈ {+,×}n

Inputs: y ∈ {0, 1}n and b ∈ {0, 1}, where y is a claimed measured value for the quantum register, and b the
evaluator’s choice bit

1. If b = 0, check that the θ = + positions return the correct bits in y according to x. If Accept, output s0.
Otherwise output ⊥.

2. If b = 1, check that the θ = × positions return the correct bits in y according to x. If Accept, output s1.
Otherwise output ⊥.

• The sender sends |x〉θ to the receiver.

• The sender sends (create, M) to functionality Fwrap, and the functionality sends create to notify
the receiver.

The receiver Pr operates as follows:
Upon input b from the environment, and |x〉θ from the receiver, and create notification from Fwrap,

• If b = 0, measure |x〉θ in the computational basis to get string y and input (run, (y, b)) into Fwrap.

• If b = 1, apply H⊗n to |x〉θ , then measure in the computational basis to get string y and input
(run, (y, b)) into Fwrap.

Return the output of Fwrap to the environment.
It is easy to see that the output of Fwrap is sb for both b = 0 and b = 1.
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Note again that the hardware token, as defined in Program 1, accepts only classical input (i.e. it cannot be
queried in superposition). As mentioned earlier, relaxing this assumption yields impossibility of a secure
OTM implementation, as shown in Section 4. Our main theorem is now stated as follows.

Theorem 3.1. Construction Π above quantum-UC-realizes FOTM in the Fwrap hybrid model with statistical
security against a corrupted receiver.

3.2 Proof of Theorem 3.1

To prove Theorem 3.1, we must construct and analyze an appropriate simulator, which we now proceed to do.

3.2.1 The simulator

In order to prove Theorem 3.1, for any unbounded adversary A who corrupts the receiver, we need to build a
simulator S (having access to the OTM functionality FOTM), such that for any unbounded environment Z ,
the executions in the real model and that in simulation are statistically indistinguishable. Our simulator S is
given below:

The simulator emulates an internal copy of the adversary A who corrupts the receiver. The simulator em-
ulates the communication between A and the external environment Z by forwarding the communication
messages between A and Z .
The simulator S needs to emulate the whole view for the adversary A. First, the simulator picks dummy
inputs s̃0 = 0 and s̃1 = 0, and randomly chooses x ∈ {0, 1}n, and θ ∈ {+,×}n, and generates program
M̃. Then the simulator plays the role of the sender to send |x〉θ to the adversary A (who controls the
corrupted receiver). The simulator also emulates Fwrap to notify A by sending create to indicate that the
hardware is ready for queries.
For each query (run, (b, y)) to Fwrap from the adversary A, the simulator evaluates program M̃ (that is
created based on s̃0, s̃1, x, θ) as in the construction, and then acts as follows:

1. If this is a rejecting input, output ⊥.
2. If this is the first accepting input, call the external FOTM with input b, and learn the output sb from
FOTM. Output sb.

3. If this is a subsequent accepting input, output sb (as above).

3.2.2 Analysis

We now show that the simulation and the real model execution are statistically indistinguishable. There are
two cases in an execution of the simulation which we must consider:

Case 1: In all its queries to Fwrap, the accepting inputs of A have the same choice bit b. In this case, the
simulation is perfectly indistinguishable.
Case 2: In its queries to Fwrap, A produces accepting inputs for both b = 0 and b = 1. In this case, the
simulation fails (the environment can distinguish the real model from the ideal model), since the simulator
is only able to retrieve a single bit from the external OTM functionality FOTM (either corresponding to
b = 0 or b = 1).

Thus, whereas in Case 1 the simulator behaves perfectly, in Case 2 it is in trouble. Fortunately, in Theorem B.1
we show that the probability that Case 2 occurs is exponentially small in n, the number of qubits comprising
|x〉θ . Specifically, we show that for an arbitrary m-query strategy (i.e. any quantum strategy allowed by
quantum mechanics, whether efficiently implementable or not, which queries the token at most m times), the
probability of Case 2 occurring is at most 2(m

2 )(
1
2 +

1
2
√

2
)n. Since m is assumed to be polynomially-bounded,

this expression is exponentially small in n. This concludes the proof.

7



3.3 Security analysis for the token: Intuition

Our simulation proof showing statistical security of our Quantum OTM construction of Section 3.1 relies
crucially on Theorem B.1, which can informally be stated as follows: given a single copy of n-qubit state
|x〉θ , the probability that an unbounded adversary is able to extract both bits s0 and s1 is exponentially small
(in n), even if the adversary is allowed to query the token a polynomial number of times.

We first give a formal statement of this result, followed by the intuition behind its proof (the full proof is
given in Appendix B). In our discussion, we shall switch to a quantum information view for the stateless
token (as opposed to the cryptographic view used in Sections 2 and 3), since this is the setting in which
we show Theorem B.1. Specifically, we model a stateless token V as a map from a query register Q to a
set of three strings: 000 for “reject”, 10s0 for “accept and return s0”, and 01s1 for “accept and return s1”.
Furthermore, we refer to the states |x〉θ (i.e. the “quantum keys”) from conjugate coding as BB84 states, for
the important role that they play in the quantum key distribution protocol [BB84]. For convenience, we refer
to a BB84 key |x〉θ as state |ψk〉, with corresponding token Vk (since the verification program of Vk depends
on k). Finally, for any finite dimensional complex Hilbert space X , we use D(X ) to denote the set of density
operators acting on X (see Section B.1 for further quantum information notation).

Theorem 3.2. Let X ,Q be finite dimensional Hilbert spaces, and let S = {|ψk〉, Vk} denote the ensemble
of BB84 states |ψk〉 ∈ X and corresponding oracles Vk : Q 7→ {0, 1}3 used in Section 3.1. Then, for
any interactive strategy Φ (formally, a trace-preserving, completely positive (TPCP) map Φ : D(X ) 7→
D(Q⊗Q)) which queries Vk for m times,

1
|S| Pr[Vk ⊗Vk applied to Φ(|ψk〉〈ψk|) outputs 10s001s1] ≤ 2

(
m
2

)(
1
2
+

1
2
√

2

)n

. (1)

Intuitively, the adversary’s strategy Φ attempts to map the input BB84 key |ψk〉 to a pair of classical secret
keys, one for s0 and one for s1, stored in register Q⊗Q, which is then checked by two parallel runs of Vk,
i.e. by Vk ⊗Vk. Note that the adversary’s strategy is modeled by an arbitrary TPCP map Φ, meaning any
strategy allowable by the laws of quantum mechanics (whether efficiently implementable or not) is permitted.

To prove this statement, we proceed in two steps: First, we show that the ability to adaptively query the
hardware token m times can improve the success probability of extracting a pair of keys from |ψk〉 for s0
and s1 by at most a polynomial factor in m (in comparison to the setting in which no queries to the token are
allowed). Second, we show that if the adversary cannot query the token, then it can extract keys from |ψk〉
for both s0 and s1 with probability at most inverse exponential in n, the number of key bits.

Step 1: Eliminating interaction with the token. To reduce the interactive setting to the non-interactive
one, we apply a combinatorial technique of Reference [PYJ+12]. In [PYJ+12], this approach was used to
analyze two schemes for quantum money in which a verification oracle is queried (possibly multiple times),
with each query outputting a single bit (i.e. accept or reject). Our setting, however, requires a classical oracle
which outputs multiple bits, i.e. accept/reject, along with possibly multiple secret bits for the accept case. For
this part of the proof, we observe that the technique of [PYJ+12] can be easily generalized to any setting
of the following form: One is given (according to some distribution) a state |ψk〉 and classical oracle Vk,
and asked to measure |ψk〉 to determine some classical key to input to Vk in order to obtain some desired
output from Vk. Unlike [PYJ+12], the oracles Vk can output strings of any length — the only restriction is
that all Vk must share the same set of output strings (i.e. the set of output strings is independent of k, so that
intuitively, no information about keys is leaked by the output of Vk).

To make this formal, we introduce the notion of a fixed-output ensemble of states and oracles. Specifically,
let X ,Q be finite dimensional Hilbert spaces. A fixed-output ensemble {|ψk〉, Vk} of states |ψk〉 ∈ X and
oracles Vk is one with the following properties. Each Vk accepts a (mixed) state ρ ∈ D(Q) as input, measures
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ρ according to some s-outcome projective measurement
{

Πk
i
}s

i=1, and outputs t bits according to these
rules: To denote “reject”, Vk outputs 0t. Otherwise, Vk outputs a non-zero t-bit string y; denote the set of
such “good” outputs y as G ⊆ {0, 1}t. Crucially, each Vk may have a distinct set of measurement operators{

Πk
i
}s

i=1, but all Vk share the same set of output strings G ∪
{

0t} (hence the name fixed-output). The formal
statement we now show is below, and its proof follows that of Theorem 9 of [PYJ+12] closely.

Lemma 3.3 (see also Theorem 9 of [PYJ+12]). Let X ,Q be finite dimensional Hilbert spaces, and let
S = {|ψk〉, Vk} be a fixed-output ensemble of states of X and Q. Fix any distinct y1, y2 ∈ G, and suppose
that for any trace-preserving, completely positive (TPCP) map Φ : D(X ) 7→ D(Q⊗Q),

1
|S| Pr[Vk ⊗Vk applied to Φ(|ψk〉〈ψk|) outputs y1 6= y2 ∈ G] ≤ p (2)

where 0 ≤ p ≤ 1. Then, for any strategy Γ which, given |ψk〉 with probability 1/ |S|, queries Vk m
times, it holds that the probability that at least two queries to Vk return distinct strings in G is at most
(m

2 ) |G| (|G| − 1)p.

Thus, querying the token V m times can increase the probability of success by at most a poly(m) factor
(note that in our setting, |G| = 2).

Intuitively, the proof of Lemma 3.3 proceeds as follows. One first observes that the action of the adversary,
Γ, can be characterized by a sequence of m + 1 non-interactive TPCP maps Γi, where map i is determined by
query answers q1 through qi−1. In general, there are hence 2m such sequences of non-interactive maps Γi to
consider. However, we are only interested in sequences of queries which yield at least two accepting queries
extracting both s0 and s1. This intuitively reduces the number of sequences of maps which must be explicitly
considered to (m

2 ) (i.e. choose the two query positions in which the first two successful queries were made),
which is polynomial in m. But by the assumption of Lemma 3.3, any fixed non-interactive map succeeds
at extracting both s0 and s1 with probability at most p. Roughly, adding the success probabilities of all (m

2 )
non-interactive sequences of maps we need to consider now yields the desired success probability of at most
poly(m) times p.

Step 2: Bounding cheating probabilities in the non-interactive setting. By Step 1, we are reduced to
the question: Given BB84 state |ψk〉 and no query access to token Vk, what is the maximum probability
with which accepting keys for both s0 and s1 can be extracted? To analyze this, we apply the semidefinite
programming based results of Molina, Vidick, and Watrous [MVW13], which studied similar BB84-based
schemes in the context of quantum money. The lemma below is a special case of Lemma 5 of [MVW13]
(our re-statement below is formulated with respect to the context of this paper), whose proof is essentially
identical to that of Lemma 5 of [MVW13], save for some minor modifications for our setting. (The full proof
is given in Appendix B.3.

Lemma 3.4 (see Lemma 5 of [MVW13]). Let X = (C2)⊗n and Q = (C2)⊗(n+1), and let S = {|ψk〉, Vk}
be the fixed-output ensemble of states of X and Q corresponding to the construction of Section 3.1. Fix
any distinct y1, y2 ∈ G = {10s0, 01s1}. Then, over all trace-preserving, completely positive (TPCP) maps
Φ : D(X ) 7→ D(Q⊗Q), we have

max
Φ

1
|S| Pr[Vk ⊗Vk applied to Φ(|ψk〉〈ψk|) outputs y1 6= y2 ∈ G] =

(
1
2
+

1
2
√

2

)n

≈ 0.854n.

The proof of Lemma 3.4 is based on semidefinite programming (SDPs) (a brief primer on SDPs is given
in Appendix B.1). Specifically, one first considers the case of n = 1, i.e. the BB84 key is a single qubit (this
means the secret key for either s0 or s1 is empty, but crucially the adversary does not know for which si this
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holds). In the non-interactive setting, one can formulate the optimal probability of producing accepting keys
for both s0 and s1 as a primal SDP via the Choi-Jamiołkowski representation of linear maps [Cho75, Jam72].
In particular, this representation encodes an arbitrary TPCP map Φ as a positive semi-definite matrix J(Φ)
(satisfying additional properties which can be encoded as a linear constraint). Via the corresponding dual
SDP and duality theory, one can then upper bound the optimal value of the primal SDP. In particular, one
can demonstrate a dual feasible solution Y which yields a (tight) upper bound on the cheating probability of
α = 1/2 + 1/(2

√
2) ≈ 0.854. The argument generalizes analogously to the setting of n BB84 key qubits

where n > 1, in which a similar primal SDP can be formulated, and for which the dual feasible solution Y⊗n

yields a (tight) upper bound on the cheating probability of αn, which is inverse exponential in n.

4 Impossibility Results

We now discuss “tightness” of our protocol with respect to impossibility results. To begin, it is easy to
argue that OTMs cannot exist in the plain model (i.e. without additional assumptions) in both the classical
and quantum settings: in the classical setting, impossibility holds, since software can always be copied.
Quantumly, this follows by a simple rewinding argument [BGS13]. Here, we give two simple no-go results
for the quantum setting which support the idea that our scheme is “tight” in terms of the minimality of the
assumptions it uses: First, a stateless token which can be queried in superposition cannot be used to securely
construct an OTM (Section 4.1). Second, for measure and access schemes such as ours, in order for a stateless
token to allow statistical security, it must have an exponential number of keys per secret bit (Section 4.2).

4.1 Impossibility: Tokens which can be queried in superposition

In our construction, we require that all queries to the token be classical strings, i.e. no querying in superposition
is allowed. It is easy to argue via a standard rewinding argument that relaxing this requirement yields
impossibility of a secure OTM, as we now show. Specifically, let M be a quantum OTM implemented using
a hardware token. Without loss of generality, we may model the token as an oracle O f realizing a function
f : {0, 1}n 7→ {0, 1} in the standard way, i.e. for all y ∈ {0, 1}n and b ∈ {0, 1},

O f |y〉|b〉 = |y〉|b⊕ f (y)〉.

Now, suppose our OTM stores two secret bits s0 and s1, and provides the receiver with an initial state
|ψ〉 ∈ A⊗ B⊗ C, where A, B, and C are ancilla (i.e. algorithm’s workspace), query (i.e. input to O f ), and
answer (i.e. O f ’s answers) registers, respectively. By definition, an honest receiver must be able to access
precisely one of s0 or s1 with certainty, given |ψ〉. Thus, for any i ∈ {0, 1}, there exists a quantum query
algorithm Ai = UmO f · · ·O f U2O f U1 for unitaries Ui ∈ U (A⊗ B⊗ C) such that Ai|ψ〉 = |ψ′〉AB|si〉C.
For any choice of i, however, this implies a malicious receiver can now classically copy si to an external
register, and then “rewind” by applying A†

i to |ψ′〉AB|si〉C to recover |ψ〉. Applying Ai′ for i′ 6= i to |ψ〉 now
yields the second bit i′ with certainty as well. We conclude that a quantum OTM which allows superposition
queries to a stateless token is insecure (assuming an adversary is not restricted in the quantum operations it
can apply).

Remark 4.1. (1) It is because the token is stateless that we are able to model it here via the standard oracle
query framework used in the quantum query complexity literature. It is easy to see that the argument above
breaks down for a “stateful” token. Specifically, suppose the token is allowed to have a private memory.
Then, one can design the token such that each time it is queried, it copies the n input qubits in B via CNOT
gates to a fresh set of n ancilla qubits initialized to all zeroes — this effectively forces a measurement in
the computational basis on B, which prevents Ai from being rewinded via the standard argument above.
(2) Above, we assumed the OTM outputs si with certainty. The argument can be generalized to the setting
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in which the OTM outputs si with probability at least 1− ε for small ε > 0; in this case, Winter’s Gentle
Measurement Lemma [Win99] can be used to show that both bits can again be recovered with non-negligible
probability.

4.2 Impossibility: Tokens with a bounded number of keys

We have observed that allowing superposition queries to the token prevents an OTM from being secure. One
might next ask how simple a hardware token with classical queries can be, while still allowing a secure OTM.
We now explore one such strengthening of our construction in which the token is forced to have a bounded
number of keys.

To formalize this, let us define the notion of a “measure-and-access (MA)” OTM, i.e. an OTM in which
given an initial state |ψ〉, an honest receiver applies a prescribed measurement to |ψ〉, and feeds the resulting
classical string (i.e. key) y into the token O f to obtain si. Our construction is an example of a MA memory in
which each bit si has an exponential number of valid keys y such that f (y) = si. One might ask whether the
construction can be strengthened such that each si has a bounded number (e.g. a polynomial number) of keys.
We now show that such a strengthening would preclude security.

For clarity, implicitly in our proof below, we model the oracle O f as having three possible outputs: 0, 1,
or 2, where 2 is output whenever O f is fed an invalid key y. This is required for the notion of having “few”
keys to make sense (i.e. there are 2n candidate keys, and only two secret bits, each of which is supposed to
have a bounded number of keys). Note that our construction indeed fits into this framework.

Lemma 4.2. Let M be a MA memory with oracle O f , such that O f cannot be queried in superposition. If a
secret bit si has at most ∆ keys yi such that f (yi) = si, then given a single copy of |ψ〉, one can extract both
s0 and s1 from M with probability at least 1/∆2.

Remark 4.3. The proof is given in Appendix C. Lemma 4.2 shows that in the paradigm of measure-and-access
memories, our construction is essentially tight — in order to bound the adversary’s success probability of
obtaining both secret bits by an inverse exponential, we require each secret bit to have exponentially many
valid keys. Second, as in the setting of superposition queries, the above proof can be generalized to the setting
in which the OTM returns the correct bit si with probability at least 1− ε for small ε > 0.
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A Universal Composition (UC) Framework

We consider simulation-based security. The Universal Composability (UC) framework was proposed
by Canetti [Can01, Can00b], culminating a long sequence of simulation-based security definitions (cf.
[GMW87, GL91, MR92, Bea91, Can00a]); please see also [PW01, PS04, CDPW07, LPV09, MR11] for
alternative/extended frameworks. Recently Unruh [Unr10] extend the UC framework to the quantum setting.
Next, we provide a high-level description of the original classical UC model by Canetti [Can01, Can00b],
and then the quantum UC model by Unruh [Unr10].

A.1 Classical UC Model ([Can01, Can00b])

Machines. The basic entities involved in the UC model are players P1, . . . , Pk where k is polynomial of
security parameter n, an adversary A, and an environment Z . Each entity is modeled as a interactive Turing
machine (ITM), where Z could have an additional non-uniform string as advice. Each Pi has identity i
assigned to it, while A and Z have special identities idA := adv and idZ := env.

Protocol Execution. A protocol specifies the programs for each Pi, which we denote as π = (π1, . . . , πk).
The execution of a protocol is coordinated by the environment Z . It starts by preparing inputs to all players,
who then run their respective programs on the inputs and exchange messages of the form (idsender, idreceiver, msg).
A can corrupt an arbitrary set of players and control them later on. In particular, A can instruct a corrupted
player sending messages to another player and also read messages that are sent to the corrupted players.
During the course of execution, the environment Z also interacts with A in an arbitrary way. In the end, Z
receives outputs from all the other players and generates one bit output. We use EXEC[Z ,A, π] denote the
distribution of the environment Z’s (single-bit) output when executing protocol π with A and the Pi’s.

Ideal Functionality and Dummy Protocol. Ideal functionality F is a trusted party, modeled by an ITM
again, that perfectly implements the desired multi-party computational task. We consider an “dummy
protocol”, denoted PF , where each party has direct communication with F, who accomplishes the desired
task according to the messages received from the players. The execution of PF with environment Z and
an adversary, usually called the simulator S , is defined analogous as above, in particular, S monitors the
communication between corrupted parties and the ideal functionality F. Similarly, we denote Z’s output
distribution as EXEC[Z ,S , PF ].
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Definition A.1 (Classical UC-secure Emulation). We say π (classically) UC-emulates π′ if for any adver-
sary A, there exists a simulator S such that for all environments Z ,

EXEC[Z ,A, π] ≈ EXEC[Z ,S , π′]

We here consider that A and Z are computationally unbounded, and we call it statistical UC-security. We
require the running time S is polynomial in that of A. We call this property Polynomial Simulation.

Let F be a well-formed two party functionality. We say π (classically) UC-realizes F if for all adversary
A, there exists a simulator S such that for all environments Z , EXEC[Z ,A, π] ≈ EXEC[Z ,S , PF ]. We
also write EXEC[Z ,A, π] ≈ EXEC[Z ,S ,F ] if the context is clear.

UC-secure protocols admit a general composition property, demonstrated in the following universal
composition theorem.

Theorem A.2 (UC Composition Theorem [Can00b]). Let π, π′ and σ be n-party protocols. Assume that π
UC-emulates π′. Then σπ UC-emulates σπ′ .

A.2 Quantum UC Model ([Unr10])

Now, we give a high-level description of quantum UC model by Unruh [Unr10].

Quantum Machine. In the quantum UC model, all players are modeled as quantum machines. A quantum
machine is a sequence of quantum circuits {Mn}n∈N, for each security parameter n. Mn is a completely
positive trace preserving operator on spaceHstate⊗Hclass⊗Hquant, whereHstate represents the internal
workspace of Mn andHclass andHquant represent the spaces for communication, where for convenience
we divide the messages into classical and quantum parts. We allow a non-uniform quantum advice3 to the
machine of the environment Z , while all other machines are uniformly generated.

Protocol Execution. In contrast to the communication policy in classical UC model, we consider a
network N which contains the spaceHN := Hclass ⊗Hquant ⊗i Hstate

i . Namely, each machine maintains
individual internal state space, but the communication space is shared among all . We assumeHclass contains
the message (idsender, idreceiver, msg) which specifies the sender and receiver of the current message, and
the receiver then processes the quantum state on Hquant. Note that this communication model implicitly
ensures authentication. In a protocol execution, Z is activated first, and at each round, one player applies
the operation defined by its machine Mn onHclass ⊗Hquant ⊗Hstate. In the end Z generates a one-bit
output. Denote EXEC[Z ,A, Π] the output distribution of Z .

Ideal Functionality. All functionalities we consider in this work are classical, i.e., the inputs and outputs
are classical, and its program can be implemented by an efficient classical Turing machine. Here in the
quantum UC model, the ideal functionality F is still modeled as a quantum machine for consistency, but it
only applies classical operations. Namely, it measures any input message in the computational basis to get an
classical bit-string, and implements the operations specified by the classical computational task.

We consider an “dummy protocol”, denoted PF , where each party has direct communication with F,
who accomplishes the desired task according to the messages received from the players. The execution of
PF with environment Z and an adversary, usually called the simulator S , is defined analogous as above, in
particular, S monitors the communication between corrupted parties and the ideal functionality F. Similarly,
we denote Z’s output distribution as EXEC[Z ,S , PF ]. For simplicity, we also write it as EXEC[Z ,S ,F ].

3Unruh’s model only allows classical advice, but we tend to take the most general model. It is easy to justify that almost all
results remain unchanged, including the composition theorem. See [HSS11, Section 5] for more discussion.
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Definition A.3 (Quantum UC-secure Emulation). We say Π quantum-UC-emulates Π′ if for any quantum
adversary A, there exists a (quantum) simulator S such that for all quantum environments Z ,

EXEC[Z ,A, Π] ≈ EXEC[Z ,S , Π′]

We consider here that A and Z are computationally unbounded, we call it (quantum) statistical UC-security.
We require the running time S is polynomial in that of A. We call this property Polynomial Simulation.

Similarly, (quantum) computational UC-security can be defined. Let F be a well-formed two party
functionality. We say Π quantum-UC-realizes F if for all quantum adversary A, there exists a (quantum)
simulator S such that for all quantum environments Z , EXEC[Z ,A, Π] ≈ EXEC[Z ,S , PF ].

Quantum UC-secure protocols also admit general composition:

Theorem A.4 (Quantum UC Composition Theorem [Unr10, Theorem 11]). Let Π, Π′ and Σ be quantum-
polynomial-time protocols. Assume that Π quantum UC-emulates Π′. Then ΣΠ quantum UC-emulates ΣΠ′ .

Remark A.5. Out of the two protocol parties (the sender and the receiver), we consider security only in the
case of the receiver being a corrupted party. Note that we are only interested in cases where the same party
is corrupted with respect to all composed protocol. Furthermore, we only consider static corruption.

B Security Analysis for the Token

We now provide the technical result (Theorem B.1) that is used to prove security of our Quantum OTM
construction of Section 3.1. An informal statement of the following theorem is as follows: given a single
copy of n-qubit |x〉θ , the probability that an unbounded adversary is able to extract both bits s0 and s1 is
exponentially small (in n), even if the adversary is allowed to query the token a polynomial number of times.
For the proofs of this section, we model a token V as outputting one of three strings: 000 for “reject”, 10s0
for “accept and return s0”, and 01s1 for “accept and return s1”. Furthermore, we refer to the states (i.e. the
quantum keys) from conjugate coding as BB84 state, for the important role that they play in the quantum key
distribution protocol [BB84].

Theorem B.1. Let X ,Q be finite dimensional Hilbert spaces, and let S = {|ψk〉, Vk} denote the ensemble
of BB84 states |ψk〉 ∈ X and corresponding oracles Vk : Q 7→ {0, 1}3 used in Section 3.1. Then, for
any interactive strategy Φ (formally, a trace-preserving, completely positive (TPCP) map Φ : D(X ) 7→
D(Q⊗Q)) which queries Vk m times,

1
|S| Pr[Vk ⊗Vk applied to Φ(|ψk〉〈ψk|) outputs 10s001s1] ≤ 2

(
m
2

)(
1
2
+

1
2
√

2

)n

. (3)

Proof. The claim follows immediately by setting G = {10s0, 01s1} and combining Lemmas B.2 and B.3.

Lemmas B.2 and B.3 and their proofs are found in Sections B.2 and B.3, respectively. We begin in
Section B.1 by stating the relevant notation for this section, and give brief reviews of quantum channels and
semidefinite programming.

B.1 Notation, quantum channels, and semidefinite programming

Notation. Let X be a finite dimensional complex Hilbert space. Then, L(X ), Herm(X ), Pos(X ),
and D(X ) denote the sets of linear, Hermitian, positive semidefinite, and density operators acting on X ,
respectively. The notation A � B means A− B is positive semidefinite.

16



Quantum channels. A linear map Φ : L(X ) 7→ L(Y) is a quantum channel if Φ is trace-preserving and
completely positive (TPCP). These are the channels which map density operators to density operators. For
the semidefinite programs in Section B.3, a useful representation of linear maps Φ : L(X ) 7→ L(Y) known
as the Choi-Jamiołkowski matrix, J(Φ) ∈ L(Y ⊗X ), will be used. The latter is defined (with respect to
some choice of orthonormal basis {|i〉} for X ) as

J(Φ) = ∑
i,j

Φ(|i〉〈j|)⊗ |i〉〈j|.

We use the following three properties of J(Φ) [Cho75, Jam72]:

• Φ is completely positive if and only if J(Φ) � 0.

• Φ trace-preserving if and only if TrY (J(Φ)) = IX .

• For any input state |φ〉 ∈ X and |ψ〉 ∈ Y , Tr(Φ(|φ〉〈φ|)|ψ〉〈ψ|) = Tr(J(Φ)|ψ〉〈ψ| ⊗ |φ〉〈φ|) for
|φ〉 the complex conjugate of |φ〉.

Semidefinite programs. We present semidefinite programs (SDPs) in a form useful for quantum infor-
mation, as done (e.g.) in the notes of Watrous [Wat11] or [MVW13]. For further details, a standard text
on convex optimization is Boyd and Vandenberghe [BV04]. Given any 3-tuple (A, B, Φ) for operators
A ∈ Herm(X ) and B ∈ Herm(Y), and linear map Φ : L(X ) 7→ L(Y) mapping Hermitian operators to
Hermitian operators, one can state a primal and dual semidefinite program:

Primal problem (P)

sup Tr(AX)

s.t. Φ(X) = B,
X ∈ Pos(X ),

Dual problem (D)

inf Tr(BY)
s.t. Φ∗(Y) � A

Y ∈ Herm(Y),

where Φ∗ denotes the adjoint of Φ, which is the unique map satisfying Tr(A†Φ(B)) = Tr((Φ∗(A))†B) for
all A ∈ L(Y) and B ∈ L(X ). The remarkable power of SDPs lies in the concept of weak duality, which
states that the optimal value of P is upper bounded by the optimal value of Q. (Note that not all SDPs have
feasible solutions; in this case, we label the optimal values as −∞ for P and ∞ for D, respectively.) Thus, if
one can phrase a maximization problem Π as an SDP P, then there is a simple method for upper bounding the
optimal value of Π — demonstrate a feasible solution for the dual program D. This is precisely the technique
used to upper bound the probably of cheating in Section B.3.

B.2 Step 1: Reducing the interactive case to the non-interactive case

To reduce the interactive setting to the non-interactive one, we apply a combinatorial technique of Refer-
ence [PYJ+12] (see Theorem 9 therein). In [PYJ+12], this approach was used to analyze two schemes for
quantum money in which a verification oracle is queried (possibly multiple times), with each query outputting
a single bit (i.e. accept or reject). Our setting, however, requires a classical oracle which outputs multiple bits
(i.e. accept/reject, along with possibly multiple secret bits for the accept case). In this section, we observe
that the technique of [PYJ+12] can be easily generalized to any setting of the following form: One is given
(according to some distribution) a state |ψk〉 and classical oracle Vk, and asked to measure |ψk〉 to determine
some classical key to input to Vk in order to obtain some desired output from Vk. Unlike [PYJ+12], the
oracles Vk can output strings of any length — the only restriction is that all Vk must share the same set of
output strings (i.e. the set of output strings is independent of k, so that intuitively, no information about keys
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is leaked by the output of Vk). We give a formal statement of the generalized presentation of the technique
below, and a proof which follows that of Theorem 9 of [PYJ+12] closely.

To do so, we first introduce the notion of a fixed-output ensemble of states and oracles. Specifically,
let X ,Q be finite dimensional Hilbert spaces. A fixed-output ensemble {|ψk〉, Vk} of states |ψk〉 ∈ X and
oracles Vk is one with the following properties. Each Vk accepts a (mixed) state ρ ∈ D(Q) as input, measures
ρ according to some s-outcome projective measurement

{
Πk

i
}s

i=1, and outputs t bits according to these rules:
To denote “reject”, Vk outputs 0t. Otherwise, Vk outputs a non-zero t-bit string y; denote the set of such
“good” outputs y as G ⊆ {0, 1}t. Note that s = |G|+ 1, and t ≥ dlog2(s)e. Crucially, each Vk may have
a distinct set of measurement operators

{
Πk

i
}s

i=1, but all Vk share the same set of output strings G ∪
{

0t}
(hence the name fixed-output).

Lemma B.2 (see also Theorem 9 of [PYJ+12]). Let X ,Q be finite dimensional Hilbert spaces, and let
S = {|ψk〉, Vk} be a fixed-output ensemble of states of X and Q. Fix any distinct y1, y2 ∈ G, and suppose
that for any trace-preserving, completely positive (TPCP) map Φ : D(X ) 7→ D(Q⊗Q),

1
|S| Pr[Vk ⊗Vk applied to Φ(|ψk〉〈ψk|) outputs y1 6= y2 ∈ G] ≤ p (4)

where 0 ≤ p ≤ 1. Then, for any strategy Γ which, given |ψk〉 with probability 1/ |S|, queries Vk m
times, it holds that the probability that at least two queries to Vk return distinct strings in G is at most
(m

2 ) |G| (|G| − 1)p.

To apply Lemma B.2 to our setting, we can model our token so that it returns 3 bits: The first two bits
are set to 00 for reject, 10 for acceptance of a key for the first choice of secret bit, and 01 for acceptance
for the second secret bit. The third bit encodes the desired secret bit. Thus, we define G in Lemma B.2 as
G = {10s0, 01s1} for secret bits s0, s1 ∈ {0, 1}. This generalizes straightforwardly if one wishes to encode
more secret bits or even secret strings of longer length.

Proof of Lemma B.2. We follow [PYJ+12] closely. We can model Γ as follows. For each query i ∈ [m],
there is a query space Qi, such that in the ith query, Vk maps D(Qi) to {0, 1}t via a projective measurement.
This measurement is given by projectors M =

{
Πk

i
}s

i=1, where s = |G|+ 1, and the Πk
i are labelled by

outcomes in G ∪
{

0t}. Since Vk acts in tensor product across different Qi, we may assume without loss
of generality that Γ performs the queries in sequence, reading the outcome of query i before performing
query i + 1. Thus, we can view Γ as a sequence of TPCP maps Γi as follows. The first map satisfies
Γ1 : D(X ) 7→ D(X ⊗Q1). For 1 < i < m + 1, we have Γi : D(X )⊗D(Ci) 7→ D(X ⊗Qi), where Ci
stores the t-bit classical outcome of query i. Finally, Γm+1 : D(X )⊗D(Cm) 7→ D(X ). After each Γi is
applied, the oracle is applied to Qi, placing output xi ∈ {0, 1}t in Ci.

Now, conditioned on x1 · · · xi, the map Γi+1 is determined (for i ≥ 1). Thus, any setting of C1⊗ · · · ⊗ Cm
to x = x1 · · · xm ∈ {0, 1}t × · · · × {0, 1}t uniquely determines a sequence of maps Γx = Γm+1 ◦ · · · ◦ Γ1.
Note that in general, Γx(|ψk〉〈ψk|) is not equal to the state produced by applying Γ to |ψk〉〈ψk|, since Γ
involves postselection due to oracle queries, which make the reduced state on X consistent with string x.
However, since Γx does not act on register Qi after it applies map Γi, we can recover the output of Γ on
|ψk〉〈ψk| if we defer Vk’s measurement until the end of the computation, and postselect on outcomes x. In
other words, for any fixed pair (|ψk〉, Vk), the probability that applying Γ to |ψk〉〈ψk|, up to and including
query q, will yield x ∈ ({0, 1}t)×q is

Pr(x1 · · · xq | (|ψk〉, Vk)) = Tr[(Γq ◦ · · · ◦ Γ1)(|ψk〉〈ψk|)Πk
x1
⊗ · · · ⊗Πk

xq
],

where Πk
xi
∈ M is the projector which outputs measurement outcome xi.
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Let Y denote the set of all strings of form x1 · · · xq satisfying properties (1) q ≤ m (i.e. x corresponds
to q ≤ m queries), (2) xi ∈ {0, 1}t for 1 ≤ i ≤ q, (3) xq ∈ G, and (4) there exists precisely one index
i 6= j such that xi 6= xq and xi ∈ G. Note that the elements of Y can have different lengths, and that
|Y| = (m

2 ) |G| (|G| − 1). Then, the statement of the claim wishes to upper bound the quantity

1
|S|∑k

∑
x1···xm∈({0,1}t)

×m

s.t. ∃ i 6=j with xi 6=xj∈G

Pr(x | (|ψk〉, Vk)) = ∑
x∈Y

1
|S|∑k

Pr(x | (|ψk〉, Vk)). (5)

Above, the second equality crucially uses the fact that the ensemble (|ψk〉, Vk) is fixed-output, which yields
that Y is independent of k, and so the sums commute. As done in [PYJ+12], observe now that for any
x = x1 · · · xq ∈ Y such that xi 6= xq ∈ G,

1
|S|∑k

Pr(x | (|ψk〉, Vk)) =
1
|S|∑k

Tr[(Γq ◦ · · · ◦ Γ1)(|ψk〉〈ψk|)Πk
x1
⊗ · · · ⊗Πk

xq
]

≤ 1
|S|∑k

Tr[(Γq ◦ · · · ◦ Γ1)(ρ)Ix1 ⊗ · · · Ixi−1 ⊗Πxi ⊗ Ixi−1 · · · ⊗ Ixq−1 ⊗Πxq ]

≤ p,

where the last inequality follows by Equation (4) of the claim. Combining this with Equation (5) and the fact
that |Y| = (m

2 ) |G| (|G| − 1), the claim follows.

B.3 Step 2: The non-interactive case

Lemma B.2 yields that in order to prove that it is unlikely for a corrupt receiver to extract both secret bits
from the stateless token, it suffices to consider the following question: Given only the initial state |ψk〉, what
is the maximum probability with which accepting keys (with respect to oracle Vk) for both secret bits can
be extracted from |ψk〉 (i.e. no queries to Vk are allowed)? In the terminology of Lemma B.2, we have
G = {10s0, 01s1} for secret bits s0, s1 ∈ {0, 1}, with 000 the string output by Vk to denote “reject”. To
analyze this, we apply the semidefinite programming based results of Molina, Vidick, and Watrous [MVW13],
which studied similar BB84-based schemes in the context of quantum money. The lemma below is a special
case of Lemma 5 of [MVW13] (our re-statement below is formulated with respect to the context of this paper),
whose proof is essentially identical to that of Lemma 5 of [MVW13], save for some minor modifications for
our setting. For completeness, we give a full proof below. Any modifications to the proof of [MVW13] are
explicitly noted; among these is the fact that we require distinct outputs y1 6= y2 ∈ G below, which results in
a better security bound in Lemma B.3 than that obtained in [MVW13] (details in the proof below).

Lemma B.3 (see Lemma 5 of [MVW13]). Let X = (C2)⊗n and Q = (C2)⊗(n+1), and let S = {|ψk〉, Vk}
be the fixed-output ensemble of states of X and Q corresponding to the construction of Section 3.1. Fix
any distinct y1, y2 ∈ G = {10s0, 01s1}. Then, over all trace-preserving, completely positive (TPCP) maps
Φ : D(X ) 7→ D(Q⊗Q), we have

max
Φ

1
|S| Pr[Vk ⊗Vk applied to Φ(|ψk〉〈ψk|) outputs y1 6= y2 ∈ G] =

(
1
2
+

1
2
√

2

)n

≈ 0.854n. (6)

We note that the maximum value of ( 1
2 +

1
2
√

2
)n = cos2(π

8 ) is a common constant in quantum information
processing, and is attained by the tensor product of single-qubit measurements in the Breidbart basis
[BBCS92, BBBW82].
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Proof of Lemma B.3. Recall that in the construction of Section 3.1, our protocol picks |ψk〉 ∈ (C2)⊗n by
locally setting each qubit (uniformly and independently at random) to one of {|0〉, |1〉, |+〉, |−〉}. The
corresponding oracle Vk then accepts a string 0y ∈ {0, 1}n+1 (resp. 1y ∈ {0, 1}n+1) if the encoded bits
for all the Z-basis (resp. X-basis) qubits of |ψk〉 are correct; in this case, Vk outputs 10s0 (resp. 01s1). We
now produce the semidefinite programming-based (SDP) proof of Lemma 5 of [MVW13] (with very minor
modifications, indicated below), which goes as follows: First, the case of n = 1 (i.e. a single-qubit BB84 key)
is analyzed. Based on this, a result for the parallel repetition of this 1-qubit scheme n times easily follows.

Assume without loss of generality that the adversary (i.e. Φ) places its candidate Z-basis and X-basis
keys into the first and second copies of Q, respectively, since recall the goal is for the adversary to obtain
distinct outputs y1 6= y2 ∈ G. (In comparison, [MVW13] decides which question to ask for each copy of Q
uniformly at random. Thus, with probability 1/2, it is optimal to place the same key in both copies of Q,
obtaining identical outputs y1 = y2 ∈ G. This also yields a weaker security bound in [MVW13].) Then, the
primal semidefinite program for the expression in Equation (6) is given by

max Tr(XA)

s.t. TrQ⊗Q(X) = IX
X ∈ Pos(Q⊗Q⊗X ),

where the objective function operator A is (for H the Hadamard gate)

A =
1
4

[
∑

b∈{0,1}
|0〉〈0| ⊗ |b〉〈b| ⊗ |1〉〈1| ⊗ I ⊗ |b〉〈b|+ ∑

c∈{0,1}
|0〉〈0| ⊗ I ⊗ |1〉〈1| ⊗ |c〉〈c| ⊗ H|c〉〈c|H

]

=
1
4 ∑

b,c∈{0,1}
|0〉〈0| ⊗ |b〉〈b| ⊗ |1〉〈1| ⊗ |c〉〈c| ⊗ (|b〉〈b|+ H|c〉〈c|H).

Intuitively, X corresponds to the Choi-Jamiołkowski matrix J(Φ) of some linear map |Φ〉 : L(X ) 7→
L(Q⊗Q). The conditions TrQ⊗Q(X) = IX and X ∈ Pos(Q⊗Q⊗X ) enforce that Π is trace-preserving
and completely positive, respectively. Finally, A acts on five registers (in [MVW13], A acts on three registers):
The first and third of these are single qubits which simply hold the values |0〉 and |1〉, which are the single-bit
prefixes (i.e. choice bit b) required by Vk for Z-basis and X-basis queries, respectively (these two registers
are absent in [MVW13]). The last register holds the BB84 state which was prepared (i.e. either |0〉, |1〉,
|+〉, or |−〉), and the second and fourth registers hold the corresponding encoded bit for the Z- and X-bases,
respectively. Thus, e.g. when the last register has value |+〉, then the second register reads I since any value
is allowed here, but the fourth register must read |0〉, since this is the encoded bit. Finally, for convenience,
let us define A′ on registers 2, 3, and 4 so that we can rewrite A as

A = |0〉〈0|1 ⊗ |1〉〈1|3 ⊗ A′, (7)

i.e. we have simply factored out registers 1 and 3 in the expression for A.
For brevity, define Vb,c = (|b〉〈b| + H|c〉〈c|H). Since 〈b|H|c〉 = 1/

√
2 for all b, c ∈ {0, 1}, by

considering Tr(Vb,c) and Tr(V2
b,c), one easily obtains that the eigenvalues of Vb,c are 1± (1/

√
2). Suppose

the corresponding eigenvectors for V0,0 are |ψ+〉 and |ψ−〉, respectively. Then, a primal feasible solution is
given by

X = |0〉〈0|1⊗ |1〉〈1|3⊗ (|00〉〈00| ⊗ |ψ+〉〈ψ+|+ |11〉〈11| ⊗ |ψ−〉〈ψ−|) =: |0〉〈0|1⊗ |1〉〈1|3⊗X′. (8)

(In [MVW13], the first and third registers are omitted above.) Observing that V11 = 2I −V00, this solution
obtains objective value 1/2 + 1/(2

√
2). This is now shown tight by demonstrating a matching dual solution.
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Specifically, the dual SDP is given by

max Tr(Y)
s.t. IQ⊗Q ⊗Y � A

Y ∈ Herm(X ).

Since A is block-diagonal, the first condition can be simplified from IQ⊗Q ⊗ Y � A to ∀ b, c Y � 1
4 Vb,c.

Since the largest eigenvalue of any Vb,c is 1 + (1/
√

2), it follows that Y = (1/4 + 1/(4
√

2))I is a feasible
solution for the dual SDP with objective value 1/2 + 1/(2

√
2), matching the primal feasible solution’s

value. This completes the analysis for the n = 1 case.
The case of n > 1 now follows easily: The SDPs above generalize straightforwardly, and for optimal

solutions X and Y for the n = 1 case above, the generalized solutions are |0〉〈0|1 ⊗ |1〉〈1|3 ⊗ (X′)⊗n

and Y⊗n, respectively. Formally, define X n = X1 ⊗ · · · ⊗ Xn, and analogously for Qn. For brevity, set
Sn

qqx = (Q1 ⊗Q1 ⊗X1)⊗ · · · ⊗ (Qn ⊗Qn ⊗Xn). The primal and dual SDPs of the n-fold repetition are
now

Primal problem (P)

max Tr(X(Uπ|0〉〈0|1 ⊗ |1〉〈1|3 ⊗ (A′)⊗nU†
π))

s.t. TrQn⊗Qn(X) = IX n

X ∈ Pos(Qn ⊗Qn ⊗X n),

Dual problem (D)

max Tr(Y)

s.t. IQn⊗Qn ⊗Y � Uπ(|0〉〈0|1 ⊗ |1〉〈1|3 ⊗ (A′)⊗n)U†
π

Y ∈ Herm(X n),

where Uπ is a permutation aligning space Qn ⊗Qn ⊗X n with Sn
qqx. If the optimal solution to the n = 1

primal SDP from Equation (8) is |0〉〈0|1 ⊗ |1〉〈1|3 ⊗ X′ with value α, it is clear that |0〉〈0|1 ⊗ |1〉〈1|3 ⊗
(X′)⊗n obtains value αn for P above. Similarly, for optimal solution Y to the n = 1 dual SDP with value
α, Y⊗n achieves αn for D above; this follows since for any operators C and D, we have that Tr(C⊗ D) =
Tr(C)Tr(D) and that C � D � 0 implies C⊗n � D⊗n.

C Proof of Lemma 4.2

Proof. Observe first that an honest receiver Alice wishing to extract si acts as follows. She applies a unitary
Ui ∈ U (A⊗ B) to get state

|φ1〉 := Ui|ψ〉AB|0〉C. (9)

She then measures B in the computational basis and postselects on result y ∈ {0, 1}n, obtaining state

|φ2〉 := |φy〉A|y〉B|0〉C. (10)

She now treats y as a “key” for si, i.e. she applies O f to B⊗ C to obtain her desired bit si, i.e.

|φ3〉 := |φy〉A|y〉B|si〉C. (11)

A malicious receiver Bob wishing to extract s0 and s1 now acts similarly to the rewinding strategy for
superposition queries. Suppose without loss of generality that s0 has at most ∆ keys. Then, Bob first applies
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U0 to prepare |φ1〉 from Equation (9), which we can express as

|φ1〉 = ∑
y∈{0,1}n

αy|ψy〉A|y〉B|0〉C. (12)

for ∑y
∣∣αy
∣∣2 = 1. Since measuring B next would allow us to retrieve s0 in register C with certainty, we have

that all y appearing in the expansion above satisfy f (y) = si. Moreover, since s0 has at most ∆ keys, there
exists a key y′ such that

∣∣αy′
∣∣2 ≥ 1/∆. Bob now measures B in the computational basis to obtain |φ2〉 from

Equation (10), obtaining y′ with probability at least 1/∆. Feeding y′ into O f yields s1. Having obtained y′,
we have that |〈φ1|φ2〉|2 ≥ 1/∆, implying∣∣∣〈ψ|U†

0 |φy′〉|y′〉
∣∣∣2 ≥ 1/∆,

i.e. Bob now applies U†
0 to recover a state with “large” overlap with initial state |ψ〉.

To next recover s1, define |ψgood〉 := U1|ψ〉 and |ψapprox〉 := U1U†
0 |φy′〉|y′〉. Bob applies U1 to obtain

|ψapprox〉 = β1|ψgood〉+ β2|ψ⊥good〉,

where ∑i |βi|2 = 1, 〈ψgood|ψ⊥good〉 = 0, and |β1|2 ≥ 1/∆. Define Πgood := ∑y∈{0,1}n s.t. f (y)=s1
|y〉〈y|.

Then, the probability that measuring B in the computational basis now yields a valid key for s1 is

〈ψapprox|Πgood|ψapprox〉 ≥ |β1|2 ≥
1
∆

,

where we have used the fact that Πgood|ψgood〉 = |ψgood〉 (since an honest receiver can extract s1 with
certainty). We conclude that Bob can extract both s0 and s1 with probability at least 1/∆2.
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