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Abstract

In this work, we introduce patchable obfuscation: our notion adapts the notion of indistin-
guishability obfuscation (iO) to a very general setting where obfuscated software evolves over
time. We model this broadly by considering software patches P as arbitrary Turing Machines
that take as input the description of a Turing Machine M , and output a new Turing Machine
description M ′ = P (M). Thus, a short patch P can cause changes everywhere in the descrip-
tion of M and can even cause the description length of the machine to increase by an arbitrary
polynomial amount. We further consider the setting where a patch is applied not just to a single
machine M , but to an unbounded set of machines (M1, . . . ,Mt) to yield (P (M1), . . . , P (Mt).
We call this multi-program patchable obfuscation.

We consider both patchable obfuscation and multi-program patchable obfuscation in a setting
where there are an unbounded number of patches that can be adaptively chosen by an adversary.
We show that sub-exponentially secure iO for circuits and sub-exponentially secure one-way
functions imply patchable obfuscation; and we show that sub-exponentially secure iO for circuits,
sub-exponentially secure one-way functions, and sub-exponentially secure DDH imply multi-
program patchable obfuscation.

Finally, we exhibit some simple applications of multi-program patchable obfuscation, to
demonstrate how these concepts can be applied.
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1 Introduction

Informally, the notion of indistinguishability obfuscation (iO) requires that given two equivalent
programs M0 and M1, it should be hard to distinguish iO(M0) from iO(M1). iO was introduced
by [BGI+12], and the first candidate construction was given by [GGH+13]. Since then, iO has
been used to achieve a large number of exciting applications, from deniable encryption [SW14]
to functional encryption [GGH+13, Wat15, ABSV15, AS16], from software watermarking [NW15,
CHV15] to time-lock puzzles [BGG+14], and much more.

At its core, iO allows for the hiding of secrets within software (that we will model as Turing
Machines), while approximately preserving the description length of the software. The fact that the
description length of an obfuscated program does not grow is critical to the non-triviality of iO. In
fact, replacing a software implementation of a function with an exponential-size lookup table would
yield perfect obfuscation, but blow up the description length. In contrast, with iO, it is possible to
obfuscate a program where the description complexity of the underlying program only increases by
a small constant multiplicative factor [AJS15] (see also [BV15] for the case of circuits). The central
intellectual and theoretical focus of this paper is exploring this connection between obfuscation and
the preservation of description complexity, in the context of software that evolves over time.

Indeed, software is rarely changeless. We typically alter software over time, with updates and
patches causing the software to grow and vary, in response to both demands for greater or new
functionality as well as the discovery of bugs that need to be fixed. Can the notion of iO adapt
to deal with this reality? In this paper, we give an affirmative answer to this question by showing
how to transform any iO scheme for circuits into one that approximately preserves the description
complexity of software that changes over time.

Patchable Obfuscation. A trivial solution to obfuscating evolving software would be to simply
apply iO afresh to each updated version of a particular program. But this conflicts with the central
goal of maintaining the description complexity of the software. (Later, we will consider the case
where multiple programs are simultaneously updated, where this problem will be even worse.) For
example, suppose we start with a program M , and then we develop a small patch P such that
P (M) outputs our updated software M ′. This general modeling, where a patch P can arbitrarily
modify the original software M follows the same definitional principles underlying the chain rule for
Kolmogorov complexity (see e.g. [LV13]). Thus, we stress that even if P is much smaller than M ,
the patched software P (M) may modify the description of M almost everywhere, and in particular
can also cause the software to grow in size1. Nevertheless, even if M ′ and M differ substantially,
given that we already have an obfuscated version of M , the obfuscation of M ′ should only require
roughly |P | more bits to describe than the obfuscation of M . Simply re-applying a fresh iO to each
patched version of the software would not achieve this goal, since the total size of all obfuscated
software that the user has would be at least |M | + |M ′|. Instead, we aim to obfuscate the patch
P with an obfuscated encoding that grows only with the size of P , and not with the size of the
original machine M .

More precisely, we define a notion of patchable obfuscation where, informally, there are four
algorithms:

1We contrast our modeling with the very recent independent work of [GP15] that considers a related problem
called incremental obfuscation. We elaborate further in our related work section below.
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• Obfuscate(M ; r) taking as input a program M , and outputting an obfuscated program 〈M〉,
using randomness r.

• GenPatch(P ; r, r′) taking as input a patch program P , and outputting an obfuscated patch
〈P 〉, using a combination of the original randomness r and new randomness r′. The size of
the obfuscated patch should not depend on the size of the original program M .

• ApplyPatch
(
〈M〉, 〈P 〉

)
taking as input an obfuscated program 〈M〉 and an obfuscated patch

〈P 〉, and outputting an obfuscated patched program 〈M ′ = P (M)〉.
• Evaluate

(
〈M〉, x

)
, taking as input an obfuscated program 〈M〉 and an input x, and outputting

the value y = M(x).

From a security standpoint, informally, the essential requirement we want is that given two
equivalent programs M0 and M1, and two patches P0 and P1 such that P0(M0) and P1(M1) are also
equivalent, it should be the case that it is hard to distinguish the tuple of obfuscations (〈M0〉, 〈P0〉)
from the tuple of obfuscations (〈M1〉, 〈P1〉). In other words, as long as patches yield equivalent
programs, an adversary should not be able to distinguish among these patches. Beyond this basic
requirement, the actual notion of security that we achieve goes beyond this modeling in two es-
sential respects: (1) We consider adaptive security, where the adversary can posit pairs of patches
adaptively; and (2) We consider an unbounded number of patches, that can cause the software to
grow and change in an arbitrary and unbounded manner.

Multi-Program Patchable Obfuscation. We next consider the case where multiple programs
are to be updated simultaneously, using a common patch. This situation arises quite commonly:
Applications of obfuscation typically involve programs that have customized keys created individu-
ally for each user. In unobfuscated programs, such per-user customization of programs is typically
achieved by having a common base program, but with per-user customized data files that the pro-
gram accesses to obtain customized keys or other customized data. With obfuscated programs,
however, this simple approach does not work because obfuscation requires that secret keys embed-
ded within the program also be protected. Thus, obfuscated versions of customized programs must
differ radically from one another. In this multi-program setting, we would like a single obfuscated
patch to be able to modify all obfuscated customized programs simultaneously.

In other words, suppose we have a vector of obfuscated programs (〈M1〉, 〈M2〉, . . . , 〈Mk〉). We
would like to be able to release single obfuscated patch 〈P 〉, such that the owner of each individual
program Mi in the vector can update its obfuscated program 〈Mi〉 using the obfuscated patch 〈P 〉
to yield a new obfuscated program 〈P (Mi)〉. And again, critically, the size of the obfuscated patch
〈P 〉 should not depend on the size or number of originally obfuscated programs. We want to achieve
this notion in the setting of adaptive security, with an unbounded number of patches that can cause
to the software to grow and change in an arbitrary and unbounded manner.

Cryptography from Patchable Obfuscation. We see patchable obfuscation, and especially
multi-program patchable obfuscation, as powerful primitives that are likely to have several ap-
plications in the future. Indeed, as initial evidence of this, we show that multi-program patch-
able obfuscation can be used in a simple way to build secret-key multi-input functional encryp-
tion [GGG+14, AJ15, BKS15] with unbounded arity functions – previously, this result was only
known to be achievable [BGJS15] using stronger knowledge assumptions, namely public-coin diO
[BCP14, ABG+13, IPS15] and one-way functions. We also show that multi-program patchable ob-
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fuscation implies secret-key functional encryption for Turing Machines with unbounded input [AS16]
in a simple and intuitive manner.

Alternative viewpoint: Obfuscation with a private homomorphism. Another way of
looking at our notion of patchable obfuscation is as a form of obfuscation that supports a kind of
semi-private homomorphism: the production of the obfuscated patch is private – requiring secret
information that was used to obfuscate the original program – although the application of the
obfuscated patch is public. Note that unlike encryption, for the security of obfuscation it is critical
that this homomorphism is semi-private – if an adversary was allowed to use public information to
modify the program underlying an obfuscation, this would trivially allow the adversary to break the
security of the original obfuscated program. On the other hand, our notion of patchable obfuscation
and the notion of fully homomorphic encryption [Gen09] share a similarity in that they both require
a form of compactness for the notions to be non-trivial.

1.1 Our Results

In this work, we formalize the notions of patchable obfuscation and multi-program patchable ob-
fuscation. We focus on the setting where programs to be obfuscated and patched are described as
Turing Machines. In this setting, we obtain the following two main theorems:

Theorem 1 (Informal). Assuming the existence of sub-exponentially secure iO for circuits and
sub-exponentially secure one-way functions, there exists an adaptively secure patchable obfuscation
scheme with unbounded updates, for Turing Machines where the size of the obfuscation of a patch
P is bounded by poly(|P |, k, `), where k is a security parameter and ` is a bound on the input size
to the patched program.

Theorem 2 (Informal). Assuming the existence of sub-exponentially secure iO for circuits, sub-
exponentially secure one-way functions, and sub-exponentially secure DDH, there exists an adap-
tively secure multi-program patchable obfuscation scheme with unbounded updates, for Turing Ma-
chines where the size of the obfuscation of a patch P is bounded by poly(|P |, k, `), where k is a
security parameter and ` is a bound on the input size to the patched program.

For the theorems above, we stress that we place no restrictions on the patches. A patch P
can be an arbitrary Turing Machine that takes the original program description M as input, and
outputs an arbitrary Turing Machine description M ′ = P (M) that can differ in arbitrary ways from
M . In particular, the description size of P (M) can be any unbounded polynomial in the security
parameter, and thus the program size can grow by arbitrary polynomial factors. Furthermore any
unbounded polynomial number of patches can be applied, and the adversary can specify these
patches adaptively given all obfuscated programs and patches constructed earlier.

Upgrading Input Size. We note that all recent progress on achieving iO for Turing Ma-
chines [CHJV15, BGL+15, KLW15] from iO for circuits has required a polynomial bound ` to
be placed on the input to the obfuscated Turing Machine. We share this need for a polynomial
bound ` on the input size, and the size of our obfuscated patches do grow with this bound. (If we
could remove this restriction, then we would show how to bootstrap iO for circuits to iO for Turing
Machines without any input length restriction from iO for circuits – this remains a major open
question. Achieving iO for Turing Machines without any input length restriction currently requires
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apparently stronger assumptions, such as output-compressing randomized encodings [LPST16] or
knowledge-type assumptions such as public-coin diO [BCP14, ABG+13, IPS15]. We do not know
how to achieve these objects using only iO for circuits.)

However, our result allows for the input bound ` to be upgraded by patches. That is, for
example, if we obfuscate a Turing Machine M and limit the input length to `, but then later we
decide that we need to increase this limit to L > `, then we can issue a patch of size poly(k, L),
independent of |M |, to upgrade the input size restriction on the obfuscation of M .

Implications of Patchable Obfuscation. It is not difficult to see that patchable obfuscation
significantly extends iO. Indeed, while iO exists if P=NP, patchable obfuscation implies one-way
functions: Intuitively, this is true because patchable obfuscation is representation-dependent. A
patch P takes as input a concrete representation of the original machine M in order to update this
representation. Thus, the initial patchable obfuscation of M must actually maintain an encoded
form of the original representation of M . This can be seen more precisely as follows: Consider a
program Mb,x parametrized by two secret values (b, x). This program Mb,x ignores its input, and
simply outputs ⊥ if b = 0, and outputs x if b = 1. Note that if b = 0, then Mb,x is just the all-⊥
function, and therefore the initial obfuscation of Mb,x must hide x. However, if a future patch P
sets the bit b to 1, then the patched program must output x. Therefore the initial obfuscation of
Mb,x cannot “forget” x. Thus, we have that the function that maps (b, x, r) to Obfuscate(Mb,x; r)
must be a one-way function.

The simple intuition behind the implication above gives a glimpse of the power of our notions
of patchable obfuscation and multi-program patchable obfuscation. We elaborate on this by giving
two example applications of multi-program patchable obfuscation, that follow the same simple
intuition described above.

Theorem 3 (Informal). Adaptively secure multi-program patchable obfuscation implies secret-key
functional encryption for Turing Machines with unbounded input with indistinguishability security
against adaptive post-ciphertext key queries.

A construction of functional encryption for Turing machines with unbounded input was re-
cently given by [AS16] based on iO. We note, however, that our construction from multi-program
patchable obfuscation is quite simple, in contrast to the involved construction of [AS16].

Theorem 4 (Informal). Adaptively secure multi-program patchable obfuscation implies secret-key
multi-input functional encryption for unbounded arity functions with indistinguishability security
adaptive post-ciphertext key queries.

Combining the above with Theorem 2, we obtain secret-key multi-input functional encryption
[GGG+14, AJ15, BKS15] for unbounded arity functions from sub-exponentially secure iO for cir-
cuits, sub-exponentially secure one-way functions, and sub-exponentially secure DDH. This result
was not previously known to be achievable from sub-exponentially secure iO for circuits combined
with standard cryptographic assumptions. In particular, this result was only known [BGJS15] using
stronger knowledge assumptions, namely public-coin diO [BCP14, ABG+13, IPS15] and one-way
functions.

Both these implications follow in very simple and intuitive ways. We expect several more
applications of patchable obfuscation and multi-program patchable obfuscation in the future.
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Related Independent Work. In a very recent independent work, [GP15] consider a related
notion called incremental obfuscation. In incremental obfuscation, individual bits of an existing
obfuscated program can be updated one-by-one. Like our setting, these incremental updates should
be themselves small. However, our work and theirs differ in several essential ways: (1) The patches
P that we consider can be themselves small, but they can modify the original program M almost
everywhere. For example, a patch P could execute a “Find-And-Replace” fixing all instances of a
bug within the original program. In the setting of [GP15], incremental changes can only modify
individual bits or words in each update, and so the type of patches that we envision would require
multiple incremental updates, which would destroy the description length preservation property
that is our central aim. On the other hand, this incremental nature of [GP15] allow them to achieve
a level of runtime efficiency that is impossible in our setting, since the processing performed by a
patch P in our setting could itself take a long time. (2) We consider patches that can grow the size
of the underlying program. [GP15] do not address this case and mention it as a topic for future
work. Indeed, this feature of program growth is central to our applications of patchable obfuscation
discussed above. (3) Our techniques achieve the notion of multi-program patchable obfuscation, a
setting that is not considered in [GP15]. (4) Our work allows for the upgrading of input sizes for
obfuscated programs through patching, something not considered in [GP15]. (5) Finally, our work
achieves security in the adaptive setting, where the adversary can specify patches based on the
obfuscated programs and patches he receives. The work of [GP15] considers non-adaptive setting.

Given these basic differences, it is unsurprising that the techniques in our work and that
of [GP15] diverge at a basic level. In our work, the idea that patchable obfuscation should hide
what a patch does is central to our construction from the start (see Our Techniques below for
further elaboration). In contrast, the work of [GP15] first constructs incremental obfuscation that
does not hide what individual updates do, and then uses ORAM techniques to bootstrap from non-
hiding incremental obfuscation to hiding incremental obfuscation. We do not make use of ORAM
techniques in any way.

1.2 Our Techniques

Our constructions and proofs of security for patchable obfuscation and multi-program patchable
obfuscation are quite involved and include multiple technical layers. In this section, we focus on
describing some of the main technical barriers we encounter, and some of our key conceptual ideas
for overcoming these technical barriers. For a more technical guide to the different components of
our construction and proof, please see Section 3.

The input-size barrier. Let us jump straight into the question of how we can obfuscate a
patching program P so that this program can then act on and modify the description of a machine
M that underlies an initial obfuscated program 〈M〉. An immediate natural approach would be to
build a program P ′ that first “decrypts” the obfuscated program 〈M〉 to obtain M , then executes
P (M) to obtain the new description M ′, and then re-obfuscates it to produce 〈M ′〉. Then, we could
obfuscate this new program P ′ and release it as our patch. This approach fails, and the reason it
fails highlights one of the major technical barriers we face: All known methods for bootstrapping
iO for circuits to iO for Turing Machines imposes a limit on the input size for the obfuscated Turing
Machine [CHJV15, BGL+15, KLW15]. Indeed, this is for a fundamental reason: the only way we
know how to argue that the obfuscation is secure is by applying complexity leveraging, to argue
security on an input-by-input basis [GLSW15]. But the program P ′ that we considered here takes
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an enormously long input 〈M〉, and we cannot afford to pay the cost associated with obfuscating
a machine that accepts such a long input. This problem grows even worse in the multi-program
patchable obfuscation setting.

Decoupling machine and input. Our first conceptual idea to tackle this barrier is to decouple
the complexity leveraging needed for arguing input-by-input security from the actual underlying
encoding of the machine M . Taking a step back, if we look at the work of [KLW15] on iO for Turing
Machines, their construction works by obfuscating a program that takes an input x, and outputs
a (succinct) randomized encoding of the pair (M,x). From our perspective, the disadvantage of
this approach is that it ties together the encoding of the machine M and the input x. In contrast,
we would like to split apart these components: We would like to have one fixed encoding of the
machine M , and an obfuscated program that takes an input x, and outputs an encoding of x that
is compatible with the fixed encoding of M that we already have. Moreover, the encoding of M
must be amenable to processing by patches. Specifically, what we build as a first step is new notion
of patchable attribute-based encryption that allows for this decoupling.

Patching at the machine encoding level. Once we have achieved this decoupling, our next
main conceptual idea is to move the application of the patch P down one level of abstraction, such
that an encoding of the patch P can operate directly on the encoding of the machine M , minimizing
(but not completely eliminating) its interaction with the obfuscated program that encodes inputs
x. Technically, making this possible is the most involved and technically complex aspect of our
work.

Applying patches. The first difficulty is just to achieve correctness – to encode the patch P in
a way that is compatible with the encoding of the machine M , so that P can be executed on the
machine M to apply the patch. This difficulty is more severe in the case of multi-program patchable
obfuscation, where the encoding of P must be compatible with a potentially unbounded number of
unknown machines Mi. For example, following [CHJV15, BGL+15, KLW15], during the execution
of the patch P (M), a signature on the resulting intermediate values will need to be updated. In
the single-program patchable obfuscation setting, the patch generator can anticipate what the final
signature will be, since it is aware of the machine M being modified and therefore can anticipate
what P (M) will be. In the multi-program setting, however, the patch generator has no idea what
are the underlying machines Mi on which the patch will need to be executed. Thus, in this setting
we need a secure method for updating signatures that can work across an unbounded number of
patches. The key conceptual step for achieving this is to build a stateless procedure for applying
patches, where any and all information needed for applying patches is found in the encoded version
of the machine being patched.

Proving Security. Beyond merely achieving correctness, we also need our method of applying
patches to enable an actual proof of security. Our proofs of security for both patchable obfus-
cation and multi-program patchable obfuscation will reduce the security of our constructions to
the security of the message-hiding encodings from [KLW15]. We stress that we do not make any
vague claims about what [KLW15] achieves. Instead, following [AJS15], we only use the theorem
from [KLW15] guaranteeing the security of message-hiding encodings – we do not need the more
advanced theorem from [KLW15] about secure machine-hiding encodings. Our proofs of security
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span several layers of abstractions. But at their heart, the central challenge we overcome in our
proofs is to allow for sufficient “programmability” to remain while patching is taking place, so that
security can be established. To illustrate the challenge, we note that we can start with two pro-
grams (M0,M1) and then have the adversary specify two sequence of patches (P 1

0 , P
2
0 , . . . , P

t
0) and

(P 1
1 , P

2
1 , . . . , P

t
1). Now we know that for all i, we have that P i0(P i−10 (· · · (P 1

0 (M0)) · · · )) is equivalent

to P i1(P i−11 (· · · (P 1
1 (M1)) · · · )). However, we cannot mix and match the patches P j0 and P j1 . What

this means is that we cannot have hybrids where we switch the patches one-at-a-time from P j0 to

P j1 . Thus, we need a proof strategy that work across all patches – and this technique has to work
with an adaptively chosen set of an unbounded number of patches. Achieving this involves several
technical ideas across our proof. For example, we show that at the abstraction layer of patchable
attribute-based encryption, we can actually reduce security to the one-time setting without any
patches, because of the specific structure of our construction that allows us to reinterpret patched
obfuscations as obfuscated machines. Another example occurs at another abstraction layer, where
the key technical challenge is to pass forward secret information that is correlated with public values
across a sequence of patches while proving that the adversary cannot derive any advantage despite
the correlation that exists with public values. These ideas are presented against the backdrop of
suitably modified abstractions recently introduced in [AJS15]. However, we note that every con-
struction we present across these abstractions involves new ideas that are critical because no notion
of patching was envisioned or anticipated in [AJS15].

2 Preliminaries

We assume familiarity of the reader with standard cryptographic notions.

2.1 Turing Machines

We describe syntax and terminology related to Turing machines that is used throughout the paper.

Turing machines. A Turing machine is a 7-tuple M = 〈Q,Σtape,Σinp, δ, q0,⊥, qacc, qrej〉 where
Q and Σtape are finite sets with the following properties:

1. Q is the set of finite states.

2. Σinp is the set of input symbols.

3. Σtape is the set of tape symbols.

4. ⊥ denotes the blank symbol.

5. δ : Q× Σtape → Q× Σtape × {+1,−1} is the transition function.

6. q0 ∈ Q is the start state.

7. qacc ∈ Q is the accept state.

8. qrej ∈ Q is the reject state, where qacc 6= qrej.
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Transforming Turing machines to Circuits. A Turing machine running in time at most T (n)
on inputs of size n, can be transformed into a circuit of input length n and of size O

(
(T (n))2

)
.

This theorem proved by Pippenger and Fischer [PF79] is stated below.

Theorem 5. Any Turing machine M running in time at most T (n) for all inputs of size n,
can be transformed into a circuit CM : {0, 1}n → {0, 1} such that (i) CM (x) = M(x) for all
x ∈ {0, 1}n, and (ii) the size of CM is |CM | = O

(
(T (n))2

)
. We denote this transformation procedure

as TMtoCKT.

Adopted Conventions. We denote by RunTime(M,x), the time taken by a Turing machine M
to evaluate on input x. We adopt the convention that the Turing machine also additionally outputs
the time taken to execute. Thus, if we have two inputs x and y, a Turing machine M , then if
M(x) = M(y), by this notation, means that not only does M on x output the same value as M on
y but also that the running time of M on both x and y are the same.

In this work, we only consider TMs which run in polynomial time on all its inputs, i.e., there
exists a polynomial p such that the running time is at most p(n) for every input of length n.

Equivalence of Programs. Let M0 and M1 be two Turing machines. We denote by M0 ≡ M1

if both M0 and M1 are functionally equivalent, i.e., if M0(x) = M1(x), for all x ∈ {0, 1}∗.

2.2 Patching Turing Machines

Throughout this work, we consider various families of Turing machines. We assume that any
Turing machine family has an associated family of patches that come equipped with a polynomial-
time update algorithm. For example, let M be any Turing machine family with associated patch
family P and update algorithm UpdateM,P . Algorithm UpdateM,P takes as input a Turing machine
M ∈M and a patch P ∈ P and outputs an updated Turing machine Mnew ∈M. That is:

Mnew ← UpdateM,P(M,P )

A natural way to model patches is to consider them as arbitrary polynomial-time Turing ma-
chines. That is, we can model a patch P ∈ P as a polynomial-time Turing machine that takes
M ∈ M as input and outputs a new machine Mnew = P (M) ∈ M. In this case, the UpdateM,P
algorithm simply executes P with input M . One could also consider an alternative modeling of
patches where P is simply a string such that UpdateM,P on input (M,P ) makes appropriate changes
in M as per the description of P to compute Mnew.

The primitives we discuss and construct in this work are robust to any such formulation of P
and UpdateM,P .

2.3 Puncturable Pseudorandom Functions

A pseudorandom function family F consisting of functions of the form PRFK(·), that is defined
over input space {0, 1}η(λ), output space {0, 1}χ(λ) and key K in the key space K, is said to be a
secure puncturable PRF family if there exists a PPT algorithm PRFPunc that satisfies the following
properties:
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• Functionality preserved under puncturing. PRFPunc takes as input a PRF key K,
sampled from K, and an input x ∈ {0, 1}η(λ) and outputs Kx such that for all x′ 6= x,
PRFKx(x′) = PRFK(x′).

• Pseudorandom at punctured points. For every PPT adversary (A1,A2) such that

A1(1
λ) outputs an input x ∈ {0, 1}η(λ), consider an experiment where K

$←− K and Kx ←
PRFPunc(K,x). Then for all sufficiently large λ ∈ N, for a negligible function µ,∣∣Pr[A2(Kx, x,PRFK(x)) = 1]− Pr[A2(Kx, x, Uχ(λ)) = 1]

∣∣ ≤ negl(λ)

where Uχ(λ) is a string drawn uniformly at random from {0, 1}χ(λ).

As observed by [BW13, BGI14, KPTZ13], the GGM construction [GGM86] of PRFs from one-way
functions yields puncturable PRFs.

Theorem 6 ([GGM86, BW13, BGI14, KPTZ13]). If one-way functions exist, then for all polyno-
mials η(λ) and χ(λ), there exists a puncturable PRF family that maps η(λ) bits to χ(λ) bits.

2.4 Indistinguishability Obfuscation

The notion of indistinguishability obfuscation (iO), first conceived by Barak et al. [BGI+12],
guarantees that the obfuscation of two circuits are computationally indistinguishable as long as
they both are equivalent circuits, i.e., the output of both the circuits are the same on every
input. Analogous to the case of circuits, we can define indistinguishability obfuscation for Tur-
ing machines (TMs). We work in a weaker setting of iO for TMs, as considered by the recent
works [CHJV15, BGL+15, KLW15, AJS15], where the inputs to the TM are upper bounded by a
pre-determined value. This definition of iO for TMs is referred as succinct iO. The security prop-
erty of this notion states that the obfuscations of two machines M0 and M1 are computationally
indistinguishable as long as M0(x) = M1(x) and the time taken by both the machines on input x
are the same, i.e., RunTime(M0, x) = RunTime(M1, x).

iO for Circuits. We define the notion of indistinguishability obfuscation (iO) for circuits below.

Definition 1 (Indistinguishability Obfuscator (iO) for Circuits). A uniform PPT algorithm iO is
called an indistinguishability obfuscator for a circuit family {Cλ}λ∈N, where Cλ consists of circuits
C of the form C : {0, 1}inp → {0, 1}, if the following holds:

• Completeness: For every λ ∈ N, every C ∈ Cλ, every input x ∈ {0, 1}inp, where inp = inp(λ)
is the input length of C, we have that

Pr
[
C ′(x) = C(x) : C ′ ← iO(λ,C)

]
= 1

• Indistinguishability: For any PPT distinguisher D, there exists a negligible function negl(·)
such that the following holds: for all sufficiently large λ ∈ N, for all pairs of circuits C0, C1 ∈
Cλ such that C0(x) = C1(x) for all inputs x ∈ {0, 1}inp, where inp = inp(λ) is the input length
of C0, C1, we have:∣∣∣Pr [D(λ, iO(λ,C0)) = 1]− Pr[D(λ, iO(λ,C1)) = 1]

∣∣∣ ≤ negl(λ)
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iO for Turing Machines. Analogous to the case of circuits, we can define indistinguishability
obfuscation for Turing machines (TMs). The security property states that the obfuscations of two
Turing machines M0 and M1 are computationally indistinguishable as long as M0(x) = M1(x). Note
that by our convention adopted for Turing machines, the condition that M0(x) = M1(x) already
ensures that the running time of M0(x) and M1(x) are the same. The succinctness property states
that the running time of the obfuscation algorithm on input M is independent of the worst case
running time of machine M . The same guarantee also holds for the evaluation of the obfuscated
TM. We note that this definition was adopted in the works of [BGL+15, CHJV15, KLW15, AJS15].

Definition 2 (Succinct iO). A uniform PPT algorithm SuccIO is called an succinct indistinguisha-
bility obfuscator for a class of Turing machines {Mλ}λ∈N with an input bound L, if the following
holds:

• Completeness: For every λ ∈ N, every M ∈ Mλ, every input x ∈ {0, 1}≤L, we have that:
Pr [M ′(x) = M(x) : M ′ ← SuccIO(λ,M,L)] = 1.

• Indistinguishability: For any PPT distinguisher D, there exists a negligible function negl(·)
such that the following holds: for all sufficiently large λ ∈ N, for all pairs of Turing machines
M0,M1 ∈Mλ such that M0(x) = M1(x) for all inputs x ∈ {0, 1}≤L, we have:∣∣∣Pr [D(λ,SuccIO(λ,M0, L)) = 1]− Pr[D(λ,SuccIO(λ,M1, L)) = 1]

∣∣∣ ≤ negl(λ)

• Succinctness: For every λ ∈ N, every M ∈ Mλ, we have the running time of SuccIO on
input (λ,M,L) to be poly(λ, |M |, L, log(T )) and the evaluation time of M̃ on input x, where

|x| ≤ L, to be poly(|M |, L, t), where M̃ ← SuccIO(λ,M,L) and t = RunTime(M,x).

2.5 Garbled TMs with Persistent Memory

A garbled Turing machine is a randomized encoding, where the encoding time is independent of
the computation time. It consists of two components – an input encoding and a TM encoding. The
input encoding is an encoding of the input tape of the TM. We consider the concept of garbled TMs
(GTM) with persistent memory. In this setting, there are multiple TM encodings that sequentially
operate on the same input encoding. To be more precise, denote the input encoding of x to be x̃.
Now, GTM with persistent memory allows the issue of multiple TM encodings M̃1, . . . , M̃` such
that (i) M̃1 executes on x̃ and outputs a value y1 and also updates the input tape to be x̃1, (ii) M̃i

operates on encoding x̃i−1; outputs yi and updates the input tape to be x̃i.
The concept of persistent memory has been studied in the context of RAMs [GHRW14, GLOS15].

For our work, it suffices to consider Turing machines. We describe the primitive formally below.
Suppose M = {Mλ}λ∈N be a class of Turing machines where every M ∈ Mλ is such that

the maximum space taken by M on any input x ∈ {0, 1}poly(λ) is 2λ, for every sufficiently large
λ ∈ N. A garbled TM with persistent memory GTM, consists of a tuple of algorithms (Gen,GarbDB,
GarbTM,GarbEval).

• Setup, k← Gen(1λ): It takes as input a security parameter and outputs a secret key k.

• Garbling of Turing Machine, M̂ ← GarbTM(k,M): It takes as input a secret key k,

Turing machine M ∈M and outputs an encoding of M , M̂ .
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• Garbling of Input Tape, D̂B ← GarbDB(k, DB): It takes as input a secret key k, contents

of an input tape DB and outputs an encoding of DB, D̂B.

• Evaluation, (y, D̂B′)← GarbEval(M̂, D̂B): It takes as input an encoding M̂ , encoding D̂B

and outputs a value y and also the updated encoding D̂B′.

Remark 1. Previous works considered definitions, where the algorithms also take as input a space
bound. In our setting, we set the space bound of the computations to be 2λ and hence the space
bound does not explicitly feature in the definitions.

We require that the above scheme satisfy the following properties.

Correctness. Consider a sequence of Turing machines M1, . . . ,M` ∈ M, input tape DB ini-
tialized with x. Suppose a sequential evaluation of M1, . . . ,M` on DB leads to outputs y1, . . . , y`
respectively. By this, we mean that Mi when operated on the input tape updated by Mi−1 would
output value yi.

We require that for every i ∈ [`], it should hold that (yi, D̂Bi)← GarbEval(M̂i, D̂Bi−1), where

• k← Gen(1λ)

• M̂1 ← GarbTM(k,M1)

• D̂B0 ← GarbDB(k, DB)

Efficiency. We require that the generation time of the TM encodings be a polynomial only in
the size of the TM and security parameter and in particular, independent of either the input
tape size or the computation time. More formally, |GarbTM(k,M)| = poly(λ, |M |). Furthermore,
the generation time of the input tape encoding is independent of the program size. That is,
|GarbDB(k, DB)| = poly(λ, |DB|). Finally, we require the running time of the evaluation procedure,

on input M̂ and D̂B (notation as defined above), is polynomial in λ and runtime of M on DB.

2.5.1 Security

We consider a simulation-based definition of GTMs with persistent memory. We first consider the
adaptive security notion and provide the definition below. Let A be a (stateful) PPT adversary.
And let Sim = (Sim1,Sim2) be a PPT simulator.

Ad.ExptGTM,SimA (1λ):
Consider the two processes.

• Honest Execution:

– DB ← A(1λ)
– k← Gen(1λ),

– D̂B ← GarbDB(k, DB),

– `(λ)← A(D̂B)

– ∀i ∈ [`],
{
Mi ← A(M̂i−1); M̂i ← GarbTM(k,Mi)

}
, where M̂0 = ⊥.
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– breal ← A(M̂`)

• Simulation:

– DB ← A(1λ)

– (stSim, D̂Bideal)← Sim1(1
λ, 1|DB|),

– `(λ)← A(D̂Bideal)

– ∀i ∈ [`],
{
Mi ← A(M̂ ideal

i−1 ); (M̂ ideal
i , stSim)← Sim2(stSim, yi, 1

|Mi|)
}

,

where M̂0 = ⊥ and (yi, DBi)←Mi(DBi−1) with DB0 = DB.

– bideal ← A(M̂ ideal
` ).

If breal 6= bideal then output 1.

Definition 3 (Adaptive GTM with Persistent Memory). A GTM with persistent memory GTM is

said to be adaptively secure if for every PPT adversary A, we have |Pr[1← Ad.ExptGTM,SimA (1λ)]| ≤
1
2 + negl(λ).

We can similarly consider the selective notion, where the adversary declares all the programs ahead
of time. And so, the simulator gets to see all the outputs of the programs at once. We define the
corresponding experiment to be Sel.ExptGTM,SimA .

Definition 4 (Selective GTM with Persistent Memory). A GTM with persistent memory GTM is

said to be selectively secure if for every PPT adversary A, we have |Pr[1← Sel.ExptGTM,SimA (1λ)]| ≤
1
2 + negl(λ).

Feasibility. The existence of (selectively-secure) garbled TMs with persistent memory was ex-
plored in the work of [CH15, CCC+15]. Recently, the works of [CCHR15, ACC+15] show the exis-
tence of adaptively secure garbled TMs with persistent memory. Their constructions are based on
the existence of ε

2λ
-secure indistinguishability obfuscation and ε′

2λ
-secure decisional Diffie-Hellman

(DDH) assumption, where λ is the security parameter and ε, ε′ ≤ 1
p(λ) for some fixed polynomial

p. Here we emphasize that the security loss ε′

2λ
, ε′

2λ
do not depend on either the size of the Turing

machines or the input. We note that their construction is designed for the more general RAM
model of computation, however it suffices for our work to just consider the Turing machine model
of computation.

3 Technical Guide

We approach the problem of patchable obfuscation in a modular fashion. While almost every
aspect of our construction uses new ideas, we build our constructions within the general framework
of [AJS15] for building iO for Turing machines. While the primary focus of [AJS15] is on building iO
with constant multiplicative overhead, we do not seek this efficiency goal in this work. Nevertheless,
we find the framework in [AJS15] to be a very useful set of abstractions within which we can apply
our ideas to achieve our goal of patchable obfuscation.

Below, we describe the main modular steps involved in our constructions of patchable obfus-
cation and multi-program patchable obfuscation. The details of all the steps are give in later
sections.
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Patchable Obfuscation. We construct patchable obfuscation (PO) in three main steps:

• Step I: Patchable Attribute-based Encryption. First, in Section 5, we consider a notion,
termed as patchable attribute-based encryption (PABE). Roughly speaking, a PABE scheme
is a 1-key ABE that additionally supports the ability to “patch” ABE keys generated by the
scheme. That is, for any patch P , it should be possible to generate an encoding P̃ s.t. an
ABE key skM corresponding to a Turing machine M can be “updated” to obtain an ABE
key skM ′ where M ′ = Update(M,P ).

To achieve this primitive, we give a construction that allows us to reduce the security of
PABE to a security game in which no patching takes place. Our construction of PABE
achieves adaptive security.

• Step II: PABE to Patchable Oblivious Evaluation Encodings. Next, in Section 6, we
consider the notion of oblivious evaluation encodings (OEE) that was recently introduced by
[AJS15]. In an OEE scheme, it is possible to generate a joint encoding of two machines M0,M1

s.t. given an encoding of an input x with a bit b, the decoding algorithm returns Mb(x). We
extend the notion of OEE to patchable OEE (POEE) that allows for patching of the machine
encodings. That is, we allow for computing encoding of patches P0, P1 that can be applied
over the encoding of M0,M1 to obtain an encoding of M ′0,M

′
1, where M ′b = Update(Mb, Pb)

for every b ∈ {0, 1}.
We build a POEE scheme (Section 6.1) from a PABE scheme. A key difficulty in building the
POEE scheme is tracking secret information that must be available for patching. To achieve
security, we need to use some specific properties of our PABE scheme in order to achieve our
goal of POEE.

• Step III: POEE to PO. Finally, in Section 7, we present a generic transformation from a
POEE scheme to a PO scheme. Our construction resembles the transformation from OEE
to iO in [AJS15] with the crucial difference that we release a fresh input encoder along with
every patch encoding.

Multi-program Patchable Obfuscation. We construct multi-program patchable obfuscation
(MPO) in three main steps:

• Step I: Stateless PABE. First, in Section 9, we consider the notion of stateless PABE.
This is a special class of PABE, where as the name suggests, no state is maintained during
the patch generation process and in particular, the patch generation algorithm only takes as
input the secret key and the patch. This is unlike our PABE scheme discussed above, where
a private state is maintained during the patch generation process.

To construct this primitive, we build upon the construction of PABE in Section 5.1 and along
the way using adaptive garbled TMs with persistent memory (Definition 3). Our construction
of stateless PABE also achieves adaptive security.

• Step II: Stateless PABE to Multi-Program POEE. Next, in Section 10, we generalize
the notion of POEE to multi-program POEE (MPOEE). In an MPOEE scheme, the secret
key can be used to produce TM encodings of multiple pairs of machines. The key requirement
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is that the patches issued should be applicable on all the machines. As an added feature, we
also achieve a patch generation mechanism that does not maintain state.

We build upon the construction of POEE (Section 6.1), using additional layers, to achieve
our goal of multi-program POEE (Section 10.1).

• Step III: MPOEE to MPO. Finally, in Section 11, we present a generic transformation
from MPOEE to MPO. Our transformation is, in fact, identical to the one in the single
program case. The main novelty here is in the security analysis.

4 Single-Program Patchable Obfuscation

In this section, we present a formal definition of (single-program) patchable obfuscation. As dis-
cussed in Section 3, we construct patchable obfuscation in three steps. We refer the reader to
Sections 5, 6 and 7 for the details of these steps.

4.1 Syntax

A patchable obfuscation scheme, defined for a class of Turing machines M with an associated
family of patches P and update algorithm Update, consists of a tuple of probabilistic polynomial-
time algorithms pO = (Setup,Obfuscate,GenPatch,ApplyPatch,Evaluate) which are defined below.

• Setup, Setup(1λ): It takes as input the security parameter λ and outputs the secret key
Obf.SK.

• Obfuscate, Obfuscate(Obf.SK,M): It takes as input the secret key Obf.SK and a TM M ∈
M. It outputs an obfuscated TM 〈M〉 along with state st.

• Secure Patch Generation, GenPatch(Obf.SK, P, st): It takes as input the secret key Obf.SK,
a description of a patch P ∈ P, and state st. It outputs a secure patch 〈P 〉 along with the
updated state st′.

• Applying Patch, ApplyPatch
(
〈M〉, 〈P 〉

)
: It takes as input an obfuscated TM 〈M〉 and a

secure patch 〈P 〉. It outputs an updated obfuscation 〈Mnew〉.

• Evaluation, Evaluate
(
〈M〉, x

)
: It takes as input an obfuscated TM 〈M〉 and an input x. It

outputs a value y.

Correctness. At a high level, the correctness property states that executing Update on a TM M
and a patch P is equivalent to executing ApplyPatch on the obfuscation of M and a secure patch of
P . In fact we require that this holds even if there are multiple patches that are applied sequentially.

For any TM M0 ∈M, L > 0, sequence of patches P1, . . . , PL ∈ P, consider two processes:

• Obfuscate-then-Update: Compute the following: (a) Obf.SK← Setup(1λ), (b)
(
〈M0〉, st0

)
← Obfuscate(Obf.SK,M0), (c)

(
〈Pi〉, sti

)
← GenPatch(Obf.SK, Pi, sti−1), (d) 〈Mi〉 ← ApplyPatch(

〈Mi−1〉, 〈Pi〉
)

.
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• Update: Mi ← Update(Mi−1, Pi).

We require that for all x ∈ {0, 1}∗, every i ∈ [L], Evaluate
(
〈Mi〉, x

)
= Mi(x).

Efficiency. We require that all the algorithms in pO are polynomial time in the security param-
eter. Further, we require that the size of each secure patche is just a polynomial in the size of
the (insecure) patch and security parameter. That is, for any 〈P 〉 ← GenPatch(Obf.SK, P, st)|, we
require that |〈P 〉| = poly(λ, |P |) (and in particular independent of |st|).

4.2 Indistinguishability-Based Security

We next give an indistinguishability (IND)-style definition for modeling the security of a patch-
able obfuscation scheme. In an IND-security definition, we consider a security game between the
challenger and the adversary. We give a high level description of the game below.

In this game, the adversary sends two machines (M0,M1) to the challenger and in response re-
ceives an obfuscation 〈Mb〉, where b is the challenge bit chosen randomly by the challenger. Then the
adversary submits patch queries, adaptively, to the challenger in a series of phases. In each phase,
the adversary chooses a pair of patches (P0, P1) and in turn gets the secure patch 〈Pb〉. The patch

queries of the adversary are restricted in the following manner: suppose
(

(P 1
0 , P

1
1 ), . . . , (PL0 , P

L
1 )
)

is a sequence of adaptive patch queries made by the adversary. We require that the machine
M i

0 is functionally equivalent with M i
1, for every i ∈ [L], where (a) M0

0 = M0, M
0
1 = M1 and,

(b) M i
0 ← Update(M i−1

0 , Pi) (resp., M i
1 ← Update(M i−1

1 , Pi)). At the end of the game, the adver-
sary attempts to guess the bit b. If the adversary’s guess is the same as b only with probability
negligibly close to 1/2, then we say that the scheme is secure.

Henceforth, we use the term adaptive security to refer to the above notion. We proceed to
formally defining this notion.

Adaptive Security. The experiment for the adaptive security definition is formulated below.
Let A be any PPT adversary.

Adap.ExptpOA (1λ, b):

1. A sends (M0,M1) to the challenger.

2. Challenger executes the setup algorithm to obtain Obf.SK← Setup(1λ). It then sends 〈Mb〉 ←
Obfuscate(Obf.SK,Mb) to A.

3. Repeat the following steps for i ∈ {1, . . . , q(λ)}, where q(λ) is chosen by A. Set (M0
0 ,M

0
1 ) =

(M0,M1).

• A sends (P i0, P
i
1) to the challenger.

• Challenger checks if M i
0 ≡M i

1, where M i
0 ← Update(M i−1

0 , P i0) and M i
1 ← Update(M i−1

1 ,
P i1).

• Challenger computes 〈P ib 〉 ← GenPatch(Obf.SK, P ib ). It sends 〈P ib 〉 to A.

4. A outputs the bit b′.
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Definition 5 (Adaptive Security). A patchable obfuscation scheme pO is said to be adaptively
secure if for any PPT adversary A, there exists a negligible function negl(·) s.t.∣∣∣Pr [0← Adap.ExptpOA (1λ, 0)

]
− Pr

[
0← Adap.ExptpOA (1λ, 1)

]∣∣∣ ≤ negl(λ)

Selective security. We note that one could also define selective security for patchable obfuscation
where the adversary makes all the patch queries at the beginning of the game. The formal definition
follows in a similar manner as above. We omit the details.

5 Patchable Attribute-based Encryption

We start by describing the syntax for a patchable attribute-based encryption (PABE) scheme. We
focus on the Turing machine model of computation.

Similar to a standard ABE scheme, a PABE scheme comes equipped with setup, key generation,
encryption and decryption algorithms. However, unlike a standard ABE scheme, a PABE scheme
also supports a “patching mechanism” for keys generated by the key generation algorithm. We
consider two additional algorithms to capture his idea: (a) an algorithm for generating patches
that takes as input an “insecure” patch P and generates a “secure” patch P̃ , (b) an algorithm for
applying patches that takes as input a key skM for Turing machine M and outputs a key skMnew

for an updated Turing machine Mnew, where Mnew ← Update(M,P ).
We refer the reader to Section 2.2 for a discussion on the Update algorithm. We proceed to

formally define the syntax of the patchable ABE scheme below. We will focus on the single-key
setting.

Syntax. A 1-key PABE for Turing machines scheme, defined for a class of Turing machines M
and a family of patches P, consists of six PPT algorithms, PABE = (Setup,KeyGen,Enc,GenPatch,
ApplyPatch,Dec). We denote the associated message space to be MSG. The syntax of the algorithms
is given below.

1. Setup, PABE.Setup(1λ): On input a security parameter λ in unary, it outputs a public
key-secret key pair (PABE.PP,PABE.SK).

2. Key Generation, PABE.KeyGen(PABE.SK,M): On input a secret key PABE.SK and a TM
M ∈M, it outputs an ABE key PABE.skM along with state st.

3. Secure Patch Generation, PABE.GenPatch(PABE.SK, P, st): On input the secret key PABE.SK,
a description of a patch P ∈ P, and state st, it outputs a secure patch P̃ along with the up-
dated public key PABE.PP′ and the updated state st′.

4. Applying Patch, PABE.ApplyPatch(PABE.skM , P̃ ): On input an ABE key PABE.skM and
a secure patch P̃ , it outputs an updated ABE key PABE.skMnew .

5. Encryption, PABE.Enc(PABE.PP, x,msg): On input the (possibly updated) public param-
eters PABE.PP, attribute x ∈ {0, 1}∗ and message msg ∈ MSG, it outputs a ciphertext
PABE.CT(x,msg).

6. Decryption, PABE.Dec(PABE.skM ,PABE.CT(x,msg)): On input an ABE key PABE.skM and
ciphertext PABE.CT(x,msg), it outputs the decrypted result out.
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Correctness. We say that a PABE scheme is correct if for any Turing machine M0 ∈ M, every
L ≥ 0, patch sequence (P1, . . . , PL) ∈ PL, every x ∈ {0, 1}∗, and msg ∈ MSG,

Pr
[
PABE.Dec

(
PABE.skML

,PABE.CT(x,msg)

)
= msg : ML (x) = 1

]
= 1

where:

• (PABE.PP0,PABE.SK)← PABE.Setup(1λ),

• (PABE.skM0 , st0)← PABE.KeyGen(PABE.SK,M0),

• (P̃i,PABE.PPi, sti)← PABE.GenPatch(PABE.SK, Pi, sti−1),

• PABE.skMi ← PABE.ApplyPatch(PABE.skMi−1 , P̃i),

• PABE.CT(x,msg) ← PABE.Enc(PABE.PPL, x,msg),

• Mj = Update(Mj−1, Pj).

Remark 2. Note that in the above definition, an updated key PABE.skMi is only required to correctly
decrypt ciphertexts PABE.CT(x,msg) that are computed using the updated public-key PABE.PPi.

Efficiency. We say that a PABE scheme satisfies efficiency property if |P̃ | = poly(λ, |P |), where
(P̃ ,PABE.PP′, st′) ← PABE.GenPatch(PABE.SK, P, st) and in particular independent of the size of
st.

Security. We extend the security framework for ABE to our setting of patchable ABE. Since we
only consider the single-key setting, the adversary is restricted to making one key query. However,
we allow the adversary to submit a polynomial number of patch queries.

We consider adaptive security where the adversary submits both the challenge message pair as
well as the key query at the beginning of the game itself but the patch queries are made adaptively.
We also require the adversary to specify in advance an index i ∈ [L] where L is the number of
patch queries made by the adversary. The index i determines the updated public key that is then
used to compute the challenge ciphertext sent to the adversary.

We formalize security in terms of the following security experiment between a challenger Ch
and a PPT adversary A.

ExptPABEA (1λ, b):

1. A sends to Ch a tuple consisting of a Turing machine M0, an attribute x, two messages
(msg0,msg1) and an index i ≥ 0.

2. Ch computes the following: (a) (PABE.PP0,PABE.SK)← PABE, Setup(1λ), (b) (PABE.skM0 , st0)←
PABE.KeyGen(PABE.SK,M0). It sends (PABE.PP0,PABE.skM0) to A.

3. The following is repeated polynomially many times:

(a) A sends to Ch a patch Pj ∈ P.

(b) Ch computes the following: (a) (P̃j ,PABE.PPj , stj) ← PABE.GenPatch(PABE.SK, Pj ,
stj−1), (b) PABE.CT(x,msgb)

← PABE.Enc(PABE.PPj , x,msgb) if j = i.
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(c) If j = i, Ch sends (PABE.PPj , P̃j ,PABE.CT(x,msgb)
) toA. If j 6= i, Ch sends (PABE.PPj , P̃j)

to A.

4. Finally, the adversary outputs the bit b′.

5. The adversary wins the game if (a) b = b′, and (b) Mi(x) = 0 where Mj = Update(Mj−1, Pj).

Definition 6. A 1-key PABE scheme is said to be adaptively secure if for every PPT adversary
A, there exists a negligible function negl s.t.

Pr
[
A wins ExptPABEA (1λ, b)

]
≤ 1

2
+ negl(λ)

Remark 3. Henceforth, we omit the term “adaptive” when referring to the security of ABE
schemes.

5.1 Construction

Overview. Our construction of 1-key PABE for TMs is built upon the message hiding encodings
paradigm of KLW. Indeed, a message hiding encoding can be thought of as an ABE scheme where
only one ciphertext is issued. But for our application, it is required that multiple ciphertexts
are issued. Directly adopting KLW causes serious issues since the fact that only a single branch
of computation exists is crucially used in the proof of security of KLW. To do this, we adopt a
signature synchronization mechanism that was recently used in a different context in [AJS15]. The
result of adopting this mechanism is that our ABE key is just a machine M and a signature σ
(computed on f(M), which is “short”). Now to update a machine M with patch P , all we have to
do is to compute a new signature σ′ on f(M ′), where M ′ is a new machine. So our secure patch is
just (P, σ′)! Using this information, a key for M ′ can be recovered.

While the structural properties of the ABE scheme developed by AJS already yields us a patch-
able ABE construction, the security analysis is more involved. Unlike AJS, in the security proof
we have to contend with the fact that there exists different ABE keys that are correlated with each
other. And in particular, we have to prevent “mix-and-match” attacks. It should not be possible
to combine ciphertexts computed using ith updated public key with an attribute key updated at a
different time. Nonetheless, we observe some crucial properties satisfied by our construction that
enable us to prove security in the presence of patches. We now delve into the technical details.

We import the tools of storage accumulators, splittable signatures and iterators from the work
of KLW. The formal definitions of these primitives are provided in Section 2. The primitive of
storage accumulators enables computing a short value that represents the entire memory in such
a way that it information theoretically binds one particular location (specified in advance) but
computationally binds the entire memory. Splittable signatures are signature schemes that allow
splitting of signature keys into two “constrained” keys such that each key has capability to sign
only one partition of the message space. Lastly, iterators are used to bind the state information.

We denote the positional accumulator scheme we use by Acc = (SetupAcc, EnforceRead, EnforceWrite,
PrepRead, PrepWrite, VerifyRead, WriteStore, Update). It is associated with the message space Σtape

with accumulated value of size `Acc bits. The iterator scheme we use is denoted by Itr =(SetupItr,
ItrEnforce, Iterate). It is associated with the message space {0, 1}2λ+`Acc with iterated value of size
`Itr bits. We denote the splittable signatures scheme by SplScheme = (SetupSpl,SignSpl,VerSpl,
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SplitSpl,SignSplAbo). It is associated with the message space {0, 1}`Itr+`Acc+2λ. In addition to the
above tools, we also use a puncturable PRF family denoted by F.

We now describe the scheme PABE = (Setup,KeyGen,Enc,GenPatch,ApplyPatch,Dec) below. Let
the scheme PABE be associated with the class of Turing machines M. Without loss of generality,
the start state of every Turing machine in M is q0. We denote the message space to be MSG.

PABE.Setup(1λ): On input security parameter λ, it first executes the setup of splittable signatures

scheme, (SKtm,VKtm) ← SetupSpl(1λ). It then executes the setup of the accumulator scheme to
obtain the values, (PPAcc, w̃0, s̃tore0) ← SetupAcc(1λ). It then executes the setup of the iterator
scheme to obtain the public parameters, (PPItr, v0)← SetupItr(1λ).

It finally outputs the following public key-secret key pair,(
PABE.PP = (VKtm,PPAcc, w̃0, s̃tore0,PPItr, v0),PABE.SK = (PABE.PP, SKtm)

)
PABE.KeyGen(PABE.SK,M ∈M): On input the master secret key PABE.SK = (PABE.PP,SKtm)
and M ∈M, it executes the following steps:

1. It parses the public key PABE.PP as (VKtm,PPAcc, w̃0, s̃tore0,PPItr, v0).

2. Initialization of the storage tree: Let `tm = |M | be the length of the machine M . For 1 ≤
j ≤ `tm, it computes s̃torej = WriteStore(PPAcc, s̃torej−1, j−1,Mj), auxj = PrepWrite(PPAcc,

s̃torej−1, j − 1), w̃j = Update(PPAcc, w̃j−1,Mj , j − 1, auxj) , where Mj denotes the jth bit of
M . Finally, it sets the root w0 = w̃`tm .

3. Signing the accumulator value: It generates the signature on the message (v0, q0, w0, 0),
σ0 ← SignSpl(SKtm, µ = (v0, q0, w0, 0)), where q0 is the start state of M .

It outputs the PABE key PABE.skM = (M,w0, σtm, v0).

[Note: The key generation does not output the storage tree store0 but instead it just outputs the
initial store value s̃tore0. The evaluator in possession of M , s̃tore0 and PPAcc can reconstruct the
tree store0.]

PABE.Enc(PABE.PP, x,msg): On input the public key PABE.PP = (VKtm,PPAcc, w̃0, s̃tore0,PPItr, v0),
attribute x ∈ {0, 1}∗ and message msg ∈ MSG, it executes the following steps:

1. It first samples a PRF key KA at random from the family F.

2. Obfuscating the next step function: Consider a universal Turing machine Ux(·) that
on input M executes M on x for at most 2λ steps and outputs M(x) if M terminates,
otherwise it outputs ⊥. It computes the obfuscation of the program NxtMsg in 1, namely
N ← iO(NxtMsg{Ux(·),msg,PPAcc,PPItr,KA}). At its core, NxtMsg is essentially the next
message function of the Turing machine Ux(·) – it takes as input a TM M and outputs M(x)
if it halts within 2λ else it outputs ⊥. In addition, it performs checks to validate whether the
previous step was correctly computed. It also generates authentication values for the current
step.
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3. It computes the obfuscation of the program S ← (SignProg{KA,VKtm}) where SignProg is
defined in Figure 2. The program SignProg takes as input a message-signature pair and
outputs a signature with respect to a different key on the same message.

It outputs the ciphertext, PABE.CT = (N,S).

Program NxtMsg

Constants: Turing machine Ux = 〈Q,Σtape, δ, q0, qacc, qrej〉, message msg, Public parameters for accumula-
tor PPAcc, Public parameters for Iterator PPItr, Puncturable PRF key KA ∈ K.

Input: Time t ∈ [T ], symbol symin ∈ Σtape, position posin ∈ [T ], state stin ∈ Q, accumulator value
win ∈ {0, 1}`Acc , Iterator value vin, signature σin, accumulator proof π, auxiliary value aux.

1. Verification of the accumulator proof:

• If VerifyRead(PPAcc, win, symin, posin, π) = 0 output ⊥.

2. Verification of signature on the input state, position, accumulator and iterator values:

• Let F (KA, t− 1) = rA. Compute (SKA,VKA,VKA,rej) = SetupSpl(1λ; rA).

• Let min = (vin, stin, win, posin). If VerSpl(VKA,min, σin) = 0 output ⊥.

3. Executing the transition function:

• Let (stout, symout, β) = δ(stin, symin) and posout = posin + β.

• If stout = qrej output ⊥.

• If stout = qacc output msg.

4. Updating the accumulator and the iterator values:

• Compute wout = Accumulate(PPAcc, win, symout, posin, aux). If wout = Reject, output ⊥.

• Compute vout = Iterate(PPItr, vin, (stin, win, posin)).

5. Generating the signature on the new state, position, accumulator and iterator values:

• Let F (KA, t) = r′A. Compute (SK′A,VK
′
A,VK

′
A,rej)← SetupSpl(1λ; r′A).

• Let mout = (vout, stout, wout, posout) and σout = SignSpl(SK′A,mout).

6. Output symout, posout, stout, wout, vout, σout.

Figure 1: Program NxtMsg

PABE.GenPatch(PABE.SK, P, st): On input the secret key PABE.SK, a description of a patch P ∈
P, and state st = M , it essentially executes the Setup algorithm. It generates (PABE.PP′ =

(VK′tm,PP
′
Acc, w̃

′
0, s̃tore

′
0,PP

′
Itr, v

′
0),PABE.SK

′ = (PABE.PP′, SK′tm)← PABE.Setup(1λ). It then exe-
cutes Update(M,P ) to obtain the updated machine M ′. We then compute a new ABE key of M ′

as follows:

1. Initialization of the storage tree: Let `tm = |M ′| be the length of the machine M ′. For 1 ≤
j ≤ `tm, it computes s̃torej = WriteStore(PPAcc, s̃torej−1, j−1,M ′j), auxj = PrepWrite(PPAcc,
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Program SignProg

Constants: PRF key KA and verification key VKtm.
Input: Message y and a signature σtm.

1. If VerSpl(VKtm, y, σtm) = 0 then output ⊥.

2. Execute the pseudorandom function on input 0 to obtain rA ← F (K, 0). Generate the setup of
splittable signatures scheme, (SK0,VK0)← SetupSpl(1λ; rA).

3. Compute the signature σ0 ← SignSpl(SK0, y).

4. Output σ0.

Figure 2: Program SignProg

s̃torej−1, j − 1), w̃j = Update(PPAcc, w̃j−1,M
′
j , j − 1, auxj) , where M ′j denotes the jth bit of

M ′. Finally, it sets the root w′0 = w̃`tm .

2. Signing the accumulator value: It generates the signature on the message (v′0, q0, w
′
0, 0),

σM ′ ← SignSpl(SK′tm, µ = (v′0, q0, w
′
0, 0)), where q0 is the start state of M ′.

It outputs the secure patch (P, σ′0), sets the updated public key to be PABE.pp′ and the updated
state st′ is now assigned to be M ′.

PABE.ApplyPatch(PABE.skM , P̃ ): On input the current ABE key PABE.skM = (M,σM ) and se-

cure patch P̃ = (P, σM ′), it generates Update(M,P ) to obtain M ′. It outputs the updated key
PABE.feskM ′ = (M ′, σM ′).

PABE.Dec(PABE.skM ,PABE.CT): On input the ABE key PABE.skM = (M,w0, σtm, v0) and ci-

phertext PABE.CT = (N,S), it first executes the obfuscated program S
(
y = (v0, q0, w0, 0), σtm

)
to

obtain σ0. It then executes the following steps.

1. Reconstructing the storage tree: Suppose `tm = |M | be the length of the TM M .
For 1 ≤ j ≤ `tm, it then repeatedly updates the storage tree by computing, s̃torej =

WriteStore(PPAcc, s̃torej−1, j − 1,Mj). Finally, it sets store0 = s̃tore`tm .

2. Executing N one step at a time: For i = 1 to 2λ,

(a) Compute the proof that validates the storage value storei−1 (storage value at (i − 1)th

time step) at position posi−1. Let (symi−1, πi−1)← PrepRead(PPAcc, storei−1, posi−1).

(b) Compute the auxiliary value, auxi−1 ← PrepWrite(PPAcc, store−1, posi−1).

(c) Run the obfuscated next message function. Compute out← N(i, symi−1, posi−1, sti−1, wi−1,
vi−1, σi−1, πi−1, auxi−1). If out ∈ MSG ∪ {⊥}. output out.

Else parse out as (symw,i, posi, sti, wi, vi, σi).

(d) Compute the storage value, storei ←WriteStore(PPAcc, storei−1, posi−1, symw,i).

Remark 4. In the description of Koppula et al., the accumulator and the iterator algorithms also
took the time bound T as input. Here, we set T = 2λ since we are only concerned with Turing
machines that run in time polynomial in λ.
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This completes the description of the scheme. We note that the size of the secure patch of patch P
is |P |+ poly(λ) and thus the above scheme satisfies the efficiency property. We describe the proof
of correctness below.

Correctness. We first define some notation.

Definition 7. We say that PABE.skM is a valid PABE key of M w.r.t PABE.PP if there
exists pair of randomness (R1, R2) such that (PABE.PP,PABE.SK) ← PABE.Setup(1λ;R1) and
PABE.skM ← PABE.KeyGen(PABE.SK,M ;R2).

We state two lemmas that will prove the correctness of the PABE scheme.

Lemma 1. The decryption of PABE.CT = PABE.enc(PABE.PP, x,msg) using a valid PABE key
of M w.r.t PABE.PP, PABE.skM , is msg if M(x) = 1. That is, msg ← PABE.Dec(PABE.skM ,
PABE.CT) if M(x) = 1.

Proof Sketch. Suppose PABE.CT is a ciphertext of message msg w.r.t attribute x and PABE.skM is
an ABE key of machine M . We claim that in the ith iteration of the decryption of PABE.CT using
PABE.skM , the storage corresponds to the work tape of the execution of M(x) at the ith time step,
denoted by Wt=i

2. Once we show this, the lemma follows.
We prove this claim by induction on the total number of steps in the TM execution. The base

case corresponds to 0th time step when the iterations haven’t begun. At this point, the storage
corresponds to the description of the machine M which is exactly Wt=0 (work tape at time step
0). In the induction hypothesis, we assume that at time step i − 1, the storage contains the work
tape Wt=i−1. We need to argue for the case when t = i. To take care of this case, we just need
to argue that the obfuscated next step function computes the ith step of the execution of M(x)
correctly. The correctness of obfuscated next step function in turn follows from the correctness of
iO and other underlying primitives.

The following lemma states that updating a valid PABE key of a machine M using a secure patch
P̃ leads to a valid PABE key of M ′, where M ′ ← Update(M,P ). The proof of this lemma follows
by inspection.

Lemma 2. Consider the following process.

1. (PABE.PP0,PABE.SK)← PABE.Setup(1λ),

2. (PABE.skM0 , st0)← PABE.KeyGen(PABE.SK,M0),

3. Repeat the following for i = 1, . . . , L:

• (P̃i,PABE.PPi, sti)← PABE.GenPatch(PABE.SK, Pi, sti−1),

• PABE.skMi ← PABE.ApplyPatch(PABE.skMi−1 , P̃i),

For every i ∈ [L], we have that PABE.skMi is a valid PABE key w.r.t PABE.PPi.

2To be more precise, the storage in the KLW construction is a tree with the jth leaf containing the value of the
jth location in the work tape Wt=i.
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5.2 Security

To prove the security of our PABE scheme we make use of a theorem proved in Koppula et al.
Before we recall their theorem, we first define the following distribution that would be useful to
state the theorem. This distribution is identical to the output distribution of input encoding of the
message hiding encoding scheme by [KLW15]. We denote the distribution by DM,Ux(·),msg, where
M is a Turing machine, x ∈ {0, 1}∗ and msg ∈ MSG. We define the sampler for the distribution
below. We use the same notation to denote both the distribution as well as its sampler.

DM,x,msg(1λ): It first computes (PPAcc, w̃0, s̃tore0) ← SetupAcc(1λ, T ). Let `tm = |M | be the

length of the Turing machine M . It computes s̃torej = WriteStore(PPAcc, s̃torej−1, j − 1, Mj),

auxj = PrepWrite(PPAcc, s̃torej−1, j − 1), w̃j = Update(PPAcc, w̃j−1, inpj , j − 1, auxj) for

1 ≤ j ≤ `tm. Finally, it sets w0 = w̃`tm and s0 = s̃tore`tm . Next, it computes the iterator parameters
(PPItr, v0) ← SetupItr(1λ, T ). It chooses a puncturable PRF key KA ← F.Setup(1λ). It also com-
putes an obfuscation N ← iO(NxtMsg{Ux(·),msg,PPAcc,PPItr,KA}) where NxtMsg is defined in
Figure 1. Let rA = F (KA, 0), (SK0,VK0) = SetupSpl(1λ; rA) and σ0 = SignSpl(SK0, (v0, q0, w0, 0)).

The distribution finally outputs the following:(
N,w0, v0, σ0, store0, init = (PPAcc, w̃0, s̃tore0,PPItr)

)
[Remark: The values w̃0, s̃tore0 and PPItr are not explicitly given out in the message hiding en-
codings construction of KLW. But in their specific accumulator construction (which even we are
utilizing), w̃0 is set to be ⊥ and s̃tore0 is set to be ⊥. Although not made explicit, even the iterator
public parameters PPItr can be given out in their construction without any modification in the proof
of security. ]

The following theorem was shown in [KLW15].

Theorem 7 ([KLW15],Theorem 6.1). For all TMs M ∈ M, x ∈ {0, 1}∗,msg0,msg1 ∈ MSG
such that M(x) = 0 and |msg0| = |msg1|, we have that the distributions DM,x,msg0 and DM,x,msg1
are computationally indistinguishable assuming the security of indistinguishability obfuscators iO,
accumulators scheme Acc, iterators scheme Itr, splittable signatures scheme SplScheme.

We prove the security of our PABE scheme as follows: We first consider the simpler case, when
there are no updates and argue that the security of our scheme holds in this case. We define the
security experiment in this case to be OneTimeExpt. We then use OneTimeExpt to argue about the
security of PABE.

We begin by describing OneTimeExpt. Let A be a PPT adversary.

OneTimeExptPABEA (1λ, b):

1. A sends to Ch a tuple consisting of a Turing machine M , an attribute x, two messages
(msg0,msg1) and an index i ≥ 0.

2. Ch computes the following: (a) (PABE.PP0,PABE.SK) ← PABE,Setup(1λ), (b) (PABE.skM ,
st0)← PABE.KeyGen(PABE.SK,M). It sends (PABE.PP0,PABE.skM ) to A.

3. Finally, the adversary outputs the bit b′.
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We prove the following theorem. The proof of this theorem was shown in [AJS15].

Theorem 8. For every PPT adversary A, we have Pr[b← OneTimeExptPABEA (1λ, b) : b
$←− {0, 1}] ≤

1
2 +negl(λ), assuming the security of indistinguishability obfuscators iO, accumulators scheme Acc,
iterators scheme Itr and splittable signatures scheme SplScheme.

Proof. Consider the following sequence of hybrids. The first hybrid corresponds to the real exper-
iment (as described in the security game) when the challenger picks a bit b at random and sets
the challenge bit to be b. We then describe a series of intermediate hybrids such that every two
consecutive hybrids are computationally indistinguishable. In the final hybrid, the challenger picks
a bit b at random but sets the challenge bit to be 0. At this point the probability that the PPT
adversary A can guess the bit b is 1

2 .
We denote AdvA,i to be the advantage of A in Hybi.

Hybrid Hyb1: The challenger receives from A, a Turing machine M , an attribute x and two
messages msg0,msg1 ∈ MSG. The challenger then responds with the public key PABE.PP, an ABE
key of M , namely PABE.skM and an encryption of msgb w.r.t attribute x, namely PABE.CT∗, where
b is picked at random. All the parameters are generated honestly by the challenger.

The output of the hybrid is the output of the adversary.

Hybrid Hyb2: The verification key VKtm is replaced by a verification key that only verifies on the
root of the accumulator storage, initialized with the TM M , and rejects signatures on all other
messages. The rest of the hybrid is the same as the previous hybrid.

The challenger upon receiving a TM M , attribute x and messages msg0,msg1 ∈ MSG, does the
following. It first picks a bit b at random. It generates the accumulator and the iterator parameters
PPAcc, w̃0, s̃tore0,PPItr, v0 as in the setup algorithm. It then initializes the accumulator storage with
the Turing machine M as follows: as before, let `tm = |M | be the length of the Turing machine.
It computes s̃torej = WriteStore(PPAcc, s̃torej−1, j − 1, Mj), auxj = PrepWrite(PPAcc, s̃torej−1,
j − 1), w̃j = Update(PPAcc, w̃j−1, inpj , j − 1, auxj) for 1 ≤ j ≤ `tm. Finally, it sets w = w̃`tm .

It then executes the setup of splittable signatures scheme, (SKtm,VKtm) ← SetupSpl(1λ). It
then executes the split algorithm of the signatures scheme to obtain, (σytm,VK

y
tm,SK\y,VK\y) ←

SplitSpl(SKtm,y = (v0, q0,w, 0)). Of particular interest to us is σytm, which is the (deterministic)
signature on y and VKy

tm, which is the verification key that only validates the message-signature
pair (y, σytm) and invalidates all other message-signature pairs. It finally sets the public key as(
PABE.PP = (VKy

tm,PPAcc, w̃0, s̃tore0,PPItr, v0)
)
.

The challenger then sets PABE.skM = (M,w, σytm, v0). It generates the challenge ciphertext
by computing PABE.CT∗ ← PABE.Enc(PABE.PP, x,msgb). It then sends (PABE.PP,PABE.skM ,
PABE.CT∗) to A.

Claim 1. Assuming that SplScheme satisfies VKone indistinguishability, for any PPT adversary A
we have |AdvA,1 − AdvA,2| ≤ negl(λ).

Proof. The only message-signature pair, with respect to the instantiation of the key pair (SKtm,
VKtm), provided to the adversary A is (y, σytm). Even with this additional information, the verifi-
cation keys VKtm from VKy

tm, defined as in Hyb1 and Hyb2, are computationally indistinguishable
from the VKone property of SplScheme. The proof of the claim follows.
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Hybrid Hyb3: The program SignProg, which is part of the encryption process, is now modified
with the output hardwired into it. The rest of the hybrid is as before.

The challenger upon receiving a TM M , attribute x and messages msg0,msg1 ∈ MSG, does the
following. It first picks a bit b at random. It sets msg∗ = msgb. It then computes PABE.PP =
(VKy

tm,PPAcc, w̃0, s̃tore0,PPItr, v0) as in Hyb2. Further, it computes the ABE key of M , namely
PABE.skM = (M,w, σytm, v0), as in Hyb2.

It then samples a PRF key KA at random. It computes the obfuscation of the program
Ux(·), N ← iO(NxtMsg{Ux(·),msg∗,PPAcc,PPItr,KA}) where Ux(·) is defined as in PABE.Enc and
NxtMsg is defined in Figure 1. From here onwards, the challenger deviates from the honest execu-
tion of the encryption algorithm. It generates the signing key-verification key pair (SK0,VK0) ←
SetupSpl(1λ; rA), where rA is the output of F (K, 0). It computes the signature σ0 ← SignSpl(SK0,y =
(v0, q0,w, 0)). As before, it generates (σytm,VK

y
tm, SK\y,VK\y) ← SplitSpl(SKtm,y = (v0, q0,w, 0)).

It then computes the obfuscation of the program S∗ ← (HybSgn{VKy
tm, σ0}) where HybSgn is

defined in Figure 3. It sets the ciphertext PABE.CT∗ = (N,S∗). The challenger then sends
(PABE.PP,PABE.skM ,PABE.CT

∗) to A.

Claim 2. Assuming the security of the scheme iO, for any PPT adversary A we have that |AdvA,2−
AdvA,3| ≤ negl(λ).

Proof. Suppose S ← iO(SignProg{KA,VK
y
tm}) as in Hyb2 and S∗ ← iO(HybSgn{VKw

tm, σ0}) as in
Hyb3. To prove the claim, it suffices to show that it is computationally hard to distinguish S
and S∗. This further reduces, courtesy security of iO, to showing that SignProg{KA,VKtm} and
HybSgn{VKy

tm, σ0} are functionally equivalent. Consider the input (y, σ) to both the programs.
There are two cases to consider:

• Case (y, σ) 6= (y, σytm): The program SignProg{KA,VK
y
tm}(y, σ) outputs ⊥ because (y, σ)

is invalid with respect to VKy
tm. For the same reason, program HybSgn{VKw

tm, σ0}(y, σ) also
outputs ⊥.

• Case (y, σ) = (y, σytm) : The program SignProg{KA,VK
y
tm}(y, σ) outputs the signature σ0

computed by first running rA ← F (K, 0), then (SK0,VK0) ← SetupSpl(1λ) and finally σ0 ←
SignSpl(SK0,y). The program HybSgn outputs the hardwired σ0, where σ0 is pre-computed
exactly as in SignProg.

Thus the programs SignProg and HybSgn are functionally equivalent. This proves the claim.

HybSgn{VKy
tm, σ0}

Constants: PRF key KA, verification key VKy
tm and signature σ0.

Input: Message y and a signature σtm.

1. If VerSpl(VKy
tm, y, σtm) = 0 then output ⊥. Otherwise output σ0.

Figure 3: Program HybSgn

Hybrid Hyb4: This is identical to Hyb3 except that the message msg∗ to be encrypted is now set
to msg0, where (msg0,msg1) is the challenge message pair submitted by the adversary. Recall that
in Hyb3, msg∗ was set to msgb, where b is picked at random.
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Claim 3. From Theorem 7, we have |AdvA,3 − AdvA,4| ≤ negl(λ)

Proof. Assume that the claim is not true. We then construct a reduction B that uses the adversary
A to contradict Theorem 7.
A first sends the Turing machine M ∈ M, input x and message pair (msg0,msg1) ∈ MSG2 to

B. The reduction then obtains a sample from the distribution DM,x,msgb , where b is either picked

at random or set to 0. It then parses the sample as
(
N,w, v0, σ0, store0, init = (PPAcc, w̃0, s̃tore0,

PPItr)
)
. The reduction B then samples a signature key-verification key pair by running the setup of

SplScheme, (SKtm,VKtm)← SetupSpl(1λ). It then executes the split algorithm, (σytm,VK
y
tm,SK\y,VK\y)←

SplitSpl(SKtm,y = (v0, q0,w, 0). Finally, B generates the obfuscation of the program HybSgn de-
scribed in Figure 3, S∗ ← (HybSgn{VKw

tm, σ0}). The reduction then prepares the ABE public key,
attribute key and challenge ciphertext as below:

• The public key is set to be PABE.PP = (VKy
tm,PPAcc, w̃0, s̃tore0,PPItr, v0).

• The attribute key of M to be PABE.skM = (M,w, s̃tore0, σ
y
tm, v0).

• The challenge ciphertext is set to be PABE.CT∗ = (N,S∗).

B then sends (PABE.PP,PABE.skM ,PABE.CT
∗) across to A. The output of B is set to be the

output of A.
If the bit b in DM,x,msgb is picked at random then we are in Hyb3 and if it is set to be 0 then we

are in Hyb4. From our hypothesis (that the claim is not true), this means that the hybrids Hyb3
and Hyb4 are computationally indistinguishable. Thus we arrive at a contradiction of Theorem 7.
This completes the proof.

The probability that A outputs the bit b in Hyb4 is 1/2. From Claims 1, 2 and 3, we have that the
probability that A outputs bit b in Hyb1 is negligibly close to 1/2. This completes the proof.

Before we show Theorem 8 can be used to prove the security of the PABE scheme, we first define
the following property.

Definition 8 (Decomposability). A PABE scheme satisfies decomposability property if the
following holds:

1. A PABE key (PABE.skM , st) ← PABE.KeyGen(PABE.SK,M) is of the form PABE.skM =
(M,µ).

2. The patch generated by the patch generation algorithm, P̃ ← PABE.GenPatch(PABE.SK, P, st)
is of the form (P̃ , µ′).

3. The state information sti contains the description of the ith updated machine. That is, let
(PABE.skM0, st0) ← PABE.KeyGen(PABE.SK,M). And let PABE.skMi ← PABE.ApplyPatch(
PABE.skMi−1 , P̃i), where (P̃i, sti)← PABE.GenPatch(PABE.SK, Pi, sti−1). Then we have, sti =
Mi, where Mi ← Update(Mi−1, Pi).

4. The algorithm ApplyPatch, on input
(
P̃ = (P, µ′),PABE.skM = (M,µ)

)
, executes in two

steps: (i) Execute M ′ ← Update(M,P ), (ii) Output (M ′, µ′).
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By inspection, our scheme PABE satisfies the decomposability property. Consider the following
hybrid experiment:

HybExpt.iPABEA (1λ, b):

1. A sends to Ch a tuple consisting of a Turing machine M0, an attribute x, two messages
(msg0,msg1) and an index i ≥ 0.

2. Ch computes the following: (a) (PABE.PP0,PABE.SK) ← PABE, Setup(1λ), (b) (PABE.skM0 ,
st0)← PABE.KeyGen(PABE.SK,M0). It sends (PABE.PP0,PABE.skM0) to A.

3. The following is repeated polynomially many times:

(a) A sends to Ch a patch Pj ∈ P.

(b) If j 6= i, Ch computes the following: (a) (P̃j ,PABE.PPj , stj)← PABE.GenPatch(PABE.SK,
Pj , stj−1) (b) If j = i, PABE.CT(x,msgb)

← PABE.Enc(PABE.PPj , x,msgb) .

(c) If j = i, Ch computes the following: (a) Mj ← Update(Mj−1, Pj), (b) It executes the
PABE setup algorithm, (PABE.PPj ,PABE.SKj) ← PABE.Setup(1λ) (c)

(
PABE.skMj =

(Mj , µj), st
∗) ← PABE.KeyGen(PABE.SKj ,Mj). It computes stj = Mj , (d) It computes

the secure patch P̃j = (Pj , µj) (e) If j = i, PABE.CT(x,msgb)
← PABE.Enc(PABE.PPj , x,

msgb) .

(d) If j = i, Ch sends (PABE.PPj , P̃j ,PABE.CT(x,msgb)
) toA. If j 6= i, Ch sends (PABE.PPj , P̃j)

to A.

4. Finally, the adversary outputs the bit b′.

5. The adversary wins the game if (a) b = b′, and (b) Mi(x) = 0 where Mj = Update(Mj−1, P )
and M0 = M .

By inspection, we have the following lemma.

Lemma 3. For every PPT adversary A, every b ∈ {0, 1}, every i = poly(λ), we have Pr[ExptPABEA (
1λ, b)] = Pr[HybExpt.iPABEA (1λ, b)]

We prove the following theorem that establishes the security of PABE scheme.

Theorem 9. For every PPT adversary A, every bit b ∈ {0, 1}, we have Pr[b← ExptPABEA (1λ, b) b
$←−

{0, 1}] ≤ 1/2 + negl(λ).

Proof. Let B be a reduction that uses A to break the security of OneTimeExpt. It works as follows:
it first receives

(
(msg0,msg1),M0, x, i

)
from A. For every j 6= i, B upon receiving Pj ∈ P from A,

generates all the parameters and sends it to A. In more detail, it generates: (P̃j ,PABE.PPj , stj)←
PABE.GenPatch(PABE.SK, Pj , sti−1). It then sends (P̃j ,PABE.PPj) to A.

For i = i, upon receiving Pi from A, reduction B first computes Mi, where Mi ← Update(Mi−1,
Pi) for 1 ≤ i ≤ i. It forwards

(
(msg0,msg1), x,Mi

)
to the challenger of OneTimeExptPABEA . In

turn it receives, (PABE.PP∗,PABE.sk∗Mi
,PABE.CT∗). From the decomposability property of PABE

(Definition 8), we parse PABE.skMi as (Mi, µi). It then computes P̃i = (Pi, µi) and sets sti = Mi.
It forwards (P̃i,PABE.PP

∗,PABE.CT∗) to A.
Suppose, let b be the bit used by the challenger of OneTimeExpt. We define the following

notation:
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• ViewB,bA : This is a random variable (R.V.) that denotes the view of the adversary while
interacting with B and B in turn is interacting with OneTimeExptPABEB (1λ, b). We denote
ViewBA

∣∣
i
, to be the R.V. by conditioning on the fact that A sends i in the first message of the

game.

• ViewHybExpt.i,b
A : This is a R.V. that denotes the view of the adversary in the experiment

HybExpt.iPABEA (1λ, b).

• ViewExpt,b
A : This is a R.V. that denotes the view of the adversary in the experiment ExptPABEA (1λ, b).

By inspection, we have that ViewB,bA
∣∣
i
≡ ViewHybExpt.i,b

A (views are identically distributed) and from

Lemma 3, we have ViewExpt,b
A ≡ ViewHybExpt.i,b

A . Thus, we have ViewB,bA
∣∣
i
≡ ViewExpt,b

A
Further, from the security of OneTimeExpt (Theorem 8), we have that ViewB,0A

∣∣
i
∼= ViewB,1A

∣∣
i
.

Summarizing the above observations, we thus have: ViewExpt,0
A

∼= ViewExpt,1
A . This completes the

proof.

By instantiating the tools of Acc, Itr and S from indistinguishability obfuscation and one-way
functions [KLW15], we thus have the following corollary.

Corollary 1. There exists a patchable attribute based encryption scheme assuming the existence
of indistinguishability obfuscation and one-way functions.

5.3 Two-Outcome PABE for TMs

5.3.1 Definition

Syntax. A 1-key two-outcome PABE for TMs scheme, defined for a class of Turing machinesM,
patch family P, update algorithm Update and message space MSG, consists of six PPT algorithms
TwoPABE = (TwoPABE.Setup,TwoPABE.KeyGen,TwoPABE.GenPatch,TwoPABE.ApplyPatch,TwoPABE.Enc,
TwoPABE.Dec) described below.

1. Setup, TwoPABE.Setup(1λ): On input a security parameter λ in unary, it outputs a secret
key TwoPABE.SK and public key TwoPABE.PP.

2. Key Generation, TwoPABE.KeyGen(TwoPABE.SK,M ∈M): On input a secret key TwoPABE.SK
and a TM M ∈M, it outputs a key TwoPABE.skM and state st0.

3. Generation of Patch, TwoPABE.GenPatch(TwoPABE.sk, P ∈ P, st): On input a secret
key TwoPABE.SK, a patch P ∈ P and state st, it outputs a patch encoding P̃ , new public
parameters TwoPABE.PP′ and updated state st′.

4. Application of Patch, TwoPABE.ApplyPatch(TwoPABE.skM , P̃ ): On input a attribute key
TwoPABE.skM and patch encoding P̃ , it outputs an updated key TwoPABE.skM ′ .

5. Encryption, TwoPABE.Enc(TwoPABE.PP, x,msg0,msg1): On input a (possibly updated)
public key TwoPABE.PP, attribute x ∈ {0, 1}∗ and a pair of messages msg0,msg1 ∈ MSG, it
outputs a ciphertext TwoPABE.CT(x,msg0,msg1)

.

6. Decryption, TwoPABE.Dec(TwoPABE.skM ,TwoPABE.CT(x,msg0,msg1)
): On input a (possibly

updated) two-outcome ABE key TwoPABE.skM and ciphertext TwoPABE.CT(x,msg0,msg1)
, it

outputs a value out.
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Correctness. We say that a two-outcome PABE scheme is correct if for any Turing machine
M0 ∈M, every L ≥ 0, patch sequence (P1, . . . , PL) ∈ PL, every x ∈ {0, 1}∗, and msg0,msg1 ∈ MSG,

Pr
[
TwoPABE.Dec

(
TwoPABE.skML

,TwoPABE.CT(x,msg0,msg1)

)
= msgb : ML (x) = b

]
= 1

where:

• (TwoPABE.PP0,TwoPABE.SK)← TwoPABE.Setup(1λ),

• (TwoPABE.skM0 , st0)← TwoPABE.KeyGen(TwoPABE.SK,M0),

• (P̃i,TwoPABE.PPi, sti)← TwoPABE.GenPatch(TwoPABE.SK, Pi, sti−1),

• TwoPABE.skMi ← TwoPABE.ApplyPatch(TwoPABE.skMi−1 , P̃i),

• TwoPABE.CT(x,msg0,msg1)
← TwoPABE.Enc(TwoPABE.PPL, x,msg0,msg1),

• Mj = Update(Mj−1, Pj).

Efficiency. We say that a two-outcome PABE scheme satisfies efficiency property if |P̃ | =
poly(λ, |P |), where (P̃ ,TwoPABE.PP′, st′) ← TwoPABE.GenPatch(TwoPABE.SK, P, st) and in par-
ticular independent of the size of st.

Security. We extend the security definition of PABE to two-outcome PABE. Since we only con-
sider the single-key setting, the adversary is restricted to making one key query. However, we allow
the adversary to submit a polynomial number of patch queries. We consider adaptive security where
the adversary submits both the challenge message pair as well as the key query at the beginning of
the game itself but the patch queries are made adaptively. We also require the adversary to specify
in advance an index i ∈ [L] where L is the number of patch queries made by the adversary. The
index i determines the updated public key that is then used to compute the challenge ciphertext
sent to the adversary.

We formalize security in terms of the following security experiment between a challenger Ch
and a PPT adversary A.

ExptTwoPABEA (1λ, b):

1. A sends to Ch a tuple consisting of a Turing machine M0, an attribute x, two pairs of messages
(msg0,0,msg0,1), (msg1,0,msg1,1) and an index i ≥ 0.

2. Ch computes the following values : (a) (TwoPABE.PP0,TwoPABE.SK)← TwoPABE,Setup(1λ),
(b) (TwoPABE.skM0 , st0) ← TwoPABE.KeyGen(TwoPABE.SK,M0). It sends (TwoPABE.PP0,
TwoPABE.skM0) to A.

3. The following is repeated polynomially many times:

(a) A sends to Ch a patch Pj ∈ P.

(b) Ch computes the following: (a) (P̃j ,TwoPABE.PPj , stj)← TwoPABE.GenPatch(TwoPABE.SK,
Pj , stj−1), (b) TwoPABE.CT(x,msgb,0,msgb,1)

← TwoPABE.Enc(TwoPABE.PPj , x,msgb,0,msgb,1)
if j = i.
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(c) If j = i, Ch sends (TwoPABE.PPj , P̃j ,TwoPABE.CT(x,msgb)
) to A. If j 6= i, Ch sends

(TwoPABE.PPj , P̃j) to A.

4. Finally, the adversary outputs the bit b′.

5. The adversary wins the game if (a) b = b′, and (b) Mi(x) = 0 and msg0,0 = msg1,0 or if
Mi(x) = 1 and msg0,1 = msg1,1 where Mj = Update(Mj−1, Pj).

Definition 9. A 1-key two-outcome PABE scheme is said to be adaptively secure if for every
PPT adversary A, there exists a negligible function negl s.t.

Pr
[
A wins ExptTwoPABEA (1λ, b)

]
≤ 1

2
+ negl(λ)

5.3.2 Construction

We realize this primitive along the same lines as as in [AJS15] (which, in turn, builds on ideas
from [GKP+13]). The idea is to have two instantiations of a PABE scheme. To encrypt an
attribute x and two messages (msg0,msg1), we encrypt (x,msg0) in one instantiation and (x,msg1)
in the other. Given two PABE keys of M , one w.r.t. to each instantiation, and the two ciphertexts,
exactly one of (msg0,msg1) will remain hidden depending on the value of M(x).

We formally give the construction below of TwoPABE for Turing machine familyM, patch family
P, update algorithm Update and message space MSG. The only tool we use in our construction is a 1-
key PABE for TMs TwoPABE = (TwoPABE.Setup,TwoPABE.KeyGen,TwoPABE.Enc,TwoPABE.Dec)
for the TM family M, patch family P, update algorithm Update and message space MSG.

TwoPABE.Setup(1λ): On input a security parameter λ in unary, execute PABE.Setup twice to ob-

tain (PABE.PP0
0,PABE.SK

0
0) ← PABE.Setup(1λ) and (PABE.PP0

1,PABE.SK
0
1) ← PABE.Setup(1λ).

Output
(
TwoPABE.PP0 = (PABE.PP0

0,PABE.PP
0
1),TwoPABE.SK0 = (PABE.SK0

0,PABE.SK
0
1)
)
.

TwoPABE.KeyGen(TwoPABE.SK,M): On input a secret key TwoPABE.SK0 = (PABE.SK0
0,PABE.SK

0
1)

and a Turing machine M ∈ M, first compute two PABE keys PABE.sk0M ← PABE.KeyGen(
PABE.SK0

0,M ∈M) and PABE.sk1M ← PABE.KeyGen(PABE.SK0
1,M), where M (complement of M)

on input x outputs 1−M(x).3 Output the attribute key, TwoPABE.skM = (PABE.sk0M ,PABE.sk
1
M ).

TwoPABE.GenPatch(TwoPABE.SK, P, st): On input a a secret key TwoPABE.SK0 = (PABE.SK0
0,

PABE.SK0
1), patch P ∈ P, and state st = (stPABE,0, stPABE,1), perform the following steps:

• Compute (P̃0,PABE.PP
′
0, st

′
PABE,0)← PABE.GenPatch(PABE.SK0

0, P, stPABE,0).

• Compute (P̃1,PABE.PP
′
1, st

′
PABE,1)← PABE.GenPatch(PABE.SK0

1, P, stPABE,1).
4

Set st = (st′PABE,0, st
′
PABE,1) and TwoPABE.PP′ = (PABE.PP′0,PABE.PP

′
1). Output P̃ = (P̃0, P̃1).

TwoPABE.ApplyPatch(TwoPABE.skM , P̃ ): On input a key TwoPABE.skM = (PABE.sk0M ,PABE.sk
1
M )

and patch encoding P̃ = (P̃0, P̃1), perform the following steps:

3Here we are only considering Turing machines with boolean output.
4Note that since M simply computes 1 −M(x) on any input x, we can apply the same patch P on both M and

M .
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• Compute PABE.sk0M ′ ← PABE.ApplyPatch(PABE.sk0M , P̃0).

• Compute PABE.sk1M ′ ← PABE.ApplyPatch(PABE.sk1M , P̃1).

Output TwoPABE.skM ′ = (PABE.sk0M ′ ,PABE.sk
1
M ′).

TwoPABE.Enc(TwoPABE.PP, x,msg0,msg1): On input a public key TwoPABE.PP = (PABE.PP0,
PABE.PP1), attribute x ∈ {0, 1}∗ and messages msg0,msg1 ∈ MSG, compute two ciphertexts:
PABE.CT0 ← PABE.Enc(TwoPABE.PP0, x,msg0) and PABE.CT1 ← PABE.Enc(PABE.PP1, x,msg1).
Output the ciphertext, TwoPABE.CT = (PABE.CT0,PABE.CT1).

TwoPABE.Dec(TwoPABE.skM ,TwoPABE.CT): On input an attribute key TwoPABE.skM = (PABE.sk0M ,

PABE.sk1M ) and TwoPABE.CT = (PABE.CT0,PABE.CT1), first compute out0 ← PABE.Dec(PABE.sk0M ,
PABE.CT0) and out1 ← PABE.Dec(PABE.sk1M ,PABE.CT1). Let outb, for b ∈ {0, 1}, be such that
outb 6= ⊥. Output out = outb.

This completes the description of the scheme. The correctness and efficiency of the above scheme
follows directly from the correctness and efficiency of the 1-key PABE scheme.

Security. The security of the above scheme follows in a straightforward manner, along the same
lines as in [AJS15]. We omit the proof from this manuscript.

Theorem 10. Assuming the security of PABE, the scheme TwoPABE is secure.

6 Patchable Oblivious Evaluation Encodings

We first define a basic patchable oblivious evaluation encodings (BPOEE) scheme. And then we
equip the BPOEE scheme with auxiliary algorithms and additional properties to define a patchable
oblivious evaluation encodings (POEE) scheme.

Basic POEE. We describe the syntax of a basic patchable oblivious evaluation encoding scheme
POEE defined for a class of Turing machines M and a family of patches P. For simplicity, we
denote the input space as {0, 1}∗; however, during the generation of the system parameters, we
place an upper bound on the running time of the machines which automatically puts an upper
bound on the length of the inputs.

• POEE.Setup(1λ): It takes as input a security parameter λ and outputs a secret key POEE.sk.

• POEE.TMEncode(POEE.sk,M0,M1): It takes as input a secret key POEE.sk, a pair of Turing
machines M0,M1 ∈ M and outputs a (joint) machine encoding 〈M0,M1〉 along with initial
state st .

• POEE.GenPatch(POEE.sk, P0, P1, st): It takes as input a secret key POEE.sk, a pair of patches
P0, P1 ∈ P and current state st. It outputs a patch encoding 〈P0, P1〉 and the updated state
st.

• POEE.ApplyPatch
(
〈M0,M1〉, 〈P0, P1〉

)
: It takes as input a machine encoding 〈M0,M1〉 and a

patch encoding 〈P0, P1〉. It outputs an updated machine encoding 〈M ′0,M ′1〉.
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• POEE.InpEncode(POEE.sk, x, i, b): It takes as input a secret key POEE.sk, an input x ∈ {0, 1}∗,
an index i ≥ 0 and a choice bit b ∈ {0, 1}. It outputs an input encoding 〈x, i, b〉.

• POEE.Decode
(
〈M0,M1〉, 〈x, i, b〉

)
: It takes as input a (possibly updated) machine encoding

〈M0,M1〉 and an input encoding 〈x, i, b〉. It outputs a value z.

We define the correctness of encode, patching and decode property below.

Correctness of Encode, Patching and Decode: For all M0
0 ,M

0
1 ∈ M, every L ≥ 0, patch

sequence P 1
0 , P

1
1 , . . . , P

L
0 , P

L
1 ∈ P, x ∈ {0, 1}∗ and b ∈ {0, 1},

POEE.Decode
(
〈ML

0 ,M
L
1 〉, 〈x, L, b〉

)
= ML

b (x)

where:

• POEE.sk← POEE.Setup(1λ),

•
(
〈M0

0 ,M
0
1 〉, st0

)
← POEE.TMEncode(POEE.sk,M0,M1),

•
(
〈P i0, P i1〉, sti

)
← POEE.GenPatch(POEE.sk, P i0, P

i
1, sti−1),

• 〈M i
0,M

i
1〉 ← POEE.ApplyPatch

(
〈M i−1

0 ,M i−1
1 〉, 〈P i0, P i1〉

)
,

• 〈x, L, b〉 ← POEE.InpEncode(POEE.sk, x, L, b),

• M b
j = Update(M b

j−1, P
b
j ).

Efficiency. We require that an OEE scheme satisfies the following efficiency conditions. Infor-
mally, we require that the Turing machine encoding (resp., input encoding) algorithm only has a
logarithmic dependence on the time bound. Furthermore, the running time of the decode algo-
rithm should take time proportional to the computation time of the encoded Turing machine on
the encoded input.

1. The running time of POEE.TMEncode(POEE.sk,M0,M1) is a polynomial in (λ, |M0|, |M1|),
where POEE.sk← POEE.Setup(1λ).

2. The running time of POEE.GenPatch(POEE.sk, P0, P1, st) is a polynomial in (λ, |P0|, |P1|). In
particular it is independent of the size of st.

3. The running time of POEE.ApplyPatch(〈M0,M1〉, 〈P0, P1〉) is a polynomial in (λ, t), where

t = max
{

runtime of Update(M0, P0), runtime of Update(M1, P1)
}

.

4. The running time of POEE.InpEncode(POEE.sk, x, i, b) is a polynomial in (λ, |x|), where POEE.sk←
POEE.Setup(1λ).
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5. The running time of POEE.Decode
(
〈M0,M1〉, 〈x, i, b〉

)
is a polynomial in (λ, |M0|, |M1|, |x|, t),

where POEE.sk ← POEE.Setup(1λ), 〈M0,M1〉 ← POEE.TMEncode(POEE.sk,M0,M1), 〈x, i,
b〉 ← POEE.InpEncode(POEE.sk, x, i, b) and t is the running time of the Turing machine Mb

on x.

Definition 10. A basic POEE scheme (BPOEE) scheme is a tuple of algorithms (POEE.Setup,
POEE.TMEncode,POEE.GenPatch,POEE.ApplyPatch,POEE.InpEncode,POEE.Decode) that satisfies
the above correctness of encode, patch and decode property and the efficiency property.

POEE. We now augment the basic POEE scheme with additional helper algorithms defined
below.

• POEE.puncInp(POEE.sk, x, i): It takes as input a secret key POEE.sk, input x ∈ {0, 1}∗ and
index i. It outputs a punctured key POEE.skx,i.

• POEE.PIEncode(POEE.skx,i, x
′, i′, b): It takes as input a punctured secret key POEE.skx,i, an

input x′, index i′ and a bit b s.t. (x, i) 6= (x′, i′). It outputs an input encoding 〈x′, i′, b〉.

• POEE.puncBit(POEE.sk, b): It takes as input a secret key POEE.sk and an input bit b. It
outputs a key POEE.skb.

• POEE.PBEncode(POEE.skb, x, i): It takes as input a key POEE.skb, an input x and an index
i. It outputs an input encoding 〈x, i, b〉.

We associate the above scheme with correctness and security properties as described below.

Correctness. We say that a POEE scheme is correct if it satisfies the following properties:

1. Correctness of Input Puncturing: For all M0,M1 ∈ M, every L ≥ 0, patch sequence
P 1
0 , P

1
1 , . . . , P

L
0 , P

L
1 ∈ P, every x, x′ ∈ {0, 1}∗ and i, i′ ≤ L s.t. (x, i) 6= (x′, i′) and b ∈ {0, 1},

POEE.Decode
(
〈M i′

0 ,M
i′
1 〉, 〈x′, i′, b〉

)
= Mb(x

′),

where:

• POEE.sk← POEE.Setup(1λ),

•
(
〈M0,M1〉, st0

)
← POEE.TMEncode(POEE.sk,M0,M1),

•
(
〈P j0 , P

j
1 〉, stj

)
← POEE.GenPatch(POEE.sk, P j0 , P

i
1, stj−1),

• 〈M j
0 ,M

j
1 〉 ← POEE.ApplyPatch

(
〈M j−1

0 ,M j−1
1 〉, 〈P j0 , P

j
1 〉
)

,

• 〈x′, i′, b〉 ← POEE.PIEncode(POEE.puncInp(POEE.sk, x, i), x′, i′, b),

• M b
` = Update(M b

`−1, P
b
` ).

2. Correctness of Bit Puncturing: For allM0,M1 ∈M, every L ≥ 0, patch sequence P 1
0 , P

1
1 , . . . , P

L
0 , P

L
1 ∈

P, x ∈ {0, 1}∗ and b ∈ {0, 1},

POEE.Decode
(
〈ML

0 ,M
L
1 〉, 〈x, L, b〉

)
= ML

b (x)

where:
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• POEE.sk← POEE.Setup(1λ),

•
(
〈P i0, P i1〉, sti

)
← POEE.GenPatch(POEE.sk, P i0, P

i
1, sti−1),

• 〈M i
0,M

i
1〉 ← POEE.ApplyPatch

(
〈M i−1

0 ,M i−1
1 〉, 〈P i0, P i1〉

)
,

• 〈x, L, b〉 ← POEE.PBEncode(POEE.puncBit (POEE.sk, b) , x, L),

• M b
j = Update(M b

j−1, P
b
j ).

Indistinguishability of Encoding Bit. We describe security of encoding bit as a multi-stage
game between an adversary A and a challenger.

• Setup: This phase consists of the following steps:

– A chooses two Turing machines M0,M1 ∈M such that |M0| = |M1|, an input x and an
index i ≥ 0. A sends the tuple (M0,M1, x, i) to the challenger.

– The challenger chooses a bit b ∈ {0, 1} and computes the following: (a) POEE.sk ←
POEE.Setup(1λ), (b)

(
〈M0,M1〉, st0

)
← POEE.TMEncode(POEE.sk,M0,M1), (c) POEE.skx,i

← POEE.puncInp(POEE.sk, x, i). It sends
(
〈M0,M1〉,POEE.skx,i

)
to A.

– If i = 0, then the challenger also computes 〈x, 0, b〉 ← POEE.InpEncode(POEE.sk, x, 0, b)
and sends 〈x, 0, b〉 to A.

• Patch Query phase: The following is repeated polynomially many times:

– A chooses two patches P i0, P
i
1 ∈ P and sends them to the challenger.

– The challenger computes
(
〈P i0, P i1〉, sti

)
← POEE.GenPatch(POEE.sk, P i0, P

i
1, sti−1) and

sends 〈P i0, P i1〉 to A.

– If i = i, then the challenger also computes 〈x, i, b〉 ← POEE.InpEncode(POEE.sk, x, i, b)
and sends 〈x, i, b〉 to A.

• Guess: A outputs a bit b′ ∈ {0, 1}.

A is required to choose his queries s.t. Update(M i−1
0 , P i

0)(x) and Update(M i−1
1 , P i

1)(x), where
M0

0 = M0 and M0
1 = M1. The advantage of A in this game is defined as advA = Pr[b′ = b]− 1

2 .

Definition 11 (Indistinguishability of encoding bit). A POEE scheme satisfies indistinguishability
of encoding bit if there exists a neglible function negl(·) such that for every PPT adversary A in the
above security game, advA = negl(λ).

Indistinguishability of Machine Encoding. We describe security of machine encoding as a
multi-stage game between an adversary A and a challenger.

• Setup: A chooses two Turing machines M0,M1 ∈ M such that |M0| = |M1| and a bit
c ∈ {0, 1}. A sends the tuple (M0,M1, c) to the challenger.

The challenger chooses a bit b ∈ {0, 1} and computes the following: (a) POEE.sk← POEE.Setup(1λ),

(b)
(
〈TM1,TM2〉, st0

)
← POEE.TMEncode(POEE.sk,TM1,TM2), where TM1 = M0,TM2 =
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M1⊕b if c = 0 and TM1 = M0⊕b,TM2 = M1 otherwise, and (c) POEE.skb ← POEE.puncBit(
POEE.sk, b). Finally, it sends the following tuple to A:(

〈TM1,TM2〉,POEE.skb
)
.

• Patch Query phase: The following is repeated polynomially many times:

– A chooses two patches P i0, P
i
1 ∈ P and sends them to the challenger.

– The challenger computes
(
〈PTi1,PTi2〉, sti

)
← POEE.GenPatch(POEE.sk,PTi1,PT

i
2, sti−1),

where PTi1 = P i0,PT
i
2 = P i1⊕b if c = 0 and PTi1 = P i0⊕b,PT

i
2 = M i

1 otherwise. It sends

〈PTi1,PTi2〉 to A.

• Guess: A outputs a bit b′ ∈ {0, 1}.

The advantage of A in this game is defined as advA = Pr[b′ = b]− 1
2 .

Definition 12 (Indistinguishability of machine encoding). A POEE scheme satisfies indistin-
guishability of machine encoding if there exists a negligible function negl(·) such that for every
PPT adversary A in the above security game, advA = negl(λ).

We now formally define a POEE scheme.

Definition 13. A POEE scheme is a basic POEE scheme and in addition is equipped with helper
algorithms (POEE.puncInp,POEE.PIEncode,POEE.puncBit,POEE.PBEncode). In addition, it satis-
fies (i) Correctness of bit puncturing and input puncturing, (ii) Indistinguishability of Encoding Bit
and, (iii) Indistinguishability of Machine Encoding.

6.1 Construction

In this section, we present a transformation from a two-outcome PABE scheme to a POEE scheme.
A similar transformation from two-outcome ABE to oblivious evaluation encodings (OEE) was
recently explored in [AJS15]. However, since we are considering a more general scenario (of allowing
for patching), the transformation of [AJS15] fails in our setting. One important reason is the
following: in [AJS15], the two-outcome ABE parameters are part of the OEE secret key. This
creates a problem for us because in the case of two-outcome PABE, the parameters are “refreshed”
after every patch is generated, whereas in the definition of patchable OEE, there is no provision to
update the OEE secret key.5 To get around this issue, we use a puncturable PRF key to succinctly
compress the two-outcome PABE keys across all the update phases. This does not work in general
since it could be the case every updated two-outcome PABE key is a complex function of the
previous two-outcome PABE keys. However in our patchable ABE construction (Section 5.1), in
every phase, the public parameters produced are generated independently of the previous phases.
This is what crucially allows us to make our proof work.

5Even if we were to allow for updating the key, during the puncturing phase we need to provide a succinct key
that allows for encoding inputs across all the phases. This further means that the size of the punctured key would
blow up proportional to the number of patches issued.
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Notation. We denote the class of Turing machines associated with patchable oblivious evaluation
encoding to be M. The family of patches associated with M is denoted as P and the update
algorithm is denoted as Update. We make the following notational simplifications: M consists of
only single-bit output Turing machines. In every machine M in M, there is a special location on
the work tape in which the output of the Turing machine (0 or 1) is written. Until the termination
of the Turing machine, this location contains the symbol ⊥. We use the notation M(x) to denote
the value contained in this special location.
We use the following ingredients in our construction.

1. A puncturable PRF family PRF.

2. A garbling scheme GC for circuits, denoted by GC = (Garble,EvalGC).

3. A fully homomorphic encryption scheme for circuits with additive overhead (Section 2), de-
noted by FHE = (FHE.Setup,FHE.Enc,FHE.Eval,FHE.Dec).

4. A 1-key two-outcome PABE for TMs scheme denoted by TwoPABE = (TwoPABE.Setup,
TwoPABE.KeyGen,TwoPABE.GenPatch,TwoPABE.ApplyPatch,TwoPABE.Enc,TwoPABE.Dec).

• The Turing machine family associated with TwoPABE is denotes as N where every
N ∈ N is of the form N = N[

{FHE.pkb,FHE.CTMb}b∈{0,1}
] where FHE.pkb denotes a public-

key of the FHE scheme FHE and FHE.CTMb
denotes an encryption of Mb ∈ M w.r.t.

FHE.pkb.

• The patch family Q associated with N consists of patches Q ∈ Q of the form Q =
{FHE.CTPb}b∈{0,1} where Pb ∈ P.

• The update algorithm associated with N and Q is denoted as UpdateN ,Q. On input
(N,Q), where N = N[

{FHE.pkb,FHE.CTMb}b∈{0,1}
] and Q = {FHE.CTPb}b∈{0,1}, UpdateN ,Q

outputsN ′ = N[
{FHE.pkb,FHE.CTM′

b
}b∈{0,1}

] where FHE.CTM ′b = FHE.Eval(FHE.pkb,Update,

FHE.CTMb
,FHE.CTPb).

Construction. We denote the patchable oblivious evaluation encoding scheme as POEE = (POEE.Setup,
POEE.InpEncode,POEE.TMEncode,POEE.Decode). We denote the auxiliary algorithms of POEE
as (POEE.puncInp,POEE.PIEncode,POEE.puncBit,POEE.PBEncode). The construction of POEE is
presented below.

POEE.Setup(1λ): On input a security parameter λ, execute the following steps.

• Sample a random key K0 for the puncturable PRF family PRF.

• Execute FHE.Setup(1λ) twice to obtain two public key,secret key pairs (FHE.pk0,FHE.sk0)
and (FHE.pk1,FHE.sk1) for FHE.

Output POEE.sk = (K,FHE.pk0,FHE.sk0,FHE.pk1,FHE.sk1).

POEE.TMEncode(POEE.sk,M0,M1): On input a secret key POEE.sk and a pair of Turing machines
M0,M1 ∈M, execute the following steps:
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• Parse POEE.sk = (FHE.pk0,FHE.sk0,FHE.pk1,FHE.sk1).

• Compute FHE.CTM0 ← FHE.Enc(FHE.pk0,M0) and FHE.CTM1 ← FHE.Enc(FHE.pk1,M1).

• Compute r ← PRFK(0).

• Compute (TwoPABE.PP,TwoPABE.SK)← TwoPABE.Setup(1λ) using randomness r.

• Compute a key (TwoPABE.skN , sttpabe) ← TwoPABE.KeyGen(TwoPABE.SK, N) for the ma-
chine N = N[

{FHE.pkb,FHE.CTMb}b∈{0,1}
], where N is described in Figure 4.

Set st = (sttpabe, ctr), where ctr is initialized to 0. Output the TM encoding, 〈M0,M1〉 = TwoPABE.skN .

N[
{FHE.pkb,FHE.CTMb

}b∈{0,1}

](x, j, indt)
• Let U = Ux,indt(·) be a universal Turing machine that on input a Turing machine M , outputs M(x) if

the computation terminates within 2indt number of steps, otherwise it outputs ⊥.

[Note: If the running time of M is t then the universal Turing machine runs in time O(t · log(t)). This
logarithmic overhead is unimportant and will be ignored in our analysis.]

• Transform the universal Turing machine U into a circuit C ← TMtoCKT(U) using Theorem 5 (Sec-
tion 2).

• Execute FHE.Eval(FHE.pk0, C,FHE.CTM0) and FHE.Eval(FHE.pk1, C,FHE.CTM1) to obtain z1 and z2,
respctively.

• Set z = (z1||z2). Output the jth bit of z.

Figure 4: Description of TM N .

POEE.GenPatch(POEE.sk, st, P0, P1): On input a secret key POEE.sk, state st and pair of patches
P0, P1 ∈ P, execute the following steps:

• Parse POEE.sk = (K,FHE.pk0,FHE.sk0,FHE.pk1,FHE.sk1) and st = (sttpabe, ctr).

• Compute FHE.CTP0 ← FHE.Enc(FHE.pk0, P0) and FHE.CTP1 ← FHE.Enc(FHE.pk1, P1).

• Set ctr = ctr + 1.

• Compute r ← PRFK(ctr).

• Compute (Q̃, st′tpabe) ← TwoPABE.GenPatch(sttpabe, Q) using randomness s = s1‖s2, where
s1 = r, s2 is chosen uniformly at random and the patch Q = {FHE.CTPb}b∈{0,1}.

Set st = (st′tpabe, ctr). Output 〈P0, P1〉 = Q̃.

POEE.ApplyPatch(〈M0,M1〉, 〈P0, P1〉): On input a TM encoding 〈M0,M1〉 and patch encoding 〈P0,
P1〉), execute the following steps:

• Parse 〈M0,M1〉 = TwoPABE.skN and 〈P0, P1〉 = Q̃.

• Compute TwoPABE.skN ′ ← TwoPABE.ApplyPatch(TwoPABE.skN , Q̃).
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Output 〈M ′0,M ′1〉 = TwoPABE.skN ′ .

POEE.InpEncode(POEE.sk, x, i, b): On input the secret key POEE.sk, input x, index i and bit b, it
executes the following steps.

• Parse POEE.sk as (K,FHE.pk0,FHE.sk0,FHE.pk1,FHE.sk1).

• For indt ∈ [λ], compute a garbled circuit and wire keys
(
GC indt , {w

indt
j,0 , w

indt
j,1 }j∈[q]

)
← Garble(1λ, G),

where G = G(FHE.skb,b)(·) is a circuit that takes as input FHE ciphertexts (FHE.CT0, FHE.CT1)
and outputs FHE.Dec(FHE.skb,FHE.CTb). Here, q denotes the total length of two FHE ci-
phertexts (FHE.CT0,FHE.CT1).

• Compute r ← PRFK(i).

• Compute (TwoPABE.PPi,TwoPABE.SKi)← TwoPABE.Setup(1λ) using randomness r.

• For every j ∈ [q] and indt ∈ [λ], compute an ABE ciphertext TwoPABE.CTj,indt ← TwoPABE.Enc(
TwoPABE.PPi, (x, j, indt), w

indt
j,0 , w

indt
j,1

)
of message pair (windt

j,0 , w
indt
j,1 ) associated to the at-

tribute (x, j, indt).

Finally, it outputs the encoding:

〈x, i, b〉 =
(
{GC}indt∈[λ], {TwoPABE.CTj,indt}j∈[q],indt∈[λ]

)
.

POEE.Decode
(
〈M0,M1〉, 〈x, i, b〉

)
: On input a (possibly updated) TM encoding 〈M0,M1〉 and input

encoding 〈x, i, b〉, execute the following steps:

• Parse the TM encoding 〈M0,M1〉 = TwoPABE.skN and the input encoding 〈x, i, b〉 =
(
{GC}indt∈[λ],

{TwoPABE.CTj,indt}j∈[q],indt∈[λ]
)

.

• For every indt ∈ [λ],

1. For every j ∈ [q], execute the decryption procedure of TwoPABE to obtain the wire keys
of the garbled circuit, w̃indt

j ← TwoPABE.Dec(TwoPABE.skN ,TwoPABE.CTj,indt).

2. Executes EvalGC(GC indt , w̃
indt
1 , . . . , w̃indt

q ) to obtain outindt .

3. If outindt 6= ⊥ then output out = outindt . Otherwise, continue.

This completes the description of the main algorithms. We now describe the auxiliary algorithms.

POEE.puncInp(POEE.sk, x, i): On input a secret key POEE.sk = (K,FHE.pk0,FHE.sk0,FHE.pk1,
FHE.sk1) and (x, i), it computes:

• r ← PRFK(i).

• (TwoPABE.PPi,TwoPABE.SKi)← TwoPABE.Setup(1λ) using randomness r.

• Ki ← PRFPunc(K, i).
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It outputs POEE.skx,i = (TwoPABE.PPi,Ki,FHE.pk0,FHE.sk0,FHE.pk1,FHE.sk1). That is, the
punctured key is same as the original secret key except that the PRF key K is replaced with
TwoPABE.PPi and Ki.

POEE.PIEncode(POEE.skx,i, x
′, i′, b): On input a punctured key POEE.skx,i and input (x′, i′, b), it

executes the following steps:

• Parse POEE.skx,i = (TwoPABE.PPi,Ki,FHE.pk0,FHE.sk0,FHE.pk1,FHE.sk1).

• For indt ∈ [λ], compute a garbled circuit and wire keys
(
GC indt , {w

indt
j,0 , w

indt
j,1 }j∈[q]

)
← Garble(1λ, G),

where G = G(FHE.skb,b)(·) is a circuit that takes as input FHE ciphertexts (FHE.CT0, FHE.CT1)
and outputs FHE.Dec(FHE.skb,FHE.CTb). Here, q denotes the total length of two FHE ci-
phertexts (FHE.CT0,FHE.CT1).

• If i′ 6= i, then compute r ← PRFKi(i
′) and (TwoPABE.PPi

′
,TwoPABE.SKi

′
)← TwoPABE.Setup(1λ)

using randomness r.

• For every j ∈ [q] and indt ∈ [λ], compute an ABE ciphertext TwoPABE.CTj,indt ← TwoPABE.Enc(
TwoPABE.PPi

′
, (x′, j, indt), w

indt
j,0 , w

indt
j,1

)
of message pair (windt

j,0 , w
indt
j,1 ) associated to the at-

tribute (x, j, indt)

Finally, it outputs the encoding:

〈x′, i′, b〉 =
(
{GC}indt∈[λ], {TwoPABE.CTj,indt}j∈[q],indt∈[λ]

)
.

POEE.puncBit(POEE.sk, b): On input a secret key POEE.sk and bit b ∈ {0, 1}, it first parses
POEE.sk = (K,FHE.pk0,FHE.sk0,FHE.pk1,FHE.sk1). It then outputs the punctured key POEE.skb =
(K,FHE.pk0,FHE.pk1,FHE.skb). That is, the punctured key is same as the original key except that
it does not contain the FHE key FHE.skb.

POEE.PBEncode(POEE.skb, x, i): On input a punctured key POEE.skb, it computes and outputs 〈x,
i, b〉 ← POEE.InpEncode(POEE.skb, x, i, b).
[Note: The algorithm POEE.InpEncode can be executed on the punctured key POEE.skb, input x,
index i and bit b because the FHE secret key FHE.skb is never used by it.]
This completes the description of the auxiliary algorithms. Below we argue the efficiency property
of POEE. The proof of correctness is given in Appendix 6.2 and the proof of security properties is
given in Appendix 6.3.

Efficiency. From the description of the scheme and the efficiency of the TwoPABE scheme, the
puncturable PRF PRF and the garbling scheme GC, it follows that POEE.Setup(1λ) runs in time
poly(λ), POEE.TMEncode(POEE.sk,M0,M1) runs in time poly(λ, |M0|, |M1|), POEE.InpEncode(
POEE.sk, x, i, b) runs in time poly(λ, |x|), POEE.GenPatch(POEE.sk, st, P0, P1) runs in time poly(λ,
|P0|, |P1|), POEE.ApplyPatch(〈M0,M1〉, 〈P0, P1〉) runs in time poly(λ, t0, t1) where tb is the running
time of Update(Mb, Pb).

The running time of POEE.Decode
(
〈M0,M1〉, 〈x, i, b〉

)
is poly(λ, t∗), where t∗ is the time taken

to execute Mb on x. The main bottleneck in the running time of POEE.Decode is the number of the
iterations it executes. Note that the jth iteration takes time polynomial in λ and 2j . If indt ∈ [λ]
is the smallest number such that 2indt ≥ t∗ then the number of the iterations in the execution of
decode is indt. Thus, the total running time of decode is (

∑indt
j=1 2j)poly(λ) = poly(t∗, λ).
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6.2 Proof of Correctness

Correctness of Encode, Patching and Decode. Let M0
0 ,M

0
1 ∈ M, P 1

0 , P
1
1 , . . . , P

L
0 , P

L
1 ∈ P,

x ∈ {0, 1}∗ and b ∈ {0, 1}.

• It follows from the description of the scheme that 〈M0
0 ,M

0
1 〉 = TwoPABE.skN0 , where N0 =

N[
{FHE.pkb,FHE.CTM0

b
}b∈{0,1}

].
• Further, for every index i ∈ [L], 〈P i0, P i1〉 = Q̃i where (Q̃i, st

′
tpabe)← TwoPABE.GenPatch(sttpabe, Qi),

Qi = FHE.CTP i0 ,FHE.CTP i1 .

• For every i ∈ [L], let 〈M i
0,M

i
1〉 = ApplyPatch(〈M i−1

0 ,M i−1
1 〉, 〈P i0, P i1〉). From the correctness of

TwoPABE.ApplyPatch, we have that 〈M i
0,M

i
1〉 = TwoPABE.skN i whereN i = UpdateN ,Q(N i−1, Qi) =

N i[
{FHE.pkb,FHE.CTMi

b
}b∈{0,1}

] and M i
b = Update(M i−1

b , P ib ).

• Let 〈x, L, b〉 =
(
{GC}indt∈[λ], {TwoPABE.CTj,indt}j∈[q],indt∈[λ]

)
← POEE.InpEncode(POEE.sk,

x, L, b).

• From the correctness of TwoPABE, we have that the output of TwoPABE.Dec(TwoPABE.skNL),
TwoPABE.CTj,indt) is the jth wire key of GC indt which corresponds to the jth bit of (FHE.CT0,
FHE.CT1). Furthermore, from the correctness of FHE it follows that FHE.CT0 (resp., FHE.CT1)
is an encryption of ML

0 (x) (resp., ML
1 (x)), at 2indt number of steps, under FHE.pk0 (resp.,

FHE.pk1).

• Let t∗ be the runtime of ML
b on input x. From the correctness of garbling schemes, it follows

that the output of garbled circuit evaluation, EvalGC(GC indt , w̃
indt
1 , . . . , w̃indt

q ) is ML
b (x) when

2indt ≥ t∗ and is ⊥ otherwise. Since ML
b runs in polynomial time on all inputs, there will

exist at least one indt ∈ [λ] such that 2indt ≥ t∗.

Therefore, the output of POEE.Decode
(
〈ML

0 ,M
L
1 〉, 〈x, L, b〉

)
in this case would be ML

b (x), as de-

sired.

Correctness of Input Puncturing. The proof of correctness in this case is similar to the above
case. We only highlight the differences. Let M0,M1 ∈ M, P 1

0 , P
1
1 , . . . , P

L
0 , P

L
1 ∈ P, x, x′ ∈ {0, 1}∗

and i, i′ ≤ L s.t. (x, i) 6= (x′, i′), and b ∈ {0, 1}.
The main difference from the previous case is that here, input encoding 〈x′, i′, b〉 is computed for

an index i′ ≤ L using punctured key POEE.skx,i where POEE.skx,i ← POEE.puncInp(POEE.sk, x, i).
Recall that POEE.sk = (K,FHE.pk0,FHE.sk0,FHE.pk1,FHE.sk1) and POEE.puncInp(POEE.sk, x, i) =
(TwoPABE.PPi,Ki,FHE.pk0,FHE.sk0,FHE.pk1,FHE.sk1) where (TwoPABE.PPi,TwoPABE.SKi) ←
TwoPABE.Setup(1λ) is computed using randomness r ← PRFK(i) and Ki ← PRFPunc(K, i).

Now, note that if i = i′, then TwoPABE.PPi
′

is used to compute the input encoding 〈x′, i′, b〉
in the same manner as in the honest input encoding algorithm and therefore correctness follows
from the correctness of the decryption procedure of TwoPABE. On the other hand, if i 6= i′,
then the punctured input encoding algorithm first computes (TwoPABE.PPi

′
,TwoPABE.SKi

′
) ←

TwoPABE.Setup(1λ) using randomness r ← PRFKi(i
′) and then computes the input encoding using

TwoPABE.PPi
′
. The only difference here from the honest input encoding algorithm is that the
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randomness r is computed using the punctured PRF key Ki as opposed to the un-punctured PRF
key K. However, from the correctness of puncturing of the PRF, it follows that PRFKi(i

′) =
PRFK(i′) when i 6= i′. Once again, correctness then follows from the correctness of the decryption
procedure of TwoPABE.

Combining the above with the arguments in the proof of the previous case, we can establish

that the output of POEE.Decode
(
〈M i′

0 ,M
i′
1 〉, 〈x′, i′, b〉

)
in this case would be M i′

b (x′), as desired.

Correctness of Bit Puncturing. Correctness follows easily in this case by the definition of
POEE.PBEncode and correctness of the regular input encoding algorithm POEE.InpEncode (as es-
tablished in the first case).

6.3 Proof of Security

We first prove that POEE satisfies the indistinguishability of encoding bit property and later we
prove that it satisfies the indistinguishability of machine encoding property.

Theorem 11. The scheme POEE satisfies indistinguishability of encoding bit property assuming
the security of TwoPABE and security of garbling scheme GC.

Proof. We first design a series of hybrids. The first hybrid corresponds to the real experiment where
the challenger picks a bit b at random. In the last hybrid Hyb3, the bit b is information theoretically
hidden from the adversary. The probability that the adversary guesses b is with probability 1/2.
Then by arguing that every two consecutive hybrids are computationally indistinguishable, it follows
that the probability that the adversary outputs b is negligibly close to 1/2.

We denote the advantage of the adversary in Hybi to be advA,i.

Hybrid Hyb1: On receiving the TM pair (M0,M1), input x and index i, the challenger first picks
a bit b ∈ {0, 1} at random and computes:

• POEE.sk← POEE.Setup(1λ)

•
(
〈M0,M1〉, st0

)
← POEE.TMEncode(POEE.sk,M0,M1)

• POEE.skx,i ← POEE.puncInp(POEE.sk, x, i)

It sends
(
〈M0,M1〉,POEE.skx,i

)
to A. If i = 0, then it also computes 〈x, 0, b〉 ← POEE.InpEncode

(POEE.sk, x, 0, b) and sends 〈x, 0, b〉 to A.

Next, upon receiving a patch query (P i0, P
i
1) from A, the challenger computes

(
〈P i0, P i1〉, sti

)
←

POEE.GenPatch(POEE.sk, sti−1, P
i
0, P

i
1) and sends 〈P i0, P i1〉 to A. If i = i, then it also computes 〈x,

i, b〉 ← POEE.InpEncode(POEE.sk, x, i, b) and sends 〈x, i, b〉 to A.

Hybrid Hyb2: Same as Hyb1, except that we change the TwoPABE ciphertexts in the challenge
input encoding 〈x, i, b〉:

• For every indt ∈ [λ], the challenger computes a garbled circuit and wire keys
(
GC indt , {w

indt
i,0 ,

windt
j,1 }j∈[q]

)
← Garble(1λ, G) in the same manner as in the honest input encoding procedure.
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• Let M0
b = Mb and N0 = N[{FHE.pkb,FHE.CTM0

b
}b∈{0,1}] be as defined in the honest TM encoding

procedure. Let N i ← UpdateN ,Q(N i−1, Qi) and Qi = {FHE.CTP ib}b∈{0,1} for every i.6

For every j ∈ [q] and indt ∈ [λ], the challenger sets Wj,indt = (windt
j,0 , 0

`w) if N i(x, j, indt) = 0,

otherwise it sets Wj,indt = (0`w , windt
j,1 ), where `w is the length of a wire key of the garbled

circuit. It then computes ỹj,indt ← TwoPABE.Enc
(
TwoPABE.PPi, (x, j, indt),Wj,indt

)
where

TwoPABE.PPi is defined in the same manner as in the honest input encoding algorithm.

The input encoding is set to be 〈x, i, b〉 =
(
{GC indt∈[λ]}indt∈[λ], {ỹj,indt}j∈[q],indt∈[λ]

)
. This completes

the description of Hyb2.

Hybrid Hyb3: The challenger now simulates the garbled circuits instead of generating them hon-
estly during the computation of challenge input encoding 〈x, i, b〉.

To accomplish this task, the challenger uses a simulated garbling procedure denoted by SimGC.
It takes as input (1λ, |G|, out) and outputs a garbling of a circuit of size |G| along with input wire
keys such that the evaluation of the garbled circuit on the wire keys yields the result out.

The challenge input encoding 〈x, i, b〉 is computed by executing the steps below:

• Let M0
b = Mb and M i

b = Update(M i−1
b , P ib ) for every i. Let the output of M i

b on x be out
and let t∗ be running time of M i

b on input x. (Note that t∗ is also the running time of M i
b

on
input x.)

For every indt ∈ [λ], set outindt = out if 2indt ≥ t∗, and otherwise outindt = ⊥. Next, compute
the simulated garbled circuit and wire keys

(
SimGCindt , {w

indt
j }j∈[q]

)
← SimGarble(1λ, 1|G|, outindt),

where circuit G is as defined in the honest input encoding procedure.

• Compute the TwoPABE ciphertexts ỹj,indt , for every j ∈ [q], indt ∈ [λ] in the same manner as
in the previous hybrid.

The input encoding is set to be 〈x, i, b〉 =
(
{SimGCindt}indt∈[λ], {ỹj,indt}j∈[q],indt∈[λ]

)
. This completes

the description of Hyb3.

Lemma 4. Assuming the security of TwoPABE, |advA,1 − advA,2| ≤ negl(λ), where negl is a negli-
gible function.

Proof. To transition from Hyb1 to Hyb2, we change the TwoPABE ciphertexts in the challenge in-
put encoding one at a time. Consider the following sequence of intermediate hybrids, Hyb1:`, for
` ∈ [qλ]. The first hybrid Hyb1:1 is identical to Hyb1 and the final intermediate hybrid Hyb1:qλ is
identical to Hyb2.

Intermediate hybrid Hyb1:`, for 1 < ` < qλ: This is the same as Hyb1:`−1 except that the TwoPABE
ciphertext ỹj∗,ind∗t , where ` = (j∗ − 1) · λ+ ind∗t with 1 ≤ j∗ ≤ q and 1 ≤ ind∗t ≤ λ, is composed as
follows: the challenger computes ỹj∗,ind∗t ← TwoPABE.Enc(TwoPABE.PP, (x, j∗, ind∗t ),Wc), where

Wc is defined below. As in the description of Hyb2, here (w
ind∗t
j∗,0 , w

ind∗t
j∗,1) denotes the j∗th wire keys

6Note that when computed in the manner as described above, we obtain N i = N i
[{FHE.pkb,FHE.CTMi

b
}b∈{0,1}]

.
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corresponding to the ind∗t -th garbled circuit.

Wc =


(w

ind∗t
j∗,0 ,⊥) if N i(x, j∗, ind∗t ) = 0,

(⊥, wind∗t
j∗,1) if N i(x, j∗, ind∗t ) = 1

The rest of the hybrid is as in Hyb1:`−1.
We thus have the following claim.

Claim 4. Assuming the security of TwoPABE, |advA,1:`−1−advA,1:`| ≤ negl(λ) for every 1 < ` ≤ qλ,
where negl is a negligible function.

Hence,

|advA,1 − advA,2| =
qλ∑
`=2

|advA,1:`−1 − advA,1:`| ≤ negl(λ)

Lemma 5. Assuming the security of the garbling scheme GC, |advA,2 − advA,3| ≤ negl(λ), where
negl is a negligible function.

Proof. We consider a sequence of intermediate hybrids where we change one garbled circuit at a
time. Consider the following sequence of intermediate hybrids Hyb2:j , for j ∈ [λ]. The first hybrid
Hyb2:1 is identical to Hyb2 and the final intermediate hybrid Hyb2:λ is identical to Hyb3. For j ∈ [λ]
and j > 1 we define the following sequence of hybrids,

Intermediate hybrid, Hyb2:`: This hybrid is identical to Hyb2:`−1 except in the generation of `th

garbled circuit during the computation of the challenge input encoding. Let t∗ be such that
M i
b(x) takes t∗ number of steps. If ` is such that 2` < t∗ then generate

(
SimGC`, {w`j}j∈[q]

)
←

SimGarble(1λ, |G|,⊥). Otherwise, generate
(
SimGC`, {w`j}j∈[q]

)
← SimGarble(1λ, |G|,M i

b(x)). The
rest of the garbled circuits and the TwoPABE ciphertexts are generated as in Hyb2:`−1.

We thus have the following claim.

Claim 5. Assuming the security of the garbling scheme GC, we have |advA,2:`−1−advA,2:`| ≤ negl(λ)
for every 1 < ` ≤ λ, where negl is a negligible function.

We thus have,

|advA,2 − advA,3| =
λ∑
`=2

|advA,2:`−1 − advA,2:`| ≤ negl(λ)

The probability that A outputs b in Hyb3 is 1/2 since b is information theoretically hidden.
Further from Lemmas 4, 5, we have that |advA,1 − advA,3| ≤ negl(λ). Combining these two facts
we have, advA,1 ≤ negl(λ), as desired.

Theorem 12. Assuming the security of FHE, the proposed scheme POEE satisfies the indistin-
guishability of machine encoding property.
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Proof. Let M0,M1 ∈ M be the TMs and c be the bit sent by the adversary to the challenger.
Further, let P i0, P

i
1 ∈ P be the patch queries made by the adversary. Below we prove the theorem

for the case when c = 0. It is easy to extend the proof to the case when c = 1.
Let b be the challenge bit chosen by the challenger. Recall that the challenger sends the following

values to the adversary:

• Punctured key POEE.skb = (K,FHE.pk0,FHE.pk1,FHE.skb).

• TM encoding 〈TM0,TM1〉 = TwoPABE.skN whereN = N[{FHE.pkb,FHE.CTTMb
}b∈{0,1}] and TM0 =

M0,TM1 = M1⊕b.

• Patch encodings 〈PTi0,PTi1〉 = Q̃ where (Q̃, st′tpabe) ← TwoPABE.GenPatch(sttpabe, Q), Q =
FHE.CTPTi0

,FHE.CTPTi1
, sttpabe is as defined in the honest patch generation algorithm, and

PTi0 = P i0, PTi1 = P i1⊕b.

From the semantic security of FHE, the adversary cannot distinguish the case when (TM1, {PTi1}) =
(M1⊕b, {P i1⊕b}) from the case when (TM1, {PTi1}) = (M1⊕b, {P

i
1⊕b}). This completes the proof.

From Theorem 11 and Theorem 12, it follows that POEE is a secure scheme. Now, instantiating
the underlying tools we obtain the following theorem.

Theorem 13. Assuming the security of TwoPABE, FHE and GC, it follows that the scheme POEE
is a secure POEE scheme.

The scheme TwoPABE can be instantiated with indistinguishability obfuscation and one-way
functions from Corollary 1 and Theorem 10. We instantiate FHE by sub-exponentially secure
indistinguishability obfuscation and sub-exponentially secure one-way functions using the work of
Canetti et al. [CLTV15]. And finally, GC can be constructed one-way functions [Yao86]. Thus, we
have the following corollary,

Corollary 2. Assuming the existence of ε
2λ

-secure iO and ε′

2λ
-secure one-way functions, there exists

a δ-secure POEE scheme, where ε, ε′, δ ≤ 1
poly(λ) .

7 From POEE to Single Program Patchable Obfuscation

In this section, we give a transformation from patchable oblivious evaluation encodings to achieve
patchable obfuscation (PO). We use iO for circuits as an intermediary tool. The starting point is
the transformation of (non-patchable) OEE to iO described in [AJS15]. As part of the obfuscation
of a Turing machine M , we provide an OEE encoding of M as well as an obfuscated input encoder
that produces input encodings of OEE for any input x to M . The puncturing properties of the
underlying OEE scheme allows for switching from one branch of computation to another in the
proof of security.

While our transformation from POEE to PO is similar in spirit to [AJS15], we have to deal
with technical obstacles: the input encoder needs to now work with different (updated) machine
encodings as against just one in the case of [AJS15]. We overcome this challenge by giving a fresh
input encoder along with every patch encoding. But now we need to have a common secret key
(POEE secret key) shared across all the input encoders. So puncturing the key in one input encoder
affects the other encoders as well. Also, we need to now go over the input space once for every
patch issued unlike [AJS15]. Our carefully designed properties of patchable OEE come in handy
when dealing with these issues. We provide more details in the formal proof of security.
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Notation. We denote the class of Turing machines associated with the patchable obfuscation
scheme asM. The family of patches associated withM is denoted as P and the update algorithm
is denoted as Update.

7.1 Construction

We use the following ingredients in our construction.

1. A puncturable PRF family, denoted by PRF.

2. An indistinguishability obfuscator for general circuits, denoted by iO.

3. A POEE scheme POEE = (POEE.Setup,POEE.InpEncode,POEE.GenPatch,POEE.ApplyPatch,
POEE.TMEncode,POEE.Decode) for the Turing machine family M with associated patch
family P and update algorithm Update.

We now give our construction of an adaptive-IND secure patchable obfuscation scheme pO.

Setup(1λ): Compute POEE.sk← POEE.Setup(1λ, T ), where T is the bound on the running time of
M . Output Obf.SK = POEE.sk.

Obfuscate(Obf.SK,M): Compute the following:

1. (〈M,M〉poee, st)← POEE.TMEncode(POEE.sk,M,M).

2. A random key K0 for the puncturable PRF family.

3. 〈C0〉io ← iO
(
C[0,K0,POEE.sk]

)
, where C[i,Ki,POEE.sk] is the circuit described in Figure 5.

C[i,Ki,POEE.sk] (x)

(a) Compute r ← PRFKi(x‖0).

(b) Compute 〈x, i, 0〉poee ← POEE.InpEncode(POEE.sk, x, i, 0) using randomness r.

(c) Output 〈x, i, 0〉poee.

Figure 5: Circuit C[i,Ki,POEE.sk]

Set ctr = 0 and output 〈M〉 =
(
〈M,M〉poee, 〈C0〉io

)
.

GenPatch(Obf.SK, P, st): Compute the following:

1. ctr = ctr + 1.

2.
(
〈P, P 〉poee, st′

)
← POEE.GenPatch(POEE.sk, P, P, st). Update st = st′.

3. A random key Kctr for the puncturable PRF family.

4. 〈Cctr〉io ← iO
(
C[ctr,Kctr,POEE.sk]

)
, where C[i,Ki,POEE.sk] is the circuit described in Figure 5.

Output 〈P 〉 =
(
〈P, P 〉poee, 〈Cctr〉io

)
.

ApplyPatch
(
〈M〉, 〈P 〉

)
: Execute the following steps:
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1. Parse 〈M〉 =
(
〈M,M〉poee, 〈Cctr−1〉io

)
and 〈P 〉 =

(
〈P, P 〉poee, 〈Cctr〉io

)
.

2. Compute 〈Mnew,Mnew〉poee ← POEE.ApplyPatch
(
〈M,M〉poee, 〈P, P 〉poee

)
.

Output 〈Mnew〉 =
(
〈Mnew,Mnew〉poee, 〈Cctr〉io

)
.

Evaluate
(
〈M〉, x

)
: Execute the following steps:

1. Parse 〈M〉 = (〈M,M〉poee, 〈Ci〉io).

2. Compute 〈x, i, 0〉poee ← 〈Ci〉io.

3. Compute y ← POEE.Decode
(
〈M,M〉poee, 〈x, i, 0〉poee

)
Output y.

This completes the description of pO.

Theorem 14. Let C = {Cλ}λ∈N, C̃ = {C̃λ}λ∈N, where Cλ, C̃λ each consist of circuits with input
length λ. If PRF is a ε

2`(λ)
-secure puncturable PRF, POEE is a ε′

2`(λ)
-secure patchable OEE scheme

and iO is a ε′′

2`(λ)
-secure indistinguishability obfuscator for C̃`(λ), then pO is a δ-secure patchable

indistinguishability obfuscator for Cλ, where ε, ε′, ε′′, δ ≤ 1
p(λ) with p being a polynomial.

We start by arguing that pO satisfies the correctness and efficiency properties. We then proceed
to prove its security.

Correctness. Let M0 ∈ M be a TM that we want to obfuscate and let P1, . . . , PL ∈ P be a
sequence of patches for L > 0. We argue correctness of pO for L = 1. The proof extends in a
straightforward manner to the case when L > 1.

We first argue that 〈M0〉 =
(
〈M0,M0〉poee, 〈C0〉io

)
is functionally equivalent to M0. To eval-

uate
(
〈M0,M0〉poee, 〈C0〉io

)
on any input x, the evaluator first computes 〈C0〉io(x). From the

correctness of iO, it follows that the output of 〈C0〉io(x) = C[0,K0,POEE.sk](x). From the definition
of C[0,K0,POEE.sk](·), the correctness of the puncturable PRF scheme and the correctness of the
POEE scheme, it follows that 〈C0〉io(x) = 〈x, 0, 0〉poee. In the second step, the evaluator com-

putes y ← POEE.Decode
(
〈M0,M0〉poee, 〈x, 0, 0〉poee

)
. From the correctness of the POEE scheme,

it follows that y = M0(x), as required.

Now consider the encoded patch 〈P1〉 =
(
〈P1, P1〉poee, 〈C1〉io

)
. Let M1 = Update(M0, P1).

We argue that ApplyPatch
(
〈M0〉, 〈P1〉

)
is functionally equivalent to M1. Recall that ApplyPatch(

〈M0〉, 〈P1〉
)

outputs 〈M1〉 =
(
〈M1,M1〉poee, 〈C1〉io

)
where 〈M1,M1〉poee = POEE.ApplyPatch

(
〈M0,M0〉poee, 〈P1, P1〉poee

)
. From the correctness of iO, it follows that the output of 〈C1〉io(x) =

C[1,K1,POEE.sk](x). Further, from the definition of C[1,K1,POEE.sk](·), the correctness of the punc-
turable PRF scheme and the correctness of the POEE scheme, it follows that for any input x,

〈C1〉io(x) = 〈x, 1, 0〉poee. Now, let y ← POEE.Decode
(
〈M1,M1〉poee, 〈x, 1, 0〉poee

)
. Then, it follows

from the correctness of the POEE scheme that y = M1(x), as required.
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Efficiency. The efficiency properties of pO follow from the efficiency of POEE. Recall that for

any patch P ∈ P, 〈P 〉 =
(
〈P, P 〉poee, 〈Ci〉io

)
for some index i > 0. From the efficiency of POEE, it

follows that |〈P, P 〉poee| = poly(λ, |P |). Further, from the efficiency of iO, we have that |〈Ci〉io| =
poly(λ, |C[i,Ki,POEE.sk]|). Let I denote the input length bound for the TM family M. Then, from
the description of C[i,Ki,POEE.sk], it follows that |〈Ci〉io| = poly(λ, I). Putting it all together, we
have that 〈P 〉 = poly(λ, |P |, I), as required.

7.2 Proof of Security

Let M0,M1 ∈ M and P 1
0 , P

1
1 , . . . , P

L
0 , P

L
1 ∈ P be the adaptive queries made by the adversary in

the adaptive security game such that:

• M0 and M1 are functionally equivalent and |M0| = |M1|.

• For every i ∈ [L], M i
0 = Update(M i−1

0 , P i0) and M i
1 = Update(M i−1

1 , P i1) are functionally
equivalent and |M0

i | = |M1
i |, where M0

0 = M0 and M0
1 = M1.

For simplicity, we assume that T = 2I is the total number of inputs to every M i
0 and M i

1.
7 We

now prove ε-security of pO, where ε = advme
poee + T ·

(
advPRF (λ) + adviO (λ) + advebpoee (λ)

)
, ignoring

multiplicative factors of O(L). Here advme
poee denotes the advantage of an adversary in the indistin-

guishability of machine encoding experiment for POEE. Similarly, advebpoee denotes the advantage of
an adversary in the indistinguishability of encoding bit experiment for POEE. Since punctured PRF
can be based on one-way functions and our construction of POEE is based on one-way functions and
iO for circuits, we get ε = T · poly (advOWF (λ) + adviO (λ)). Choosing advOWF (λ) and adviO (λ)

to be sub-exponentially small (s.t. advOWF (λ) + adviO (λ) ≤ negl(λ)
T ), we obtain ε = negl(λ).

We prove the security of the construction by a hybrid argument. We will consider a sequence
of five main hybrids H0, . . . ,H5 such that H0 (resp., H5) denotes the real world experiment where
the adversary is given the obfuscations of M0 and P i0 (resp., M1 and P i1).

Hybrid H0: Real world experiment where machine M0 and patches P i0 are obfuscated. The

adversary receives 〈M0〉 =
(
〈M0,M0〉poee, 〈C0〉io

)
and 〈P i0〉 =

(
〈P i0, P i0〉poee, 〈Ci〉io

)
for every i ∈ [L].

Hybrid H1: Same as H0, except that for every i ∈ {0, . . . , L}, 〈Ci〉io is now computed as

〈Ci〉io ← iO
(
C1
[i,Ki,POEE.sk0]

)
, where POEE.sk0 ← POEE.puncBit(POEE.sk, 0) and C1

[i,Ki,POEE.sk0]

is the circuit described in Figure 6.

C1
[i,Ki,POEE.sk0]

(x)

1. Compute r ← PRFKi(x‖0).

2. Compute 〈x, i, 0〉poee ← POEE.PBEncode(POEE.sk0, x) using randomness r.

3. Output 〈x, i, 0〉poee.

Figure 6: Circuit C1
[i,Ki,POEE.sk0]

.

7Our proof easily extends to the case where the total number of inputs to M i
0,M

i
1 increases with i.
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Hybrid H2: Same as H1, except that we replace the encodings 〈M0,M0〉poee and 〈P i0, P i0〉poee with
〈M0,M1〉poee and 〈P i0, P i1〉poee, respectively.

Hybrid H3: Same as H2, except that every i ∈ {0, . . . , L}, 〈Ci〉io is now computed as 〈Ci〉io ←
iO
(
C3
[i,Ki,POEE.sk1]

)
, where POEE.sk1 ← POEE.puncBit(POEE.sk, 1) and C3

[i,Ki,POEE.sk1]
is the cir-

cuit described in Figure 7.

C3
[i,Ki,POEE.sk1]

(x)

1. Compute r ← PRFKi(x‖1).

2. Compute 〈x, i, 1〉poee ← POEE.PBEncode(POEE.sk1, x) using randomness r.

3. Output 〈x, i, 1〉poee.

Figure 7: Circuit C3
[i,Ki,POEE.sk1]

.

Hybrid H4: Same as H3, except that we replace the encodings 〈M0,M1〉poee and 〈P i0, P i1〉poee with
〈M1,M1〉poee and 〈P i1, P i1〉poee, respectively.

Hybrid H5: Same as H4, except that 〈Ci〉io is now computed as 〈Ci〉io ← iO
(
C[i,Ki,POEE.sk]

)
where

C[i,Ki,POEE.sk] is the circuit described in Figure 5. This is the real world experiment where machine

M1 and patches P i1 are obfuscated.

This completes the description of the main hybrids.

Indistinguishability of H0 and H1. We show that for every i ∈ {0, . . . , L}, circuits C[i,Ki,POEE.sk]

and C1
[i,Ki,POEE.sk0]

are functionally equivalent. The indistinguishability of H0 and H1 then follows

from the security of the indistinguishability obfuscator iO.8

Circuit C[i,Ki,POEE.sk] on input x computes 〈x, i, 0〉poee using POEE.InpEncode(POEE.sk, x, 0)

while C1
[i,Ki,POEE.sk0]

computes 〈x, i, 0〉poee using POEE.PBEncode(POEE.sk0, x). From the cor-

rectness of the bit puncturing property of the POEE scheme, it follows that POEE.InpEncode(
POEE.sk, x, 0) = POEE.PBEncode(POEE.sk0, x) (note that we generate the randomness r in the
same manner in both C[i,Ki,POEE.sk] and C1

[i,Ki,POEE.sk0]
). Thus, C[i,Ki,POEE.sk] and C1

[i,Ki,POEE.sk0]

are functionally equivalent.

Indistinguishability of H1 and H2. Note that in both H1 and H2, only the punctured key
POEE.sk0 is used. Then, the indistinguishability of H1 and H2 follows from the indistinguishability
of machine encoding property of the POEE scheme.

ε′-Indistinguishability of H2 and H3. We will prove that the experiments H2 and H3 are
ε′-indistinguishable, where ε′ = T · (advPRF (λ) + adviO (λ) + advOEE1 (λ)), ignoring multiplicative
factors of O(L).

The proof of this case involves several intermediate hybrids. We describe it in Section 7.2.1.

Indistinguishability of H3 and H4. Note that in both H3 and H4, only the punctured key
POEE.sk1 is used. Then, the indistinguishability of H3 and H4 follows from the indistinguishability
of machine encoding property of the POEE scheme.

8Here, we use security for iO for L + 1 program pairs. Note that this follows in a straightforward manner from
the security of iO for one program pair by a standard hybrid argument.
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Indistinguishability of H4 and H5. The proof of this case follows in the same manner as the
proof of indistinguishability of hybrids H0 and H1. We omit the details.

Completing the proof. Combining the above claims, it follows that experiments H0 and H5

are ε-indistinguishable, where ε = advOEE2 + T · (advPRF (λ) + adviO (λ) + advOEE1 (λ)), ignoring
multiplicative factors of O(L).

7.2.1 ε′-Indistinguishability of H2 and H3

To argue ε′-indistinguishability of H2 and H3, we will consider (L + 1) · (T + 1) internal hybrids
H2:`:0, . . . ,H2:`:T , where ` ∈ {0, . . . , L}. Let x1, . . . , xT denote the T inputs, sorted in lexicographic
order, to the machines M `

0 and M `
1 , where M0

b = Mb and M i
b = Update(M i−1

b , P ib ) for b ∈ {0, 1},
i ∈ [L].

We start by describing hybrids H2:`:0 for 0 ≤ ` ≤ L.

Hybrid H2:`:0: Same as H2, except that:

• For i < `, 〈Ci〉io is computed as 〈Ci〉io ← iO
(
C2:i<`:0
[i,Ki,POEE.sk]

)
, where C2:i<`:0

[i,Ki,POEE.sk]
is described

in Figure 8.

• C2:i<`:0
[i,Ki,POEE.sk] (x)

1. Compute r ← PRFKi(x‖1).

2. Compute 〈x, i, 1〉poee ← POEE.InpEncode(POEE.sk, x, i, 1) using randomness r.

3. Output 〈x, i, 1〉poee.

Figure 8: Circuit C2:i<`:0
[i,Ki,POEE.sk]

• For i ≥ `, 〈Ci〉io is computed as 〈Ci〉io ← iO
(
C2:i≥`:0
[i,Ki,POEE.sk]

)
, where C2:i≥`:0

[i,Ki,POEE.sk]
as described

in Figure 9.

C2:i≥`:0
[i,Ki,POEE.sk] (x)

1. Compute r ← PRFKi(x‖0).

2. Compute 〈x, i, 0〉poee ← POEE.InpEncode(POEE.sk, x, i, 0) using randomness r.

3. Output 〈x, i, 0〉poee.

Figure 9: Circuit C2:i≥`:0
[i,Ki,POEE.sk]

This completes the description of H2:`:0. Next, we describe hybrids H2:`:j , where 0 ≤ ` ≤ L and
0 < j ≤ T .

Hybrid H2:`:j: Same asH2:`:j−1, except that 〈C`〉io is now computed as 〈C`〉io ← iO
(
C2:`:j

[`,K`,POEE.sk]

)
,

where C2:`:j

[`,K`,POEE.sk]
is the circuit described in Figure 10.
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C2:`:j
[`,K`,POEE.sk]

(x)

1. If x ≤ xj , then b = 1, else b = 0.

2. Compute r ← PRFK`(x‖b).

3. Compute 〈x, `, b〉poee ← POEE.InpEncode(POEE.sk, x, `, b) using randomness r.

4. Output 〈x, `, b〉poee.

Figure 10: Circuit C2:`:j

[`,K`,POEE.sk]
.

This completes the description of Hybrid H2:`:j .

For every 0 ≤ j ≤ T , we want to argue the indistinguishability of H2:`:j and H2:`:j+1. To
facilitate this, we consider another sequence of intermediate hybrids H2:`:j:1, . . . ,H2:`:j:4, where
0 ≤ j < T . We describe them below.

Hybrid H2:`:j:1: Same as H2:`:j , except that:

1. 〈C`〉io is now computed as 〈C`〉io ← iO

(
C2:`:j:1[

`,K`
xj+1

,POEE.skxj+1,`
,〈xj+1,`,0〉poee

]
)

, where:

• K`
xj+1
← PRFPunc(K`, xj+1).

• POEE.skxj+1,` ← POEE.puncInp(POEE.sk, xj+1, `).

• 〈xj+1, `, 0〉poee ← POEE.InpEncode(POEE.sk, xj+1, `, 0) using randomness r ← PRF(K`, xj+1‖0).

• Circuit C2:`:j:1[
`,K`

xj+1
,POEE.skxj+1,`

,〈xj+1,`,0〉poee
] contains the values K`

xj+1
, POEE.skxj+1,` and

〈xj+1, `, 0〉poee hardwired, and is described in Figure 11.

C2:`:j:1[
`,K`

xj+1
,POEE.skxj+1,`,〈xj+1,`,0〉poee

] (x)

(a) If x = xj+1, output 〈xj+1, `, 0〉poee.
(b) If x ≤ xj , then b = 1, else b = 0.

(c) Compute r ← PRFK`
xj+1

(x‖b).

(d) Compute 〈x, `, b〉poee ← POEE.PIEncode(POEE.skxj+1,`, x, `, b) using randomness r.

(e) Output 〈x, `, b〉poee.

Figure 11: Circuit C2:`:j:1[
`,K`

xj+1
,POEE.skxj+1,`

,〈xj+1,`,0〉poee
] (x).

2. For i 6= `, 〈Ci〉io is now computed as 〈Ci〉io ← iO

(
C2:`:j:1[

i,Ki,POEE.skxj+1,`

]
)

, where C2:`:j:1[
i,Ki,POEE.skxj+1,`

]
is the same as C2:`:j

[i,Ki,POEE.sk]
, except that it uses POEE.skxj+1,` to compute POEE input en-

codings instead of using POEE.sk.
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Hybrid H2:`:j:2: Same as H2:`:j:1, except that in the circuit C2:`:j:1[
`,K`

xj+1
,POEE.skxj+1,`

,〈xj+1,`,0〉poee
] (x),

the hardwired value 〈xj+1, `, 0〉poee ← POEE.InpEncode(POEE.sk, xj+1, `, 0) is now computed using
true randomness (as opposed to PRF generated randomness).

Hybrid H2:`:j:3: Same as H2:`:j:2, except that we now replace the hardwired value 〈xj+1, `, 0〉poee
with 〈xj+1, `, 1〉poee, where 〈xj+1, `, 1〉poee ← POEE.InpEncode(POEE.sk, xj+1, `, 1) is computed us-
ing true randomness.

Hybrid H2:j:4: Same asH2:`:j:3, except that the hardwired value 〈xj+1, `, 1〉poee ← POEE.InpEncode(
POEE.sk, xj+1, `, 1) is now computed using randomness r ← PRFK`(xj+1‖1).

This completes the description of the intermediate hybrids. We now make the following indis-
tinguishability claims:

• For 0 ≤ j < T ,

– H2:`:j ≈ H2:`:j:1

– H2:`:j:1 ≈ H2:`:j:2

– H2:`:j:2 ≈ H2:`:j:3

– H2:`:j:3 ≈ H2:`:j:4

– H2:`:j:4 ≈ H2:`:j+1

• For 0 ≤ ` < L, H2:`:T ≈ H2:`+1:0

• H2 ≈ H2:0:0

• H2:L:T ≈ H3

Finally, we will combine all these claims to argue ε′-indistinguishability of H2 and H3.

Indistinguishability of H2:`:j and H2:`:j:1. We show that the two circuits C2:`:j

[`,K`,POEE.sk]
and

C2:`:j:1[
`,K`

xj+1
,POEE.skxj+1,`

,〈xj+1,`,0〉poee
] are functionally equivalent. Further, we will also argue that for

all i 6= `, C2:`:j:1[
i,Ki,POEE.skxj+1,`

] and C2:`:j
[i,Ki,POEE.sk]

are functionally equivalent. The indistinguishability

of H2:j and H2:j:1 then follows from the security of the indistinguishability obfuscator iO.
First observe that since the punctured PRF preserves functionality under puncturing and the

POEE scheme satisfies correctness of input puncturing property, it follows that the behavior of cir-
cuits C2:`:j

[`,K`,POEE.sk]
and C2:`:j:1[

`,K`
xj+1

,POEE.skxj+1,`
,〈xj+1,`,0〉poee

] is identical on all inputs x 6= xj+1. On in-

put xj+1, circuit C2:`:j

[`,K`,POEE.sk]
outputs POEE.InpEncode(POEE.sk, xj+1, `, 0) that is computed using

randomness r ← PRFK`(xj+1‖0), while circuit C2:`:j:1[
`,K`

xj+1
,POEE.skxj+1,`

,〈xj+1,`,0〉poee
] outputs the hard-

wired value 〈xj+1, `, 0〉poee. However, it follows from the description of H2:`:j:1 that 〈xj+1, `, 0〉poee =
POEE.InpEncode(POEE.sk, xj+1, `, 0) (where randomness r as described above is used). Then, com-

bining the above, we have that the circuits C2:`:j

[`,K`,POEE.sk]
and C2:`:j:1[

`,K`
xj+1

,POEE.skxj+1,`
,〈xj+1,`,0〉poee

] are

functionally equivalent.
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Next, it follows from the correctness of input puncturing property of POEE scheme that for all
i 6= `, the behavior of circuits C2:`:j:1[

i,Ki,POEE.skxj+1,`

] and C2:`:j
[i,Ki,POEE.sk]

is identical on all inputs x.

Indistinguishability of H2:`:j:1 and H2:`:j:2. This follows immediately from the security of the
punctured PRF family used in the construction.

Indistinguishability of H2:`:j:2 and H2:`:j:3. Note that in both experiments H2:`:j:2 and H2:`:j:3,
only the punctured key POEE.skxj+1,i is used. Then, the indistinguishability of H2:`:j:2 and H2:`:j:3

follows from the indistinguishability of encoding bit property of the POEE scheme.

Indistinguishability of H2:`:j:3 and H2:`:j:4. This follows immediately from the security of the
punctured PRF family used in the construction.

Indistinguishability of H2:`:j:4 and H2:`:j+1. This follows in the same manner as the proof of
the indistinguishability of hybrids H2:`:j and H2:`:j:1. We omit the details.

Indistinguishability of H2:`:T and H2:`+1:0. The proof of this is similar to the proof of indistin-
guishability of hybrids H2:`:j and H2:`:j:1. We omit the details.

Indistinguishability of H2 and H2:0:0. Let C2:0:0
[i,Ki,POEE.sk] denote the circuits used in hybrid

H2:0:0 and let C2
[i,Ki,POEE.sk0]

denote the circuits used in hybrid H2. We will show that for every

i ∈ {0, . . . , L}, the circuits C2:0:0
[i,Ki,POEE.sk] and C2

[i,Ki,POEE.sk0]
are functionally equivalent. The indis-

tinguishability of H2:0:0 and H2 then follows from the security of the indistinguishability obfuscator
iO.

Circuit C2:0:0
[i,Ki,POEE.sk] on input x computes POEE.InpEncode(POEE.sk, x, i, 0) using random-

ness r ← PRFKi(x‖0) while C2
[i,Ki,POEE.sk1]

computes POEE.PBEncode(POEE.sk0, x, i) using ran-

domness r. From the correctness of bit puncturing property of the POEE scheme, we have
that POEE.InpEncode(POEE.sk, x, i, 0) = POEE.PBEncode(POEE.sk0, x, i). Thus, C2:0:0

[i,Ki,POEE.sk] and

C2
[i,Ki,POEE.sk0]

are functionally equivalent.

Indistinguishability of H2:L:T and H3. Let C2:L:T
[i,Ki,POEE.sk] denote the circuits used in hybrid

H2:L:T . We will show that for every i ∈ {0, . . . , L}, the circuits C2:L:T
[i,Ki,POEE.sk] and C3

[i,Ki,POEE.sk1]

are functionally equivalent. The indistinguishability of H2:L:T and H3 then follows from the security
of the indistinguishability obfuscator iO.

Circuit C2:L:T
[i,Ki,POEE.sk] on input x computes POEE.InpEncode(POEE.sk, x, i, 1) using random-

ness r ← PRFKi(x‖1) while C3
[i,Ki,POEE.sk1]

computes POEE.PBEncode(POEE.sk1, x, i) using ran-

domness r. From the correctness of bit puncturing property of the POEE scheme, we have
that POEE.InpEncode(POEE.sk, x, i, 1) = POEE.PBEncode(POEE.sk1, x, i). Thus, C2:L:T

[i,Ki,POEE.sk] and

C3
[i,Ki,POEE.sk1]

are functionally equivalent.

Completing the proof of ε′-Indistinguishability of H2 and H3. Combining the above claims,
we can first establish that H2:`:j and H2:`:j+1 are ε′′-indistinguishable, where ε′′ = advPRF (λ) +
adviO (λ) + advebpoee (λ), ignoring constant multiplicative factors. This is true for every j such that
0 ≤ j < T . Iterating over all values of j, we obtain that H2:`:0 and H2:`:T are T ·ε′′-indistinguishable.
Further, iterating over all values of ` s.t. 0 ≤ ` ≤ L, and using that H2:`:T ≈ H2:`+1:0, we
have that H2:0:0 and H2:L:T are T · ε′′-indistinguishable, ignoring multiplicative factor of O(L).
Finally, using that H2 ≈ H2:0:0 and H2:L:T ≈ H3, we have that H2 and H3 are ε′-indistinguishable,
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where ε′ = T ·
(
advPRF (λ) + adviO (λ) + advebpoee (λ)

)
, ignoring multiplicative factors of O(L). This

completes the proof.

8 Multi-Program Patchable Obfuscation

The concept of multi-program patchable obfuscation allows for obfuscating a priori unbounded
number of programs in such a way that it is possible to issue a secure patch, whose size is inde-
pendent of the number of programs obfuscated, that updates all the obfuscated programs at once.
This is unlike the setting of single-program patchable obfuscation defined in Section 4, where the
secure patch is issued for a specific program.

Syntax. A multi-program patchable obfuscation scheme, defined for a class of Turing machines
M and a family of patches P, consists of a tuple of probabilistic polynomial-time algorithms
mp.pO = (Setup,Obfuscate,GenPatch,ApplyPatch,Evaluate) which are defined below. We denote
the update algorithm associated with (M,P) to be Update.

• Setup, Setup(1λ): It takes as input the security parameter λ and outputs the secret key
Obf.SK.

• Obfuscate, Obfuscate(Obf.SK,M): It takes as input the secret key Obf.SK and a TM M ∈
M. It outputs an obfuscated TM 〈M〉.

• Secure Patch Generation, GenPatch(Obf.SK, P ): It takes as input the secret key Obf.SK
and a description of a patch P ∈ P. It outputs a secure patch 〈P 〉.

• Applying Patch, ApplyPatch
(
〈M〉, 〈P 〉

)
: It takes as input an obfuscated TM 〈M〉 and a

secure patch 〈P 〉. It outputs an updated obfuscation 〈Mnew〉.

• Evaluation, Evaluate
(
〈M〉, x

)
: It takes as input an obfuscated TM 〈M〉 and an input x. It

outputs a value y.

Correctness. At a high level, the correctness property states that executing Update on a TM M
and a patch P is equivalent to executing ApplyPatch on the obfuscation of M and a secure patch
of P . In fact we require that this hold for multiple TMs and multiple patches.

For every Q,L > 0, any sequence of TMs M
(1)
0 , . . . ,M

(Q)
0 ∈M, sequence of patches P1, . . . , PL ∈

P, consider the following two processes. For every j ∈ {1, . . . , Q}, i ∈ {1, . . . , L}, we have:

• Obfuscate-then-Update: Compute the following: (a) Obf.SK ← Setup(1λ), (b) 〈M j
0 〉 ←

Obfuscate(Obf.SK,M j
0 ), (c) 〈Pi〉 ← GenPatch(Obf.SK, Pi), (d) 〈M j

i 〉 ← ApplyPatch
(
〈M j

i−1〉, 〈Pi〉
)

.

• Update: M j
i ← Update(M j

i−1, Pi).

We require that ∀x ∈ {0, 1}∗, ∀j ∈ [Q], ∀i ∈ [L], we have Evaluate
(
〈M j

i 〉, x
)

= M j
i (x).
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8.1 Indistinguishability-Based Security

We next give indistinguishability (IND)-style definitions for modeling the security of a patchable
obfuscation scheme. As in the case of single-program patchable obfuscation, the definition is based
on a game between the challenger and the adversary. The adversary makes TM queries and patch
queries to the challenger. One important distinction is that in this setting, the adversary can
make multiple TM queries whereas in the case of single-program obfuscation, it makes just one TM
query. There are two main ways of formalizing an IND-style definition for multi-program patchable
obfuscation:

• Adaptive security: In this notion, the adversary has to declare all the TM queries in the
beginning of the game itself. The patch queries, however, can done in an adaptive manner.

• Selective security: In this notion, the adversary has to declare all the TM queries as well
as the patch queries in the beginning of the game itself.

We formally define both the types of security notions below.

Adaptive security. We describe the experiment below.

mAdExptA(1λ, b):

1. A submits a sequence of TM pairs
(

(M1
0 ,M

1
1 ), . . . , (MQ

0 ,M
Q
1 )
)

.

2. Challenger executes the setup algorithm to obtain Obf.SK← Setup(1λ).

3. Repeat the following steps for i ∈ {1, . . . , L}, where L(λ) is chosen by A:

• A sends (P i0, P
i
1) to the challenger.

• Challenger computes 〈P ib 〉 ← GenPatch(Obf.SK, P ib ). It sends 〈P ib 〉 to A.

4. For every i ∈ {1, . . . , L}, every j ∈ {1, . . . , Q} the challenger checks if M i
i,0 ≡ M i

i,1, where

M j
i,0 ← Update(M j

i−1,0, P
i
0) and M i

i,1 ← Update(M j
i−1,1, P

i
1). If check fails then the challenger

aborts the experiment.

5. A outputs the bit b′.

Definition 14 (Adaptive security). A multi-program patchable obfuscation scheme mp.pO is said
to be adaptively secure if for any PPT adversary A, there exists a negligible function negl(·) s.t.∣∣∣Pr [0← mAdExptA(1λ, 0)

]
− Pr

[
0← mAdExptA(1λ, 1)

]∣∣∣ ≤ negl(λ)

Selective security. We first describe the experiment.

mSelExptA(1λ, b):

1. A submits a sequence of TM pairs
(

(M1
0 ,M

1
1 ), . . . , (MQ

0 ,M
Q
1 )
)

. It also submits a sequence

of patch pairs
(

(P 1
0 , P

1
1 ), . . . , (PL0 , P

L
1 )
)

.
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2. Challenger executes the setup algorithm to obtain Obf.SK ← Setup(1λ). For every j ∈
{1, . . . , Q}, it generates 〈M j

b 〉 ← Obfuscate(Obf.SK,M j
b ). For every i ∈ {1, . . . , L}, it gener-

ates 〈P ib 〉 ← GenPatch(Obf.SK, P ib ).

3. Challenger sends
(
{〈M j

b 〉}j∈[Q], {〈P ib 〉}i∈[L]
)

to A.

4. For every i ∈ {1, . . . , L}, every j ∈ {1, . . . , Q} the challenger checks if M i
i,0 ≡ M i

i,1, where

M j
i,0 ← Update(M j

i−1,0, P
i
0) and M j

i,1 ← Update(M j
i−1,1, P

i
1). If check fails then the challenger

aborts the experiment.

5. A outputs the bit b′.

Definition 15 (Selective security). A multi-program patchable obfuscation scheme mp.pO is said
to be selectively secure if for any PPT adversary A, there exists a negligible function negl(·) s.t.∣∣∣Pr [0← mSelExptA(1λ, 0)

]
− Pr

[
0← mSelExptA(1λ, 1)

]∣∣∣ ≤ negl(λ)

Overview of Construction of Multi-Program PO. The construction of multi-program patch-
able obfuscation is divided into three main steps:

1. Step I: Stateless PABE. We first consider a notion, termed as stateless patchable ABE. This
is a special class of PABE schemes (Section 5). The important aspect about this notion is that
no state is maintained during the patching process and in particular, the patch generation
algorithm only takes as input the secret key and the patch. This is the unlike the PABE
scheme, where the state is also part of the input.

To construct this primitive, we build upon the construction of PABE in Section 5.1 and
along the way using adaptive garbled TMs with persistent memory (Definition 3). Also, our
construction of stateless PABE achieves adaptive security.

2. Step II: Stateless PABE to Multi-Program POEE. We generalize the notion of patch-
able OEE to multi-program OEE. In a multi-program OEE, the secret key can be used to
produce TM encodings with respect to multiple machines. Furthermore, the patches issued
should be applicable on all the machines. As an added feature, we also achieve a patch
generation mechanism that does not maintain state.

We build upon the construction of POEE (Section 6.1), using additional layers, to achieve
our goal of multi-program POEE.

3. Step III: Multi-Program OEE to iO. The transformation from multi-program OEE to
iO is identical to the transformation from single-program OEE to iO (Section 7). The main
challenge lies in the security analysis.

9 Stateless PABE

9.1 Syntax

A stateless PABE is a patchable ABE scheme, where no state is maintained in between the execu-
tions of the patch generation algorithms. This implies that the issued secure patch is independent
of the history of updates made so far. We formally define this notion below.
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Definition 16. A stateless patchable attribute based encryption (SPABE) scheme is a PABE
scheme, denoted by SPABE = (Setup,KeyGen,Enc,GenPatch,ApplyPatch,Dec), associated with a
TM class M equipped with (Update,P) and satisfying the following stateless property.

For every machine M0 ∈ M, sequence of patches P1, . . . , PL ∈ P, consider the following pro-
cess: (i) (SPABE.PP,SPABE.SK) ← SPABE.Setup(1λ), (ii) (SPABE.skM0 , st0) ← SPABE.KeyGen(
SPABE.SK,M0) and, (iii) for every i ∈ [L], (P̃i, sti)← SPABE.GenPatch(SPABE.SK, Pi, sti−1).

We say that SPABE satisfies the stateless property if for every i ∈ {0, . . . , L}, sti = ⊥.

In the construction of SPABE scheme, described next, we omit the argument st in the description
of the algorithms.

9.2 Construction

Overview of Construction. Our starting point is the (stateful) patchable obfuscation scheme
developed earlier. The main challenge is the following contradictory requirement: (i) for the au-
thority to “get rid of its state” and, (ii) authority to produce a patch as a function of the current
state. A naive approach to solve this problem is for the authority to delegate the storage of state
to the user who holds the attribute key. So whenever the authority wants to issue a secure patch,
it delegates the computation of the secure patch to the user. But note that this computation needs
to be hidden. A natural idea here is to use randomized encodings. While randomized encodings
(RE) is a starting step to what we want, it has scalability issues: RE is a one-time primitive and
so this process cannot be repeated for multiple patches. One approach (that does not work) is to
issue fresh randomized encodings during every execution but this would mean that the authority
computes the encoding of the state afresh every time; thus defeating the purpose of delegating this
computation.

To deal with this issue, we use a tool called garbling with persistent memory. The concept of
persistent memory is that once the evaluation of the encodings is completed, the resulting state will
still be in an encoded form. Thus enabling us to re-evaluate on the existing state. Previous litera-
ture on garbling with persistent memory mainly dealt with RAM model of computation. However,
we note that it would suffice for us to just consider garbling for Turing machines in the persistent
memory setting.

We construct a stateless PABE scheme denoted by SPABE = (Setup,KeyGen,Enc,GenPatch,ApplyPatch,
Dec). We use the following primitives in our construction.

1. Patchable ABE scheme described in Section 5. We denote this scheme by pabe = (pabe.Setup,
pabe.KeyGen, pabe.Enc, pabe.GenPatch, pabe.ApplyPatch, pabe.Dec). As a consequence, we im-
port the primitives used in pabe. We recall the tools below.

• Positional accumulator scheme, Acc = (SetupAcc, EnforceRead, EnforceWrite, PrepRead,
PrepWrite, VerifyRead, WriteStore, Update). It is associated with the message space Σtape

with accumulated value of size `Acc bits.

• Iterator scheme, Itr =(SetupItr, ItrEnforce, Iterate). It is associated with the message
space {0, 1}2λ+`Acc with iterated value of size `Itr bits.

• Splittable signatures scheme, SplScheme = (SetupSpl,SignSpl,VerSpl,SplitSpl,SignSplAbo).
It is associated with the message space {0, 1}`Itr+`Acc+2λ. In addition to the above tools,
we also use a puncturable PRF family denoted by F.
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2. Garbled TMs with persistent memory, denoted by GTM = (Gen,GarbDB,GarbTM,GarbEval).

We present the algorithms of SPABE below. The class of Turing machines asssociated with SPABE
is M and we denote the update algorithm by Update.

SPABE.Setup(1λ): On input a security parameter λ in unary, it executes the setup of pabe to obtain

the key pair (pabe.PP, pabe.SK)← pabe.Setup(1λ). It also executes the garbled TM setup algorithm
to obtain k← Gen(1λ). Output the public key-secret key pair

(
SPABE.PP = pabe.PP,SPABE.SK =

(pabe.SK,k)
)
.

SPABE.KeyGen(SPABE.SK,M): On input a secret key SPABE.SK = (pabe.SK,k) and a TM M ∈
M, it executes pabe.skM ← pabe.KeyGen(pabe.SK,M). It then initializes the input tape with

DBM = M and then garbles the input tape, D̂BM ← gtm.GarbTM(k, DBM ). It outputs the

SPABE key SPABE.skM = (pabe.skM , D̂BM ).

SPABE.GenPatch(SPABE.SK, P ): On input the secret key SPABE.SK = (pabe.SK,k), a descrip-
tion of a patch P ∈ P, it computes fresh parameters of splittable signatures, accumulators and
iterators. In more detail, it executes the setup of splittable signatures scheme, (SKtm,VKtm) ←
SetupSpl(1λ). It executes the setup of the accumulator scheme to obtain the values, (PPAcc, w̃0,
s̃tore0) ← SetupAcc(1λ). It then executes the setup of the iterator scheme to obtain the public
parameters, (PPItr, v0)← SetupItr(1λ). It then sets pabe.PP′ = (VKtm,PPAcc, w̃0, s̃tore0,PPItr, v0).

Pick a random string r ← {0, 1}poly(λ). It then computes a garbling of the program Prg by exe-

cuting P̂rg← gtm.GarbTM(k,Prg[P, pabe.PP′,SKtm, r]) where Prg[P, pabe.PP′, SKtm, r] is described
in Figure 12.

Finally it outputs the patch (P, P̂rg, pabe.PP′) and the new public key SPABE.PP′ = pabe.PP′.

Prg

Input: Database DBM
Hardwired Values: (P, pabe.PP′,SKtm, r)

1. Parse DBM as machine M .

2. Generate the TM M ′ by updating M using P ,i.e., M ′ ← Update(M,P ). Update the input tape to be
M ′.

3. Set pabe.SK′ = (pabe.PP′,SKtm). Execute pabe.KeyGen(pabe.SK′,M ′; r) to obtain pabe.skM ′ . Recall
that pabe.skM ′ is of the form (M ′, σM ′).

4. Output σM ′ .

Figure 12: Description of Prg.

SPABE.ApplyPatch(SPABE.skM , P̃ ): On input an SPABE key SPABE.skM =
(
pabe.skM = (M,σM ),

D̂BM
)

and a secure patch P̃ = (P, P̂rg, pabe.PP′), it first runs the update algorithm M ′ ←
Update(M,P ). Then it executes the garbled TM evaluation algorithm. That is, it generates

(σM ′ , D̂BM ′)← gtm.GarbEval(P̂rg, D̂BM ). Note that σM ′ is the output of the garbled TM evalua-

tion. And, D̂BM ′ is the encoding of the input tape initialized with the value M ′.

60



Set pabe.skM ′ = (M ′, σM ′). Output the updated attribute key SPABE.skM ′ = (pabe.skM ′ ,

D̂BM ′).

SPABE.Enc(SPABE.PP, x,msg): On input the (possibly updated) public parameters SPABE.PP =
pabe.PP, attribute x ∈ {0, 1}∗ and message msg ∈ MSG, it generates pabe.CT(x,msg) ← pabe.Enc(
pabe.PP, x,msg). It outputs a ciphertext SPABE.CT(x,msg) = pabe.CT(x,msg).

SPABE.Dec(SPABE.skM , SPABE.CT(x,msg)): On input an ABE key SPABE.skM = (pabe.skM , M̂)

and ciphertext SPABE.CT(x,msg) = pabe.CT(x,msg), it executes the decryption algorithm out ←
pabe.Dec(pabe.skM , pabe.CT(x,msg)). Output out.

We now argue the correctness and the security properties.

Correctness. Consider a TM M ∈M. Consider a sequence of patches P1, . . . , PL ∈ P. Consider
the following process:

• (pabe.PP, pabe.SK)← pabe.Setup(1λ)

• (pabe.skM , st0)← pabe.KeyGen(pabe.SK,M)

• for i ∈ [L], P̃i ← pabe.GenPatch(pabe.SK, Pi)

Now, let (pabe.sk′M , D̂BM ) be the initial attribute key of M in the stateless PABE scheme SPABE.
Let the evaluation of the garbled encodings in the ith phase corresponding to patch Pi result in the

output P̃ ′i . By inspection it follows that the following two distributions are identical:

1.
{

(pabe.skM , P̃1, . . . , P̃L)
}

2.
{

(pabe.sk′M , P̃
′
1, . . . , P̃

′
L)
}

Combining the above observation with the correctness of pabe it follows that the scheme SPABE is
correct.

Theorem 15. Assuming the security of garbled TMs GTM and patchable ABE scheme (Section 5),
the scheme SPABE is secure.

Proof. We reduce the security of the stateless PABE scheme to the security of our PABE scheme.
We take the help of GTM to achieve this. First, we simulate the TM encoding that is part of all
the patches and this can be done using the simulator of GTM. And once we do this, we now can
reduce the security of our construction to the security of pabe.

Let A be a PPT adversary in the security experiment of stateless PABE.

Hyb1: This corresponds to the real experiment. To recall: the adversary first specifies the machine
M , attribute x, message pair (msg0,msg1) and index i as part of the first message. The challenger
is supposed to provide him the ABE key of M . The challenge ciphertext is not generated yet.
Then there is the patch query phase when the adversary submits a patch query and in returns a
secure patch along with new public parameters. Only in the ith phase, the challenger also sends
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a challenge ciphertext, that is generated using the ith parameters and msgb, where b is picked at
random. In the end, A guesses b.

Hyb2: Recall that the secure patches in the previous hybrid are essentially garbled TM encodings.
Also, the ABE key is a garbled input encoding. In this hybrid, we simulate the garbled encodings.
To be precise, we design our simulator Sim as follows. Our simulator internally executes the

simulator S̃im = (S̃im1, S̃im2) of GTM.

1. Sim picks a bit b at random.

2.
(
M,x, (msg0,msg1), i

)
← A(1λ)

3. Sim generates SPABE parameters (SPABE.PP = pabe.PP,SPABE.SK = (pabe.SK,k)) ←
SPABE.Setup(1λ). Note that the GTM key k will never be used. It first generates a PABE

key of M using pabe.SK; pabe.skM . It then generates (stGTM, D̂Bideal) ← Sim1(1
λ, 1|M |). It

then sends across (D̂Bideal, pabe.skM ) to A.

4. The following is repeated polynomially many times:

• A sends patch Pi to Sim.

• Sim samples fresh parameters (pabe.PPi,SK
i
tm). It also samples fresh randomness ri.

Set Prgi = Prg[Pi, pabe.PPi,SK
i
tm, ri]. Compute yi ← Prgi(Mi−1), where Mi−1 is the

updated machine. Execute (P̂ ideal
i , stGTM)← Sim2(stGTM, yi, 1

|Prgi|).

• Sim sends across P̂ ideal
i to A.

5. b′ ← A(P̂ ideal
` ).

The output of this hybrid is b′.
The indistinguishability of Hyb1 and Hyb2 follows from the adaptive security of GTM.

Hyb3,c for c ∈ {0, 1}: Instead of the Sim generating Prg[Pi, pabe.PPi, SK
i
tm, ri], it gets the output

signature σi from the external challenger of the pabe scheme. The external challenger is also
responsible for generating the ABE public parameters and the challenge ciphertext.

In more detail, upon receiving the first message of A, Sim forwards this message to pabe. In
return it receives public parameters and the attribute key which is forwarded to A. During the
patch query phase, the patch Pi from A is forwarded to pabe’s challenger. In response, Sim receives
the signature along with fresh parameters. That is, in the ith phase, it receives (Pi, σi). Sim, as in
the previous hybrid, using this signature σi simulates the program encoding and sends this encoding
along with the patch and the public parameters to A. Finally, the challenge ciphertext is received
by Sim from the external challenger. If the challenger uses the bit b to choose which message to
encrypt. If c = 0, it picks a random bit b and chooses the bth bit to encrypt. Otherwise, it uses the
0th message to encrypt.

The output of this hybrid is the output of A.

The hybrids Hyb2 and Hyb3,0 are identically distributed. The indistinguishability of Hyb3,0 and
Hyb3,1 follows from the security of the underlying pabe scheme.
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Note that at Hyb3,1, the secret challenge bit is information-theoretically hidden from A. By
computational indistinguishability of consecutive hybrids, this means thatA can guess the challenge
bit with probability 1/2 + negl(λ) in Hyb1. This completes the proof.

Instantiating the garbled TMs scheme (Section 2.5) and the patchable ABE scheme (Section 5),
we get the following corollary.

Corollary 3. Let λ ∈ N be a sufficiently large security parameter. Assuming the existence of ε
2λ

-

indistinguishability obfuscation and ε′

2λ
-secure decisional Diffie-Hellman assumption, there exists a

δ-secure stateless PABE scheme, where ε, ε′, δ ≤ 1
p(λ) , for some polynomial p.

10 Multi-program POEE

Syntax. We describe the syntax of a multi-program patchable oblivious evaluation encoding
(mpPOEE) scheme mpOEE. It is defined for a class of Turing machinesM and a family of patches
P. To define this primitive, we make use of the abstraction of basic POEE (BPOEE) scheme
described in Section 6 (Definition 10). A multi-program patchable obfuscation scheme is also a
BPOEE scheme but it has additional algorithms, similar to the POEE scheme (for the single
program case) as described next.

We define four helper algorithms.

• mpOEE.puncInp(sk, x, i,mid): It takes as input a secret key sk, input x ∈ {0, 1}∗, index i and
machine id mid. It outputs a punctured key skx,i,mid.

• mpOEE.PIEncode(skx,i,mid, x
′, i′,mid′, b): It takes as input a punctured secret key skx,i,mid, an

input x′, index i′, machine id mid′ and a bit b s.t. (x, i,mid) 6= (x′, i′,mid′). It outputs an
input encoding 〈x′, i′,mid′, b〉.

• mpOEE.puncBit(sk,mid, b): It takes as input a secret key sk, machine id mid and an input bit
b. It outputs a key skmid,b.

• mpOEE.PBEncode(skb, x, i,mid): It takes as input a key skmid,b, an input x, an index i and a
machine id mid. It outputs an input encoding 〈x, i,mid, b〉.

We associate the above scheme with correctness and security properties as described below.

Correctness. We associate a mpPOEE scheme with the following properties:

1. Correctness of Input Puncturing: For all Q ≥ 1, L ≥ 0, every M1
0 ,M

1
1 , . . . ,M

Q
0 ,M

Q
1 ∈ M,

patch sequence P 1
0 , P

1
1 , . . . , P

L
0 , P

L
1 ∈ P, every x∗, x′ ∈ {0, 1}∗, i∗, i′ ≤ L and j∗, j′ ≤ Q s.t.

(x∗, i∗, j∗) 6= (x′, i′, j′) and b ∈ {0, 1},

mpOEE.Decode
(
〈M j′

i′,0,M
j′

i′,1〉, 〈x
′, i′, j′, b〉

)
= M j′

b,i′(x
′),

where for every 0 ≤ i ≤ i′:

• sk← mpOEE.Setup(1λ),
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•
(
〈M j′

0 ,M
j′

1 〉
)
← mpOEE.TMEncode(sk,M j′

0 ,M
j′

1 ),

•
(
〈P i0, P i1〉

)
← mpOEE.GenPatch(sk, P i0, P

i
1),

• 〈M j′

0,i,M
j′

1,i〉 ← mpOEE.ApplyPatch
(
〈M j′

0,i−1,M
j′

1,i−1〉, 〈P i0, P i1〉
)

,

• 〈x′, i′, j′, b〉 ← mpOEE.PIEncode
(
skx∗,i∗,j∗ ← puncInp(sk, x∗, i∗, j∗), x′, i′, j′, b

)
,

• M j′

b,i ← Update(M j′

b,i−1, P
i
0).

2. Correctness of Bit Puncturing: For all Q ≥ 1, L ≥ 0, every M1
0 ,M

1
1 , . . . ,M

Q
0 ,M

Q
1 ∈M, patch

sequence P 1
0 , P

1
1 , . . . , P

L
0 , P

L
1 ∈ P, x ∈ {0, 1}∗, machine id j ∈ [Q] and b ∈ {0, 1},

mpOEE.Decode
(
〈M j

0,L,M
j
1,L〉, 〈x, L, j, b〉

)
= M j

b,L(x)

where for i ∈ {1, . . . , L}:

• sk← mpOEE.Setup(1λ),

•
(
〈P i0, P i1〉

)
← mpOEE.GenPatch(sk, P i0, P

i
1),

• 〈M j
0,i,M

j
1,i〉 ← POEE.ApplyPatch

(
〈M j

0,i−1,M
j
1,i−1〉, 〈P i0, P i1〉

)
,

• 〈x, L, j, b〉 ← mpOEE.PBEncode(mpOEE.puncBit (sk, b) , x, L, j),

• M j
b,i ← Update(M j

b,i−1, P
i
b ).

Indistinguishability of Encoding Bit. We describe security of encoding bit as a multi-stage
game between an adversary A and a challenger.

• Setup: A chooses a sequence of Turing machine pairs (M1
0 ,M

1
1 , . . . ,M

Q
0 ,M

Q
1 ) ∈ M such

that |M j
0 | = |M j

1 |, an input x, an index i ≥ 0 and a machine id mid. A sends the tuple(
{M j

0 ,M
j
1}j∈[Q], x, i,mid

)
to the challenger.

The challenger chooses a bit b ∈ {0, 1} and computes the following: (a) sk = K ← mpOEE.Setup(

1λ), (b) for j ∈ [Q],
(
〈M j

0 ,M
j
1 〉
)
← mpOEE.TMEncode(sk,M j

0 ,M
j
1 ), (c) skx,i,mid ← mpOEE.puncInp(

sk, x, i,mid)(d) 〈x, i,mid, b〉 ← mpOEE.InpEncode(sk, x, i,mid, b). It sends
(
{〈M j

0 ,M
j
1 〉}j∈[Q],

skx,i,mid, 〈x, i,mid, b〉
)

to A:

• Patch Query phase: The following is repeated polynomially many times:

– A chooses two patches P i0, P
i
1 ∈ P and sends them to the challenger.

– The challenger computes
(
〈P i0, P i1〉

)
← mpOEE.GenPatch(sk, P i0, P

i
1). It sends 〈P i0, P i1〉

to A.

• Guess: A outputs a bit b′ ∈ {0, 1}.

A is required to choose his queries s.t. Mmid
0,i (x) = Mmid

1,i (x), where Mmid
c,i ← Update(Mmid

c,i−1, P
i
c) for

c ∈ {0, 1}. The advantage of A in this game is defined as advA = Pr[b′ = b]− 1
2 .

Definition 17 (Indistinguishability of encoding bit). A mpPOEE scheme satisfies indistinguisha-
bility of encoding bit if there exists a negligible function negl(·) such that for every PPT adversary
A in the above security game, advA = negl(λ).
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Indistinguishability of Machine Encoding. We describe security of machine encoding as a
multi-stage game between an adversary A and a challenger.

• Setup: A chooses a sequence of Turing machine pairs (M1
0 ,M

1
1 , . . . ,M

Q
0 ,M

Q
1 ) ∈M such that

|M j
0 | = |M j

1 |, j ∈ [Q] and a bit c ∈ {0, 1}. A sends the tuple
(
{M j

0 ,M
j
1}j∈[Q],mid, c

)
to the

challenger.

The challenger chooses a bit b ∈ {0, 1} and computes the following: (a) sk← mpOEE.Setup(1λ),

(b)
(
〈TMj

1,TM
j
2〉
)
← mpOEE.TMEncode(sk,TMj

1,TM
j
2), where TMj

1 = Mmid
0 ,TMj

2 = Mmid
1⊕b

if c = 0 and TMj
1 = M j

0⊕b,TM
j
2 = M j

1 otherwise, and (c) skb ← mpOEE.puncBit(sk,mid, b).
Finally, it sends the following tuple to A:(

{〈TMj
1,TM

j
2〉}j∈[Q], skb

)
.

• Patch Query phase: The following is repeated polynomially many times:

– A chooses two patches P i0, P
i
1 ∈ P and sends them to the challenger.

– The challenger computes
(
〈PTi1,PTi2〉

)
← mpOEE.GenPatch(sk,PTi1,PT

i
2), where PTi1 =

P i0,PT
i
2 = P i1⊕b if c = 0 and PTi1 = P i0⊕b,PT

i
2 = M i

1 otherwise. It sends 〈PTi1,PTi2〉 to
A.

• Guess: A outputs a bit b′ ∈ {0, 1}.

The advantage of A in this game is defined as advA = Pr[b′ = b]− 1
2 .

Definition 18 (Indistinguishability of machine encoding). An mpPOEE scheme satisfies indistin-
guishability of machine encoding if there exists a negligible function negl(·) such that for every PPT
adversary A in the above security game, advA = negl(λ).

We now formally define a mpPOEE scheme below.

Definition 19. An mpPOEE scheme is a basic POEE scheme and in addition is equipped with the
algorithms (puncInp,PIEncode, puncBit,PBEncode). It satisfies the correctness of input puncturing
and bit puncturing properties. It also satisfies the indistinguishability of encoding bit (Definition 17)
and indistinguishability of machine encoding (Definition 18).

10.1 Construction of Multi-program POEE

We present a construction of multi-program POEE below. We build upon the construction of
(single-program) POEE constructed in Section 6.1. This is done in two main steps:

1. We first instantiate the two-outcome PABE scheme in the construction of POEE to be stateless
PABE that we define next. We observe that the resulting POEE scheme would also be
stateless. Meaning that the the TM encoding and the generation patch algorithms in the
POEE scheme output st = ⊥.
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2. In the next step, we show how to go generically from a stateless POEE to a multi-program
POEE. In a stateless POEE, a unique key is used for encoding every machine and also its
subsequent patches. Similarly, the issued input encodings work only against the associated
machine encodings. In order to be able to make the patch encodings and the input encodings
universal, we introduce, respectively, patch encoders and input encoders. A patch encoder is
a succinct way of encoding patches for multiple machines. Similarly, an input encoder is also
a succinct representation of multiple input encodings. We explain the implementation details
of the encoders in the construction below.

Stateless Two-outcome PABE. One of the ingredients we use in our construction of multi-
program POEE is a version of two-outcome PABE defined in Section 5.3 where the patching
algorithms do not maintain any state in between executions. The formal definition is given below.

Definition 20. A stateless patchable attribute based encryption (2SPABE) scheme is a 2PABE
(two-outcome PABE) scheme, denoted by 2SPABE = (Setup,KeyGen,Enc,GenPatch,ApplyPatch,
Dec), associated with a TM classM equipped with (Update,P) and satisfying the following stateless
property.

For every machine M0 ∈M, sequence of patches P1, . . . , PL ∈ P, consider the following process:
(i) (2SPABE.PP, 2SPABE.SK) ← 2SPABE.Setup(1λ), (ii) (2SPABE.skM0 , st0) ← 2SPABE.KeyGen(
2SPABE.SK,M0) and, (iii) for every i ∈ [L], (P̃i, sti)← 2SPABE.GenPatch(2SPABE.SK, Pi, sti−1).

We say that 2SPABE satisfies the stateless property if for every i ∈ {0, . . . , L}, sti = ⊥.

Similar to the stateless PABE, we omit the argument st in the description of the algorithms.
The construction of stateless two-outcome PABE from stateless PABE is a replica of the con-

struction from (stateful) PABE to (stateful) two-outcome PABE described in Section 5.3. From
Corollary 3, we thus have the following theorem,

Theorem 16. Let λ ∈ N be a sufficiently large security parameter. Assuming the existence of ε
2λ

-

secure indistinguishability obfuscation and ε′

2λ
-secure decisional Diffie-Hellman assumption, there

exists a δ-secure stateless two-outcome PABE scheme, where ε, ε′, δ ≤ 1
p(λ) with p being a polynomial.

Stateless Single-Program POEE. We now instantiate the construction of (single-program)
patchable oblivious evaluation encodings described in Section 6.1 with the above stateless two-
outcome PABE scheme. We denote the resulting scheme to be POEE. We note that the re-
sulting patchable OEE scheme is stateless, meaning that the algorithms POEE.TMEncode and
POEE.GenPatch output st = ⊥. From Corollary 2, we have

Theorem 17. Assuming the existence of ε
2λ

-secure iO and ε′

2λ
-secure decisional DDH assumption,

there exists a δ-secure stateless POEE scheme, where ε, ε′, δ ≤ 1
poly(λ) .

Construction. We now move on to constructing a multi-program patchable oblivious evaluation
encodings scheme mpOEE. The class of Turing machines associated with mpOEE is M and we
denote the update algorithm by Update. The building blocks in our scheme are:

1. A fully homomorphic encryption scheme, FHE = (FHE.Setup,FHE.Eval,FHE.Enc,FHE.Dec).
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2. A (single-program) patchable OEE scheme described in Section 6.1, denoted by POEE = (
POEE.Setup,POEE.InpEncode,POEE.TMEncode,POEE.Decode). We denote the auxiliary al-
gorithms associated with POEE to be (POEE.puncInp,POEE.PIEncode,POEE.puncBit,POEE.PBEncode).
Recall that in the construction of POEE we use a (stateful) two-outcome PABE scheme. But
instead we instantiate with a stateless two-outcome PABE scheme. Observe that the resulting
scheme POEE is also stateless.

The class of Turing machines associated with POEE isM′. The classM′ is a function ofM.

We denote the update algorithm by Ũpdate(·, ·): it takes as input (FHE.pk,FHE.CT,FHE.CT′)
and executes FHE.Eval(FHE.pk,Update(·, ·),FHE.CT,FHE.CT′).

3. Indistinguishability obfuscation, denoted by iO.

4. Puncturable pseudorandom function family, denoted by F . We denote the puncture algorithm
accompanying F to be Puncture.

We describe the algorithms of mpOEE below.

mpOEE.Setup(1λ): It takes as input a security parameter λ. It samples a puncturable PRF key

K
$←− {0, 1}λ. It runs the FHE setup algorithm twice, {(FHE.pkb,FHE.skb)← FHE.Setup(1λ)}b∈{0,1}.

It outputs sk =
(
K, {FHE.pkb,FHE.skb}b∈{0,1}

)
.

mpOEE.TMEncode(sk,M0,M1): It takes as input a secret key sk =
(
K, {FHE.pkb,FHE.skb}b∈{0,1}

)
,

a pair of Turing machines M0,M1 ∈ M and does the following. It picks a machine ID, mid ←
{0, 1}λ. Evaluate the pseudorandom function, (R,KP ,Kinp)← PRF(K,mid).

Generate a POEE secret key POEE.skmid ← POEE.Setup(1λ;R). Generate ciphertexts
{
FHE.CTMb ←

FHE.Enc(FHE.pkb,Mb)
}
b∈{0,1}

. Generate a POEE TM encoding of (FHE.CTM0 ,FHE.CT
M
1 ) by com-

puting the following:

POEE.〈FHE.CTM0 ,FHE.CTM1 〉 ← POEE.TMEncode(POEE.sk,FHE.CTM0 ,FHE.CT
M
1 ;R)

Output 〈M0,M1〉 = (mid,POEE.〈FHE.CTM0 ,FHE.CTM1 〉).

mpOEE.GenPatch(sk, P0, P1): It takes as input a secret key sk = (K, {FHE.pkb,FHE.skb}b∈{0,1}) and
a pair of patches P0, P1 ∈ P. We then encrypt Pb using FHE.pkb to obtain the FHE ciphertext
FHE.CTPb , for b ∈ {0, 1}. Sample a tag τ ← {0, 1}λ. It then generates an obfuscated program,
PG ← iO(pgen[sk,FHE.CTP0 ,FHE.CT

P
1 , τ ]), where pgen is described in Figure 13. Output 〈P0,

P1〉 = PG.

mpOEE.ApplyPatch
(
〈M0,M1〉, 〈P0, P1〉

)
: It takes as input a machine encoding 〈M0,M1〉 = (mid,

POEE.〈FHE.CTM0 ,FHE.CTM1 〉) and a patch encoding 〈P0, P1〉 = PG. It then computes POEE.〈FHE.CTP0 ,
FHE.CTP1 〉 ← PG(mid). Finally, the apply-patching algorithm of POEE is executed: POEE.〈FHE.CT′M0 ,
FHE.CT

′M
1 〉 ← POEE.ApplyPatch(POEE.〈FHE.CTM0 ,FHE.CTM1 〉,POEE.〈FHE.CTP0 ,FHE.CTP1 〉). Out-

put the updated machine encoding, 〈M ′0,M ′1〉 = (mid,POEE.〈FHE.CT′M0 ,FHE.CT
′M
1 〉).
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pgen

Input: mid
Hardwired values: (sk = K),FHE.CTP0 ,FHE.CT

P
1 , τ

1. Generate the POEE secret key corresponding to this machine. First, compute (R,KP ,Kinp) ←
PRF(K,mid). Then, compute POEE.skmid ← POEE.Setup(1λ;R).

2. Generate the randomness r1 ← PRF(KP , τ). Execute POEE.〈FHE.CTP0 ,FHE.CT
P
1 〉 ←

POEE.GenPatch(POEE.skmid, st = ⊥,FHE.CTP0 ,FHE.CT
P
1 ; r1).

3. Output patch encoding POEE.〈P0, P1〉.

Figure 13: Description of Patch Generator.

mpOEE.InpEncode(sk, x, i, b): It takes as input a secret key sk = (K, {FHE.pkb,FHE.skb}b∈{0,1}), an
input x ∈ {0, 1}∗, an index i ≥ 0 and a choice bit b ∈ {0, 1}. It then computes an obfuscated
program, IG← iO(igen[sk, x, i, b]), where igen is described in Figure 17. Output IG.

igen

Input: mid
Hardwired values:

(
sk = (K, {FHE.pkb,FHE.skb}b∈{0,1})

)
, x, i, b

1. Generate the POEE secret key corresponding to this machine. First, compute (R,KP ,Kinp) ←
PRF(K,mid). Then, compute POEE.skmid ← POEE.Setup(1λ;R).

2. Generate the randomness r2 ← PRF
(
Kinp, (x, i, b)

)
.

3. Execute POEE.〈x, i, b〉 ← POEE.InpEncode(POEE.skmid, Ux,FHE.SKb
, i, b; r2), where Ux,FHE.skb is a TM

that takes as input FHE.CT; M ← FHE.Dec(FHE.skb,FHE.CT) and outputs M(x).

4. Output input encoding 〈x, i, b〉 = POEE.〈x, i, b〉.

Figure 14: Description of Input Encoding Generator.

mpOEE.Decode
(
〈M0,M1〉, 〈x, i, b〉

)
: It takes as input a (possibly updated) machine encoding 〈M0,

M1〉 = POEE.〈FHE.CTM0 ,FHE.CTM1 〉 and an input encoding 〈x, i, b〉 = POEE.〈x, i, b〉. It then out-
puts y ← POEE.Decode(POEE.〈FHE.CTM0 ,FHE.CTM1 〉,POEE.〈x, i, b〉).

The helper algorithms are presented next.

mpOEE.puncInp(sk, x, i,mid): It takes as input a secret key sk = (K, {FHE.pkb,FHE.skb}b∈{0,1}),
input x ∈ {0, 1}∗, index i and machine id mid. It punctures K at mid by executing Kmid ←
Puncture(K,mid). Let (R,KP ,Kinp)← PRF(K,mid).

1. It computes POEE.sk← POEE.Setup(1λ;R). It then executes POEE.sk(x,i) ← POEE.puncInp(
POEE.sk, (x, i)).

2. It punctures Kinp at points (x, i, 0) and (x, i, 1). That is, it computes K
(x,i)
inp ← PRF

(
Kinp,
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{(x, i, 0), (x, i, 1)}
)

. Note that here we are puncturing Kinp at both the points at the same

time.

Output the punctured key skx,i,mid =
(
Kmid,POEE.sk(x,i),K

(x,i)
inp , {FHE.pkb,FHE.skb}b∈{0,1}

)
.

mpOEE.PIEncode(skx,i,mid, x
′, i′,mid′, b): It takes as input a punctured secret key skx,i,mid = (Kmid,

POEE.sk(x,i),K
(x,i)
inp , {FHE.pkb,FHE.skb}b∈{0,1}), an input x′, index i′, machine id mid′ and a bit b s.t.

(x, i,mid) 6= (x′, i′,mid′). It then computes IG∗ ← iO(igenINP[sk(x,i,mid), x
′, i′, b, x, i,mid]), where

igenINP is described in Figure 15. Output IG∗.

igenINP

Input: mid′

Hardwired values: sk(x,i,mid), x
′, i′, b, x, i,mid

1. Parse sk(x,i,mid) = (Kmid,POEE.sk(x,i),K
(x,i)
inp , {FHE.pkb,FHE.skb}b∈{0,1}).

2. If mid′ 6= mid then do the following:

• Generate the POEE secret key corresponding to this machine. First, compute (R′,K ′P ,K
′
inp)←

PRF(Kmid,mid′). Then, compute POEE.skmid′ ← POEE.Setup(1λ;R′).

• Generate the randomness r′2 ← PRF
(
K ′inp, (x

′, i′, b)
)
.

• Execute POEE.〈x′, i′, b〉 ← POEE.InpEncode(POEE.skmid′ , Ux′,FHE.skb , i
′, b; r′2), where Ux′,FHE.skb is

a TM that takes as input FHE.CT; M ← FHE.Dec(FHE.skb,FHE.CT) and outputs M(x′).

3. If mid′ = mid and (x, i) 6= (x′, i′) then do the following:

• Generate the randomness r′2 ← PRF
(
K

(x,i)
inp , (x

′, i′, b)
)
.

• Execute POEE.〈x′, i′, b〉 ← POEE.InpEncode(POEE.sk(x,i), Ux′,FHE.skb , i
′, b; r′2), where Ux′,FHE.skb is

a TM that takes as input FHE.CT; M ← FHE.Dec(FHE.skb,FHE.CT) and outputs M(x′).

4. Output input encoding 〈x′, i′, b〉 = POEE.〈x′, i′, b〉.

Figure 15:

mpOEE.puncBit(sk, b): It takes as input a secret key sk = (K, {FHE.pkb,FHE.skb}b∈{0,1}) and an
input bit b. It outputs skb = (K,FHE.pk0,FHE.pk1,FHE.skb).

mpOEE.PBEncode(skb, x, i,mid): It takes as input a key skb = (K,FHE.pk0,FHE.pk1,FHE.skb), an
input x, an index i and a machine id mid. It then computes IG∗ ← iO(igenBIT[skb, x, i, b,mid]),
where igenBIT is described in Figure 16. Output IG∗.

We argue the correctness and the security properties below.

Correctness. We show that mpOEE satisfies all the three correctness properties below. But first
we establish some notation.
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igenBIT

Input: mid
Hardwired values: skb = (K,FHE.pk0,FHE.pk1,FHE.skb), x, i, b

1. Generate the POEE secret key corresponding to this machine. First, compute (R,KP ,Kinp) ←
PRF(K,mid). Then, compute POEE.skmid ← POEE.Setup(1λ;R).

2. Generate the randomness r2 ← PRF
(
Kinp, (x, i, b)

)
.

3. Execute POEE.〈x, i, b〉 ← POEE.InpEncode(POEE.skmid, Ux,FHE.SKb
, i, b; r2), where Ux,FHE.skb is a TM

that takes as input FHE.CT; M ← FHE.Dec(FHE.skb,FHE.CT) and outputs M(x).

4. Output input encoding 〈x, i, b〉 = POEE.〈x, i, b〉.

Figure 16:

Consider a pair of machines (M0,M1) ∈ M and an input x ∈ {0, 1}∗. Let (P 1
0 , P

1
1 ) . . . , (PL0 ,

PL1 ) ∈ P2. Correspondingly, we denote 〈M0,M1〉 = (mid,POEE.〈M0,M1〉) to be the TM encoding
of mpOEE and the secure patches are denoted by {〈P0, P1〉}i∈[L]. Further, we denote the input
encoding to be 〈x, i, b〉, for some i ∈ [L] and bit b. The secret key used in the computation of these
encodings is sk. We consider below different ways the input encoding could be generated.

1. Correctness of Encode, Patching and Decode: From the correctness of POEE, it follows that:

Mb,L(x)← POEE.Decode
(
POEE.〈FHE.CTM0,L,FHE.CTM1,L〉,POEE.〈Ux,FHE.skb , i, b〉

)
,

where,

• sk = (K, {FHE.pkc,FHE.skc}c∈{0,1})← mpOEE.Setup(1λ),

• POEE.skmid ← POEE.Setup(1λ;R), where (R,KP ,Kinp)← PRF(K,mid)
• FHE.CTMc,L ← FHE.Enc(FHE.pk,Mc,L), for c ∈ {0, 1}
• 〈FHE.CTM0,L,FHE.CTM1,L〉 ← POEE.TMEncode(POEE.skmid,FHE.CT

M
0,L,FHE.CT

M
1,L)

• POEE.〈Ux,FHE.skb , i, b〉 ← POEE.InpEncode(POEE.skmid, x, i, b)
• Mb,i ← Update(Mb,i−1, P

i
b ).

2. Correctness of Input Puncturing: Suppose sk(x∗,i∗,mid∗) ← mpOEE.puncInp(sk, x∗, i∗,mid∗),
where (x∗, i∗,mid∗) 6= (x, i,mid). And let IG = 〈x, i, b〉 ← mpOEE.PIEncode(skx∗,i∗,mid∗ , x, i,
mid, b). By inspection, it follows that POEE.〈x, i, b〉 ← IG(mid) is a valid POEE input en-
coding of (x, i, b). Hence, similar to the previous case, we have the output of the decode
algorithm on input encodings 〈M0,L,M1,L〉 and 〈x, i, b〉 to be Mb,L(x).

3. Correctness of Bit Puncturing: Suppose the secret key sk is punctured at bit b. And for
some x ∈ {0, 1}∗, i ∈ [L], b ∈ {0, 1}, let IG∗ ← iO(igenBIT[skb, x, i, b,mid]), where igenBIT is
described in Figure 16 and skb is a secret key punctured at b. Then IG(mid) = IG∗(mid)
which means that encoding w.r.t the bit punctured key leads to a valid input encoding and
so, the rest follows from the correctness of encode, patching and decode properties.

We argue the security properties below.

Theorem 18. From Theorem 11 and assuming the security of iO and F , we have that mpOEE
satisfies indistinguishability of encoding bit property.
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Proof. Let A be the PPT adversary in the indistinguishability of bit encoding experiment. Con-
sider the hybrids below. By presenting a sequence of hybrids, we argue that the probability that
the adversary outputs the challenge bit is negligibly close to 1/2.

Hyb1: This corresponds to the real experiment.
In this hybrid, A chooses a sequence of Turing machine pairs (M1

0 ,M
1
1 , . . . ,M

Q
0 ,M

Q
1 ) ∈ M

such that |M j
0 | = |M

j
1 |, an input x, an index i ≥ 0 and a machine id mid. A then sends the tuple(

{M j
0 ,M

j
1}j∈[Q], x, i,mid

)
to the challenger. The challenger chooses a bit b ∈ {0, 1} and computes

the following: (a) sk ← mpOEE.Setup(1λ), (b) for j ∈ [Q],
(
〈M j

0 ,M
j
1 〉
)
← mpOEE.TMEncode(sk,

M j
0 ,M

j
1 ), (c) skx,i,mid =

(
Kmid,POEE.sk(x,i),K

(x,i)
inp , {(FHE.pkc,FHE.skc)c∈{0,1}}

)
← mpOEE.puncInp(

sk, x, i,mid) (d) IG∗ = 〈x, i,mid, b〉 ← mpOEE.InpEncode(sk, x, i,mid, b). It sends
(
{〈M j

0 ,M
j
1 〉}j∈[Q],

skx,i,mid, 〈x, i,mid, b〉
)

to A.
In the patch query phase, the following is repeated polynomially many times:

• A chooses two patches P i0, P
i
1 ∈ P and sends them to the challenger.

• The challenger computes
(
〈P i0, P i1〉

)
← mpOEE.GenPatch(sk, P i0, P

i
1). It sends 〈P i0, P i1〉 to A.

In the end, A outputs b′.

Hyb2: In this hybrid, we change IG∗ = 〈x, i, b〉, which is the input encoding sent by the challenger to

A. The program IG∗ is now generated by executing iO
(
igenHYB

[
Kmid, {(FHE.pkc,FHE.skc)c∈{0,1}},

x, i, b, y
])

, where igenHYB is described in Figure 16 and Kmid is obtained by puncturing K at adver-

sarially chosen mid. Here, y = POEE.〈x, i, b〉 is the pre-computed output of
(
iO(igen[sk, x, i, b])

)
(mid).

The rest of the hybrid is same as before.
The programs igen and igenHYB are equivalent. Hence, from the security of iO, it follows that

hybrids Hyb1 and Hyb2 are computationally indistinguishable.

igenHYB

Input: mid′

Hardwired values: (Kmid, {(FHE.pkc,FHE.skc)c∈{0,1}}, x, i, b, y)

1. If mid′ = mid then output y.

2. Otherwise do the following:

• Generate the POEE secret key corresponding to this machine. First, compute (R′,K ′P ,K
′
inp)←

PRF(Kmid,mid′). Then, compute POEE.skmid′ ← POEE.Setup(1λ;R′).

• Generate the randomness r′2 ← PRF
(
K ′inp, (x

′, i′, b)
)
.

• Execute POEE.〈x, i, b〉 ← POEE.InpEncode(POEE.skmid′ , Ux,FHE.skb , i, b; r
′
2).

Figure 17: Hybrid Input Encoding Generator.

Hyb4: This time hardwire the output corresponding to the input mid in all the patches. That is, for
every patch (P0, P1) requested, generate the secure patch 〈P0, P1〉 ← iO(pgenHYB1[Kmid, x, i, b, y]),
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where pgenHYB1 is described in Figure 18. Here, y is a pre-computed value obtained by executing
y ←

(
iO(pgen[K,FHE.CTP0 ,FHE.CT

P
0 , τ ])

)
, where {FHE.CTPb }b∈{0,1} are FHE ciphertexts of P0 and

P1. The rest of the hybrid is same as before.
The programs pgen and pgenHYB1 are identical. From the security of iO, it follows that the

hybrids Hyb3 and Hyb4 are computationally indistinguishable.

pgenHYB1

Input: mid′

Hardwired values: (Kmid,FHE.CTP0 ,FHE.CT
P
1 , τ, y)

1. If mid′ = mid then output y.

2. Otherwise, do the following:

• Generate the POEE secret key corresponding to this machine. First, compute (R′,K ′P ,K
′
inp)←

PRF(Kmid,mid′). Then, compute POEE.skmid ← POEE.Setup(1λ;R′).

• Generate the randomness r1 ← PRF(KP , τ). Execute POEE.〈FHE.CTP0 ,FHE.CT
P
0 〉 ←

POEE.GenPatch(POEE.skmid, st = ⊥,FHE.CTP0 ,FHE.CT
P
0 ; r1).

• Output patch encoding 〈P0, P1〉 = POEE.〈FHE.CTP0 ,FHE.CT
P
0 〉.

Figure 18: Hybrid Patch Generator.

Hyb5: Unlike the previous hybrid, we use uniform randomness in the key generation of POEE.skmid

and this in turn is used to produce the pre-computed output y = POEE.〈x, i, b〉. In the previous
hybrid, PRF(K,mid) was instead used. The rest of the hybrid is as before. The adversary is only
given the key K punctured at mid.

From the security of puncturable PRFs, it follows that Hyb2 and Hyb3 are computationally
indistinguishable.

Hyb6: In the previous hybrid, uniform randomness was used in the generation procedure of the
secret key POEE.skmid. However, the randomness used in the encoding of y = POEE.〈x, i, b〉 was
still using PRF(Kinp, (x, i, b)), where Kinp is derived from PRF(K,mid). In this hybrid, we use
uniform randomness in the encoding of y. Similarly, even for the secure patches, we compute every
patch encoding using uniform randomness.

Even in the presence of the punctured key K
(x,i)
inp , the security of punctured PRFs imply that

the indistinguishability of Hyb2 and Hyb3.

Hyb7: In the final hybrid, we now switch from the encoding y = 〈x, i, b〉 to the encoding y = 〈x, i,
0〉. The rest of the hybrid is the same as before.

The indistinguishability of Hyb6 and Hyb7 can be reduced to the indistinguishability of bit
encoding of POEE: the reduction forwards the TM queries to the external challenger (of indistin-
guishability of bit encoding of POEE) and then the answers obtained will now be forwarded to the
receiver. For the patch queries, the reduction appropriately computes the obfuscated program with
the patches (received from the challenger) hardwired inside these programs. For the challenge input
encoding as well, it computes an obfuscated program with the received input encoding hardwired
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into it.

Theorem 19. Assuming the security of FHE, we have that mpOEE satisfies indistinguishability of
machine encoding property.

Proof Sketch. Suppose let adversary A requests for secret key punctured at bit 0. The case when
he requests for bit 1 is symmetrical. In this case, he is provided the FHE secret key FHE.sk0 and
in particular, the key FHE.sk1 is not given to A. This means that in every machine encoding of the
form 〈FHE.CTM0,j ,FHE.CTM1,j〉 (resp., 〈FHE.CTP0,i,FHE.CTP1,i〉), the plaintext messages in FHE·0,· can
be modified without the PPT adversary A noticing the change: follows from the semantic security
of FHE. This proves the theorem.

From Theorem 18 and Theorem 19, we have that the scheme mpOEE is secure. By instantiating
the underlying tools in mpOEE, we get the following theorem.

Theorem 20. Assuming the existence of ε
2λ

-secure indistinguishability obfuscation and ε′

2λ
-secure

decisional Diffie-Hellman assumption, there exists a δ-secure multi-program POEE scheme, where
ε, ε′, δ ≤ 1

p(λ) for some polynomial p.

11 From Multi-Program OEE to Multi-Program PO

We instantiate the POEE scheme in the transformation from (single-program) POEE to single-
program patchable iO in Section 7 with multi-program OEE and the resulting primitive is a multi-
program iO. However, the security analysis for the single-program setting does not immediately
work in the multi-program case. We need to adopt the security guarantees offered by the multi-
program POEE to make the security proof work. Since, the overall structure of the hybrids more
or less follows along the lines of the security proof of Section 7, we sketch the main steps.

Let
(

(M1
0 ,M

1
1 ), . . . , (MQ

0 ,M
Q
1 )
)

be the sequence of the machine pairs sent by A. Also let(
(P 1

0 , P
1
1 ), . . . , (PL0 , P

L
1 )
)

be the sequence of patch pairs adaptively queried by A.

• Step I: Challenge bit = 0. The challenger obfuscates machine M i
0, for all i ∈ [Q]. Further,

it uses P i0, for all i ∈ [L] to generate the secure patches. Note that an obfuscation of M i
0 is

a multi-program POEE encoding of (M i
0,M

i
0) and a secure patch of P j0 is a mpPOEE patch

encoding of (P j0 , P
j
0 ). The mpPOEE secret key is used to encode the inputs that will be later

decoded by the machine encodings.

• Step II: From (M0,M0) (resp., (P0, P0)) to (M0,M1) (resp., (P0, P1)). In this step, we
switch the TM encodings of the form (M0,M0) to encodings of the form (M0,M1). Similarly,
we switch the patch encodings of the form (P0, P0) to (P0, P0).

This step is performed by first substituting the mpPOEE secret key with a punctured key
that enables only encoding inputs w.r.t bit 0. Once this is done, by the indistinguishabil-
ity of machine encoding property, we can switch every machine encoding from (M i

0,M
i
0) to

(M i
0,M

i
1). Similarly this switch is also performed for the case of patch encodings.

We note that the decoding of an input encoding of x with the machine encoding (M i
0,M

i
1)

results in the output M i
0(x). In other words, M i

1 is not used in any computation in this step.
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• Step III: Switching Computation one at a time. Now, we have machine encodings
(resp., patch encodings) of the form (M i

0,M
i
1) (resp., (P j0 , P

j
1 )). In this step, we shift the

space of inputs that evaluate on M i
0 to evaluating on M i

1. Initially, the entire space of inputs
evaluate on M i

0 (this is from the previous step). One input at a time, we then shift the space
of inputs evaluating on M i

1. In the end, the entire space of inputs evaluate on M i
1.

This switching process is enabled by input puncturing. Let us illustrate with a simple example.
Consider an input x. Initially, the decoding of x and (M i

0,M
i
1) results in the evaluation of

M i
0(x). We puncture the secret key at x – this itself will not suffice and we also need to

puncture at the patch index9. Once the puncturing is done, we then can encode x to be
evaluated on M i

1. This step is possible from the security of indistinguishability of bit encoding
property.

Unlike the single-program case, we also need to puncture the secret key at the machine id.
Once we puncture the secret key at a particular machine id, we change the input encodings
for that step. We then un-puncture this secret key and then puncture it at a different machine
id and so on.

• Step IV: From (M0,M1) (resp., (P0, P1)) to (M1,M1) (resp., (P1, P1)). This is identical
to Step II, except we change the first component of (M0,M1) in the machine encoding. We
go through the same process sketched in Step II to achieve this end goal.

• Step V: Challenge bit = 1. Once the previous step is completed, we notice that the
obfuscations issued correspond to only machines M i

1 and the secure patches issued correspond
to P j1 .

12 Implications of Patchable Obfuscation

In this section, we first show how to use multi-program patchable obfuscation to construct a secret-
key functional encryption (FE) scheme for unbounded-input Turing machines. We then extend our
construction in a simple manner to obtain a secret-key multi-input functional encryption (MIFE)
scheme for functions of unbounded arity. Both of our resulting constructions rely on adaptively
secure multi-program patchable obfuscation. Furthermore, in both of our constructions, we achieve
indistinguishability security against adaptive post-ciphertext key queries, namely, where the ad-
versary first submits all the ciphertext queries and then issues function key queries in an adaptive
fashion. We refer the reader to [AS16] and [BGJS15] for formal definitions of FE for unbounded-
input Turing machines and MIFE for functions of unbounded arity, respectively.

12.1 FE for Unbounded-Input Turing Machines

Let M be any family of Turing machines that supports arbitrary length inputs. We describe a
secret-key FE scheme FE = (FE.Setup, FE.KeyGen, FE.Enc, FE.Dec) for M that achieves indis-
tinguishability security against adaptive post-ciphertext key queries. The only ingredient in our
construction is an adaptively secure multi-program patchable obfuscation scheme mp.pO = (Setup,
Obfuscate,GenPatch,ApplyPatch,Evaluate) for a Turing machine familyMmpo with associated patch
family Pmpo and update algorithm Updatempo:

9This indicates the number of patches issued so far.
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• A Turing machine TM ∈ Mmpo is of the form TM = TM[M,x] where M ∈ M and x ∈
{0, 1}∗ ∪ ∅. On any input y, TM outputs ⊥ if x = ∅. Otherwise, it computes and outputs
M(x).

• A patch P ∈ Pmpo is of the form P = P[x′] where x′ ∈ {0, 1}∗.

• The update algorithm Updatempo on input (TM[M,x], P[x′]) outputs TM′ = TM[M,x′].

We now proceed to describe FE.

• FE.Setup(1λ): On input the security parameter λ in unary, compute Obf.SK ← Setup(1λ).
Output FE.msk = Obf.SK.

• FE.KeyGen(FE.msk,M): On input FE.msk = Obf.SK and a Turing machine M ∈M, compute
〈TMM 〉 ← Obfuscate(Obf.SK,TM[M,∅]) where TM[M,∅] ∈Mmpo. Output FE.skM = 〈TMM 〉.

• FE.Enc(FE.msk, x): On input FE.msk = Obf.SK and a message x ∈ {0, 1}∗, compute 〈Px〉 ←
GenPatch(Obf.SK, P[x]) where P[x] ∈ Pmpo. Output ct = 〈Px〉.

• FE.Dec(FE.skM , ct): On input a functional key FE.skM = 〈TMM 〉 and a ciphertext ct = 〈Px〉,
compute 〈TMM ′〉 ← ApplyPatch

(
〈TMM 〉, 〈Px〉

)
. Output Evaluate

(
〈TMM ′〉, 0

)
.

Correctness. Let FE.skM = 〈TMM 〉 be a functional key for Turing machine M ∈ M where
〈TMM 〉 = Obfuscate(Obf.SK,TM[M,∅]) for TM[M,∅] ∈ Mmpo. Let ct = 〈Px〉 be a ciphertext where
〈Px〉 ← GenPatch(Obf.SK, P[x]) for P[x] ∈ Pmpo. Now, from the correctness properties of mp.pO,

it follows that ApplyPatch
(
〈TMM 〉, 〈Px〉

)
= 〈TMM ′〉 s.t. 〈TMM ′〉 is functionally equivalent to

Updatempo(TM[M,∅], P[x]) = TM[M,x]. From the definition of TM[M,x], we have that TM[M,x](0) =
M(x), as required.

Security. We give a short sketch of proof of security here. Let (x10, x
1
1), . . . , (x

n
0 , x

n
1 ) be the

ciphertext queries and M1, . . . ,Mk be the (adaptive) function key queries made by the adversary for
polynomials k = poly(λ) and n = poly(λ) in the adaptive post-ciphertext key query security game
for secret-key FE. For every i ∈ [k], let FE.skMi = Obfuscate(Obf.SK,TM[Mi,∅]) where TM[Mi,∅] ∈
Mmpo. Further, for every j ∈ [n], let ctj = GenPatch(Obf.SK, P

[xjb]
), where P

[xjb]
∈ Pmpo and b is

the challenge bit chosen by the adversary.
Now, from the requirement in the security definition of FE, we have that for every i ∈ [k],

j ∈ [n], Mi(x
j
0) = Mi(x

j
1). This implies that Update(TM[Mi,∅], P[xj0]

) and Update(TM[Mi,∅], P[xj1]
) are

functionally equivalent. The security of FE now easily follows from the security of mp.pO.

12.2 MIFE for Unbounded-Arity Functions

LetM be any family of Turing machines that supports arbitrary number of arbitrary length inputs.
We describe a secret-key MIFE scheme MIFE = (MIFE.Setup, MIFE.KeyGen, MIFE.Enc, MIFE.Dec)
forM that achieves indistinguishability security against adaptive post-ciphertext key queries. The
only ingredient in our construction is an adaptively secure multi-program patchable obfuscation
scheme mp.pO = (Setup,Obfuscate,GenPatch,ApplyPatch,Evaluate) for a Turing machine family
Mmpo with associated patch family Pmpo and update algorithm Updatempo:
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• A Turing machine TM ∈Mmpo is of the form TM = TM[M,`,x1,...,x`] where M ∈M, ` ≥ 0 and
xi ∈ {0, 1}∗. On any input y, TM outputs ⊥ if ` = 0. Otherwise, it computes and outputs
M(x1, . . . , x`).

• A patch P ∈ Pmpo is of the form P = P[x] where x ∈ {0, 1}∗.

• The update algorithm Updatempo on input (TM[M,`,x1,...,x`], P[x]) outputs TM′ = TM[M,`′,x1,...,x`′ ]

where `′ = `+ 1 and x`′ = x.

We now proceed to describe MIFE.

• MIFE.Setup(1λ): On input the security parameter λ in unary, compute Obf.SK← Setup(1λ).
Output MIFE.msk = Obf.SK.

• MIFE.KeyGen(MIFE.msk,M): On input MIFE.msk = Obf.SK and a Turing machine M ∈ M,
compute 〈TMM0〉 ← Obfuscate(Obf.SK,TM[M,0]) where TM[M,0] ∈Mmpo. Output MIFE.skM =
〈TMM0〉.

• MIFE.Enc(MIFE.msk, x): On input MIFE.msk = Obf.SK and a message x ∈ {0, 1}∗, compute
〈Px〉 ← GenPatch(Obf.SK, P[x]) where P[x] ∈ Pmpo. Output ct = 〈Px〉.

• MIFE.Dec(MIFE.skM , ct1, . . . , ct`): On input a functional key MIFE.skM = 〈TMM 〉 and an
arbitrary number of ciphertexts ct1, . . . , ct` where cti = 〈Pxi〉, compute for every i ∈ [`],

〈TMMi〉 ← ApplyPatch
(
〈TMMi−1〉, 〈Pxi〉

)
. Output Evaluate

(
〈TMM`

〉, 0
)

.

Correctness. Let FE.skM = 〈TMM0〉 be a functional key for Turing machine M ∈ M where
〈TMM0〉 = Obfuscate(Obf.SK,TM[M,0]) for TM[M,0] ∈ Mmpo. Let ct1, . . . , ct` be an arbitrary num-
ber of ciphertexts s.t. cti = 〈Pxi〉 where 〈Pxi〉 ← GenPatch(Obf.SK, P[xi]) for P[xi] ∈ Pmpo. Now,

from the correctness properties of mp.pO, it follows that for every i ∈ [L], ApplyPatch
(
〈TMMi−1〉, 〈Pxi〉

)
=

〈TMMi〉 s.t. 〈TMMi〉 is functionally equivalent to Updatempo(TM[M,i−1,x1,...,xi−1], P[xi]) = TM[M,i,x1,...,xi].
From the definition of TM[M,i,x1,...,xi], we have that TM[M,`,x1,...,x`](0) = M(x1, . . . , x`), as required.

Security. The security of the above construction can be easily argued by extending the security
proof of the single-ary FE construction.
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[LV13] Ming Li and Paul Vitányi. An introduction to Kolmogorov complexity and its applica-
tions. Springer Science & Business Media, 2013.

[NW15] Ryo Nishimaki and Daniel Wichs. Watermarking cryptographic programs against ar-
bitrary removal strategies. IACR Cryptology ePrint Archive, 2015:344, 2015.

[PF79] Nicholas Pippenger and Michael J Fischer. Relations among complexity measures.
Journal of the ACM (JACM), 26(2):361–381, 1979.

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable
encryption, and more. In Symposium on Theory of Computing, STOC 2014, New York,
NY, USA, May 31 - June 03, 2014, pages 475–484, 2014.

[Wat15] Brent Waters. A punctured programming approach to adaptively secure functional
encryption. In Advances in Cryptology - CRYPTO 2015 - 35th Annual Cryptology
Conference, Santa Barbara, CA, USA, August 16-20, 2015, Proceedings, Part II, pages
678–697, 2015.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets. In Foundations of
Computer Science, 1986., 27th Annual Symposium on, pages 162–167. IEEE, 1986.

79


	Introduction
	Our Results
	Our Techniques

	Preliminaries
	Turing Machines
	Patching Turing Machines
	Puncturable Pseudorandom Functions
	Indistinguishability Obfuscation
	Garbled TMs with Persistent Memory
	Security


	Technical Guide
	Single-Program Patchable Obfuscation
	Syntax
	Indistinguishability-Based Security

	Patchable Attribute-based Encryption
	Construction
	Security
	Two-Outcome PABE for TMs
	Definition
	Construction


	Patchable Oblivious Evaluation Encodings
	Construction
	Proof of Correctness
	Proof of Security

	From POEE to Single Program Patchable Obfuscation
	Construction
	Proof of Security
	'-Indistinguishability of H2 and H3


	Multi-Program Patchable Obfuscation
	Indistinguishability-Based Security

	Stateless PABE
	Syntax
	Construction

	Multi-program POEE
	Construction of Multi-program POEE

	From Multi-Program OEE to Multi-Program PO
	Implications of Patchable Obfuscation
	FE for Unbounded-Input Turing Machines
	MIFE for Unbounded-Arity Functions


