
Practical Witness Encryption for Algebraic
Languages Or How to Encrypt Under

Groth-Sahai Proofs

David Derler and Daniel Slamanig

IAIK, Graz University of Technology, Austria
{david.derler|daniel.slamanig}@tugraz.at

Abstract. Witness encryption (WE) is a recent powerful encryption
paradigm, which allows to encrypt a message using the description of
a hard problem (a word in an NP-language) and someone who knows
a solution to this problem (a witness) is able to efficiently decrypt the
ciphertext. Recent work thereby focuses on constructing WE for NP
complete languages (and thus NP). While this rich expressiveness allows
flexibility w.r.t. applications, it makes existing instantiations impractical.
Thus, it is interesting to study practical variants of WE schemes for
subsets of NP that are still expressive enough for many cryptographic
applications.

We show that such WE schemes can be generically constructed from
smooth projective hash functions (SPHFs). In terms of concrete instan-
tiations of SPHFs (and thus WE), we target languages of statements
proven in the popular Groth-Sahai (GS) proof framework. This allows
us to provide a novel way to encrypt. In particular, encryption is with
respect to a GS proof and efficient decryption can only be done by the re-
spective prover. The so obtained constructions are entirely practical and
only require standard assumptions such as DLIN or DDH. To illustrate
our techniques, we discuss two potential applications of our techniques
in the context of privacy-preserving exchange of information.

Keywords: Witness encryption, smooth projective hash functions, Groth-
Sahai proofs, encryption, privacy.

1 Introduction

Witness encryption (WE) is a recent powerful encryption paradigm introduced
by Garg et al. [GGSW13]. In WE, an encryption scheme is defined for some NP-
language L with witness relation R so that L = {x | ∃ w : R(x,w) = 1}. The
encryption algorithm takes an alleged word x from L (instead of an encryption
key) and a message m and produces a ciphertext c. Using a witness w such that
R(x,w) = 1, anyone can decrypt c to obtain m. Decryption only works if x ∈ L

The authors have been supported by EU H2020 project Prismacloud, grant agree-
ment n◦644962.

1

mailto:david.derler@tugraz.at
mailto:daniel.slamanig@tugraz.at

and a ciphertext c hides m if c has been computed with respect to some x /∈ L.

Constructions of WE. The first construction of WE for any language in NP in
[GGSW13] has been for the NP-complete problem exact cover and uses approx-
imate multilinear maps (MLMs). Later, Gentry et al. [GLW14] introduced the
concept of positional WE, which allows to prove the aforementioned construction
secure. In [GGH+13], Garg et al. showed that indistinguishability obfuscation
implies WE. Goldwasser et al. proposed the stronger notion of extractable WE
in [GKP+13]. While the security for WE is only with respect to x /∈ L, ex-
tractable WE requires that any successful adversary against semantic security
of the WE, given an encryption with respect to x, implies the existence of an
extractor that extracts a witness w to x ∈ L. Thereby, the adversary and the
extractor additionally get an auxiliary input. Garg et al. [GGHW14] have shown
that under the assumption that special-purpose obfuscation exists, extractable
WE for all languages in NP cannot exist.1 Zhandry [Zha16] introduced the con-
cept of witness PRFs, which essentially generalizes WE. Zhandry also proposes
(CCA secure) reusable WE, which introduces an additional global setup and thus
allows to reuse certain parameters. This drastically reduces the size of cipher-
texts in WE schemes. We observe that our generic constructions of WE bear
similarities to how WE is constructed from witness PRFs. Yet, Zhandry aims at
building witness PRFs for any NP-language, where we aim at practical instan-
tiations. All these constructions build upon MLMs and/or obfuscation and are
thus far from being practical. To this end, Abusalah et al. [AFP16] very recently
introduced the notion of offline WE as a step towards more practical WE. They
split encryption into an expensive offline phase and a much more efficient online
phase, which allows them to achieve practical efficiency for the online part. Nev-
ertheless, the offline part and the decryption still requires obfuscation and thus
cannot be considered to be practical. Besides imposing a huge computational
overhead, MLM and obfuscation are still in a “break-repair” state and it is cur-
rently unknown if one can come up with candidate constructions being secure
under well established assumptions.

Restricting Languages. In concurrent and independent work, Faonio et al. [FNV15]
introduced the concept of predictable arguments of knowledge (PAoK). They are
one-round interactive protocols in which the verifier generates a challenge and
can at the same time predict the prover’s answer to that challenge. Faonio et
al. show that PAoKs are equivalent to extractable WE [GKP+13]. Regarding
concrete instantiations of PAoKs (and thus extractable WE), they show how to
construct PAoKs from extractable hash proof systems (Ext-HPS) as defined by
Wee in [Wee10]. Although their approach to constructing WE can thus be seen
as related to our approach, firstly ours is conceptually simper and secondly the
languages covered by Ext-HPSs are very basic and very restricted, i.e., [Wee10]
presents two instantiations; one for the iterated squaring relation and one for
the Diffie Hellman relation. It is also not clear if efficient instantiations for more

1 Even if such special-purpose obfuscation exists, this does not rule out that ex-
tractable WE for a sufficiently large interesting subset of NP exists.

2

expressive languages can be found. We also note that due to the lack in expres-
siveness of Ext-HPS as used in [FNV15], their constructions are not suitable for
what we are targeting at. Earlier work on (private) conditional oblivious transfer
[COR99, JL09] can be viewed as as an interactive version of (extractable) WE
for very specific and restricted languages not suitable for achieving our goals.
Finally, [GGSW13] mentioned along the lines that earlier work on SPHFs can be
interpreted as establishing the existence of WE for certain restricted languages
and an informal sketch of a construction of WE from SPHFs was recently given
in [ABP15].

Applications of WE. WE in general extends the scope of encryption as it allows
to encrypt a message using the description of a hard problem and only someone
who knows a solution to this problem is able to decrypt. WE is thus intuitively
related to time-lock puzzles [RSW96] and WE indeed has been used to realize a
related concept denoted as time-lock encryption, i.e., a method to encrypt a mes-
sage such that it can only be decrypted after a certain deadline has passed, but
then very efficiently and by everyone. An approach to realize such schemes from
WE and so called computational reference clocks has been proposed by Jager
in [Jag15]. Liu et al. [LKW15] also propose to use their WE construction for
time-lock encryption based on the Bitcoin protocol. Bellare and Hoang [BH15]
proposed to use WE to realize asymmetric password-based encryption, where the
hash of a password can be used to encrypt a message (acting as a public key)
and only the knowledge of the respective password allows decryption. Moreover,
it has already been shown in the seminal work [GGSW13] that WE can be used
to construct identity-based encryption (IBE) [BF01] as well as attribute-based
encryption (ABE) [SW05] for circuits.

Motivation. While having WE schemes that support all languages in NP is ap-
pealing, it is the main source of inefficiency. We aim to make WE practical, but
in contrast to offline WE as introduced in [AFP16] we focus on all aspects, i.e.,
encryption and decryption, to be efficient. Our approach to improving the effi-
ciency is by restricting the class of supported languages from any NP-language
to languages that are expressive enough to cover many problems encountered
in cryptographic protocol design. In particular, we aim at algebraic languages
defined over bilinear groups. Such languages are very relevant for the design of
cryptographic protocols as statements in these languages cover statements that
can be proven in a zero-knowledge (or witness indistinguishable) fashion using
the Groth-Sahai (GS) non-interactive proof framework [GS08]. As we will see
soon, our techniques yield a novel way of encryption, where one can encrypt
messages with respect to a GS proof so that only the prover, i.e., the party that
computed the respective proof, can decrypt. We assume that there are many
interesting applications that could benefit from our technique.

Our Contribution. The contributions in this paper are as follows.

– We provide a generic construction of WE from SPHFs and prove that if there
exists an SPHF for a language L, then there exists an adaptively sound WE
scheme for language L. Thereby, we define WE to provide an additional

3

setup algorithm as also done in [AFP16, Zha16], since this notion makes the
schemes more efficient and more convenient to use in protocol design.

– Using well known techniques such as universal hashing and secure symmetric
encryption schemes, we obtain a WE scheme for messages of arbitrary length.

– We present practical instantiations of our generic approach to WE for alge-
braic languages in the bilinear group setting. We, thereby, achieve compat-
ibility with statements from the GS proof system. Besides being practically
efficient, our constructions only require standard assumptions (i.e., DLIN).2

– We observe that the existing security notions for WE are unsuited when
using WE in combination with other primitives. To this end, we introduce
a stronger security notion for WE which considers the combination of WE
with GS proofs and prove that our instantiation satisfies this notion.

– We present an approach to use our WE construction for GS statements to el-
egantly encrypt messages with respect to NIZK/NIWI proofs for statements
in the frequently used GS proof system so that only the one who computed
the proof can decrypt. This yields a novel way of encryption.

– To illustrate the aforementioned concept, we discuss two potential appli-
cations of our techniques in the context of privacy preserving exchange of
information.

Related Work. SPHFs (denoted as hash proof systems) were initially used to
construct CCA2 secure public key encryption [CS98] without requiring the ran-
dom oracle heuristic. Later it was observed that SPHFs are sufficient to construct
such encryption schemes [CS02]. They use the SPHF exactly the other way round
as we use it, i.e., in their setting decryption is done with the knowledge of the
hashing key and without the witness. This paradigm can also be viewed as an
implicit construction of publicly evaluable pseudorandom functions [CZ14].

Hybrid Encryption. Kurosawa and Desmedt [KD04] used the paradigm described
above for hybrid encryption. A series of works follow their paradigm (e.g.,
[KPSY09]) and use SPHFs to obtain CCA2 secure hybrid encryption schemes.
Similar to [CS02], they use the SPHF exactly the other way round as we are
going to use it.

Key-Exchange. A line of work following Gennaro and Lindell [GL06] uses SPHFs
for password-based authenticated key exchange (PAKE) between two parties.
This concept was later extended to one-round PAKE [KV11] and generalized
to language-authenticated key exchange (LAKE) for various algebraic languages
over bilinear groups in [BBC+13a] (and we note that follow-up work on various
aspects exists). Most recently, in [BC16] it was shown how to construct so called
structure preserving SPHFs, which can use GS proofs as witnesses. Even though
this may sound somewhat related to our work, apart from not constructing WE,
the approach in [BC16] to build SPHFs is diametrically opposed to our approach.
In particular, our WE approach requires GS proofs to be public and that they
must not to be useful to reconstruct the hash value. So, applying our approach
to construct WE to the SPHFs in [BC16] does not help us.

2 Our approach is also easily portable to the SXDH setting (and thus relying on DDH).

4

2 Preliminaries

Let x←R X denote the operation that picks an element x uniformly at random
from X. We use [n] to denote the set {1, . . . , n}. By y ← A(x), we denote that
y is assigned the output of the potentially probabilistic algorithm A on input x
and fresh random coins and we write Pr[Ω : E] to denote the probability of an
event E over the probability space Ω. A function ε : N→ R+ is called negligible
if for all c > 0 there is a k0 such that ε(k) < 1/kc for all k > k0. We use ε to
denote such a negligible function.

Definition 1 (Bilinear Map). Let G = 〈g〉 and GT be cyclic groups of prime
order p. A bilinear map e : G×G→ GT is an efficiently computable map, where
it holds for all (a, b) ∈ Z2

p that e(ga, gb) = e(g, g)ab, and e(g, g) 6= 1.

We typeset GT elements in boldface, e.g., g = e(g, g). Besides the symmetric
(Type-1) setting presented above, one can use the asymmetric setting (Type-2
or Type-3). Here, the bilinear map is defined with respect to two different source
groups, i.e., e : G1×G2 → GT with G1 6= G2. In the Type-2 setting an efficiently
computable isomorphism ψ : G2 → G1 exists, whereas such an isomorphism is
unknown for the Type-3 setting. Although we have chosen to present our results
in the Type-1 setting, it is important to note that our results translate to the
asymmetric setting. Such translations can already be nicely automated [AGH15].

Definition 2 (Bilinear Group Generator). Let BGGen be an algorithm which
takes a security parameter κ and generates a bilinear group BG = (p,G,GT , e, g)
in the Type-1 setting, where the common group order of G and GT is a prime p
of bitlength κ, e is a pairing and g is a generator of G.

Definition 3 (Decision Linear Assumption). Let BG ← BGGen(1κ). The
DLIN assumption states that for all PPT adversaries A there is a negligible
function ε(·) such that:

Pr

[
b←R {0, 1}, g1, g2←R G, r, s, t←R Zp,
b∗ ← A

(
BG, g1, g2, g

r
1, g

s
2, g

b·(r+s)+(1−b)·t) : b = b∗
]
≤ 1/2 + ε(κ).

Universal Hashing. Subsequently, we recall the notion of families of universal
hash functions and the leftover hash lemma [HILL99]. We, thereby, align our
definitions with [KPSY09] and allow arbitrary domains X for the hash functions.

Definition 4 (Universal Hash Function Family). Let H = {Hy}y∈{0,1}k be

a family of hash functions Hy : {0, 1}k×X → {0, 1}` indexed by a key y ∈ {0, 1}k.
H is universal, if for all x ∈ X , x′ ∈ X \ {x} it holds that

Pr
[
Hy←R H : Hy(x) = Hy(x′)

]
= 2−`.

Lemma 1 (Leftover Hash Lemma). Let X be a random variable with support
X , let δ ≥ − log(maxx∈X Pr[X = x]) and let H be a family of universal hash
functions Hy : {0, 1}k × X → {0, 1}`. Then, for any Hy←R H, we have that
1
2

∑
z∈{0,1}`

∣∣Pr[Hy(X) = z]− 2−`
∣∣ ≤ 2(`−δ)/2.

5

Symmetric Encryption. We adapt the notion for symmetric encryption schemes
Σ from [KL07]. Analogous to [KD04], we do not explicitly model a key gener-
ation algorithm and treat the keys as uniformly random bitstrings {0, 1}`Σ,κ .

Definition 5 (Symmetric Encryption Scheme). A symmetric encryption
scheme Σ is a tuple of PPT algorithms which are defined as follows:

Enc(k,m) : Takes a key k and a message m as input and outputs a ciphertext c.
Dec(k, c) : Takes a key k and a ciphertext c as input and outputs a message m

or ⊥.

We require Σ to be correct and to provide ciphertext indistinguishable in the
presence of an eavesdropper (IND-EAV; clearly implied by IND-CPA and IND-
CCA2). The respective definitions are provided in Appendix A.

Groth-Sahai (GS) Non-Interactive Zero-Knowledge Proofs. GS [GS08,
GS07] proofs are non-interactive witness-indistinguishable (NIWI) and zero-
knowledge (NIZK) proofs for the satisfiability of various types of equations
defined over bilinear groups. We require proofs for the satisfiability of pairing
product equations (PPEs) in the DLIN setting of the form

n∏
i=1

e(Ai, Yi) ·
m∏
i=1

e(Xi, Bi) ·
m∏
i=1

n∏
j=1

e(Xi, Yj)
γij = tT , (1)

where (X1, . . . Xm) ∈ Gm, (Y1, . . . , Yn) ∈ Gn are the secret vectors (to prove
knowledge of) and (A1, . . . , An) ∈ Gn, (B1, . . . , Bm) ∈ Gm, (γij)i∈[m],j∈[n] ∈
Zn·mp , and tT ∈ GT are public constants. To conduct a proof, one commits to
the vectors (Xi)i∈[m] and (Yi)i∈[n], and uses the commitments instead of the
actual values in the PPE. Loosely speaking, the proof π is used to “cancel out”
the randomness used in the commitments. However, this does not directly work
when using the groups G and GT , but requires to project the involved elements to
the vector spaces G3 and G9

T in the DLIN setting by using the defined projection
maps and to prove the satisfiability of the PPE using the projected elements and
corresponding bilinear map F : G3 ×G3 → G9

T .
More precisely, a GS proof for a PPE allows to prove knowledge of a witness

w = ((Xi)i∈[m], (Yi)i∈[n]) such that the PPE, uniquely defined by the statement
x = ((Ai)i∈[n], (Bi)i∈[m], (γij)i∈[m],j∈[n], tT), is satisfied.

Definition 6. A non-interactive proof system Π is a tuple of PPT algorithms
which are defined as follows:

BGGen(1κ) : Takes a security parameter κ as input, and outputs a bilinear group
description BG.

CRSGen(BG) : Takes a bilinear group description BG as input, and outputs a
common reference string crs.

Proof(BG, crs, x, w) : Takes a bilinear group description BG, a common reference
string crs, a statement x, and a witness w as input, and outputs a proof π.

6

Verify(BG, crs, x, π) : Takes a bilinear group description BG, a common reference
string crs, a statement x, and a proof π as input. It outputs a bit b ∈ {0, 1}.

Since we do not explicitly require the security properties here, we omit them and
refer the reader to [GS08] at this point.

2.1 Smooth Projective Hashing

A family of smooth projective hash functions (SPHFs) indexed by parameters
pp for some family of languages {Lpp,aux ⊂ Xpp}aux∈A and associated witness
relations {Rpp,aux}aux∈A, mapping onto Rpp informally works as follows.3 The
hash value can be computed in two ways: (1) Using the hashing key hk one can
compute a hash value for every x ∈ Xpp. (2) Using the projection key hp, one
can compute a hash value for every word x and auxiliary information aux ∈ A
where x ∈ Lpp,aux. This method, besides x, also requires a witness w such that
Rpp,aux(x,w) = 1 to compute the hash value. Thereby, both methods yield the
same hash value for any x ∈ Lpp,aux. Below we provide a formal definition of
SPHFs, where we closely follow [ACP09]. For brevity, we henceforth use SPHF
to refer to a family of SPHFs indexed by parameters pp.

Definition 7. An SPHFfor a family of languages {Lpp,aux}aux∈A is a tuple of the
following PPT algorithms:

Setup(1κ) : Takes a security parameter κ and outputs the system parameters pp.
HashKG(pp, aux) : Takes the system parameters pp and auxiliary information

aux, and outputs a hashing key hk.
ProjKG(hk, aux, x) : Takes a hashing key hk, auxiliary information aux, and a

word x, and outputs a projection key hp.
Hash(hk, aux, x) : Takes a hashing key hk, auxiliary information aux, and a word

x, and outputs a hash value H.
ProjHash(hp, aux, x, w) : Takes a projection key hp, auxiliary information aux, a

word x, and a witness w, and outputs a hash value H.

A secure SPHF is required to be correct, smooth and pseudo-random. Below, we
formally define these properties. Correctness guarantees that everything works
correctly if everyone behaves honestly.

Definition 8 (Correctness). An SPHF for a family of languages {Lpp,aux}aux∈A
is correct, if for all κ, for all pp← Setup(1κ), for all aux ∈ A, for all x ∈ Lpp,aux,
for all w such that Rpp,aux(x,w) = 1, for all hk ← HashKG(pp, aux), and for all
hp← ProjKG(hk, aux, x), it holds that Hash(hk, aux, x) = ProjHash(hp, aux, x, w).

Smoothness requires that for any aux ∈ A, the hash value looks statistically
random for any word x /∈ Lpp,aux.

3 Similar to [ACP09] we additionally partition the language Lpp with respect to some
auxiliary information aux ∈ A, where A is determined by pp. Note that without this
partitioning, words x ∈ Lpp additionally contain aux, i.e., so that x = (aux, x′).

7

Definition 9 (Smoothness). An SPHF for a family of languages {Lpp,aux}aux∈A
is smooth if for all security parameters κ, for all pp← Setup(1κ), for all aux ∈ A,
and for all x 6∈ Lpp,aux it holds that:

{pp, aux, hp← ProjKG(hk, aux, x), H ← Hash(hk, aux, x)} ≈
{pp, aux, hp← ProjKG(hk, aux, x), H ←R Rpp)},

where hk← HashKG(pp, aux) and ≈ denotes statistical indistinguishability.

Intuitively pseudorandomness requires that for all aux ∈ A the two distribu-
tions considered above remain computationally indistinguishable for random
x ∈ Lpp,aux. We formally model this using the notion below.

Definition 10 (Pseudorandomness). An SPHF for language {Lpp,aux}aux∈A
is pseudorandom if for all security parameters κ, for all aux ∈ A it holds that:

{pp← Setup(1κ), aux, x←R Lpp,aux, hp← ProjKG(hk, aux, x), H ← Hash(hk, aux,

x)} ≈ {pp← Setup(1κ), aux, x←R Lpp,aux, hp← ProjKG(hk, aux, x), H ←R R)},

where hk← HashKG(pp, aux) and ≈ denotes computational indistinguishability.

Remark 1. It is easy to see that pseudorandomness is implied by smoothness for
families of languages where the subset membership problem is hard, i.e., families
of languages {Lpp,aux}aux∈A where it is intractable for any aux ∈ A to distinguish
a word in Lpp,aux from a word in Xpp \ Lpp,aux.

3 Witness Encryption

WE was initially defined in [GGSW13] and refined by a stronger adaptive sound-
ness notion in [BH13, BH15] where the word output by the adversary may depend
on the parameters pp. In our context only adaptive soundness is meaningful as
we define WE schemes for families of languages indexed by pp, i.e., the language
is not fixed before the parameters pp are generated. For brevity, we subsequently
simply use “WE scheme” to denote such a scheme. Since it is beneficial regarding
practical efficiency and more suitable for the use of WE in the design of cryp-
tographic protocols, we follow [AFP16, Zha16] and define WE with respect to a
setup.

Definition 11. A WE scheme is a tuple of PPT algorithms defined as follows:

Gen(1κ) : Takes a security parameter κ and outputs public parameters pp.
Enc(pp, x,m) : Takes public parameters pp, some word x and a message m as

input and outputs a ciphertext c.
Dec(w, c) : Takes a witness w and a ciphertext c as input and outputs a message

m or ⊥.

We require a WE scheme to be correct and adaptively sound, as defined below.

8

Definition 12 (Correctness). A WE scheme is correct, if for all κ, for all
pp ← Setup(1κ), for all m, for all x ∈ Lpp, and for all witnesses w such that
Rpp(x,w) = 1, it holds that Dec(w,Enc(pp, x,m)) = m.

Definition 13 (Adaptive Soundness). A WE scheme is adaptively sound, if
for all PPT adversaries A there is a negligible function ε(·) such that for all
x /∈ Lpp it holds that

Pr

pp← Gen(1κ),
(m0,m1, st)← A(pp, x), b←R {0, 1},
c← Enc(pp, x,mb), b

∗ ← A(c, st)
:

b = b∗ ∧
|m0| = |m1|

 ≤ 1/2 + ε(κ).

We call a WE scheme secure if it is correct and adaptively sound.

Remark 2. We note that assuming adaptive soundness of the WE scheme and
that the subset-membership problem is hard for domain Xpp and language
Lpp,aux, i.e., the probability of a distinguisher can be bound by ε(κ), one can
use a standard hybrid argument to show that the probability to break adaptive
soundness for a random x ∈ Lpp,aux is bounded by ε(κ).

We, however, stress that adaptive soundness is not sufficient to reach our goals,
i.e., to encrypt with respect to a GS proof. To this end, will later define and prove
a stronger security notion for our WE construction from SPHFs (cf. Definition 14
and Theorem 4).

3.1 Generic Construction of Bit WE from SPHFs

We are now ready to present our generic construction of a WE scheme from any
SPHF. We start with a bit encryption WE scheme (cf. Scheme 1), i.e., we assume
the message space M = {0, 1}. For our construction, it turns out that we only
need to assume the existence of SPHFs. We achieve this by using an approach
similar to the idea of encrypting bits in the GM encryption scheme [GM84]. In

Gen(1κ) : On input of κ, run pp← SPHF.Setup(1κ) and return pp.
Enc(pp, x,m) : On input of pp, x, m ∈ {0, 1}, parse x as (aux, x′), run hk ←

SPHF.HashKG(pp, aux) and hp← SPHF.ProjKG(hk, aux, x′). If m = 0, set C←R Rpp

and set C ← H for H ← SPHF.Hash(hk, aux, x′) otherwise. Finally, return c← (C,
x, hp, pp).

Dec(w, c) : On input of w and c, parse c as (C, (aux, x′), hp, pp) and compute H ←
SPHF.ProjHash(hp, aux, x′, w). Return 1 if H = C and 0 otherwise.

Scheme 1: WE scheme for bits from SPHFs

particular, we use the fact that without knowledge of hk and a witness w for x
it is hard to distinguish a hash value from a uniformly random element in the
range Rpp of the SPHF. Now, if m = 0, then the ciphertext is a randomly sampled
element from the range Rpp, whereas, if m = 1, the ciphertext is the correctly

9

computed hash value. Knowledge of a witness w then allows to recompute the
hash value using hp (also included in the ciphertext) and consequently to decide
whether m = 0 or m = 1 has been encrypted.

Theorem 1 (proven in Appendix B.1). If SPHF is correct and smooth, then
Scheme 1 is secure.

3.2 Extension to Messages of Arbitrary Length

To obtain a WE scheme for arbitrary message lengths we apply a well known
paradigm from hybrid encryption to Scheme 1. In Scheme 2 we present a con-
struction that besides an SPHF requires a universal hash function family H and
a weakly secure symmetric encryption scheme Σ (only requiring IND-EAV secu-
rity). Our construction works as follows. It uses a universal hash function H ∈ H
on the hash value of the SPHF as a randomness extractor to obtain an encryp-
tion key for Σ. Note that for the languages we have in mind (group-dependent
languages) one could also use alternative extractors such as [CFPZ09]. Further-
more, depending on the chosen randomness extractor, it might be required to
choose a larger security parameter for the SPHF to achieve the desired security
parameter in the overall scheme. To capture this, we introduce a polynomial
p(·) which is determined by the concrete choice of the primitives underlying this
construction.

Gen(1κ) : On input of κ, run pp′ ← SPHF.Setup(1p(κ)), where p(·) is a polynomial
determined by the concrete instantiation. Fix a familyH of universal hash functions
H : Rpp → {0, 1}`Σ,κ . Return pp← (pp′,H).

Enc(pp, x,m) : On input of pp, x, m ∈ {0, 1}∗, parse pp as (pp′,H), and x as
(aux, x′), run hk ← SPHF.HashKG(pp′, aux), hp ← SPHF.ProjKG(hk, aux, x′) and
H ← SPHF.Hash(hk, aux, x′). Then choose H←R H, compute k ← H(H), C ←
Σ.Enc(k,m) and return c← (C, x, hp, pp,H).

Dec(w, c) : On input of w and c, parse c as (C, (aux, x′), hp, pp,H), compute k ←
H(SPHF.ProjHash(hp, aux, x′, w)), compute and return m← Σ.Dec(k, C).

Scheme 2: WE Scheme from SPHFs for messages of arbitrary length

Theorem 2 (proven in Appendix B.2). If SPHF is correct and smooth, H is
a family of universal hash functions H : Rpp → {0, 1}`Σ,κ , the symmetric encryp-
tion scheme Σ is correct and IND-EAV secure, and p(·) is such that 2(`Σ,κ−α)/2,
with α = − log(1/|Rpp|), is negligible in κ, then Scheme 2 is secure.

4 Efficient SPHFs for Algebraic Languages

Recent expressive SPHFs are mostly constructed to be compatible with the
universal composability (UC) framework [Can01]. Such constructions (see, e.g.,

10

[BBC+13a]) usually build upon SPHFs based on CCA2 secure (labeled) Cramer-
Shoup encryption, and, consequently, often trade maximum efficiency for UC
security. We do not aim for UC compatibility, as we focus on constructing par-
ticularly efficient instantiations of WE. Additionally, we want to achieve com-
patibility with the GS proof framework, as our goal is to be able to encrypt with
respect to a GS proof. Subsequently, we will gradually develop an SPHF in line
with these goals. We start with an SPHF being compatible with GS commitments
and then extend this SPHF to cover languages for the satisfiability of PPEs.

In Appendix C we present alternative SPHFs, which can be used when GS
compatibility is not required.

4.1 SPHF for Linear Groth-Sahai Commitments

Let the language for the SPHF be defined by the commitments used within the
GS proof framework, which we exemplify for the DLIN setting. This brings us one
step closer to our final goal, i.e., to be able to encrypt with respect to a statement
proven using the GS proof framework. Before we present our construction, we
introduce some additional notation. Let � : G1×n × G1×n → G1×n and ◦ :
Zp × G1×n → G1×n denote binary operations on row vectors, i.e., � denotes
entry-wise multiplications, whereas ◦ denotes entry-wise exponentiation.

Linear GS Commitments. We first recall how a linear GS commitment is
formed. Let (U1, U2, U3) ∈ G3×G3×G3 be the commitment parameters for the
DLIN setting, which look as follows:

U1 = (g1, 1, g) , U2 = (1, g2, g) , U3 = ρ ◦ U1 � ν ◦ U2 =
(
gρ1 , g

ν
2 , g

ρ+ν
)
,

where ρ, ν←R Zp. If the commitment parameters are set up in this way, one ob-
tains perfectly binding commitments. In contrast, in the perfectly hiding setup
we have that logg U3 /∈ span(logg U1, logg U2). The two setups are computation-
ally indistinguishable under DLIN. Thus, we can align our further explanations
to the perfectly binding setup and they equally apply to the perfectly hiding
case. To commit to a message M ∈ G one chooses r1, r2, r3←R Zp and computes

CM = (1, 1,M) � r1 ◦ (g1, 1, g) � r2 ◦ (1, g2, g) � r3 ◦
(
gρ1 , g

ν
2 , g

ρ+ν
)

=(
gr1+ρr31 , gr2+νr32 ,M · gr1+r2+r3(ρ+ν)

)
.

Observe that CM linearly encrypts M with respect to ((r1 + ρr3), (r2 + νr3)).
In Scheme 3, we present the SPHF for linear GS commitments, which borrows

construction ideas from [GL06].

Theorem 3 (proven in Appendix B.3). If the DLIN assumption holds, then
the SPHF in Scheme 3 is secure.

4.2 Extending Supported Languages

Now, to achieve the desired compatibility with statements of the satisfiabil-
ity of PPEs proven in the GS proof framework, we extend the SPHF for linear

11

Setup(1κ) : On input of κ, run BG ← BGGen(1κ), choose (ρ, ν)←R Z2
p, set pk ←

(g1, g2, g, g
ρ
1 , g

ν
2 , g

ρ+ν) and return pp← (BG, pk).
HashKG(pp, aux) : On input of pp and aux, return hk← (pp, η, θ, ζ)←R Z3

p.
ProjKG(hk, aux, x) : On input of hk, auxiliary information aux = M ∈ G and some

word x = CM ∈ G3, where CM = (gr11 g
ρr3
1 , gr22 g

νr3
2 ,M · gr1+r2+r3(ρ+ν)), compute

and return hp← (pp, hp1, hp2, hp3) = (gη1g
ζ , gθ2g

ζ , (gρ1)η(gν2)θ(gρ+ν)ζ).
Hash(hk, aux, x) : On input of hk = (pp, η, θ, ζ), aux = M ∈ G and x = CM ∈ G3,

where CM = (u, v, e), compute and return H ← uηvθ(e/M)ζ .
ProjHash(hp, aux, x, w) : On input of hp, aux, x and w = (r1, r2, r3), compute and

return H ← hpr11 · hp
r2
2 · hp

r3
3 .

Scheme 3: SPHF for the language of linear GS commitments

GS commitments from the previous section. We therefore, borrow ideas from
[BBC+13a, BBC+13b]. Our framework is compatible with PPEs of the form

m∏
i=1

e(Ai, Yi) ·
o∏

i=m+1

e(Xi, Bi) ·
n∏

i=o+1

Zi
γi = B, (2)

where Xi, Yi and Zi remain secret and are encrypted using linear encryption.
For the ease of presentation, we use the following simplified equation:

m∏
i=1

e(Ai, Yi) ·
n∏

i=m+1

Zi
γi = B. (3)

Note that in a Type-1 setting, this simplification does not even influence the
expressiveness. We denote the commitments to Yi and Zi, respectively, as Ci =
(ui, vi, ei) ∈ G3 for 1 ≤ i ≤ m and Ci = (ui,vi, ei) ∈ G3

T for m < i ≤ n. The
language Lpp,PPE contains all tuples ((Ci)i∈[m], (Ci)m<i≤n) where the committed
values satisfy PPE. Membership in Lpp,PPE is witnessed by the randomness used
in the commitments. Further, let ζ←R Zp and for i ∈ [n]: ηi, θi←R Zp, hki =

(ηi, θi, ζ) as well as hpi = (hpi1, hpi2, hpi3) = (gηi1 g
ζ , gθi2 g

ζ , (gρ1)ηi(gν2)θi(gρ+ν)ζ).
Then, hk = (pp, (hki)i∈[n]), hp = (pp, (hpi)i∈[n]) and we define

HHash := B−ζ ·
m∏
i=1

e(Ai, u
ηi
i v

θi
i e

ζ
i) ·

n∏
i=m+1

(uηii vθii eζi)
γi =

m∏
i=1

e(Ai, hp
ri1
i1 · hp

ri2
i2 · hp

ri3
i3) ·

n∏
i=m+1

e(gγi , hpri1i1 · hp
ri2
i2 · hp

ri3
i3) =: HProj.

(4)

Lemma 2. Using the SPHFin Scheme 3 as described above yields a secure SPHF for
any language covered by Equation (3).

We prove Lemma 2 in Appendix B.4 and note that an extension to statements
of the form in Equation (2) can be done analogous to [BBC+13a, BBC+13b].

12

5 Encrypting With Respect to a Groth-Sahai Proof

Assume that a prover conducts a GS proof π for the satisfiability of some PPE.
Such a proof contains commitments to the witness together with some additional
group elements used to “cancel out” the randomness in the commitments. Now,
given such a proof π, one can encrypt a message with respect to π using our WE
instantiated with the SPHF in Equation (4). The witness to decrypt is the ran-
domness which was used in the commitments contained in π, and consequently
the entity who produced π can decrypt.

Scheme 4 compactly sketches our approach, where GS refers to the GS proof
system and PPE refers to a paring product equation that can be expressed in our
SPHF framework from Section 4. We assume that GS.BGGen and GS.CRSGen
have already been run and thus the bilinear group description BG as well as
the CRS crs are available to both, the encryptor and the decryptor. Again, for
simplicity, we use PPEs of the form in Equation (3) without the Zi values. We

Decryptor Encryptor

π ← GS.Proof(BG, crs,PPE, (Yi)i∈[n]; r)

store r
π−−→ parse π as (PPE, (Ci)i∈[n], πGS),

set pp← (BG, crs),

extract rcom from r
c←−− c←WE.Enc(pp, (PPE, (Ci)i∈[n]),m)

m←WE.Dec(rcom, c)

Scheme 4: Encryption of a message with respect to a GS proof

write a GS proof π as a sequence of commitments (Ci)i∈[n], a corresponding PPE
and a proof part πGS. Additionally, we make the randomness r used in GS.Proof
explicit and assume that one can efficiently derive the randomness rcom used in
the commitments (Ci)i∈[n] in π from r. Then, words in the language Lpp,PPE in
the WE scheme consist of the commitments (Ci)i∈[n] to the unrevealed values
(Yi)i∈[n]. Membership in Lpp,PPE is witnessed by rcom.

Remark 3. One might be inclined to think that it would be sufficient to take just
a single GS commitment from a proof π together with the SPHF from Scheme 2.
However, then the encryptor would be required to know the value of the Yi
corresponding to the commitment, i.e., a part of the witness used in the GS proof,
which is contrary to using GS in the first place. In contrast, for the solution we
propose knowing B is sufficient.

To formally capture the security we would expect when using WE in this con-
text, we introduce the following definition. Informally, we require that breaking
adaptive soundness remains intractable even if the statement is in fact in Lpp,PPE

and a GS proof for this fact is provided.

Definition 14 (Pseudo-Randomness in the Presence of Proofs). Let
BG ← GS.BGGen(1κ), crs ← GS.CRSGen(BG), and PPE be a pairing product

13

equation with satisfying witnesses ((Yij)i∈[n])j∈[m]. A WE scheme for the lan-
guage L(BG,crs),PPE provides pseudo-randomness in the presence of proofs, if for
all PPT adversaries A there exists a negligible function ε(·) such that for all
` ∈ [m] it holds that

Pr

π = ((Ci)i∈[n],PPE, πGS)← GS.Proof(BG,
crs,PPE, (Yi`)i∈[n]), b←

R {0, 1},
(m0,m1, st)← A(BG, crs, π),
c←WE.Enc((BG, crs), (PPE, (Ci)i∈[n]),mb),
b∗ ← A(st, c)

:
b = b∗ ∧

|m0| = |m1|

 ≤ 1/2 + ε(κ).

Theorem 4 (proven in Appendix B.5). When instantiating Scheme 4 with
a WE scheme based on the SPHF from Equation (4), the DLIN assumption holds,
and there is more than one possible witness for the statement, then Scheme 4
provides pseudo-randomness in the presence of proofs.

6 Discussion and Applications

We want to emphasize that our techniques are very efficient, and, thus, also
appealing from a practical point of view: Counting the expensive operations in
G, the SPHF for linear Groth-Sahai commitments in Scheme 3 boils down to 6
exponentiations in ProjKG and 3 exponentiations in Hash and ProjHash, respec-
tively. The operations required when using this SPHF for languages over bilinear
groups as demonstrated in Equation (4), are outlined in Table 1. Thereby, m
refers to the length of the vector (Yi)i∈[m], whereas (m− n) refers to the length
of the vector (Zi)m<i≤n. Here, the computational effort grows linearly in the

Table 1. SPHF for linear GS commitments in PPEs: Expensive operations

Exp. G Exp. GT e(·, ·)
HashKG 0 0 0
ProjKG 4n+ 2 0 0

Hash 3m 3(n−m) + 1 m
ProjHash 3n+ (n−m) 0 n

size of the PPE (in particular in n and m, respectively) and is almost as efficient
as evaluating the PPE with plain values.

Regarding applications, our framework is applicable to extend various Groth-
Sahai based privacy-enhancing protocols with encryption features in an ad-hoc
fashion. Below, we take a closer look at two potential applications.

Ring Encryption. Group encryption [KTY07] is an existing paradigm that can
be seen as the encryption analogue to group signatures. In group encryption, a
sender can prepare a ciphertext and convince a verifier that it can be decrypted
by an anonymous member of some managed group. Thereby, an opening author-
ity can reveal the identity of the group member that is capable of decrypting.

14

Consequently, group encryption involves a dedicated trusted group manager and
provides conditional anonymity, i.e, the trusted opening authority can break the
anonymity. Using our techniques, it is quite straightforward to construct a group
encryption variant in the ring setting, i.e., an ad-hoc counterpart to group en-
cryption. That is, anyone can encrypt a message such that it is guaranteed that
exactly one unknown member of an ad-hoc ring R is able to decrypt. In partic-
ular, it allows anyone to encrypt a message with respect to R being represented
by a proof of membership of a certain entity in R. Thereby, exactly one member
of the ring, i.e., the prover, can decrypt. Furthermore, even the encrypting party
does not know who exactly will be able to decrypt. Nevertheless, we can ensure
that only the right party is able to decrypt, while nobody is able to reveal the
identity of the party that is able to decrypt.

As an illustrative example of ring encryption let us assume that a whistle-
blower wants to leak a secret to some journalist. Therefore, she needs to establish
a secure channel to transmit the secret. Clearly, the journalist might not want
to publicly reveal that he is willing to publish critical information leaked by
a whistleblower. Using our techniques, the journalist can prove membership in
some group of trusted journalists (without revealing his identity) so that the
whistleblower can use this proof to encrypt the secret in a way that she has a
high level of confidence that only a member of the group will be able to read the
secret.

Policy-Based Encryption. One could even generalize ring encryption to encryp-
tion with respect to arbitrary policies. That is, in the fashion of policy-based
signatures [BF14], a proof that a certain policy is satisfied could be used to
encrypt.

Mutually Anonymous Key-Exchange. Our method to encrypt with respect
to a GS proof could be applied to language-authenticated key exchange (LAKE).
That is, two parties that do not want to reveal their identity to each other (but
only their membership to potentially distinct groups) can agree on a common
encryption key. Note that this goal is in contrast to the goals of private mutual
authentication [JL09] or covert mutual authentication [Jar14], which allows two
parties belonging to some managed groups to privately authenticate to each other
so that external parties cannot obtain any information about their identities or
not even distinguish an instance of the authentication protocol from a random
beacon.

Acknowledgements. We thank the anonymous referees from Crypto’16 and
Asiacrypt’16 for their valuable comments.

References

[ABP15] Michel Abdalla, Fabrice Benhamouda, and David Pointcheval. Disjunc-
tions for hash proof systems: New constructions and applications. In EU-
ROCRYPT, 2015.

[ACP09] Michel Abdalla, Céline Chevalier, and David Pointcheval. Smooth Projec-
tive Hashing for Conditionally Extractable Commitments. In CRYPTO,
2009.

15

[AFP16] Hamza Abusalah, Georg Fuchsbauer, and Krzysztof Pietrzak. Offline Wit-
ness Encryption. In ACNS, 2016.

[AGH15] Joseph A. Akinyele, Christina Garman, and Susan Hohenberger. Automat-
ing Fast and Secure Translations from Type-I to Type-III Pairing Schemes.
In CCS, 2015.

[BBC+13a] Fabrice Benhamouda, Olivier Blazy, Céline Chevalier, David Pointcheval,
and Damien Vergnaud. Efficient UC-Secure Authenticated Key-Exchange
for Algebraic Languages. In PKC, 2013.

[BBC+13b] Fabrice Benhamouda, Olivier Blazy, Céline Chevalier, David Pointcheval,
and Damien Vergnaud. New Techniques for SPHFs and Efficient One-
Round PAKE Protocols. In CRYPTO, 2013.

[BBS04] Dan Boneh, Xavier Boyen, and Hovav Shacham. Short Group Signatures.
In CRYPTO, 2004.

[BC16] Olivier Blazy and Céline Chevalier. Structure-preserving smooth projective
hashing. In ASIACRYPT, 2016.

[BF01] Dan Boneh and Matthew K. Franklin. Identity-Based Encryption from the
Weil Pairing. In CRYPTO, 2001.

[BF14] Mihir Bellare and Georg Fuchsbauer. Policy-based signatures. In PKC,
2014.

[BH13] Mihir Bellare and Viet Tung Hoang. Adaptive Witness Encryption
and Asymmetric Password-based Cryptography. IACR Cryptology ePrint
Archive, page 704, 2013.

[BH15] Mihir Bellare and Viet Tung Hoang. Adaptive Witness Encryption and
Asymmetric Password-Based Cryptography. In PKC, 2015.

[Boy08] Xavier Boyen. The uber-assumption family. In Pairing, 2008.

[BPV12] Olivier Blazy, David Pointcheval, and Damien Vergnaud. Round-optimal
privacy-preserving protocols with smooth projective hash functions. In
TCC, 2012.

[Can01] Ran Canetti. Universally Composable Security: A New Paradigm for Cryp-
tographic Protocols. In FOCS, 2001.

[CFPZ09] Céline Chevalier, Pierre-Alain Fouque, David Pointcheval, and Sébastien
Zimmer. Optimal Randomness Extraction from a Diffie-Hellman Element.
In EUROCRYPT, 2009.

[COR99] Giovanni Di Crescenzo, Rafail Ostrovsky, and Sivaramakrishnan Ra-
jagopalan. Conditional Oblivious Transfer and Timed-Release Encryption.
In EUROCRYPT, 1999.

[CS98] Ronald Cramer and Victor Shoup. A Practical Public Key Cryptosys-
tem Provably Secure Against Adaptive Chosen Ciphertext Attack. In
CRYPTO, 1998.

[CS02] Ronald Cramer and Victor Shoup. Universal Hash Proofs and a Paradigm
for Adaptive Chosen Ciphertext Secure Public-Key Encryption. In EURO-
CRYPT, 2002.

[CZ14] Yu Chen and Zongyang Zhang. Publicly evaluable pseudorandom functions
and their applications. In SCN, 2014.

[FNV15] Antonio Faonio, Jesper Buus Nielsen, and Daniele Venturi. Predictable
arguments of knowledge. IACR Cryptology ePrint Archive, page 740, 2015.

[GGH+13] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai,
and Brent Waters. Candidate Indistinguishability Obfuscation and Func-
tional Encryption for all Circuits. In FOCS, 2013.

16

[GGHW14] Sanjam Garg, Craig Gentry, Shai Halevi, and Daniel Wichs. On the Im-
plausibility of Differing-Inputs Obfuscation and Extractable Witness En-
cryption with Auxiliary Input. In CRYPTO, 2014.

[GGSW13] Sanjam Garg, Craig Gentry, Amit Sahai, and Brent Waters. Witness En-
cryption and its Applications. In STOC, 2013.

[GKP+13] Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikun-
tanathan, and Nickolai Zeldovich. How to Run Turing Machines on En-
crypted Data. In CRYPTO, 2013.

[GL06] Rosario Gennaro and Yehuda Lindell. A framework for password-based

authenticated key exchange1. ACM Trans. Inf. Syst. Secur., 9(2), 2006.

[GLW14] Craig Gentry, Allison B. Lewko, and Brent Waters. Witness Encryption
from Instance Independent Assumptions. In CRYPTO, 2014.

[GM84] Shafi Goldwasser and Silvio Micali. Probabilistic Encryption. J. Comput.
Syst. Sci., 28(2), 1984.

[GS07] Jens Groth and Amit Sahai. Efficient non-interactive proof systems for
bilinear groups. Cryptology ePrint Archive, Report 2007/155, 2007.

[GS08] Jens Groth and Amit Sahai. Efficient Non-interactive Proof Systems for
Bilinear Groups. In EUROCRYPT, 2008.

[HILL99] Johan H̊astad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A
Pseudorandom Generator from any One-way Function. SIAM J. Comput.,
28(4), 1999.

[Jag15] Tibor Jager. How to Build Time-Lock Encryption. IACR Cryptology ePrint
Archive, page 478, 2015.

[Jar14] Stanislaw Jarecki. Practical Covert Authentication. In PKC, 2014.

[JL09] Stanislaw Jarecki and Xiaomin Liu. Private Mutual Authentication and
Conditional Oblivious Transfer. In CRYPTO, 2009.

[KD04] Kaoru Kurosawa and Yvo Desmedt. A New Paradigm of Hybrid Encryp-
tion Scheme. In CRYPTO, 2004.

[KL07] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography.
Chapman and Hall/CRC Press, 2007.

[KPSY09] Eike Kiltz, Krzysztof Pietrzak, Martijn Stam, and Moti Yung. A New Ran-
domness Extraction Paradigm for Hybrid Encryption. In EUROCRYPT,
2009.

[KTY07] Aggelos Kiayias, Yiannis Tsiounis, and Moti Yung. Group Encryption. In
ASIACRYPT, 2007.

[KV11] Jonathan Katz and Vinod Vaikuntanathan. Round-Optimal Password-
Based Authenticated Key Exchange. In TCC, 2011.

[LKW15] Jia Liu, Saqib A. Kakvi, and Bogdan Warinschi. Extractable witness
encryption and timed-release encryption from bitcoin. IACR Cryptology
ePrint Archive, page 482, 2015.

[RSW96] Ronald L. Rivest, Adi Shamir, and David A Wagner. Time-lock puzzles and
timed-release crypto. Technical report, Massachusetts Institute of Technol-
ogy, 1996.

[SW05] Amit Sahai and Brent Waters. Fuzzy Identity-Based Encryption. In EU-
ROCRYPT, 2005.

[Wee10] Hoeteck Wee. Efficient Chosen-Ciphertext Security via Extractable Hash
Proofs. In CRYPTO, 2010.

[Zha16] Mark Zhandry. How to Avoid Obfuscation Using Witness PRFs. In TCC
2016-A, 2016.

17

A Security Definition of Symmetric Encryption Schemes

Definition 15 (Correctness). Σ is correct, if for all κ, for all k←R {0, 1}`Σ,κ
and for all m ∈ {0, 1}∗ it holds that Pr [Dec(k,Enc(k,m)) = m] = 1.

Definition 16 (IND-EAV Security). Σ is IND-EAV secure, if for all PPT ad-
versaries A there exists a negligible function ε(·) such that

Pr

k←R {0, 1}`Σ,κ , (m0,m1, st)← A(1κ),
b←R {0, 1}, c← Enc(k,mb),
b∗ ← A(c, st)

:
b = b∗

∧ |m0| = |m1|

 ≤ 1/2 + ε(κ),

where |m| denotes the length of message m.

B Security Proofs

B.1 Proof of Theorem 1

Proof (Correctness). We analyze the probability that Scheme 1 is not correct,
i.e., the probability that if m = 0 and C←R R yields a value such that C = H. It
is easy to see that this only occurs with negligible probability 1/|Rpp|. ut

Proof (Adaptive Soundness). We use a sequence of games to prove adaptive
soundness.

Game 0: The original adaptive soundness game.

Game 1: As Game 0, but we modify the encryption algorithm as follows:

Enc(pp, x,m) : On input of pp, x, m ∈ {0, 1}, parse x as (aux, x′), run hk ←
SPHF.HashKG(pp, aux), hp ← SPHF.ProjKG(hk, aux, x′), H ← SPHF.Ha-

sh(hk, aux, x′). Sample C←R Rpp and return c← (C, x, hp, pp).

Transition - Game 0→ Game 1: By the smoothness of the SPHF, the adversary’s
view in Game 1 is statistically close to the view in Game 0.

Game 1 is simulated independent of the bit b and distinguishing it from Game
0 would imply a distinguisher for statistically close distributions. ut

B.2 Proof of Theorem 2

Correctness is perfect and straightforward to verify, which is why we omit the
proof. Adaptive soundness is proven subsequently.

Proof (Adaptive Soundness). We now show that adaptive soundness holds.

Game 0: The original adaptive soundness game.

Game 1: As Game 0, but we modify the encryption algorithm as follows:

18

Enc(pp, x,m) : On input of pp, x, m ∈ {0, 1}∗, parse pp as (pp′,H), and x as
(aux, x′), run hk← SPHF.HashKG(pp′, aux), hp← SPHF.ProjKG(hk, aux, x′).

Then choose H ←R Rpp , choose H←R H, compute k ← H(H), C ← Σ.Enc(k,

m) and return c← (C, x, hp, pp,H).

Transition - Game 0→ Game 1: By the smoothness of the SPHF, the adversary’s
view in Game 1 is statistically close to the view in Game 0.

Game 2: As Game 1, but we further modify the encryption algorithm as follows:

Enc(pp, x,m) : On input of pp, x, m ∈ {0, 1}∗, parse pp as (pp′,H), and x as
(aux, x′), run hk← SPHF.HashKG(pp′, aux), hp← SPHF.ProjKG(hk, aux, x′).

Then choose H ←R Rpp, choose H←R H, set k←R {0, 1}`Σ,κ , compute C ←
Σ.Enc(k,m) and return c← (C, x, hp, pp,H).

Transition - Game 1 → Game 2: By Lemma 1, we know that the statistical
difference between the adversary’s view in Game 1 and Game 2 is bounded by
2(`Σ,κ−α)/2, with α = − log(1/|Rpp|). Thus, there exists a polynomial p(·) such that
the adversary’s view in Game 1 and Game 2 are statistically close.

Game 3: In Game 2 we are already free to randomly choose the key for the
symmetric encryption scheme. Thus, in Game 3, the environment can engage in
an IND-EAV game with a challenger C. In particular, once the adversary out-
puts (x,m0,m1, st), the environment forwards (m0,m1, st) to C to obtain the
challenge ciphertext from C and use it as C in the simulation of Enc. Once the
adversary outputs b∗, the environment forwards it as it’s guess to C.
Transition - Game 2 → Game 3: This is only a conceptual change.

The adversary’s success probability in Game 3 is bounded by the success prob-
ability in the IND-EAV game of Σ; a distinguisher between Game 0 and Game 3
would imply a distinguisher for statistically close distributions. ut

B.3 Proof of Theorem 3

Proof (Correctness). Let Lpp,M be the language of linear GS commitments CM
to messages M and let pp, hk and hp be generated according to the setup in
Scheme 3. In particular, we have CM = (gr1+ρr31 , gr2+νr32 ,M ·gr1+r2+r3(ρ+ν)) and
w = (r1, r2, r3). Let HProj ← ProjHash(hp,M, x,w) and HHash ← Hash(hk,M, x),
then we have

HHash := uη · vθ(e/M)ζ =

g
η(r1+ρr3)
1 · gθ(r2+νr3)2 · gζ(r1+r2+r3(ρ+ν)) =

gηr11 gζr1 · gθr22 gζr2 · gρηr31 gνθr32 g(ρ+ν)ζr3 =

hpr11 · hp
r2
2 · hp

r3
3 =: HProj.

ut

19

Proof (Smoothness). To prove smoothness, we can assume that we have an in-
valid commitment to some message M . Any such commitment is of the form
(gr1+ρr31 , gr2+νr32 ,M · gr4), where r4 6= r′1 + r′2 = (r1 + ρr3) + (r2 + νr3) and thus
not a word in the language Lpp,M . With hp = (pp, gη1g

ζ , gθ2g
ζ , gρη1 gνθ2 g(ρ+ν)ζ),

the corresponding hash value is then of the form H = g
η(r1+ρr3)
1 g

θ(r2+νr3)
2 gζr4 .

Taking the discrete logarithms with respect to g yields

loggHHash = x1η(r1 + ρr3) + x2θ(r2 + νr3) + ζr4,

logg hp1 = x1η + ζ,

logg hp2 = x2θ + ζ,

logg hp3 = x1ρη + x2νθ + (ρ+ ν)ζ.

It is easy to see that the only possibility where loggH ∈ span(logg hp1, logg hp2,
logg hp3) is when r4 = (r1 + ρr3) + (r2 + νr3) = r′1 + r′2, i.e., when CM is in fact
in Lpp,M . Conversely, if CM /∈ Lpp,M we have that r3 6= r′1 + r′2 and the value H
looks perfectly random. ut
Proof (Pseudo-Randomness). We prove pseudo-randomness using a sequence of
hybrid distributions.

Distribution 0: Let D0 be the distribution sampled according to the pseudo-
randomness definition.

Distribution 1: As D0, but we choose r1, r2, r3←R Z3
p and set CM = (gr11 g

ρr3
1 ,

gr22 g
νr3
2 ,M ′ · gr1+r2+r3(ρ+ν)) for some M ′ 6= M .

Transition D0 → D1 : We show that a distinguisher D0→1 is a DLIN distin-
guisher using a hybrid sampler, which—depending on the validity of a DLIN
instance—either samples from D0 or D1. We obtain a DLIN instance (BG, g1,
g2, g

r
1, g

s
2, g

t) and let CM = (gr1g
ρr3
1 , gs2g

νr3
2 ,M ·gtgr3(ρ+ν)). Then, if the DLIN

instance is valid we sample from D0, whereas we sample from D1 if it is in-
valid.

In D1 we have a distribution as in the smoothness game, i.e., the hash value
is perfectly random. D0 and D1 are computationally indistinguishable, which
completes the proof. ut

B.4 Proof of Lemma 2

Proof (Correctness). For simplicity, we can without loss of generality assume
that m = 1, n = 2. Let (r11, r12, r13) and (r21, r22, r23) be the randomness used
to compute the GS commitments to Y1 and Z2, respectively. Then, (r11, r12, r13)
and (r21, r22, r23) represent the witness. The projective hash value obtained using
hp is computed as

HProj ←
1∏
i=1

e(Ai, hp
ri1
i1 hpri2i2 hpri3i3) ·

2∏
i=2

e(gγi , hpri1i1 hpri2i2 hpri3i3) =

e(A1, (g
η1
1 g

ζ)r11(gθ12 g
ζ)r12((gρ1)η1(gν2)θ1(gρ+ν)ζ)r13)·

e(gγ2 , (gη21 g
ζ)r21(gθ22 g

ζ)r22((gρ1)η2(gν2)θ2(gρ+ν)ζ)r23) .

20

Computing the hash value using hk yields:

HHash ← B−ζ ·
1∏
i=1

e(Ai, u
ηi
i v

θi
i e

ζ
i) ·

2∏
i=2

(uηii vθii eζi)
γi =

B−ζ · e(A1, (g
r11
1 gρr131)η1(gr122 gνr132)θ1(Y1 · gr11+r12+r13(ρ+ν))ζ)·

(e(g, g1)η2(r21+ρr23) · e(g, g2)θ2(r22+νr23) · (Z2 · e(g, g)r21+r22+r23(ρ+ν))ζ)γ2
(i)
=

e(A1, (g
η1
1 g

ζ)r11(gθ12 g
ζ)r12((gρ1)η1(gν2)θ1(g(ρ+ν))ζ)r13)·

e(gγ2 , (gη21 g
ζ)r21(gθ22 g

ζ)r22((gρ1)η2(gν2)θ2(gρ+ν)ζ)r23) .

where for the step (i), we use that B = e(A1, Y1) · Zγ22 by definition. ut

Smoothness as well as pseudo-randomness follow from the respective properties
of the underlying SPHF, as we will discuss subsequently.

Proof (Smoothness). For simplicity, we only consider PPE without the Z parts
as our argumentation straight forwardly extends to this case (we only consider
the discrete logarithms which are the same for the Z parts). We can with-
out loss of generality assume that one of the n commitments contains a value
such that the overall PPE is not satisfied. Any such commitment is of the form
(gri1+ρri31 , gri2+νri32 , Yi · gri4), where ri4 6= r′i1 + r′i2 = (ri1 + ρri3) + (ri2 + νri3)
and thus not a word in the language Lpp,Yi . Then, the hash value is defined as:

HHash = B−ζ
m∏
i=1

e(Ai, hi), with hi = e(Ai, (g
ri1
1 gρri31)ηi(gri22 gνri32)θi(Yi · gri4)ζ).

As the values Yi cancel out via multiplication by B−ζ when plugging in the
commitments into the PPE, it suffices to consider

logg hi = x1ηi(ri1 + ρri3) + x2θi(ri2 + νri3) + ri4ζ

logg hpi1 = x1ηi + ζ,

logg hpi2 = x2θi + ζ,

logg hpi3 = x1ρηi + x2νθi + (ρ+ ν)ζ.

Now hi looks perfectly random as it is linearly independent of the projection
keys, unless ri4 = (ri1 + ρri3) + (ri2 + νri3) which only happens if we deal with
a valid commitment. This concludes the proof. ut

Proof (Pseudo-Randomness). We know that smoothness holds. Using the same
argumentation as in Appendix B.3 this also implies pseudo-randomness. ut

B.5 Proof of Theorem 4

To prove pseudo-randomness in the presence of proofs we first prove an additional
technical lemma.

21

Lemma 3. Let DLIN hold, and let Scheme (4)’ be defined as the SPHF from
Equation (4), with the following modified Setup algorithm:

Setup(1κ) : On input of κ, run BG ← BGGen(1κ), choose (ρ, ν, ψ)←R Z3
p, set

pk← (g1, g2, g, g
ρ
1 , g

ν
2 , g

ψ) and return pp← (BG, pk).

Then, pseudorandomness also holds for Scheme (4)’.

Proof. We prove pseudo-randomness of Scheme (4)’ using a sequence of hybrid
distributions:

D0: The original pseudo-randomness distribution.
D1: As D0 but we sample pk as in the setup algorithm of Scheme 3.
Transition D0 → D1: A distinguisher between D0 and D1 distinguishes a per-

fectly binding pk from a perfectly hiding pk, i.e., is a DLIN distinguisher.

For D1 we know that pseudorandomness holds under DLIN; D0 and D1 are
computationally indistinguishable. ut

Now, we are ready to prove Theorem 4. It, thereby, suffices to show that the
hash value looks random (cf. Proof of Theorem 1 and Theorem 2).

Proof. We prove Theorem 4 using a sequence of games.

Game 0: The original pseudo-randomness in the presence of proofs game.
Game 1: As Game 0, but we set the CRS of the GS proof system up to be

perfectly hiding, i.e., pk← (g1, g2, g, g
ρ
1 , g

ν
2 , g

ψ) for (ρ, ν, ψ)←R Z3
p.

Transition Game 0 → Game 1: A distinguisher D0→1 contradicts CRS indistin-
guishability of GS.

Now, we observe that—in the unconditionally hiding setting—proofs uncondi-
tionally hide the randomness as soon as there are at least two satisfying witnesses
for the respective PPE [GS08, Theorem 3]. Thus, the GS proof π does not contain
any information about the used randomness (i.e., the witness to decrypt) and
what remains is exactly the same distribution as in the pseudorandomness game
of Scheme (4)’ (which holds by Lemma 3). Furthermore, Game 0 and Game 1
are computationally indistinguishable which completes the proof. ut

Alternatively, one could also directly prove Theorem 4 in the Uber-assumption
framework [Boy08] using the soundness setting together with pseudorandom-
ness under the hard subset membership problem. It suffices to show that the
hash value is still indistinguishable from random when additionally given a GS
proof for the respective statement. In our setting the proof consists of three
group elements containing the discrete logarithms

∑
i∈[n] airi1,

∑
i∈[n] airi2, and∑

i∈[n] airi3, respectively, where ai = logg Ai. Since the (ηi, θi)-parts are inde-

pendently chosen for each hki the hash value can (independent of the choice
of the values ai) not be represented as a linear combination of these discrete
logarithms as soon as i > 1. Now, given this linear independence, it is easy to

22

see that this distinguishing task falls into the uber-assumption framework, with
R = S = 〈1, x1, x2, ρx1, νx2, ρ+ν, (ai)i∈[n],

∑
i∈[n] ai ·ri1,

∑
i∈[n] ai ·ri2,

∑
i∈[n] ai ·

ri3, (x1(ri1 + ρri3))i∈[n], (x2(ri2 + νri3))i∈[n], (ri1 + ri2 + ri3(ρ+ ν))i∈[n], (x1ηi +
ξ)i∈[n], (x2θi+ξ)i∈[n], (x1ρηi+x2νθi+(ρ+ν)ξ)i∈[n]〉, T = 〈1〉, f = 〈

∑
i∈[n] ai(ηix1

(ri1 + ρri3) + θix2(ri2 + νri3) + ξ(ri1 + ri2 + (ρ+ ν)ri3))〉, where i > 1.

C SPHF for Linear Encryptions

As a basis, we use a DLIN variant [BPV12] of the ElGamal-based SPHF by Gen-
naro and Lindell [GL06]. Before we continue, we briefly recall linear encryption
as introduced in [BBS04], which is the DLIN equivalent of DDH-based ElGamal
encryption.

The setup algorithm chooses a group G of prime order p generated by g.
Key generation amounts to choosing x1, x2←R Zp and outputting a private key
sk← (x1, x2) and public key pk = (pk1, pk2)← (gx1 , gx2). A message M ∈ G is
encrypted by choosing r1, r2←R Zp and computing a ciphertext CM = (u, v, e)←
(pkr11 , pk

r2
2 ,M · gr1+r2), which in turn can be decrypted by computing M =

e/(u1/x1 ·v1/x2). It is easy to show (as demonstrated by Boneh et al. in [BBS04]),
that the scheme sketched above provides IND-CPA security under the DLIN
assumption. It is well known that such a scheme represents a perfectly binding
and computationally hiding commitment scheme.

In Scheme 5, we recall the SPHF, where the language Lpp,M is with respect to
the linear encryption public key pk contained in pp and contains all valid cipher-
texts CM ∈ G3. Membership in this language is witnessed by the randomness
r = (r1, r2) ∈ Z2

p used to compute CM .

Setup(1κ) : On input of κ, run BG← BGGen(1κ), choose (x1, x2)←R Z2
p, set pk = (pk1,

pk2)← (gx1 , gx2), and return pp← (BG, pk).
HashKG(pp, aux) : On input of pp and aux, return hk← (pp, η, θ, ζ)←R Z3

p.
ProjKG(hk, aux, x) : On input of hk = (pp, η, θ, ζ), aux = M ∈ G, and some word

x = CM ∈ G3, where CM = (pkr11 , pk
r2
2 ,M · gr1+r2), compute and return hp ←

(pp, hp1, hp2) = (pkη1g
ζ , pkθ2g

ζ).
Hash(hk, aux, x) : On input of hk = (pp, η, θ, ζ), aux = M ∈ G and x = CM ∈ G3,

where CM = (u, v, e), compute and return H ← uηvθ(e/M)ζ .
ProjHash(hp, aux, x, w) : On input of hp, x and w = (r1, r2), compute and return H ←

hpr11 hpr22 .

Scheme 5: SPHF for the language of linear ciphertexts

Lemma 4. If the DLIN assumption holds, then the SPHF in Scheme 5 is secure.

Proof (Correctness). Let Lpp,M be the language of linear encryptions of M and
let pp, hk and hp be generated according to the setup in Scheme 5. Then x =

23

CM = (pkr11 , pk
r2
2 ,M ·gr1+r2) and w = (r1, r2). LetHProj ← ProjHash(hp,M, x,w)

and HHash ← Hash(hk,M, x), then we have

HHash = uηvθ(e/M)ζ = pkr1η1 pkr2θ2 g(r1+r2)·ζ =

pkηr11 gζr1pkθr22 gζr2 = hpr11 hpr22 = HProj

which proves correctness. ut

Proof (Smoothness). To prove smoothness, we can assume that we have an
invalid ciphertext to some message M . Any such ciphertext is of the form
(pkr11 , pk

r2
2 ,M · gr3), where r3 6= r1 + r2 and thus not a word in the language

Lpp,M . With hp = (pp, pkη1g
ζ , pkθ2g

ζ), the corresponding hash value is then of

the form H = pkηr11 pkθr22 gζr3 . Taking the discrete logarithms with respect to g
yields

loggH = x1ηr1 + x2θr2 + ζr3,
logg hp1 = x1η + ζ,
logg hp2 = x2θ + ζ.

The only possibility where loggH can be represented as a linear combination of
logg hp1 and logg hp2 is when r3 = r1 + r2, i.e., when CM is in fact in Lpp,M .
Conversely, if CM /∈ Lpp,M , we have r3 6= r1 +r2 and the value H looks perfectly
random. ut

Proof (Pseudo-Randomness). We already know that smoothness holds and we
now prove pseudo-randomness by showing that a distinguisher between the dis-
tributions considered in smoothness and pseudo-randomness is a distinguisher
for DLIN. We obtain a DLIN instance (BG, g1, g2, g

r
1, g

s
2, g

t) and sample the ci-
phertext to M as (gr1, g

s
2,M

′ · gt) for some M 6= M ′, set pk ← (g1, g2), choose
hk = (η, θ, ζ)←R Z3

p and set hp ← (gη1g
ζ , gθ2g

ζ). Consequently, if we have a valid
DLIN instance, we have a distribution as in the smoothness game, whereas we
have a distribution as in the pseudo-randomness game if the DLIN instance is
random. Assuming the hardness of DLIN contradicts the existence of such an
efficient distinguisher. ut

C.1 Extending Supported Languages

We can now use the SPHF for linear ElGamal ciphertexts in statements over
bilinear groups in a similar way as described for GS commitments in Section 4.1.

Henceforth, let ζ←R Zp and for i ∈ [n]: ηi, θi←R Zp, hki = (ηi, θi, ζ) as well

as hpi = (hpi1, hpi2) = (pkηi1 g
ζ , pkθi2 g

ζ). Then, hk = (pp, (hki)i∈[n]), hp =
(pp, (hpi)i∈[n]) and hashing as well as projective hashing are defined as follows.

HHash := B−ζ ·
m∏
i=1

e(Ai, u
ηi
i v

θi
i e

ζ
i) ·

n∏
i=m+1

(uηii vθii eζi)
γi =

m∏
i=1

(Ai, hp
ri1
i1 hpri2i2) ·

n∏
i=m+1

e(gγi , hpri1i1 hpri2i2) =: HProj.

24

Security, of the construction above is easy to verify by the security of Scheme 5
using the strategy in Section 4.2. Thus, we omit the proof and directly state the
lemma.

Lemma 5. Using the SPHF in Scheme 5 as described above yields a secure
SPHF for any language covered by Equation (3).

25

	Practical Witness Encryption for Algebraic Languages Or How to Encrypt Under Groth-Sahai Proofs

