
Practical Witness Encryption for Algebraic
Languages And How to Reply an Unknown

Whistleblower

David Derler and Daniel Slamanig

IAIK, Graz University of Technology, Austria
{david.derler|daniel.slamanig}@tugraz.at

Abstract. Witness encryption (WE) is a recent powerful encryption
paradigm, which allows to encrypt a message using the description of
a hard problem (a word in an NP-language) and someone who knows
a solution to this problem (a witness) is able to efficiently decrypt the
ciphertext. Recent work thereby focuses on constructing WE for NP
complete languages (and thus NP). While this rich expressiveness allows
flexibility w.r.t. applications, it makes existing instantiations impractical.
Thus, it is interesting to study practical variants of WE schemes for
subsets of NP that are still expressive enough for many cryptographic
applications.

We show that such WE schemes can be generically constructed from
smooth projective hash functions (SPHFs). In terms of concrete instan-
tiations of SPHFs (and thus WE), we target languages of statements
proven in the popular Groth-Sahai (GS) proof framework. This allows
us to provide a novel way to encrypt. In particular, encryption is with
respect to a GS proof and efficient decryption can only be done by the
respective prover. The so obtained constructions are entirely practical
and only require standard assumptions such as DLIN or DDH.

To illustrate our techniques, we propose an elegant fully ad-hoc so-
lution to the following seeming paradox. Assume a whistleblower, say
Edwarda, wants to leak authoritative secrets while staying anonymous.
Therefore, she signs the leaked documents using a ring signature, which
hides her identity unconditionally among other carefully selected people
in a potentially huge ad-hoc group. But how should one confidentially
reply to the unknown (anonymous) whistleblower. In brief, we demon-
strate how to encrypt a message using only a ring signature such that
solely the anonymous signer can decrypt and read the reply.

Keywords: Witness encryption, smooth projective hash functions, Groth-
Sahai proofs, ring signatures, ring encryption, leaking secrets.

1 Introduction

Witness encryption (WE) is a recent powerful encryption paradigm introduced
by Garg et al. [GGSW13]. In WE, an encryption scheme is defined for some NP-
language LR with witness relation R so that LR = {x | ∃ w : R(x,w) = 1}. The

The authors have been supported by EU H2020 project Prismacloud, grant agree-
ment n◦644962.

1

mailto:david.derler@tugraz.at
mailto:daniel.slamanig@tugraz.at

encryption algorithm takes an alleged word x from the language LR (instead
of an encryption key) and a message m and produces a ciphertext c. Using a
witness w such that R(x,w) = 1, anyone can decrypt c to obtain the message
m. Decryption only works if x ∈ LR and a ciphertext c computationally hides
the message m if c has been computed with respect to some x /∈ LR.

Constructions of WE. The first construction of WE for any language in NP in
[GGSW13] has been for the NP-complete problem exact cover and uses approx-
imate multilinear maps (MLMs), i.e., graded encoding schemes. Later, Gentry
et al. [GLW14] introduced the concept of positional WE, which allows to prove
security of the aforementioned construction. In [GGH+13], Garg et al. showed
that indistinguishability obfuscation implies WE. Goldwasser et al. proposed
the stronger notion of extractable WE in [GKP+13]. While the security for WE
is only with respect to x /∈ LR, extractable WE requires that any successful
adversary against semantic security of the WE, given an encryption with re-
spect to x, implies the existence of an extractor that extracts a witness w to
x ∈ LR. Thereby, the adversary as well as the extractor additionally get an
auxiliary input z. Garg et al. [GGHW14] have shown that under the assumption
that special-purpose obfuscation exists, extractable WE for all languages in NP
cannot exist.1 Zhandry [Zha16] introduced the concept of witness PRFs, which
essentially generalizes WE, to avoid obfuscation. That is, a witness PRF can be
used to construct WE in a straightforward way. Moreover, Zhandry also proposes
(CCA secure) reusable WE, which introduces an additional global setup and thus
allows to reuse certain parameters and consequently drastically reduces the size
of ciphertexts in WE schemes. We observe that our generic constructions of WE
bears similarities to how WE is constructed from witness PRFs. Yet, Zhandry
aims at building witness PRFs for any NP-language, where we aim at practical
instantiations. As all these constructions build upon MLMs and/or obfuscation,
unfortunately, they are far from being practical. To this end, Abusalah et al.
[AFP16] very recently introduced the notion of offline WE as a step towards
making WE more practical. They split encryption into an expensive offline phase
and a much more efficient online phase, which allows them to achieve practical
efficiency for the online part. Nevertheless, the offline part and the decryption
still requires obfuscation and thus cannot be considered to be practical. Be-
sides imposing a huge computational overhead, MLM and obfuscation are still
in a “break-repair” state and it is currently unknown if one can come up with an
MLM/obfuscation candidate which is secure under some reasonable assumption.

Restricting Languages. In concurrent and independent work to ours, Faonio
et al. [FNV15] introduced the concept of predictable arguments of knowledge
(PAoK). They are one-round interactive protocols in which the verifier gener-
ates a challenge and can at the same time predict the prover’s answer to that
challenge. PAoKs require a particular notion of knowledge extraction. Faonio
et al. show that PAoKs are equivalent to extractable WE [GKP+13]. Regarding
concrete instantiations of PAoKs (and thus extractable WE), they show how to

1 Even if such special-purpose obfuscation exists, this does not rule out that ex-
tractable WE for a sufficiently large interesting subset of NP exists.

2

construct PAoKs from extractable hash proof systems (Ext-HPS) as defined by
Wee in [Wee10]. Although their approach to constructing WE can thus be seen
as related to our approach, firstly ours is conceptually simper and secondly the
languages covered by Ext-HPSs are very basic and very restricted, i.e., [Wee10]
presents two instantiations; one for the iterated squaring relation and one for
the Diffie Hellman relation. It is also not clear if efficient instantiations for more
expressive languages can be found. We also note that due to the lack in expres-
siveness of Ext-HPS as used in [FNV15], their constructions are not suitable
for what we are targeting at. Moreover, earlier work on (private) conditional
oblivious transfer [COR99, JL09] can be viewed as as an interactive version
of (extractable) WE for very specific and restricted languages not suitable for
achieving our goals. Finally, [GGSW13] mentioned along the lines that earlier
work on SPHFs can be interpreted as establishing the existence of WE for certain
restricted languages and an informal sketch of a construction of WE from SPHFs
was recently discussed in [ABP15].

Applications of WE. WE in general extends the scope of encryption as it
allows to encrypt a message using the description of a hard problem and only
someone who knows a solution to this problem is able to decrypt. WE is thus
intuitively related to time-lock puzzles [RSW96] and WE indeed has been used
to realize a related concept denoted as time-lock encryption, i.e., a method to
encrypt a message such that it can only be decrypted after a certain deadline
has passed, but then very efficiently and by everyone. An approach to realize
such schemes from WE and so called computational reference clocks has been
proposed by Jager in [Jag15]. Liu et al. [LKW15] also propose to use their WE
construction for time-lock encryption based on the Bitcoin protocol. Bellare and
Hoang [BH15] proposed the use of WE to realize asymmetric password-based
encryption, where the hash of a password can be used to encrypt a message
(acting as a public key) and only the knowledge of the respective password al-
lows decryption. Moreover, already in the seminal work [GGSW13] it has been
shown that WE can be used to construct identity-based encryption (IBE) [BF01]
as well as attribute-based encryption (ABE) [SW05] for circuits.

1.1 Motivation

While having WE schemes that support all languages in NP is appealing, it
is the main source for inefficiency. We aim to make WE practical, but in con-
trast to offline WE we focus on all aspects, i.e., encryption and decryption, to
be efficient. Our approach to improving the efficiency is by restricting the class
of supported languages from any NP-language to languages that are expressive
enough to cover many problems encountered in cryptographic protocol design. In
particular, we aim at algebraic languages defined over bilinear groups. Such lan-
guages are very relevant for the design of cryptographic protocols as statements
in these languages cover statements that can be proven in a zero-knowledge (or
witness indistinguishable) fashion using the non-interactive Groth-Sahai (GS)
proof framework [GS08]. Moreover, these languages are compatible with smooth
projective hash functions (SPHFs). As we will see soon, a combination of SPHFs
and the GS proof framework yield an interesting novel tool, which we apply to

3

exemplarily solve the seemingly paradox discussed below.

A Motivating Question and Application. An interesting question that is
motivated by the revelations of Edward Snowden is whether it is possible for
anyone to confidentially reply to an anonymous whistleblower.2 Let us assume
that our whistleblower wants to leak a secret to some journalist in a way that
the journalist will have a high level of confidence that the information indeed
comes from an insider. However, the whistleblower has a strong interest in stay-
ing anonymous, i.e., identifying him could lead to severe consequences. To solve
this dilemma, Rivest et al. [RST01] fortunately came up with an elegant crypto-
graphic primitive called ring signature. In such a signature scheme, a signature
hides the identity of the signer unconditionally among other people in an ad-hoc
group (the so called ring) selected by the signer without requiring their approval
or assistance. Consequently, a whistleblower can choose a set of potential signers,
e.g., other insiders, that do not even need to be aware of the fact that they are
included into the ring. Thus, the whistleblower can convince the journalist that
there is strong evidence that the exposed information is indeed authentic.3 The
scenario described above is illustrated in Figure 1.

Fig. 1. Whistleblower Edwarda signs a document to be leaked using a ring signature
and communicates it to a journalist. One possibility to realize this communication is
via an anonymous bulletin board implemented by means of a Tor [tor] hidden service.
After having received the message, the journalist knows that one of the five potential
singers have leaked the document.

Given such a ring signature with a potentially huge ring size, an immediate
question is how to privately reply to the unknown sender. The arguably most
elegant solution would be a fully ad-hoc solution, i.e., one that does not require to
modify the signing algorithm. In particular, we are after a solution that directly
uses only a given ring signature to encrypt the reply to the whistleblower, while

2 Glenn Greenwald in his book [Gre14], for instance, describes how complicated it has
been back in 2013 to get in touch and communicate with the (back then) anonymous
source who claimed to have astonishing evidence of pervasive government spying and
insisted to communicate via encrypted channels.

3 Interestingly, [HO05] discuss that a paper-based analogue of ring signatures has
already been used in Japan in the 18th century to demonstrate solidarity without
leaking the initiator.

4

guaranteeing that only the whistleblower who has produced the ring signature
can decrypt the reply. Such a scenario is depicted in Figure 2.

Fig. 2. The journalist publishes his reply (encrypted with respect to the ring signature)
at the anonymous bulletin board. Then, anyone can potentially retrieve it, but only
Edwarda is able to decrypt and thus read the reply. Thereby, the journalist does not
know who of the five potential receivers will be able to read the reply.

As we will see later, a solution to the above dilemma can elegantly be achieved
using the techniques proposed in this paper. In particular, applying our ap-
proach to WE to the GS proof technique and encrypting messages with respect
to GS proofs. Basically, the idea is simply to use WE to encrypt a message with
respect to a proof statement being part of the ring signature. The nice thing
thereby is, that the so obtained solution is entirely practical.

1.2 Our Contribution

– We provide a generic construction of WE from SPHFs and prove (cf. The-
orem 1) that if there exists an SPHF for a language LR, then there exists
an adaptively sound WE scheme for language LR. Thereby, we define WE
so that it provides an additional setup algorithm as it was already done
in [AFP16, Zha16], since this notion makes the schemes more efficient and it
is also more convenient to use in protocol design. While the relation between
SPHFs and WE (without setup) was already informally mentioned in the
literature, we believe that it is important to initiate a formal study.4

– Using standard techniques such as universal hashing and secure symmetric
encryption schemes, we obtain a WE scheme for messages of arbitrary length.

– We present practical concrete instantiations of our generic approach to WE
for algebraic languages in the bilinear group setting under the DLIN assump-
tion. We, thereby, achieve compatibility with Groth-Sahai commitments (and
thus statements from this proof system). Our approach is also easily portable

4 Since we achieve statistically sound WE, it is known that using our approach it is
impossible to construct WE for an NP-complete language (unless the polynomial
hierarchy does collapse) as shown in [GGSW13].

5

to the SXDH setting (and thus relying on DDH). Besides being practically
efficient, our constructions also only require standard assumptions.

– We illustrate that our generic approach to WE can be elegantly used to en-
crypt messages with respect to NIZK/NIWI proofs for statements in the
GS proof system. Since the GS proof system is a frequently used building
block in various cryptographic protocols, this yields a novel way of encryp-
tion and we assume that there are many interesting applications that could
benefit from our technique.

– To illustrate the aforementioned concept, we present a concrete solution to
the above problem in context of whistleblowing. We do so by showing how
anyone getting to hold a valid ring signature can use our techniques to send
a confidential message to the anonymous signer (whistleblower). This can be
done in a way that the sender does not need to know the whistleblower (and
thus no encryption key), but no one except the whistleblower can decrypt.
As ring signatures in a bilinear group setting can generically be built using
conventional signature schemes and non-interactive (witness indistinguish-
able) proof systems (cf. [Gha13]), we thus obtain a generic solution to this
problem. In addition to the whistleblowing scenario, we also sketch two other
applications, i.e., ring encryption and mutually-anonymous key-exchange.

1.3 Related Work

SPHFs (denoted as hash proof systems) were initially (implicitly) used to con-
struct CCA2 secure public key encryption [CS98] without requiring the random
oracle heuristic. Later it was observed that SPHFs are sufficient to construct such
encryption schemes [CS02] (they use the SPHF exactly the other way round as we
are going to use it). The elegant idea in [CS98] is to combine ElGamal encryption
with an SPHF for the DDH language. The public key includes a projection key
of the SPHF and the secret key includes the corresponding hashing key. Roughly,
encryption, besides producing a conventional ElGamal ciphertext, computes a
projective hash using the randomness of the ElGamal ciphertext as a witness.
During decryption, one uses the hashing key to verify whether the hash value has
been computed correctly with respect to the ElGamal ciphertext. We note that
this paradigm can be viewed as an implicit construction of publicly evaluable
pseudorandom functions [CZ14].

Hybrid Encryption. Kurosawa and Desmedt [KD04] then discovered that the
paradigm described above is also useful for hybrid encryption. A series of works
follow their paradigm (e.g., [KPSY09]) and use SPHFs to obtain CCA2 secure
hybrid encryption schemes. Similar to [CS02], they use the SPHF exactly the
other way round as we are going to use it. In particular, they use the hashing
key of the SPHF as secret decryption key and the projection key as public en-
cryption key. This setup implicitly defines some language LR with an efficiently
sampleable witness relation R. Encryption of a message m amounts to randomly
sampling (x,w) ∈ R, computing a projective hash value H and using H to ex-
tract a key k for a symmetric encryption scheme used to encrypt the message m.
To decrypt, one reconstructs H using the hashing key and the word x, extracts
k and uses it for decryption.

6

Key-Exchange. A line of work following Gennaro and Lindell [GL06] uses
SPHFs for password-based authenticated key exchange (PAKE) between two
parties. Briefly, the idea is that each party i sends a commitment Ci to the
shared password p to the other party. Then, each party i computes an SPHF key
pair (hki, hpi) for an SPHF defined for a language LR, where (Ci, p) ∈ R if Ci
is a commitment to p. Membership in LR is witnessed by the randomness ri
used in the commitment Ci. Then, both parties exchange their projection keys
hpi, which allows them to elegantly use the two hashing modes of the SPHF to
obtain a shared secret. This concept was later extended to one-round PAKE
[KV11] and generalized to language-authenticated key exchange (LAKE) for
various algebraic languages over bilinear groups in [BBC+13a]. In a follow up
work it was very recently [BC16] shown how to construct so called structure
preserving SPHFs which can use GS proofs as witnesses. Even though this is
somewhat related to our work it is not useful for what we want to achieve as we
require the GS proofs to be public and they must not be useful reconstruct the
hash value. Furthermore, we note that other follow-up work on various aspects
exists.

Group Encryption. Group encryption, introduced by Kiayias et al. in [KTY07],
is the encryption analogue to group signatures. In group signatures any member
of a managed group can anonymously produce signatures on behalf of the group.
In case of a dispute, however, some dedicated authority (the opening authority)
can reveal the identity of a signer. In group encryption, a sender can prepare a
ciphertext and convince a verifier that it can be decrypted by a member of some
managed group. Likewise to group signatures, in group encryption schemes an
opening authority can reveal the identity of the group member that is capable of
decrypting, if necessary. Consequently, group encryption (like group signatures)
involves a dedicated trusted group manager and provides conditional anonymity,
i.e, the trusted opening authority can break the anonymity.

Private/Covert Mutual Authentication. Private mutual authentication (al-
so known as secret handshakes) [JL09] allows two parties belonging to some
managed groups to privately authenticate and thereby protect the privacy of
all authentication protocol inputs in the protocol. Covert mutual authentica-
tion [Jar14] is even stronger and allows two parties to authenticate to each
other, but for everyone without a group membership certificate it is intractable
to distinguish an instance of the protocol from a random beacon. The construc-
tions in [JL09, Jar14] allow to covertly exchange an encryption key, but they
are not ad-hoc nor unconditionally private. Every participant needs to obtain a
group membership certificate (where the secret is even generated by the group
manager) as it is the case in group signatures and group encryption and a group
manager can recover the identity of any party involved in any protocol instance.

2 Background

Below, we provide the necessary background and recall some required primitives.

Notation. Let x←R X denote the operation that picks an element x uniformly

7

at random from X and let x ∈R X denote that a value x is uniformly random
in X. We use [n] to denote the set {1, . . . , n}. By y ← A(x), we denote that y is
assigned the output of the potentially probabilistic algorithm A on input x and
fresh random coins and we write Pr[Ω : E] to denote the probability of an event
E over the probability space Ω. A function ε : N→ R+ is called negligible if for
all c > 0 there is a k0 such that ε(k) < 1/kc for all k > k0. In the remainder of
this paper, we use ε to denote such a negligible function.

Definition 1 (Bilinear Map). Let G = 〈g〉 and GT be cyclic groups of prime
order p. We call e : G × G → GT a bilinear map or pairing if it is efficiently
computable and the following conditions hold:

Bilinearity: e(ga, gb) = e(g, g)ab = e(gb, ga) ∀ a, b ∈ Zp
Non-degeneracy: e(g, g) 6= 1GT , i.e., e(g, g) generates GT .

We use boldface letters for elements in GT , e.g., g = e(g, g). The symmetric
(Type-1) setting as presented above is in contrast to the asymmetric setting
(Type-2 or Type-3), where the bilinear map is defined with respect to two differ-
ent source groups, i.e., e : G1×G2 → GT with G1 6= G2. In the Type-2 setting an
efficiently computable isomorphism ψ : G2 → G1 exists, whereas such an isomor-
phism is unknown for the Type-3 setting. Although we have chosen to present
our results using symmetric pairings, it is, however, important to note that our
results carry over to the (more efficient) asymmetric setting. Such translations
can already be nicely automated [AGH15].

Definition 2 (Bilinear Group Generator). Let BGGen be an algorithm which
takes a security parameter κ and generates a bilinear group BG ← BGGen(1κ)
with BG = (p,G,GT , e, g) in the symmetric bilinear group setting. Thereby, p is
a prime of bitlength κ and represents the common group order of the groups G
and GT , e is a pairing and g is a generator of G.

Definition 3 (Decision Linear Assumption). The DLIN assumption in G
states that for all probabilistic polynomial-time (PPT) adversaries A there is a
negligible function ε(·) such that:

Pr

[
b←R {0, 1}, BG← BGGen(1κ), g1, g2←R G,
r, s, t←R Zp, b∗ ← A

(
BG, g1, g2, g

r
1, g

s
2, g

b·(r+s)+(1−b)·t) : b = b∗
]
≤ 1/2+ε(κ).

Universal Hashing. Subsequently, we recall the notion of families of universal
hash functions and the leftover hash lemma [HILL99]. We, thereby, align our
definitions with [KPSY09] and allow arbitrary domains X for the hash functions.

Definition 4 (Universal Hash Function Family). Let H = {Hy}y∈{0,1}k be

a family of hash functions Hy : {0, 1}k×X → {0, 1}` indexed by a key y ∈ {0, 1}k.
H is universal, if for all x ∈ X , x′ ∈ X \ {x} it holds that

Pr
[
Hy←R H : Hy(x) = Hy(x′)

]
= 2−`.

8

For our security proofs, we require that the output of such a hash function is
“sufficiently” random if the input is “sufficiently” random. The leftover hash
lemma provides the required arguments.

Lemma 1 (Leftover Hash Lemma). Let X be a random variable with support
X , let δ ≥ − log(maxx∈X Pr[X = x]) and let H be a family of universal hash
functions Hy : {0, 1}k ×X → {0, 1}`. Then, for any Hy←R H, we have that

1

2

∑
z∈{0,1}`

∣∣Pr[Hy(X) = z]− 2−`
∣∣ ≤ 2

(`−δ)/2.

Symmetric Encryption. In the following, we recall the definition of symmetric
encryption schemes Σ, which we adapt from [KL07]. Analogous to [KD04], we,
however, do not explicitly model a key generation algorithm and treat the keys
as uniformly random bitstrings of length `Σ,κ. Here, `Σ,κ is the keylength for
encryption scheme Σ and security parameter κ.

Definition 5 (Symmetric Encryption Scheme). A symmetric encryption
scheme Σ is a tuple Σ = (Enc,Dec) of PPT algorithms which are defined as
follows:

Enc(k,m) : The encryption algorithm on input of a key k and a message m
outputs a ciphertext c.

Dec(k, c) : The decryption algorithm on input of a key k and a ciphertext c
outputs a message m or ⊥.

We require Σ to be correct and IND-T secure, where T ∈ {CPA,CCA2}. The
respective definitions are provided below.

Definition 6 (Correctness). Σ is correct, if for all κ, for all k←R {0, 1}`Σ,κ
and for all m ∈ {0, 1}∗ it holds that Pr [Dec(k,Enc(k,m)) = m] = 1.

Definition 7 (IND-T Security). Σ is IND-T secure, if for all PPT adversaries
A there exists a negligible function ε(·) such that

Pr

k←R {0, 1}`Σ,κ , (m0,m1, st)← AOT(1κ),
b←R {0, 1}, c← Enc(k,mb),
b∗ ← AOT(c, st)

:
b = b∗

∧ c /∈ QDec

∧ |m0| = |m1|

 ≤ 1/2 + ε(κ),

where T ∈ {CPA,CCA2} and |m| is used to denote the length of message m. The
oracle OT is defined as

OT :=

{
OEnc(k,·) if T = CPA
OEnc(k,·),ODec(k,·) if T = CCA2,

where QDec denotes the list of queries to ODec and we set QDec ← ∅ if T = CPA.

9

2.1 Smooth Projective Hashing

Smooth projective hash functions (SPHFs) can be seen as families of hash func-
tions {Hhk}hk∈K with domain X, some associated language LR ⊂ X, range
R ⊆ {0, 1}n and key space K. The secret hashing key hk allows to compute a
hash value for every x ∈ X. There is a second method for computing the hash
value using a public projection key hp (computed from hk and possible depen-
dent on the word x), which besides x also requires a witness w for membership
of x in LR, i.e., w such that R(x,w) = 1, to compute the hash value. The initial
definition of SPHFs [CS02] requires that the projection key hp does not depend
on the word x. Later, an alternative notion [KV11] was introduced, where hp
may be word dependent. To obtain the most general result, we use the notion of
[KV11], since one can simply assume that ProjKG ignores the word x for schemes
adhering to [CS02]. Subsequently, we provide a formal definition of SPHFs.

Definition 8 (Smooth Projective Hash Function). A SPHF for a language
LR and corresponding NP-relation R is defined by the following PPT algorithms:

Setup(1κ) : This algorithm takes a security parameter κ and outputs the system
parameters pp (including the description of the language LR).

HashKG(pp) : This algorithm takes the system parameters including a language
LR, and outputs a hashing key hk for LR.

ProjKG(hk, x) : This algorithm takes a hashing key hk and a word x, and outputs
a projection key hp (possibly depending on x).

Hash(hk, x) : This algorithm takes a hashing key hk and a word x, and outputs
a hash H.

ProjHash(hp, x, w) : This algorithm takes a projection key hp, a word x, and a
witness w for x ∈ LR, and outputs a hash H.

We assume that pp as well as LR is implicitly contained in hk and hp, respec-
tively.

For security an SPHF is required to be correct, smooth and pseudo-random.
Below, we formally define these properties.

Definition 9 (Correctness). A SPHF for a language LR is correct, if for all
κ, for all pp ← Setup(1κ), for all x ∈ LR, for all w such that R(x,w) = 1, for
all hk← HashKG(pp), and for all hp← ProjKG(hk, x), it holds that

Hash(hk, x) = ProjHash(hp, x, w).

Definition 10 (Smoothness). A SPHF for a language LR is smooth, if for
any x 6∈ LR it holds that:

{(LR, pp, x, hp, H) | pp← Setup(1κ), hk← HashKG(pp),

hp← ProjKG(hk, x), H ← Hash(hk, x)} ≈
{(LR, pp, x, hp, H) | pp← Setup(1κ), hk← HashKG(pp),

hp← ProjKG(hk, x), H ←R R)}

where ≈ denotes statistical indistinguishability.

10

Additionally, for SPHFs we require pseudo-randomness as introduced by Gen-
naro and Lindell [GL06]. It requires that for any x ∈ LR without knowing a
corresponding witness w, the distributions considered in Definition 10 remain
computationally indistinguishable. A secure SPHF satisfies all the above prop-
erties.

If we have that for the domain X and the language LR ⊂ X the subset
membership problem is hard (this means that it is hard to distinguish between
a random element in LR and a random element x ∈ X \ LR) it is easy to show
using a standard hybrid argument that smoothness implies pseudo-randomness.

2.2 Groth-Sahai (GS) Non-Interactive Zero-Knowledge Proofs

Groth and Sahai [GS08, GS07] provide a framework for efficient non-interactive
witness-indistinguishable (NIWI) and zero-knowledge (NIZK) proofs for the sat-
isfiability of various types of equations defined over bilinear groups. While the
framework is quite independent of the underlying hardness assumption, we will
use the instantiation based on the DLIN assumption, and, thus, our further ex-
planations are tailored to this setting. We will focus on proofs for the satisfiability
of pairing product equations (PPEs), which are of the form as in Equation 1

n∏
i=1

e(Ai, Yi) ·
m∏
i=1

e(Xi, Bi) ·
m∏
i=1

n∏
j=1

e(Xi, Yj)
γij = tT , (1)

where (X1, . . . Xm) ∈ Gm, (Y1, . . . , Yn) ∈ Gn are the secret vectors (to prove
knowledge of) and (A1, . . . , An) ∈ Gn, (B1, . . . , Bm) ∈ Gm, (γij)i∈[m],j∈[n] ∈
Zn·mp , and tT ∈ GT are public constants. From an abstract point of view,
GS proofs use the following strategy. One commits to the vectors (Xi)i∈[m] and
(Yi)i∈[n], and uses the commitments instead of the actual values in the PPE.
Loosely speaking, the proof π is used to “cancel out” the randomness used in
the commitments. However, this does not directly work when using the groups
G and GT , but requires to project the involved elements to the vector spaces G3

and G9
T in the DLIN setting by using the defined projection maps and to prove

the satisfiability of the PPE using the projected elements and corresponding
bilinear map F : G3 ×G3 → G9

T .
More formally, a GS proof for a PPE allows to prove knowledge of a witness

w = ((Xi)i∈[m], (Yi)i∈[n]) such that the PPE, uniquely defined by the statement
x = ((Ai)i∈[n], (Bi)i∈[m], (γij)i∈[m],j∈[n], tT), is satisfied. Henceforth, let BG de-
note the description of the used bilinear group and let R be the relation such that
(BG, x, w) ∈ R iff w is a satisfying witness for x with respect to BG. Furthermore,
let LR be the corresponding language.

Formally, a non-interactive proof system in a bilinear group setting is defined
as follows:

Definition 11 (Non-Interactive Proof System). A non-interactive proof
system Π is a tuple Π = (BGGen,CRSGen,Proof,Verify) of PPT algorithms
which are defined as follows:

BGGen(1κ) : This algorithm takes a security parameter κ as input, and outputs
a bilinear group description BG.

11

CRSGen(BG) : This algorithm takes a bilinear group description BG as input,
and outputs a common reference string crs.

Proof(BG, crs, x, w) : This algorithm takes a bilinear group description BG, a
common reference string crs, a statement x, and a witness w as input, and
outputs a proof π.

Verify(BG, crs, x, π) : This algorithm takes a bilinear group description BG, a
common reference string crs, a statement x, and a proof π as input. It outputs
a bit b ∈ {0, 1}.

The GS proof system is perfectly complete, perfectly sound, and witness indis-
tinguishable. Depending on the proven statement, it is can also be composably
zero-knowledge. Since we do neither explicitly require these security properties
for our illustrations nor for our security proofs, we refer the reader to [GS08] for
formal definitions.

2.3 Ring Signatures

Ring signature schemes [RST01] are a variant of signature schemes that allow
a member of an ad-hoc group R (the so called ring), defined by the member’s
public verification keys, to anonymously sign a message on behalf of R. Given
a ring signature and all public keys for R, one can verify the validity of such
a signature with respect to R, but it is infeasible to identify the actual signer.
Subsequently, we formally define ring signature schemes (adopted from [Gha13]).

Definition 12 (Ring Signature Scheme). A ring signature scheme RS is a
tuple RS = (Setup,KeyGen,Sign,Verify) of PPT algorithms, which are defined as
follows:

Setup(1κ) : This algorithm takes as input a security parameter κ and outputs
public parameters pp (including a description of the message space M).

KeyGen(pp) : This algorithm takes as input the public parameters pp and outputs
a keypair (sk, pk).

Sign(pp, ski,m,R) : This algorithm takes as input the public parameters pp, a
secret key ski, a message m ∈M and a ring R = (pkj)j∈[n] of n public keys
such that pki ∈ R. It outputs a signature σ.

Verify(pp,m, σ,R) : This algorithm takes as input the public parameters pp, a
message m ∈M, a signature σ and a ring R. It outputs a bit b ∈ {0, 1}.

A secure ring signature scheme is correct, unforgeable, and anonymous. Infor-
mally those properties are defined as follows, where we omit the obvious cor-
rectness definition. Unforgeability requires that when holding no secret key ski
that corresponds to a public key pki ∈ R, one cannot issue valid signatures with
respect to arbitrary such rings R. Anonymity requires that it is infeasible to tell
which ring member produced a certain signature. For formal definitions we refer
the reader to [BKM09].

12

3 Witness Encryption

WE was initially defined in [GGSW13] and refined by a stronger adaptive sound-
ness notion in [BH13, BH15]. Since it is beneficial regarding practical efficiency
and more suitable for the use of WE in the design of cryptographic protocols, we
define WE with respect to a setup (similar to [AFP16, Zha16]) and adjust the
definitions accordingly.5

Definition 13. A WE scheme defined for an NP-language LR with correspond-
ing witness-relation R is a tuple WE = (Gen,Enc,Dec) of PPT algorithms which
are defined as follows:

Gen(1κ) : This algorithm takes a security parameter κ and outputs public pa-
rameters pp (including a description of a language LR).

Enc(pp, x,m) : This algorithm takes public parameters pp, some word x and a
message m as input and outputs a ciphertext c.

Dec(w, c) : This algorithm takes a witness w and a ciphertext c as input and
outputs a message m or ⊥.

We require a WE scheme with setup to be correct and adaptively sound, as
defined below.

Definition 14 (Correctness). A WE scheme for a language LR is correct, if
there exists a negligible function ε(·) such that for all κ, for all pp ← Gen(1κ),
for all m, for all x ∈ LR, and for all witnesses w such that R(x,w) = 1, it holds
that

Pr [Dec(w,Enc(pp, x,m)) = m] ≥ 1− ε(κ).

If ε = 0, we have perfect correctness.

Definition 15 (Soundness). A WE scheme for a language LR is sound, if for
all PPT adversaries A there is a negligible function ε(·) such that for all x /∈ LR
it holds that

Pr

pp← Gen(1κ),
(m0,m1, st)← A(pp, x), b←R {0, 1},
c← Enc(pp, x,mb), b

∗ ← A(c, st)
:

b = b∗ ∧
|m0| = |m1|

 ≤ 1/2 + ε(κ).

Remark 1. We note that assuming soundness of the WE scheme and that the
subset-membership problem is hard for domain X and language LR ⊂ X, i.e.,
the probability of a distinguisher is bound by ε(κ), one can use a standard hybrid
argument to show that the probability to break soundness for x ∈ LR is bounded
by ε(κ).

Definition 16 (Adaptive Soundness). A WE scheme for a language LR is
adaptively sound, if for all PPT adversaries A there is a negligible function ε(·)
such that

Pr

pp← Gen(1κ),
(x,m0,m1, st)← A(pp), b←R {0, 1},
c← Enc(pp, x,mb), b

∗ ← A(c, st)
:
b = b∗ ∧ x /∈ LR
∧ |m0| = |m1|

 ≤ 1/2 + ε(κ).

5 Furthermore, instantiating WE from SPHFs without a setup, as informally sketched
in [ABP15], could turn out to be involved, as this would require to provide a word
x to the encryption algorithm before the description of the language is fixed.

13

It is easy to see that adaptive soundness implies soundness. We call a WE scheme
secure, if it is correct and adaptively sound.

3.1 Generic Construction of Bit WE from SPHFs

We are now ready to present our generic construction of a WE scheme from any
SPHF. We start with a bit encryption WE scheme (cf. Scheme 1), i.e., we assume
the message space M = {0, 1}. For our construction, it turns out that we only
need to assume the existence of SPHFs. We achieve this by using an approach
similar to the idea of encrypting bits in the GM encryption scheme [GM84]. In
particular, we use the fact that without knowledge of hk and a witness w for x
it is hard to distinguish a hash value from a uniformly random element in the
range R of the SPHF. Now, if m = 0, then the ciphertext is a randomly sampled
element from the range R, whereas, if m = 1, the ciphertext is the correctly
computed hash value. Knowledge of a witness w then allows to recompute the
hash value using hp (which is also included in the ciphertext) and consequently
to decide whether m = 0 or m = 1 has been encrypted.

We stress that the construction paradigm used in our schemes inherently
requires that the size of the SPHF’s range |R| grows superpolynomial in the
security parameter κ, but want to emphasize that this is the case for all existing
SPHFs. We note that the smoothness definition of the SPHF already requires

Gen(1κ) : On input of κ, run pp← SPHF.Setup(1κ) and return pp.
Enc(pp, x,m) : On input of pp, x, m ∈ {0, 1}, hk ← SPHF.HashKG(pp) and

hp ← SPHF.ProjKG(hk, x). If m = 0, set C←R R and set C ← H for H ←
SPHF.Hash(hk, x) otherwise. Finally, return c← (C, x, hp, pp).

Dec(w, c) : On input of w and c, parse c as (C, x, hp, pp) and compute H ←
SPHF.ProjHash(hp, x, w). Return 1 if H = C and 0 otherwise.

Scheme 1: WE scheme for bits from SPHFs

that one can efficiently sample uniformly random elements from R.

Theorem 1. If SPHF is correct and smooth, then Scheme 1 is secure.

Proof (Correctness). We analyze the probability that Scheme 1 is not correct,
i.e., the probability that if m = 0 and C←R R yields a value such that C = H. It
is easy to see that this only occurs with negligible probability 2−|R|. ut

Proof (Adaptive Soundness). We use a sequence of games to prove adaptive
soundness.

Game 0: The original adaptive soundness game.

Game 1: As Game 0, but we modify the encryption algorithm as follows:

Enc(pp, x,m) : On input of pp, x, m ∈ {0, 1}, run hk ← SPHF.HashKG(pp),

hp ← SPHF.ProjKG(hk, x), H ← SPHF.Hash(hk, x). Sample C←R R and
return c← (C, x, hp, pp).

14

Transition - Game 0→ Game 1: By the smoothness of the SPHF, the adversary’s
view in Game 1 is statistically close to the view in Game 0.

Game 1 is simulated independent of the bit b and distinguishing it from Game
0 would imply a distinguisher for statistically close distributions. ut

Remark 2. When constructing WE from SPHFs, the pseudo-randomness of the
SPHF directly states that soundness of the WE scheme also holds computation-
ally for x ∈ LR as long as no witness is known.

3.2 Extension to Messages of Arbitrary Length

While one could easily extend the WE scheme above to any message spaceM =
{0, 1}` for any ` > 1 by simply calling Enc independently for every message
bit, we are looking for more efficient and compact solutions. Thus, we follow a
standard paradigm in hybrid encryption. In Scheme 2 we present a construction
that besides an SPHF requires a universal hash function family H and an at
least IND-CPA secure symmetric encryption scheme Σ. The construction is quite
straightforward. It uses a universal hash function H ∈ H on the hash value of
the SPHF as a randomness extractor to obtain an encryption key for Σ. Note
that for the languages we have in mind (group-dependent languages) one could
also use alternative extractors such as [CFPZ09]. Furthermore, depending on the
chosen randomness extractor, it might be required to choose a larger security
parameter for the SPHF to achieve the desired security parameter in the overall
scheme. To capture this, we introduce a polynomial p(·) which is determined by
the concrete choice of the primitives underlying this construction.

Gen(1κ) : On input of κ, run pp← SPHF.Setup(1κ) and return pp.
Enc(pp, x,m) : On input of pp, x, m ∈ {0, 1}∗, run hk ← SPHF.HashKG(pp), hp ←

SPHF.ProjKG(hk, x) andH ← SPHF.Hash(hk, x), where p(·) is a polynomial defined
by the concrete instantiation. Then randomly choose a universal hash function
H : R→ {0, 1}`Σ,κ from the family H, compute k ← H(H), C ← Σ.Enc(k,m) and
return c← (C, x, hp, pp,H).

Dec(w, c) : On input of w and c, parse c as (C, x, hp, pp,H), compute k ←
H(SPHF.ProjHash(hp, x, w)), compute and return m← Σ.Dec(k, C).

Scheme 2: WE Scheme from SPHFs for messages of arbitrary length

Theorem 2. If SPHF is correct and smooth, H is a family of universal hash
functions H : R→ {0, 1}`Σ,κ , the symmetric encryption scheme Σ is correct and
at least IND-CPA secure, and p(·) is such that 2(`Σ,κ−|R|)/2 is negligible in κ, then
Scheme 2 is secure.

Correctness is perfect and straightforward to verify, which is why we omit the
proof. Adaptive soundness is proven subsequently.

Proof (Adaptive Soundness). We now show that adaptive soundness holds.

Game 0: The original adaptive soundness game.

Game 1: As Game 0, but we modify the encryption algorithm as follows:

15

Enc(pp, x,m) : On input of pp, x, m ∈ {0, 1}∗, run hk ← SPHF.HashKG(pp),

hp ← SPHF.ProjKG(hk, x) and H ←R R . Then randomly choose a universal

hash functions H : R → {0, 1}`Σ,κ from an appropriate family H, compute
k ← H(H), C ← Σ.Enc(k,m) and return c← (C, x, hp, pp,H).

Transition - Game 0→ Game 1: By the smoothness of the SPHF, the adversary’s
view in Game 1 is statistically close to the view in Game 0.

Game 2: As Game 1, but we further modify the encryption algorithm as follows:

Enc(pp, x,m) : On input of pp, x, m ∈ {0, 1}∗, run hk ← SPHF.HashKG(pp),

hp ← SPHF.ProjKG(hk, x). Choose k←R {0, 1}`Σ,κ , compute C ← Σ.Enc(

k,m) and return c← (C, x, hp, pp,H).

Transition - Game 1 → Game 2: By Lemma 1, we know that the statistical
difference between the adversary’s view in Game 1 and Game 2 is bounded by
2(`Σ,κ−|R|)/2. Thus, there exists a polynomial p(·) such that the adversary’s view
in Game 1 and Game 2 are statistically close.

Game 3: In Game 2 we are already free to randomly choose the key for the
symmetric encryption scheme. Thus, in Game 3, the environment can engage
in an IND-T (T ∈ {CPA,CCA}) game with a challenger C. In particular, once
the adversary outputs (x,m0,m1, st), the environment forwards (m0,m1, st) to
C, obtains the challenge ciphertext from C and returns it to the adversary. Once
the adversary outputs b∗, the environment forwards it as it’s guess to C.
Transition - Game 2 → Game 3: This is only a conceptual change.

The adversary’s success probability in Game 3 is bounded by the success prob-
ability in the IND-T game of Σ; a distinguisher between Game 0 and Game 3
would imply a distinguisher for statistically close distributions. ut

4 Efficient SPHFs for Algebraic Languages

Recent expressive SPHFs are mostly constructed to be compatible with the
universal composability (UC) framework [Can01]. Such constructions (see, e.g.,
[BBC+13a]) usually build upon SPHFs based on CCA2 secure (labeled) Cramer-
Shoup encryption. Consequently, such constructions often trade maximum ef-
ficiency for UC security. We do not aim for UC compatibility, as we focus on
constructing WE and thus we strive for particularly efficient instantiations. Be-
sides efficiency, our goal is to allow a maximum expressiveness of the language
underlying the SPHF to ensure maximum flexibility in the choice of the form
of the “private keys”, i.e., the witnesses, and to also facilitate a broad range
of possible applications. With these two goals in mind, it seems to be a nice
tradeoff to restrict ourselves to the set of languages defined over bilinear groups,
i.e., languages expressible via a set of PPEs.

4.1 SPHF for Linear Encryptions

As a basis, we use the ElGamal-based SPHF by Gennaro and Lindell [GL06],
which we port to the DLIN setting (similar as it is done for linear Cramer-
Shoup in [BBC+13a]). Before we continue, we briefly recall linear encryption as

16

introduced in [BBS04], which is the DLIN equivalent of DDH-based ElGamal
encryption.

The setup algorithm chooses a group G of prime order p generated by g.
Key generation amounts to choosing x1, x2←R Zp and outputting a private key
sk← (x1, x2) and public key pk = (pk1, pk2)← (gx1 , gx2). A message M ∈ G is
encrypted by choosing r1, r2←R Zp and computing a ciphertext CM = (u, v, e)←
(pkr11 , pk

r2
2 ,M · gr1+r2), which in turn can be decrypted by computing M =

e/(u1/x1 ·v1/x2). It is easy to show (as demonstrated by Boneh et al. in [BBS04]),
that the scheme sketched above provides IND-CPA security under the DLIN
assumption. It is well known that such a scheme represents a perfectly binding
and computationally hiding commitment scheme.

In Scheme 3, we present the SPHF, where the language LR is with respect
to the linear encryption public key pk contained in pp and contains all triples
(CM ,M) ∈ G3×G of valid ciphertexts CM with respect to pk and corresponding
messages M . Membership in this language is witnessed by the randomness r =
(r1, r2) ∈ Z2

p used to compute CM .

Setup(1κ) : On input of κ, run BG← BGGen(1κ), choose (x1, x2)←R Z2
p, set pk = (pk1,

pk2)← (gx1 , gx2), and return pp← (BG, pk).

HashKG(pp) : On input of pp, return hk← (pp, η, θ, ζ)←R Z3
p.

ProjKG(hk, x) : On input of hk and some word x = (CM ,M) ∈ G3 × G, where CM =
(pkr11 , pk

r2
2 ,M · gr1+r2), compute and return hp← (pp, hp1, hp2) = (pkη1g

ζ , pkθ2g
ζ).

Hash(hk, x) : On input of hk = (pp, LR, η, θ, ζ) and x = (pk, CM ,M) ∈ G2 × G3 × G,
where CM = (u, v, e), compute and return H ← uηvθ(e/M)ζ .

ProjHash(hp, x, w) : On input of hp, x and w = (r1, r2), compute and return H ←
hpr11 hpr22 .

Scheme 3: SPHF for the language of linear ciphertexts

Lemma 2. If the DLIN assumption holds, then the SPHF in Scheme 3 is secure.

Proof (Correctness). Let LR be the language of linear encryptions and pp, hk
and hp be generated according to the setup in Scheme 3. Now, let CM =
(pkr11 , pk

r2
2 ,M · gr1+r2) be a linear encryption of some message M and w =

(r1, r2). Let HProj ← ProjHash(hp, x, w) and HHash ← Hash(hk, x), then we have

HHash = uηvθ(e/M)ζ = pkr1η1 pkr2θ2 g(r1+r2)·ζ =

pkηr11 gζr1pkθr22 gζr2 = hpr11 hpr22 = HProj

which proves correctness. ut

Proof (Smoothness). To prove smoothness, we can assume that we have an
invalid ciphertext to some message M . Any such ciphertext is of the form
(pkr11 , pk

r2
2 ,M · gr3), where r3 6= r1 + r2 and thus not a word in the language LR.

With hp = (pp, pkη1g
ζ , pkθ2g

ζ), the corresponding hash value is then of the form

17

H = pkηr11 pkθr22 gζr3 . Taking the discrete logarithms with respect to g yields

loggH = x1ηr1 + x2θr2 + ζr3,
logg hp1 = x1η + ζ,
logg hp2 = x2θ + ζ.

The only possibility where loggH can be represented as a linear combination
of logg hp1 and logg hp2 is when r3 = r1 + r2, i.e., when (CM ,M) is in fact in
LR. Conversely, if (CM ,M) /∈ LR, we have r3 6= r1 + r2 and the value H looks
perfectly random. ut

Proof (Pseudo-Randomness). We already know that smoothness holds and we
now prove pseudo-randomness by showing that a distinguisher between the dis-
tributions considered in smoothness and pseudo-randomness is a distinguisher
for DLIN. We obtain a DLIN instance (BG, g1, g2, g

r
1, g

s
2, g

t) and compute the
ciphertext to M as (gr1, g

s
2,M · gt), set pk← (g1, g2), choose hk = (η, θ, ζ)←R Z3

p

and set hp ← (gη1g
ζ , gθ2g

ζ). Consequently, if we have a valid DLIN instance, we
have a distribution as in the pseudo-randomness game, whereas we have a distri-
bution as in the smoothness game if the DLIN instance is random. Assuming the
hardness of DLIN contradicts the existence of such an efficient distinguisher. ut

4.2 Extending Supported Languages

Applying the techniques presented in [BBC+13a, BBC+13b] to the SPHF in
Scheme 3 allows us to extend the set of supported languages to a large class of
PPEs. In particular, we can construct SPHFs for languages for the satisfiability
of PPEs of the form

m∏
i=1

e(Ai, Yi) ·
o∏

i=m+1

e(Xi, Bi) ·
n∏

i=o+1

Zi
γi = B, (2)

where Xi, Yi and Zi remain secret and are encrypted using linear encryption.
However, as the application in Section 5.2 which we use to illustrate our tech-
niques does not require the expressiveness of Equation 2, we use the following
simplified equation for the ease of presentation:

m∏
i=1

e(Ai, Yi) ·
n∏

i=m+1

Zi
γi = B. (3)

Note that in a Type-1 setting, this simplification does not even influence the
expressiveness. We further denote the commitments to Yi as Ci = (ui, vi, ei) =
(pkri11 , pkri22 , Yi ·gri1+ri2) ∈ G3 for 1 ≤ i ≤ m and Ci = (ui,vi, ei) = (e(pk1, g)ri1 ,
e(pk2, g)ri2 ,Zi · e(g, g)ri1+ri2) ∈ G3

T for m < i ≤ n. The language LR contains
all tuples (PPE, (Ci)i∈[m], (Ci)m<i≤n) of pairing product equations PPE and
commitments Ci and Ci, respectively. Membership in LR is witnessed by the
randomness used in the commitments.

For our following explanations, let ζ←R Zp and for i ∈ [n]: ηi, θi←R Zp, hki =

(ηi, θi, ζ) as well as hpi = (hpi1, hpi2) = (pkηi1 g
ζ , pkθi2 g

ζ). Then, hk = (pp,

18

(hki)i∈[n]), hp = (pp, (hpi)i∈[n]) and hashing as well as projective hashing are
defined as follows.

HHash := B−ζ ·
m∏
i=1

e(Ai, u
ηi
i v

θi
i e

ζ
i) ·

n∏
i=m+1

(uηii vθii eζi)
γi =

m∏
i=1

(Ai, hp
ri1
i1 hpri2i2) ·

n∏
i=m+1

e(gγi , hpri1i1 hpri2i2) =: HProj.

Lemma 3. Using the SPHF in Scheme 3 as described above yields a secure
SPHF for any language covered by Equation (3).

Proof (Correctness). For simplicity, we can without loss of generality assume
that m = 1, n = 2. Let (r11, r12) and (r21, r22) be the randomness used to
compute the linear encryptions of Y1 and Z2, respectively. Then, (r11, r12) and
(r21, r22) represent the witness. The projective hash value obtained using hp is
computed as

HProj ←
1∏
i=1

e(Ai, hp
ri1
i1 hpri2i2) ·

2∏
i=2

e(gγi , hpri1i1 hpri2i2) =

e(A1, (pk
η1
1 g

ζ)r11(pkθ12 g
ζ)r12) · e(gγ2 , (pkη21 gζ)r21(pkθ22 g

ζ)r22).

Computing the hash value using hk yields:

HHash ← B−ζ ·
1∏
i=1

e(Ai, u
ηi
i v

θi
i e

ζ
i) ·

2∏
i=2

(uηii vθii eζi)
γi =

B−ζ · e(A1, pk
r11η1
1 pkr12θ12 (Y1 · gr11+r12)ζ) · e(g, pk1)r21η2γ2 · e(g, pk2)r22θ2γ2 ·

Zζγ22 · e(g, g)(r21+r22)ζγ2 =

B−ζ · e(A1, Y
ζ
1) · Zζγ22 · e(A1, pk

r11η1
1 pkr12θ12 (gr11+r12)ζ) · e(g, pk1)r21η2γ2 ·

e(g, pk2)r22θ2γ2 · e(g, g)(r21+r22)ζγ2
(ii)
=

e(A1, (pk
η1
1 g

ζ)r11(pkθ12 g
ζ)r12) · e(gγ2 , (pkη21 gζ)r21(pkθ22 g

ζ)r22).

where for the last step (ii), we use that B = e(A1, Y1) · Zγ22 by definition. ut
Smoothness as well as pseudo-randomness follow from the respective properties
of the underlying SPHF, as we will discuss subsequently.

Proof (Smoothness). For smoothness, we can without loss of generality assume
that one of the n commitments (linear encryptions) contains a value such that
the overall PPE is not satisfied. As Yi and Zi cancel out via multiplication by
B−ζ when plugging in the commitments into the PPE, we know that—by the
smoothness of the underlying SPHF—H looks perfectly random. ut
Proof (Pseudo-Randomness). We know that smoothness holds by the smooth-
ness of the underlying SPHF. It is easy to see that a distinguisher between the
distributions considered in smoothness and pseudo-randomness, would also im-
ply a distinguisher for the same distributions in the underlying SPHF and thus
(as already seen in the proof of Lemma 2) a distinguisher for DLIN. ut

19

We note that an extension to statements of the form in Equation (2) is straight-
forward and can be done analogous to [BBC+13a, BBC+13b].

4.3 SPHF for Linear Groth-Sahai Commitments

Now, let the language for the SPHF be defined by the commitments used within
the GS proof framework. This brings us closer to our final technique, i.e., to
construct WE such that we can reuse commitments, which were initially used
in a GS proof. Therefore, we subsequently show how to extend the SPHF in
Scheme 3 to work with linear GS commitments [GS08]. Before we do so, we
introduce some additional notation. Let ◦ : G1×n × G1×n → G1×n and · :
Zp × G1×n → G1×n denote binary operations on row vectors, i.e., ◦ denotes
entry-wise multiplications, whereas · denotes entry-wise exponentiation.

Linear GS Commitments. We first recall how a linear GS commitment is
formed. Let (U1, U2, U3) ∈ G3×G3×G3 be the commitment parameters for the
DLIN setting, which look as follows:

U1 = (g1, 1, g) , U2 = (1, g2, g) , U3 = ρ · U1 ◦ ν · U2 =
(
gρ1 , g

ν
2 , g

ρ+ν
)
,

where ρ, ν←R Zp. If the commitment parameters are set up in this way, one ob-
tains perfectly binding commitments. In contrast, in the perfectly hiding setup
we have that logg U3 /∈ span(logg U1, logg U2). The two setups are computation-
ally indistinguishable under DLIN. Thus, we can align our further explanations
to the perfectly binding setup and they equally apply to the perfectly hiding
case. To commit to a message M ∈ G one chooses r1, r2, r3←R Zp and computes

CM = (1, 1,M) ◦ r1 · (g1, 1, g) ◦ r2 · (1, g2, g) ◦ r3 ·
(
gρ1 , g

ν
2 , g

ρ+ν
)

=(
gr1+ρr31 , gr2+νr32 ,M · gr1+r2+r3(ρ+ν)

)
.

Observe that CM linearly encrypts M with respect to ((r1 + ρr3), (r2 + νr3)).
In Scheme 4, we present the SPHF for linear GS commitments. Essentially,

this scheme is a tweak of Scheme 3, where we need to extend the projection key
hp due to gρ1 , gν2 , and gρ+ν being fixed in the public key of linear GS commitments
(i.e., the CRS of the GS proof system).

Lemma 4. If the DLIN assumption holds, then the SPHF in Scheme 4 is secure.

Proof (Correctness). Let LR be the language of linear GS commitments CM and
corresponding committed messages M and pp, hk and hp be generated according
to the setup in Scheme 4. In particular, we have CM = (gr1+ρr31 , gr2+νr32 ,M ·
gr1+r2+r3(ρ+ν)) and w = (r1, r2, r3). Let HProj ← ProjHash(hp, x, w) and HHash ←
Hash(hk, x), then we have

HHash := uη · vθ(e/M)ζ =

g
η(r1+ρr3)
1 · gθ(r2+νr3)2 · gζ(r1+r2+r3(ρ+ν)) =

gηr11 gζr1 · gθr22 gζr2 · gρηr31 gνθr32 g(ρ+ν)ζr3 =

hpr11 · hp
r2
2 · hp

r3
3 =: HProj.

ut

20

Setup(1κ) : On input of κ, run BG ← BGGen(1κ), choose (ρ, ν)←R Z2
p, set pk ←

(g1, g2, g, g
ρ
1 , g

ν
2 , g

ρ+ν) and return pp← (BG, pk).

HashKG(pp) : On input of pp, return hk← (pp, η, θ, ζ)←R Z3
p.

ProjKG(hk, x) : On input of hk and some word x = (CM ,M) ∈ G3 × G, where

CM = (gr11 g
ρr3
1 , gr22 g

νr3
2 ,M · gr1+r2+r3(ρ+ν)), compute and return hp ← (pp, hp1,

hp2, hp3) = (gη1g
ζ , gθ2g

ζ , (gρ1)η(gν2)θ(gρ+ν)ζ).
Hash(hk, x) : On input of hk = (pp, η, θ, ζ) and x = (CM ,M) ∈ G3 × G, where CM =

(u, v, e), compute and return H ← uηvθ(e/M)ζ .
ProjHash(hp, x, w) : On input of hp, x and w = (r1, r2, r3), compute and return H ←

hpr11 · hp
r2
2 · hp

r3
3 .

Scheme 4: SPHF for the language of linear GS commitments

Proof (Smoothness). To prove smoothness, we can assume that we have an in-
valid commitment to some message M . Any such commitment is of the form
(gr1+ρr31 , gr2+νr32 ,M · gr4), where r4 6= r′1 + r′2 = (r1 + ρr3) + (r2 + νr3) and

thus not a word in the language LR. With hp = (pp, gη1g
ζ , gθ2g

ζ , gρη1 gνθ2 g(ρ+ν)ζ),

the corresponding hash value is then of the form H = g
η(r1+ρr3)
1 g

θ(r2+νr3)
2 gζr4 .

Taking the discrete logarithms with respect to g yields

loggHHash = x1η(r1 + ρr3) + x2θ(r2 + νr3) + ζr4,

logg hp1 = x1η + ζ,

logg hp2 = x2θ + ζ,

logg hp3 = x1ρη + x2νθ + (ρ+ ν)ζ.

It is easy to see that the only possibility where loggH ∈ span(logg hp1, logg hp2,
logg hp3) is when r4 = (r1 + ρr3) + (r2 + νr3) = r′1 + r′2, i.e., when (CM ,M) is
in fact in LR. Conversely, if (CM ,M) /∈ LR we have that r3 6= r′1 + r′2 and the
value H looks perfectly random. ut

One could now straight-forwardly show that pseudo-randomness holds under the
hard subset membership problem in the soundness setting. However, switching to
the unconditional hiding setting would render our argumentation meaningless, as
for every possible message there exists a randomness so that a given commitment
opens to this message in this setting. In other words, all words which are not
in the language in the binding setting are in the language in the hiding setting.
But based on this observation we can proof pseudo-randomness.

Proof (Pseudo-Randomness). We prove pseudo-randomness using a sequence of
hybrid distributions.

Distribution 0: Let D0 be the distribution sampled according to the smooth-
ness definition for some word (CM ,M

′) /∈ LR.
Distribution 1: As D0, but we set up pk to be unconditionally hiding, i.e.,

pk = (g1, g2, g, g
ρ
1 , g

ν
2 , g

ψ) with ψ←R Zp.
Transition D0 → D1 : A distinguisher D0→1 is a DLIN distinguisher (more gen-

erally contradicts the CRS indistinguishability of GS).

21

In D0 the hash value is statistically close to random. In D1 there exists an opening
for CM to M ′, i.e., (CM ,M

′) ∈ LR. Both distributions are computationally
indistinguishable, which proves pseudo-randomness. ut

4.4 Extending Supported Languages II

We can now use the SPHF for linear GS commitments in statements over bi-
linear groups in a similar way as described for the plain DLIN ciphertexts in
Section 4.2. In particular, let ζ←R Zp and for i ∈ [n]: ηi, θi←R Zp, hki = (ηi, θi, ζ)

as well as hpi = (hpi1, hpi2, hpi3) = (gηi1 g
ζ , gθi2 g

ζ , (gρ1)ηi(gν2)θi(gρ+ν)ζ). Then,
hk = (pp, (hki)i∈[n]), hp = (pp, (hpi)i∈[n]) and we define

HHash := B−ζ ·
m∏
i=1

e(Ai, u
ηi
i v

θi
i e

ζ
i) ·

n∏
i=m+1

(uηii vθii eζi)
γi =

m∏
i=1

e(Ai, hp
ri1
i1 · hp

ri2
i2 · hp

ri3
i3) ·

n∏
i=m+1

e(gγi , hpri1i1 · hp
ri2
i2 · hp

ri3
i3) =: HProj.

(4)

Security, of the construction in Equation (4) is easy to verify by the security of
Scheme 4 using the strategy in Section 4.2 with the argumentation in Section 4.3.
Thus, we omit the proof and directly state the lemma.

Lemma 5. Using the SPHF in Scheme 4 as described above yields a secure
SPHF for any language covered by Equation (3).

5 Witness Encryption and GS Proofs

Below we show that plugging the SPHF in Scheme 4, used as demonstrated in
Equation (4), into our generic WE constructions yields a methodology to encrypt
a message with respect to a large class of statements over PPEs proven using
GS (cf. Section 5.1). In Section 5.2 we show how to generically apply this tech-
nique to solve the problem from our motivation, i.e., to allow for a confidential
reply to an unknown (anonymous) ring signer. Then, in Section 5.3 we provide
a brief performance analysis of our technique to emphasize its practicality.

5.1 Encrypting With Respect to a GS Proof

To give a brief overview of our idea, assume that a prover creates a proof π
for the satisfiability of some PPE. To conduct a GS proof, informally, one sends
commitments to the witness together with some additional group elements that
are used to “cancel out” the randomness in the commitments. Now, given such
a proof, one can simply encrypt a message with respect to the statement proven
in π using our SPHF in Scheme 4. The witness to decrypt is the randomness
which was used in the commitments contained in π, and consequently the entity
who produced π can decrypt.

Scheme 5 compactly sketches our approach, where GS refers to the GS proof
system and PPE refers to a paring product equation that can be expressed in our

22

SPHF framework from Section 4.3. We assume that GS.BGGen and GS.CRSGen
have already been run and thus the bilinear group description BG as well as the
CRS crs are available to both, the encryptor and the decryptor. For simplicity we
use PPEs of the form in Equation (3) without the Zi values. However, recall that
our techniques can straight forwardly be adapted to work with all statements
covered by Equation (2). We write a GS proof π as a sequence of commitments

Decryptor Encryptor

π ← GS.Proof(BG, crs,PPE, (Yi)i∈[n]; r)

store r
π−−→ parse π as ((Ci)i∈[n],PPE, πGS),

set pp← (BG, crs),

extract rcom from r
c←−− c←WE.Enc(pp, ((Ci)i∈[n],PPE),m)

m←WE.Dec(rcom, c)

Scheme 5: Encryption of a message with respect to a GS proof

(Ci)i∈[n], a corresponding PPE and a proof part πGS. Additionally, we make the
randomness r used in GS.Proof explicit and assume that one can efficiently derive
the randomness rcom used in the commitments (Ci)i∈[n] in π from r. Then, the
language used in the WE scheme consists of words containing the PPE as well
as the commitments (Ci)i∈[n] to the unrevealed values (Yi)i∈[n]. Membership in
this language is witnessed by the randomness rcom.

To formally capture the security we would expect when using WE in this con-
text, we require that breaking soundness remains intractable even if the state-
ment is in fact in LR and a GS proof for this fact is provided.

Definition 17 (Pseudo-randomness in the Presence of Proofs). Let BG←
GS.BGGen(1κ), crs ← GS.CRSGen(BG), and PPE be a pairing product equation
with satisfying witnesses ((Yij)i∈[n])j∈[m]. A WE scheme for the language defined
by (BG,PPE, crs) provides pseudo-randomness in the presence of proofs, if for all
PPT adversaries A there exists a negligible function ε(·) such that for all ` ∈ [m]
it holds that

Pr

π = ((Ci)i∈[n],PPE, πGS)← GS.Proof(BG,
crs,PPE, (Yi`)i∈[n]), b←

R {0, 1},
(m0,m1, st)← A(BG, crs, π),
c←WE.Enc((BG, crs), ((Ci)i∈[n],PPE),mb),
b∗ ← A(st, c)

:
b = b∗ ∧

|m0| = |m1|

 ≤ 1/2 + ε(κ).

Theorem 3. When instantiating Scheme 5 with a WE scheme based on the
SPHF from Equation (4), and there is more than one possible witness for the
statement, then Scheme 5 provides pseudo-randomness in the presence of proofs.

Proof. Due to the CRS indistinguishability of GS we can without loss of gen-
erality assume the unconditionally hiding setting. By the pseudo-randomness
of the SPHF in Equation (4) we know that soundness of the WE scheme also
holds if x ∈ LR as long as no witness is known and no additional information

23

is provided (recall that we do not require the hard-subset membership problem
to prove pseudo-randomness). What, thus, remains is to show that the proof
does not contain additional information: As soon as there exists more than one
possible witness, the GS proof unconditionally hides the witness among all pos-
sible witnesses (cf. [GS07, Proof of Theorem 3]), which, in further consequence
means that it unconditionally hides the used randomness rcom among all possible
values. This proves the theorem. ut

Alternatively, one could also directly prove the above theorem in the uber-
assumption framework [Boy08] using the soundness setting together with pseudo-
randomness under the hard subset membership problem. It suffices to show that
the hash value is still indistinguishable from random when additionally given a
GS proof for the respective statement. In our setting the proof consists of three
group elements containing the discrete logarithms

∑
i∈[n] airi1,

∑
i∈[n] airi2, and∑

i∈[n] airi3, respectively, where ai = logg Ai. Since the (ηi, θi)-parts are inde-

pendently chosen for each hki the hash value can (independent of the choice
of the values ai) not be represented as a linear combination of these discrete
logarithms as soon as i > 1. Now, given this linear independence, it is easy to
see that this distinguishing task falls into the uber-assumption framework, with
R = S = 〈1, x1, x2, ρx1, νx2, ρ+ν, (ai)i∈[n],

∑
i∈[n] ai ·ri1,

∑
i∈[n] ai ·ri2,

∑
i∈[n] ai ·

ri3, (x1(ri1 + ρri3))i∈[n], (x2(ri2 + νri3))i∈[n], (ri1 + ri2 + ri3(ρ+ ν))i∈[n], (x1ηi +
ξ)i∈[n], (x2θi+ξ)i∈[n], (x1ρηi+x2νθi+(ρ+ν)ξ)i∈[n]〉, T = 〈1〉, f = 〈

∑
i∈[n] ai(ηix1

(ri1 + ρri3) + θix2(ri2 + νri3) + ξ(ri1 + ri2 + (ρ+ ν)ri3))〉, where all polynomials
are in the variables, (ri1, ri2, ri3)i∈[n] and i > 1.

5.2 How to Reply an Unknown Whistleblower

Now we come back to our motivating question. Recall, that we assumed that a
whistleblower Edwarda who signs a leaked document using a ring signature, i.e., a
signature which hides her identity unconditionally among other carefully selected
people in an ad-hoc group without getting their approval or assistance. We asked
ourselves if a journalist can confidentially reply the unknown whistleblower.

Indeed, we can use our techniques together with ring signatures to encrypt a
message using only information from a given ring signature (specifying an NP-
language) such that only the anonymous producer of the ring signature, i.e.,
Edwarda, can decrypt (as only she holds the respective witness). Therefore, we
first recall a generic construction of ring signatures for bilinear groups [Gha13].

A Generic Construction of Ring Signatures. Ghadafi [Gha13] presents
a generic construction (and two possible instantiations) of ring signatures for
symmetric and asymmetric prime-order bilinear groups. We recall the generic
construction and one instantiation subsequently, where we adapt the notation
to ours. Here, Sig denotes an EUF-CMA secure digital signature scheme (cf.
Appendix A) defined over bilinear groups with message spaceM. That is, it has
an additional algorithm Sig.Setup(1κ) that outputs a bilinear group description
BG and all other algorithms take BG as an additional input, which is reasonable
in a discrete log setting. Furthermore, GS denotes the non-interactive GS proof

24

system. Henceforth, let the output of Sig.Setup and GS.BGGen be compatible,
i.e., BG generated by one of these algorithms can be used in both systems. Finally,
we can view signatures output by Sig.Sign as being of the form σ = {σj}j∈[n],
i.e., they may consists of several elements, and each σj that depends on the
secret key sk is a group element. We denote the subset of σ that depends on sk
as σ and use σ for its complement, i.e., σ = σ ∪ σ.

Before we introduce the generic ring signature scheme in Scheme 6, we define
the NP-relations R1 and R2 corresponding to the languages L1 and L2, respec-
tively. Thereby, R denotes the ring including a public verification key pki so that
the signature is produced with the corresponding ski. Moreover, F : {0, 1}∗ →M
denotes a collision resistant hash function.

((m,σ,R,Sig), (pki, σ)) ∈ R1 ⇐⇒ Sig.Verify(pki, F (m||R), σ ∪ σ),

(R, pki) ∈ R2 ⇐⇒ pki ∈ R.
Proving knowledge of a witness (pki, σ) for R1 requires that the verification
relation of the underlying signature scheme can be proven using GS. To prove
knowledge of a witness pki for R2 using GS, efficient techniques are discussed in
[Gha13] and not recalled here. We note that one needs to simultaneously prove
knowledge of witnesses for both relations, which can be achieved by reusing the
respective GS commitments corresponding to R1 in R2 or vice versa (cf. [EG14]).

Setup(1κ) : On input of κ, run BG ← Sig.Setup(1κ), crs ← GS.CRSGen(BG), choose a
collision resistant hash function F : {0, 1}∗ →M and return pp← (BG, crs, F).

KeyGen(pp) : On input of pp, parse pp as (BG, crs, F), run (sk, pk) ←
Sig.KeyGen(1κ,BG) and return (sk, pk).

Sign(pp, ski,m,R) : On input of pp, ski, m ∈ {0, 1}∗ and R, parse pp as (BG, crs,
F), run σ ← Sig.Sign(BG, ski, F (m||R)), compute πL1 ← GS.Proof(BG, crs, (m,σ,
R,Sig), (pki, σ)), and πL2 ← GS.Proof(BG, crs,R, pki). In the end, return σ ←
(σ, πL1 , πL2).

Verify(pp,m, σ,R) : On input of pp,m, σ andR, parse pp as (BG, crs, F), check whether
GS.Verify(BG, crs, (m,σ,R, Sig), πL1) = 1 ∧ GS.Verify(BG, crs,R, πL2) = 1 and
return 1 if so and 0 otherwise.

Scheme 6: Generic construction of ring signatures [Gha13]

Theorem 4 ([Gha13]). Scheme 6 is a secure ring signature scheme, if Sig is
EUF-CMA secure, F is collision resistant, and GS is sound and witness indistin-
guishable.

Encrypting a Confidential Reply to an Unknown Receiver. For every
ring signature scheme following the paradigm in Scheme 6, where πL1

proves
the satisfiability of a PPE that is compatible with our SPHF framework from
Section 4.3, one can use the technique presented in Scheme 5 to encrypt mes-
sages with respect to πL1

. The fact that the anonymity of ring signatures cru-
cially requires that more than one witness exists for R1 and from Theorem 3 we
straight-forwardly derive the following corollary.

25

Corollary 1. When using Scheme 5 to encrypt with respect to the πL1
-parts of

a ring signature, pseudorandomenss in the presence of proofs holds.

In Appendix B we provide a concrete instantiation of Scheme 6 using Waters
signatures [Wat05] as an example of a compatible ring signature scheme.

5.3 Efficiency of Our Technique

We want to emphasize that our technique is very efficient, and, thus, also ap-
pealing from a practical point of view: Counting the expensive operations in
G, the SPHF for linear Groth-Sahai commitments in Scheme 4 boils down to 6
exponentiations in ProjKG and 3 exponentiations in Hash and ProjHash, respec-
tively. The operations required when using this SPHF for languages over bilinear
groups as demonstrated in Equation (4), are outlined in Table 1. Thereby, m
refers to the length of the vector (Yi)i∈[m], whereas (m− n) refers to the length
of the vector (Zi)m<i≤n. Here, the computational effort grows linearly in the

Table 1. SPHF for linear GS commitments in PPEs: Expensive operations

Exp. G Exp. GT e(·, ·)
HashKG 0 0 0
ProjKG 4n+ 2 0 0

Hash 3m 3(n−m) + 1 m
ProjHash 3n+ (n−m) 0 n

size of the PPE (in particular in n and m, respectively) and is almost as efficient
as evaluating the PPE with plain values.

Encrypting w.r.t. Ring Signatures. To finally underline the practicality of
our construction with respect to our exemplary application from Section 5.2, we
analyze the computational effort that is necessary to encrypt a message with
respect to a ring signature based on Waters signatures (cf. Scheme 7 in Ap-
pendix B). Thereby, we assume that the encrypting party exploits synergies from
the signature verification of the Waters signature to obtain an even more efficient

encryption operation. In particular, we assume that the value e(σ1, U0

∏k
i=1 U

hi
i)

computed during verification of the Waters signature is cached and is then
directly used upon encryption in the computation of the hash value of the
SPHF, yielding a PPE with m = n = 2 for the underlying SPHF. Then, regarding
the expensive operations in G and GT , respectively, encryption only requires 16
exponentiations in G and 2 pairings, and decryption only requires 6 exponen-
tiations in G and 2 pairings. The operations will most likely be performed on
relatively powerful devices such as desktop PCs where the computational over-
head will not even be noticeable. Just to give an intuition of how much this will
cost on more constrained devices, we assume a portation [AGH15] of our scheme
to the Type-3 setting and use performance values of a BN-pairing implementa-
tion on an ARM Cortex-M0+ with a drop in hardware accelerator [UW14]. On
this platform an exponentiation in G1 takes 33ms and a pairing takes 164ms,
respectively. This means that—even on such a constrained device—encryption
can be performed in approximately 1s and decryption in approximately 500ms.

26

6 Discussion

Finally, we briefly discuss two other potential applications of the presented
methodologies and leave a rigorous investigation as future work.

Ring Encryption. It is quite straightforward to construct a ring encryption
equivalent to group encryption [KTY07], i.e., an ad-hoc version of group en-
cryption. That is, anyone can encrypt a message such that it is guaranteed that
exactly one unknown member of an ad-hoc ring R is able to decrypt. A sim-
ple instantiation (in analogy to the generic ring signature construction) would
assemble a ring R of public keys of a key-private public key encryption scheme
[BBDP01], e.g., ElGamal or linear encryption, with shared group parameters.
Then, one would take the receivers public key pki and encrypt the message m.
Moreover, using a compatible non-interactive proof system (such as GS), one
proves that pki is a member of the ring R without revealing pki (e.g., by using
a membership proof similar as in [Gha13]). Our use of WE in Section 5.2 can be
interpreted as a construction of a variant of ring encryption in the sense that we
additionally achieve unconditional anonymity. In particular, it allows anyone to
encrypt a message with respect to an ad-hoc group (ring), being represented by a
ring signature σ with respect to a ring R (instead of the ring R itself). Thereby,
exactly one member of the ring, i.e., the signer, can decrypt. Furthermore, even
the encrypting party does not know who exactly will be able to decrypt. Never-
theless, we can ensure that only the right party is able to decrypt, while nobody
is able to reveal the identity of the party that is able to decrypt.

Mutually Anonymous Key-Exchange. Our method to encrypt with respect
to a GS proof or in particular with respect to a ring signature could be ap-
plied to LAKE. That is, two parties that do not want to reveal their identity to
each other (but only their membership to potentially distinct and independently
chosen ad-hoc rings) can agree on a common encryption key, i.e., by using an
SPHF for languages covering ring signatures as demonstrated in Section 5.2.

Acknowledgements. We thank the anonymous referees from Crypto’16 for
their valuable comments.

References

[ABP15] Michel Abdalla, Fabrice Benhamouda, and David Pointcheval. Disjunc-
tions for hash proof systems: New constructions and applications. In EU-
ROCRYPT, 2015.

[AFP16] Hamza Abusalah, Georg Fuchsbauer, and Krzysztof Pietrzak. Offline Wit-
ness Encryption. In ACNS, 2016.

[AGH15] Joseph A. Akinyele, Christina Garman, and Susan Hohenberger. Automat-
ing Fast and Secure Translations from Type-I to Type-III Pairing Schemes.
In CCS, 2015.

[BBC+13a] Fabrice Benhamouda, Olivier Blazy, Céline Chevalier, David Pointcheval,
and Damien Vergnaud. Efficient UC-Secure Authenticated Key-Exchange
for Algebraic Languages. In PKC, 2013.

27

[BBC+13b] Fabrice Benhamouda, Olivier Blazy, Céline Chevalier, David Pointcheval,
and Damien Vergnaud. New Techniques for SPHFs and Efficient One-
Round PAKE Protocols. In CRYPTO, 2013.

[BBDP01] Mihir Bellare, Alexandra Boldyreva, Anand Desai, and David Pointcheval.
Key-Privacy in Public-Key Encryption. In ASIACRYPT, 2001.

[BBS04] Dan Boneh, Xavier Boyen, and Hovav Shacham. Short Group Signatures.
In CRYPTO, 2004.

[BC16] Olivier Blazy and Céline Chevalier. Structure-preserving smooth projective
hashing. IACR Cryptology ePrint Archive, page 258, 2016.

[BF01] Dan Boneh and Matthew K. Franklin. Identity-Based Encryption from the
Weil Pairing. In CRYPTO, 2001.

[BH13] Mihir Bellare and Viet Tung Hoang. Adaptive Witness Encryption
and Asymmetric Password-based Cryptography. IACR Cryptology ePrint
Archive, page 704, 2013.

[BH15] Mihir Bellare and Viet Tung Hoang. Adaptive Witness Encryption and
Asymmetric Password-Based Cryptography. In PKC, 2015.

[BKM09] Adam Bender, Jonathan Katz, and Ruggero Morselli. Ring Signatures:
Stronger Definitions, and Constructions without Random Oracles. J. Cryp-
tology, 22(1), 2009.

[Boy08] Xavier Boyen. The uber-assumption family. In Pairing, 2008.
[Can01] Ran Canetti. Universally Composable Security: A New Paradigm for Cryp-

tographic Protocols. In FOCS, 2001.
[CFPZ09] Céline Chevalier, Pierre-Alain Fouque, David Pointcheval, and Sébastien

Zimmer. Optimal Randomness Extraction from a Diffie-Hellman Element.
In EUROCRYPT, 2009.

[COR99] Giovanni Di Crescenzo, Rafail Ostrovsky, and Sivaramakrishnan Ra-
jagopalan. Conditional Oblivious Transfer and Timed-Release Encryption.
In EUROCRYPT, 1999.

[CS98] Ronald Cramer and Victor Shoup. A Practical Public Key Cryptosys-
tem Provably Secure Against Adaptive Chosen Ciphertext Attack. In
CRYPTO, 1998.

[CS02] Ronald Cramer and Victor Shoup. Universal Hash Proofs and a Paradigm
for Adaptive Chosen Ciphertext Secure Public-Key Encryption. In EURO-
CRYPT, 2002.

[CZ14] Yu Chen and Zongyang Zhang. Publicly evaluable pseudorandom functions
and their applications. In SCN, 2014.

[EG14] Alex Escala and Jens Groth. Fine-tuning groth-sahai proofs. In PKC,
2014.

[FNV15] Antonio Faonio, Jesper Buus Nielsen, and Daniele Venturi. Predictable
arguments of knowledge. IACR Cryptology ePrint Archive, page 740, 2015.

[GGH+13] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai,
and Brent Waters. Candidate Indistinguishability Obfuscation and Func-
tional Encryption for all Circuits. In FOCS, 2013.

[GGHW14] Sanjam Garg, Craig Gentry, Shai Halevi, and Daniel Wichs. On the Im-
plausibility of Differing-Inputs Obfuscation and Extractable Witness En-
cryption with Auxiliary Input. In CRYPTO, 2014.

[GGSW13] Sanjam Garg, Craig Gentry, Amit Sahai, and Brent Waters. Witness En-
cryption and its Applications. In STOC, 2013.

[Gha13] Essam Ghadafi. Sub-linear Blind Ring Signatures without Random Ora-
cles. In IMACC, 2013.

[GKP+13] Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikun-
tanathan, and Nickolai Zeldovich. How to Run Turing Machines on En-
crypted Data. In CRYPTO, 2013.

28

[GL06] Rosario Gennaro and Yehuda Lindell. A framework for password-based

authenticated key exchange1. ACM Trans. Inf. Syst. Secur., 9(2), 2006.
[GLW14] Craig Gentry, Allison B. Lewko, and Brent Waters. Witness Encryption

from Instance Independent Assumptions. In CRYPTO, 2014.
[GM84] Shafi Goldwasser and Silvio Micali. Probabilistic Encryption. J. Comput.

Syst. Sci., 28(2), 1984.
[Gre14] Glenn Greenwald. No Place to Hide: Edward Snowden, the NSA, and the

U.S. Surveillance State. Metropolitan Books/Henry Holt (NY), 2014.
[GS07] Jens Groth and Amit Sahai. Efficient non-interactive proof systems for

bilinear groups. Cryptology ePrint Archive, Report 2007/155, 2007.
[GS08] Jens Groth and Amit Sahai. Efficient Non-interactive Proof Systems for

Bilinear Groups. In EUROCRYPT, 2008.
[HILL99] Johan H̊astad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A

Pseudorandom Generator from any One-way Function. SIAM J. Comput.,
28(4), 1999.

[HO05] Yoshikazu Hanatani and Kazuo Ohta. Two Stories of Ring Signatures.
CRYPTO 2005 Rump Session Talk, https://www.iacr.org/conferences/
crypto2005/r/38.ppt, 2005.

[Jag15] Tibor Jager. How to Build Time-Lock Encryption. IACR Cryptology ePrint
Archive, page 478, 2015.

[Jar14] Stanislaw Jarecki. Practical Covert Authentication. In PKC, 2014.
[JL09] Stanislaw Jarecki and Xiaomin Liu. Private Mutual Authentication and

Conditional Oblivious Transfer. In CRYPTO, 2009.
[KD04] Kaoru Kurosawa and Yvo Desmedt. A New Paradigm of Hybrid Encryp-

tion Scheme. In CRYPTO, 2004.
[KL07] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography.

Chapman and Hall/CRC Press, 2007.
[KPSY09] Eike Kiltz, Krzysztof Pietrzak, Martijn Stam, and Moti Yung. A New Ran-

domness Extraction Paradigm for Hybrid Encryption. In EUROCRYPT,
2009.

[KTY07] Aggelos Kiayias, Yiannis Tsiounis, and Moti Yung. Group Encryption. In
ASIACRYPT, 2007.

[KV11] Jonathan Katz and Vinod Vaikuntanathan. Round-Optimal Password-
Based Authenticated Key Exchange. In TCC, 2011.

[LKW15] Jia Liu, Saqib A. Kakvi, and Bogdan Warinschi. Extractable witness
encryption and timed-release encryption from bitcoin. IACR Cryptology
ePrint Archive, page 482, 2015.

[RST01] Ronald L. Rivest, Adi Shamir, and Yael Tauman. How to Leak a Secret.
In ASIACRYPT, 2001.

[RSW96] Ronald L. Rivest, Adi Shamir, and David A Wagner. Time-lock puzzles and
timed-release crypto. Technical report, Massachusetts Institute of Technol-
ogy, 1996.

[SW05] Amit Sahai and Brent Waters. Fuzzy Identity-Based Encryption. In EU-
ROCRYPT, 2005.

[tor] Tor project: Anonymity online.
[UW14] Thomas Unterluggauer and Erich Wenger. Efficient Pairings and ECC for

Embedded Systems. In CHES, 2014.
[Wat05] Brent Waters. Efficient Identity-Based Encryption Without Random Ora-

cles. In EUROCRYPT, 2005.
[Wee10] Hoeteck Wee. Efficient Chosen-Ciphertext Security via Extractable Hash

Proofs. In CRYPTO, 2010.
[Zha16] Mark Zhandry. How to Avoid Obfuscation Using Witness PRFs. In TCC

2016-A, 2016.

29

https://www.iacr.org/conferences/crypto2005/r/38.ppt
https://www.iacr.org/conferences/crypto2005/r/38.ppt

A Digital Signatures

For the sake of completeness we formally recall digital signature schemes below.

Definition 18 (Digital Signatures). A digital signature scheme Sig is a triple
(KeyGen, Sign,Verify) of PPT algorithms:

KeyGen(1κ) : The key generation algorithm that takes a security parameter κ as
input and outputs a secret (signing) key sk and a public (verification) key pk
with associated message space M (we may omit to mention M).

Sign(sk,m) : The (probabilistic) signing algorithm takes a secret key sk and a
message m ∈M as input and outputs a signature σ.

Verify(pk,m, σ) : The deterministic verification algorithm takes a a public key
pk, a message m ∈M and a signature σ as input and outputs b ∈ {0, 1}.

We require correctness and existential unforgeability under chosen message at-
tacks (EUF-CMA security).

B Waters Signature Based Ring Signature Instantiation

A very simple scheme, where our generic methodology can be straightforwardly
applied, is the instantiation of the generic ring signature construction from
[Gha13] based on Waters signatures [Wat05]. See Scheme 7, where we also ex-
plicitly present the relation πL1 which is used for the WE scheme. For this con-
struction, Ghadafi shows the following.

Setup(1κ) : On input of κ, run BG← Sig.Setup(1κ), crs← GS.CRSGen(BG) and choose

a collision resistant hash function F : {0, 1}∗ → {0, 1}k. Then, choose a←R Zp, and

for all i ∈ [k] : Ui←R G. Set A← ga, pp← (BG, crs, F,A, (Ui)i∈[k]).

KeyGen(pp) : On input of pp, parse pp as (BG, crs, F,A, (Ui)i∈[k]), choose b←R Zp and

compute B ← gb. In the end, return (sk, pk)← ((Ab, B), B).
Sign(pp, ski,m,R) : On input of pp, ski, m, R, parse pp as (BG, crs, F,A, (Ui)i∈[k]),

compute h ← F (m||R) and parse h as (hi, . . . , hk) ∈ {0, 1}k, compute

HW = U0

∏k
i=1 U

hi
i . In the end, choose r←R Zp, compute (σ1, σ2) ← (gr, ski[1] ·

HW
r), πL1 ← GS.Proof(BG, crs, (pp,m, σ1,R, Sig), (ski[2], σ2)) for R1, πL2 ←

GS.Proof(BG, crs,R, pki) for R2 and return σ ← (σ1, π1, π2).
Verify(pp,m, σ,R) : On input of pp,m, σ andR, parse pp as (BG, crs, F), check whether

GS.Verify(BG, crs, (pp,m, σ1,R, Sig), πL1) = 1 ∧ GS.Verify(BG, crs,R, πL2) = 1 and
return 1 if so and 0 otherwise.

The relation used in πL1 is defined below, where Sig implicitly defines the PPE. πL2

uses the same relation as in the generic construction.

((pp,m, σ1,R,Sig), (B, σ2)) ∈ R1 ⇐⇒
e(A−1, B) · e(g, σ2) = e(σ1, U0

k∏
i=1

Uhii) ∧ (h1, . . . , hk)← H(m||R).

Scheme 7: Waters signature based ring signature scheme [Gha13]

30

Theorem 5 ([Gha13]). The construction in Scheme 7 is secure if the DLIN
assumption holds in G, F is a collision resistant hash function, and GS is sound
and witness indistinguishable.

31

	Practical Witness Encryption for Algebraic Languages And How to Reply an Unknown Whistleblower

