
Patchable Indistinguishability Obfuscation:

iO for Evolving Software

Prabhanjan Ananth∗ Abhishek Jain† Amit Sahai‡

Abstract

In this work, we introduce patchable indistinguishability obfuscation: our notion adapts the
notion of indistinguishability obfuscation (iO) to a very general setting where obfuscated soft-
ware evolves over time. We model this broadly by considering software patches P as arbitrary
Turing Machines that take as input the description of a Turing Machine M , and output a new
Turing Machine description M ′ = P (M). Thus, a short patch P can cause changes everywhere
in the description of M and can even cause the description length of the machine to increase by
an arbitrary polynomial amount. We further considermulti-program patchable indistinguisha-
bility obfuscation where a patch is applied not just to a single machine M , but to an unbounded
set of machines M1, . . . ,Mn to yield P (M1), . . . , P (Mn).

We consider both single-program and multi-program patchable indistinguishability obfusca-
tion in a setting where there are an unbounded number of patches that can be adaptively chosen
by an adversary. We show that sub-exponentially secure iO for circuits and sub-exponentially
secure re-randomizable encryption schemes1 imply single-program patchable indistinguishability
obfuscation; and we show that sub-exponentially secure iO for circuits and sub-exponentially
secure DDH imply multi-program patchable indistinguishability obfuscation.

At the our heart of results is a new notion of splittable iO that allows us to transform any
iO scheme into a patchable one. Finally, we exhibit some simple applications of patchable
indistinguishability obfuscation, to demonstrate how these concepts can be applied.
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1 Introduction

Program obfuscation is the process of making a program “unintelligible” to any polynomial-time
entity while preserving its functionality. A formal study of program obfuscation was initiated more
than a decade ago in the works of [Had00, BGI+12]. In the recent years, this research area has seen
renewed activity with the emergence of candidate constructions [GGH+13] for a type of general-
purpose program obfuscation called indistinguishability obfuscation. This notion has proven to be
both extremely useful and the most plausible of existing notions of program obfuscation.

A major limitation of existing notions of program obfuscation is that they only consider “static”
programs that do not change with time. In reality, however, programs are rarely changeless. We
typically alter programs over time, with patches (a.k.a updates) causing the programs to grow and
vary, in response to demands for greater or new functionality. Can program obfuscation be adapted
to deal with this reality? Specifically, can we obfuscate programs that evolve over time? The central
intellectual and theoretical focus of this work is to answer this question.

Obfuscation for Evolving Software. A trivial solution to obfuscating evolving software would
be to simply apply the obfuscator afresh to each updated version of a particular program. For
example, to modify an obfuscation of a program M , the obfuscator may simply release a fresh
obfuscation of M ′ where M ′ is the patched version of M . Note, however, that in this solution, the
total communication complexity is at least |M | + |M ′|. In particular, this is the case even if the
difference between the programs M and M ′ can be described in the form of a small patch P . In
contrast, if M was not obfuscated, then we could modify it by simply communicating the patch P
to a user, yielding a total communication complexity of only |M | + |P |. Our goal is to develop a
mechanism for program obfuscation that approximately preserves this communication complexity.

A bit more precisely, we define a notion of patchable obfuscation where, informally, there are
four algorithms:

• Obf(M ; r) taking as input a program M , and outputting an obfuscated program 〈M〉, using
randomness r.

• GenPatch(P ; r, r′) taking as input a patch P , and outputting an encoded patch 〈P 〉, using a
combination of the original randomness r and new randomness r′.

• AppPatch (〈M〉, 〈P 〉) taking as input an obfuscated program 〈M〉 and a patch encoding 〈P 〉,
and outputting an obfuscated patched program 〈M ′ = P (M)〉.
• Eval (〈M〉, x), taking as input an obfuscated program 〈M〉 and an input x, and outputting

the value y = M(x).

The key efficiency requirement is that the size of a patch encoding should not depend on the
size of the original program M . Specifically, we want that |〈P 〉| = poly(|P |, λ), where λ is the
security parameter.

Beyond this basic efficiency requirement, we also discuss some other important considerations
w.r.t. patchable obfuscation.

I. No restriction on patches: An important consideration for patchable obfuscation is the
class of patches that we wish to allow. Clearly, the larger the class of patches that we can support,
the larger the potential application pool.

To maximize the applicability of our notion, we allow for arbitrary patches. Specifically, we
model a patch P as a Turing machine that takes as input a program M (also modeled as a TM)
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and outputs a new program M ′. We allow for the unpatched program to grow in size after patching.
That is, M ′ may be arbitrarily bigger than M .

II. Multiple patches: Another consideration is the number of patches that we wish to allow.
In reality, it may be difficult to anticipate in advance how many times a program may need to be
patched. Thus, we allow for an unlimited number of patches.

Specifically, we consider two modes of patching:

• Sequential patching: Here, given an obfuscated program 〈M0〉 and a sequence of patch encod-
ings 〈P1〉, . . . , 〈Pn〉, one can apply the patches one-by-one, in order, to obtain 〈M1〉, . . . , 〈Mn〉
s.t. Mi = Pi(Mi−1).

• Parallel patching: Here, given an obfuscated program 〈M0〉 and a sequence of patch encodings
〈P1〉, . . . , 〈Pn〉, one can apply each patch to 〈M〉, in parallel, to obtain 〈M1〉, . . . , 〈Mn〉 s.t.
Mi = Pi(M0).

While sequential patching seems to better capture patching of programs in reality, as we discuss
later, parallel patching also enables interesting applications of patchable obfuscation. Thus, we
consider both patching modes in this work.

III. Support for multiple programs: So far, we have only discussed patching for a single
obfuscated program. Now consider the case where an authority wishes to patch multiple obfuscated
programs 〈M1〉, . . . , 〈Mn〉. Such a situation often arises in practice where, for example, the programs
M1, . . . ,Mn may correspond to different copies of the same core program M that are individualized
to different users.

One approach to address this scenario would be to release a separate patch for every obfuscated
program. In this case, however, the communication complexity grows linearly with the number of
obfuscated programs and may quickly become prohibitive. Instead, we would like to build patchable
obfuscation where the obfuscator can release one patch that can be applied to all of the obfuscated
programs. We refer to this notion as multi-program patchable obfuscation.

How to Define Security? Of course, we must define security for patchable obfuscation. The
natural direction is to start with a “base” notion of obfuscation (without patching) and extend it
to the setting of patching. Our goal in this work is to obtain general positive results for patchable
obfuscation. With this viewpoint, we identify indistinguishability obfuscation (iO) [BGI+12] as
a natural choice for the base notion. Indeed, over the last few years, several general-purpose
candidate constructions, (for example: [GGH+13, BGK+14, BR14]) for iO have been proposed,
and no impossibility results are known. Furthermore, it was shown by [GR07] that iO is, in fact,
“best-possible” obfuscation. iO has already enabled a long sequence of exciting applications (see
e.g., [SW14, GGH+13, BGJ+16, CHN+16]) and its patchable analogue can be expected to find
even more applications. Finally, we stress that while the security of iO remains an area of intense
study, there are several known iO candidates and even universal iO candidates under well-studied
assumptions [AJN+16].

In contrast, powerful (base) notions such as virtual black-box obfuscation [BGI+12] and differing-
inputs obfuscation [BGI+12, BCP14, ABG+13] have been shown to be impossible to realize for
general functions [BGI+12, GK05, BCC+14, GGHW14, BSW16]. This, in turn, means that patch-
able analogues of these notions are also impossible, in general. The notion of virtual grey-box
obfuscation [BC10, BCKP14] is impossible for general Turing Machines but seems to circumvent
general impossibility results for circuits; however, it has found rather limited applicability so far.

In light of the above, in this work, we focus on patching in the context of iO. We do believe that
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the study of patchable obfuscation for other base obfuscation notions (e.g., obfuscation in weaker
adversarial models such as virtual black-box obfuscation in hardware token model [GO96, GKR08,
GIS+10] or generic model [BR14, BGK+14]) is interesting, and we leave this study to future work.
We remark that many of the ideas that we develop in this work should be more widely applicable
to other notions of obfuscation, and are not intrinsically tied to iO. As such, we envision these
ideas to be portable to other notions of patchable obfuscation.

Patchable Indistinguishability Obfuscation. We develop a notion of patchable indistinguisha-
bility obfuscation (pa-iO)that naturally extends the standard notion of iO to the setting of patching.
Let us explain our notion for the single-program case, for sequential and parallel patches.

• Sequential patches: Recall that iO security dictates that given two equivalent programs M0

and M1, obfuscations of M0 and M1 are computationally indistinguishable. In single-program
pa-iO for sequential patches, we require that given two equivalent programs M0

0 and M0
1 and a

sequence of patch pairs (P 1
0 , P

1
1 ), . . . , (Pn0 , P

n
1 ) such that for every “level” i ∈ [n], the patched

programs M i
0 = P i0(M i−1

0 ) and M i
1 = P i1(M i−1

1 ) are also equivalent, it should be hard to
distinguish the tuples (〈M0

0 〉, {〈P i0〉}ni=1) and (〈M0
1 〉, {〈P i1〉}ni=1). Intuitively, the equivalence

requirement at every patch level i rules out the trivial attack of using a splitting input for
the patched programs M i

0 and M i
1 to distinguish the tuples.

• Parallel patches: Single-program pa-iO for parallel patches is defined similarly to above,
except that here we require equivalence for the patched programs M i

0 = P i0(M0
0 ) and M i

1 =
P i1(M0

1 ) at every (parallel) “branch” i ∈ [n].

A few remarks are in order: (1) It is easy to see that these definitions ensure patch hiding,
which is crucial for some of the applications discussed later. (2) Our definitions naturally extend
to multi-program pa-iO where we start with multiple pairs of programs and equivalence is required
for every pair at every level/branch. (3) We, in fact, consider adaptive security, where the adversary
can make the patch queries in an adaptive fashion. See Section 2 for further details.

Implications of pa-iO. We view pa-iO as a powerful primitive that is likely to have several
applications in the future. To see the power of pa-iO, it is instructive to first compare it with
iO. While iO exists if P=NP,2 we show that multi-program pa-iO for parallel patches implies
secret-key functional encryption (FE) [SW05, BSW11, O’N10]. The construction is remarkably
simple: let Mf,x be an input-less machine that simply outputs f(x). We construct an FE scheme
as follows:

• A secret key for a function f is computed as 〈Mf,⊥〉, i.e., an obfuscation of Mf,x where x = ⊥.

• Encryption of a message m corresponds to generating an encoding 〈Pm〉 for a patch Pm that
modifies Mf,⊥ to Mf,m.

• Decryption simply corresponds to applying the patch encoding 〈Pm〉 on 〈Mf,⊥〉 to obtain
〈Mf,m〉 and then evaluating it to obtain f(m).

Correctness and security of the construction follow in a straightforward manner from the cor-
rectness and security of pa-iO.3 As we discuss later, the above basic idea can, in fact, be easily
extended to multi-input functional encryption [GGG+14], yielding new results.

2Assuming NP 6= co-RP, it was shown that iO implies one-way functions [MR13, KMN+14].
3An observant reader may notice that in the above construction, it is not important whether the size of a patch

encoding depends on the size of an unpatched machine Mf,⊥ or not. However, it is important that the size of the
patch encoding is independent of the number of obfuscated machines that it can be applied to – a property guaranteed
by multi-program pa-iO.
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Alternate viewpoint: Obfuscation with Private Homomorphism. Another way of looking
at our notion of pa-iO is as a form of iO that supports a kind of semi-private homomorphism: the
generation of the patch encoding is private – requiring secret information that was used to obfuscate
the original program – although the application of the patch encoding is public. Note that unlike
encryption, for the security of obfuscation it is critical that this homomorphism is semi-private – if
an adversary was allowed to use public information to arbitrarily modify the program underlying an
obfuscation, this would trivially allow the adversary to break the security of the original obfuscated
program. On the other hand, our notion of pa-iO and the notion of fully homomorphic encryption
[Gen09] share a similarity in that they both require a form of compactness for the notions to be
non-trivial.

1.1 Our Results

We state our results below.

I. Patchable Indistinguishability Obfuscation. In this work, we formalize the notion of
patchable indistinguishability obfuscation. We focus on the setting where programs to be obfuscated
and patched are described as Turing Machines.

Multi-Program pa-iO: Our main result is a construction of a multi-program pa-iO scheme from
sub-exponentially secure iO and sub-exponentially secure DDH.

Theorem 1 (Multi-program pa-iO: Sequential patches). Assuming the existence of sub-exponentially
secure iO for circuits, sub-exponentially secure DDH, there exists an adaptively secure multi-
program pa-iO scheme with unbounded sequential patches, for Turing Machines where the running
time of the patch generation algorithm for a patch P is bounded by poly(λ, |P |, `), where λ is a
security parameter and ` is a bound on the input size to the patched program.

Note that the runtime efficiency of the patch generation algorithm in the above theorem implies
the necessary size efficiency for a patch encoding, namely, the size of the encoding of a patch P is
bounded by poly(λ, |P |, `).

Single-Program pa-iO: We obtain the above result in two steps. Our first, and key step is to
construct a single-program pa-iO scheme for TMs which achieves the desired size efficiency for
patches but requires a large state (proportional to the size of the TM being updated) as well as a
large patch generation time.

Theorem 2 (Single-program pa-iO: Sequential patches). Assuming the existence of sub-exponentially
secure iO for circuits and sub-exponentially secure re-randomizable encryption schemes, there exists
an adaptively secure single-program pa-iO scheme with unbounded sequential patches, for Turing
Machines where the size of the obfuscation of a patch P is bounded by poly(λ, |P |, `), where λ is a
security parameter and ` is a bound on the input size to the patched program.

Main Tool: Splittable iO. The main tool in our construction of single-program is an intermediate
notion between iO and patchable iO, that we refer to as splittable iO. Very roughly, splittable iO
allows us to reduce the problem of building patchable iO to the problem of building a patchable
“encoding” scheme, a seemingly simpler problem. Very roughly, an obfuscation of M w.r.t. split-
table iO consists of two parts: an encoding of M w.r.t. a patchable encoding scheme, and some
auxiliary information z computed on the encoding as well as the secret key used to encode M . We
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place suitable efficiency and security requirements on the auxiliary information so as to allow us to
transfer the patching property of the encoding scheme to the setting of iO. We refer the reader to
the technical overview section for further details on this notion.

From Single-Program to Multi-Program pa-iO: Next, we devise a generic transformation from any
such single-program pa-iO scheme to a multi-program pa-iO scheme with the aforementioned effi-
cient patch generation property.

Theorem 3 (Single-program to Multi-program pa-iO). Assuming the existence of a succinct gar-
bled TM scheme with persistent memory and a compact secret-key functional encryption scheme
for general circuits, there exists a general transformation from any single-program pa-iO scheme
to a multi-program pa-iO scheme for TMs with efficient patch generation.

In particular, when the underlying primitives are all adaptively secure, then the resulting multi-
program pa-iO scheme is also adaptively secure. An adaptively secure succinct garbled TM scheme
with persistent memory is known from the works of [CCHR B, ACC+ B] based on sub-exponentially
secure iO and DDH assumption, while a compact secret-key functional encryption scheme is known
from iO for general circuits.

For the theorems above, we stress that we place no restrictions on the patches. A patch P can be
an arbitrary Turing Machine that takes the original program description M as input, and outputs
an arbitrary Turing Machine description M ′ = P (M) that can differ in arbitrary ways from M .
In particular, the description size of P (M) can be any unbounded polynomial in the security
parameter, and thus the program size can grow by arbitrary polynomial factors. Furthermore
any unbounded polynomial number of patches can be applied sequentially, and the adversary can
specify these patches adaptively given all obfuscated programs and patches constructed earlier.

Parallel Patching: We can obtain a similar result for multi-program pa-iO in the context of parallel
patches. This result follows the same approach as the case of sequential patches. The first step is
to obtain single-program pa-iO scheme with unbounded parallel patches and the second step is to
obtain multi-program pa-iO from single-program pa-iO. The construction of single-program pa-iO
with parallel patches will be identical to the one in the sequential patch setting. The transformation
from single-program pa-iO to multi-program pa-iO is, however, different from the sequential setting
to enable this transformation. Instead of using garbled TM scheme with persistent memory, we
instead employ functional encryption for TMs [GKP+13b, AS16] scheme. Since the techniques
employed in the parallel patch setting are similar to the sequential patch setting, we omit the
transformation. We have the following theorem.

Theorem 4 (Multi-program pa-iO: Parallel patches). Assuming the existence of sub-exponentially
secure iO for circuits, sub-exponentially secure DDH, there exists an adaptively secure multi-
program pa-iO scheme with unbounded parallel patches, for Turing Machines where the running
time of the patch generation algorithm for a patch P is bounded by poly(λ, |P |, `), where λ is a
security parameter and ` is a bound on the input size to the patched program.

II. Applications of pa-iO. We view pa-iO, and especially multi-program pa-iO as a powerful
primitive that is likely to have several applications in the future. As initial evidence of this, we
demonstrate implications of pa-iO to functional encryption and iO for TMs. In our eyes, the main
appeal of these implications is their remarkable simplicity that highlights the potential of pa-iO as
a replacement for iO in cryptographic applications.
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Multi-Input FE for Unbounded Arity Functions: We first show that multi-program pa-iO for paral-
lel updates implies secret-key multi-input functional encryption (MIFE) [GGG+14, AJ15, BKS16]
for unbounded arity functions. This implication follows from a straightforward extension of the
pa-iO to (single-input) FE implication discussed earlier.

Theorem 5 (Unbounded-Arity MIFE). Adaptively secure multi-program pa-iO with unbounded
parallel updates implies secret-key MIFE for unbounded arity functions with security against pre-
ciphertext key queries.

Combining the above with Theorem 4, we obtain secret-key MIFE for unbounded arity func-
tions from sub-exponentially secure iO for circuits, sub-exponentially secure DDH. Previously, this
result was only known [BGJS15] from a knowledge assumption, namely public-coin differing-input
obfuscation [IPS15] and one-way functions.

FE for TMs with Unbounded Length Inputs: The following implication follows as a simple corollary
of Theorem 5.

Theorem 6 (Unbounded-Input FE). Adaptively secure multi-program pa-iO implies secret-key
functional encryption for TMs with unbounded input length with security against pre-ciphertext key
queries.

A construction of FE for TMs with unbounded input was recently given by [AS16] based on iO.
We emphasize that our construction from multi-program pa-iO is extremely simple, in contrast to
the involved construction of [AS16].

We now discuss implications of pa-iO to iO for TMs. We first recall that all recent progress on
achieving iO for TMs/RAMs[CHJV15, BGL+15, KLW15, CH16, CCC+16] from iO for circuits
has required a polynomial bound ` to be placed on the input length to the obfuscated Turing
Machine. We share this need for a polynomial bound ` on the input size, and the size of our
obfuscated patches do grow with this bound. Indeed, if we could remove this restriction, then
we would show how to bootstrap iO for circuits to iO for Turing Machines without any input
length restriction from iO for circuits – this remains a major open question. Achieving iO for
Turing Machines without any input length restriction currently requires strong assumption such
as output-compressing randomized encodings [LPST16] or knowledge-type assumptions such as
public-coin diO [BCP14, ABG+13, IPS15]. We do not know how to achieve these objects using
only iO for circuits.

iO for TMs with Unbounded Length Inputs. So far, in our definition of pa-iO, we have only con-
sidered “single-use” patches. More accurately, in our definition of single-program (resp., multi-
program) pa-iO for sequential patching, the ith patch Pi can only be applied to the updated
machine (resp., machines) at level i− 1. As we discuss now, such “single-use” patches are, in fact,
inherent given the current state of art in iO for TMs.

In particular, is not difficult to see that single-program pa-iO with reusable patches (i.e., where
a patch P is not tied to any “level” and can be applied an arbitrary number of times, to any
machine) in fact, implies iO for TMs with unbounded length inputs. The construction is extremely
simple: let Mx be a family of (input-less) machines parameterized by strings x of arbitrary length,
where every machine simply outputs M(x). Obfuscation of a TM M consists of an obfuscation of
a machine M⊥ w.r.t. the pa-iO scheme along with encodings of two reusable patches P0 and P1.
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Patch P0 is such that it updates any machine Mx to Mx‖0 while P1 updates any machine Mx to
Mx‖1.

To evaluate the above obfuscation on any input x = x1, . . . , x` for an arbitrary `, a user can
transform obfuscation of M⊥ to Mx by applying the patches Px1 , . . . , Pxn and then execute Mx to
obtain M(x). The correctness of the construction is easy to verify.

While we do not consider security for reusable patches in this work, we view the above as a
potential new template for building iO for TMs with unbounded length inputs.

1.2 Technical Overview

We now give an overview of the main technical ideas in our constructions. We start by building a
general template for building pa-iO, and then discuss our ideas for implementing this template.

1.2.1 A Template for pa-iO

In this section, we devise a general template for building pa-iO starting from any non-patchable
obfuscation scheme. We keep the discussion in this section to a high-level, focusing on issues directly
related to patching, and largely ignoring implementation issues that may arise due to the specific
properties of the underlying non-patchable obfuscation scheme. For simplicity, in this section, we
advise the reader to think of the non-patchable obfuscation scheme as general-purpose virtual-
black-box obfuscation. Later, in Section 1.2, we discuss the additional challenges that arise in
implementing our template when the non-patchable obfuscation scheme is iO, and our solutions
for the same.

Let us start with the weaker goal of building single-program pa-iO where the authority issues
a single obfuscated program that can then be patched multiple times, in a sequential order. Our
initial idea towards achieving this goal is to identify an encoding scheme that supports patching
and then combine it with a non-patchable obfuscation scheme to build a pa-iO scheme. Intuitively,
we say that an encoding scheme is patchable if given an encoding of a machine M and an encoding
of a patch P , it is possible to derive an encoding of M ′ = P (M). The hope here is that the patching
property of the encoding scheme can be translated into patching property for obfuscation.

A natural candidate for a patchable encoding scheme is fully homomorphic encryption (FHE).
Indeed, given an encryption (i.e., encoding) of a machine M and an encryption of a patch P , one
can obtain an encryption of the patched machine M ′ = P (M) by homomorphically evaluating the
function f(M,P ) = P (M). Starting with FHE and any non-patchable obfuscation scheme, we can
build an initial template for pa-iO as follows: to obfuscate M , first encrypt M using FHE and then
provide an obfuscation of the FHE decryption circuit that has the FHE decryption key hardcoded
into it. Evaluation on an input x can be done as follows: first use FHE evaluation to transform
encryption of M into an encryption of M(x), and then use the obfuscated decryption circuit to
obtain M(x). To patch the obfuscated program, we can simply patch the encryption of M in the
manner as described above.

While this solution seems to offer the functionality of patching, it does not offer any security.
Specifically, in the above template, an adversary can choose an arbitrary patch P ∗ on its own and
then use FHE evaluation of the function fP ∗(M) = P ∗(M) to transform encryption of M into
an encryption of P ∗(M). If this patch P ∗ is such that for two equivalent machines M0 and M1,
P ∗(M0) and P ∗(M1) are not equivalent, then the adversary can easily break the security of pa-iO.
Indeed, the security of pa-iO prevents an adversary from creating patches on its own, while the
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above template does not place this restriction in any way. In particular, we need to crucially use
the fact that patch generation is a secret key operation.

Towards that end, we modify the above template such that an evaluator can only apply au-
thenticated patches. The obfuscation of M consists of an FHE encryption of M as before but the
obfuscated FHE decryption circuit now takes as input old encryption Enc(M), updated encryption
Enc(M ′), encrypted patch Enc(P ), a signature σ on Enc(P ) and an input x. It checks if the sig-
nature is valid and also if Enc(M ′) is obtained by updating Enc(M) using P . If the check passes,
then it decrypts Enc(M ′) and evaluates M ′ on x. During the patching phase, the authority sends
both Enc(P ) and the signature σ. This signature now prevents a user from applying “invalid”
patches to the obfuscation; however, we note that in the context of iO, this authentication will
need to be done in a much more careful manner, as we elaborate below.

Enforcing Ordered Executions of Patches. While the above template does not seem to suffer
from any immediate issues when we consider a single patch, unfortunately, its security breaks down
when we consider the setting of multiple patches. Indeed, in the above template, given (say) two
patch encodings (Enc(P1), σ1), (Enc(P2), σ2), an adversary may first apply the second patch and
then the first patch, which may break the equivalence requirement on the patched machines in the
security definition of pa-iO. In fact, an adversary can also repeatedly apply the same patch multiple
times in the above template, which may also break the equivalence requirement on the patched
machines in the security definition of pa-iO. Indeed, the definition of pa-iO requires that the patch
encodings can only be applied in order, namely, the ith patch encoding can only be applied to the
(i− 1)th patched obfuscation, once.

Towards this, we introduce a mechanism to force a user to apply the patches in order. We begin
by observing that instead of authenticating the encrypted patch in the above template, if we instead
authenticate the encrypted patched machine, then we can enforce ordered executions of patches.
That is, suppose we want to update the machine M using patch P , the authority first computes
Enc(P ) and then updates Enc(M) using Enc(P ) to obtain Enc(M ′). It then signs Enc(M ′)
and sends the signature4 σ and the encrypted patch Enc(P ) to the user. The user now updates
Enc(M) using Enc(P ) to obtain Enc(M ′). To evaluate the patched obfuscation on an input x, it
inputs (Enc(M ′), σ, x) to the obfuscated FHE decryption circuit that first checks for validity of the
signature and then decrypts Enc(M ′) followed by computation of M ′(x), as before. Crucially, by
shifting the authentication to the updated encrypted machine instead of encrypted patch, we are
now able to prevent the “out-of-order patching” attacks (as well as “repeated patching” attacks)
by an adversary discussed above.

A disadvantage of the above solution is that it requires the authority to maintain large state.
In particular, at any time, the authority must remember the last patched machine Mi−1 in order
to generate a valid encoding for the ith patch Pi. Furthermore, the patch encoding generation time
now depends on the size of the machine Mi−1. While this loss in efficiency may be acceptable for
the setting of single-program pa-iO, it unfortunately becomes a significant barrier for the setting
of multi-program pa-iO. Indeed, in the multi-program setting, the number of obfuscated programs
are not a priori bounded; as such, if we were to extend the above template to this case, then the
authority’s state size becomes unbounded! (This is because the authority would need to maintain
a separate state for every obfuscated program.)

Compressing the State of Authority. In order to resolve this issue we introduce the next

4For this discussion, let us assume that we have a signature scheme where the size of the signature is independent
of the length of the message. We will revisit this later when we discuss implementation issues.
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idea: “delegating” the state of the authority to the user. That is, the authority now maintains
the state at the user’s end. Implementing this idea introduces several issues: not only should the
state be encrypted at the user’s end but it should also be possible to repeatedly update and also
compute on this (updated) encrypted state. To address these issues, we turn to a cryptographic
primitive called garbled RAMs with persistent memory. This notion allows for encoding a database
and repeatedly update this encoding and compute on the updated encodings. The updating and
computation operations are enabled by using encodings of RAM programs which are issued by the
authority. Using this primitive, we propose a solution template.

• To obfuscate M , the authority computes: (i) Enc(M) and a signature upon it. (ii) An
obfuscation of the FHE decryption circuit (as before) that takes an input x, Enc(M) and a

signature σ, and outputs M(x) if the signature is valid. (iii) A database encoding ˜Enc(M)

of Enc(M). It then sends ˜Enc(M), Enc(M), σ and the obfuscated decryption circuit to the
user.

• To evaluate the obfuscation on an input x, the user inputs (x,Enc(M), σ) to the obfuscated
decryption circuit to recover the output M(x).

• To compute a patch encoding of P , the authority first computes Enc(P ) (as before) and then
computes a garbled RAM encoding T̃ of a RAM machine T that has Enc(P ) hardcoded in it.
The machine T uses FHE evaluation over Enc(M) (in the database encoding) and Enc(P ) to
compute Enc(M ′) and additionally computes signature σ′ over Enc(M)′. It outputs σ′ in the
clear. The user, upon receiving the patch encoding, first computes Enc(M ′) using Enc(P ).

It then updates the database encoding ˜Enc(M) using T̃ . The result is an updated database

encoding ˜Enc(M ′) and the signature σ′ on Enc(M ′). The user can now evaluate the updated
machine on any input in the same manner as before.

Some remarks are in order: first, from an efficiency viewpoint, we need the garbled RAM scheme
to be succinct where the size of RAM machine encoding is independent of its running time. This
is because we are applying the above idea on a single-program pa-iO scheme where the patch
generation time depends on the size of the machine being updated. Second, in order to argue
security in the setting of adaptively chosen patches, we need the garbled RAM scheme to satisfy
adaptive security as well. Such a garbled RAM scheme (with persistent memory) was recently
constructed in the independent works of [CCHR B, ACC+ B].

Finally, we note that while the above idea successfully compresses the state size of the authority,
it still does not suffice for the multi-program setting. This is because in the above solution, when
extended to the multi-program case, the authority would need to maintain some small state, namely,
the garbling key, for every obfuscated machine, which still leads to a state of unbounded size. We
address this problem by developing a generic transformation from any single-program pa-iO scheme
with small state (or alternatively, a stateless scheme) into a multi-program pa-iO scheme by using
a compact secret-key functional encryption scheme for general circuits. We defer the discussion of
this transformation to the next section.

1.2.2 Implementation

Issues related to Indistinguishability Obfuscation. While the above template seems promis-
ing, several issues arise when we have to implement it only assuming indistinguishability obfus-
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cation for circuits. For starters, the above template requires an obfuscation scheme for Turing
machines with unbounded length inputs. This is because, the size of the encrypted machine
M can grow arbitrarily over a sequence of updates and thus the input to the obfuscated cir-
cuit cannot be a priori bounded. We currently know how to realize this only based on strong
knowledge-type assumptions [BCP14, ABG+13, IPS15]. Another technical issue is that standard
signature schemes are not “compatible” with iO and more generally, using iO restricts the type
of cryptographic primitives that we can use. These challenges were encountered in many recent
works [BGL+15, KLW15, CHJV15] whose main goal was reducing the problem of constructing iO
for Turing machines, where the length of inputs to be evaluated are a priori bounded, to the prob-
lem of constructing iO for circuits. We build upon the primitives and notions introduced in the
work of [KLW15] to address these challenges. We recall the Turing machine randomized encodings5

construction by [KLW15].
The core idea in the randomized encodings construction of Koppula et al. [KLW15] is to leverage

an obfuscated circuit to perform step-by-step computation of the machine M that is encoded. In
more detail, a randomized encoding of (M,x) consists of: (a) input tape initialized with an encoding
of M and, (b) an obfuscated circuit Cx that performs “step-by-step” computation of a machine
Ux(·). Here, Ux(·) is a universal TM that takes as input machine M and outputs M(x). By
step-by-step computation, we mean that the circuit Cx takes as input time step i, encoded symbol
and partial information about the current state in an encrypted form and produces a new encoded
symbol and state, again in encrypted form, by executing the transition function of Ux. This enables
the size of the circuit Cx to be independent of the length of M .

To see how the randomized encodings construction might be useful to our setting, note that
we could potentially encode the machine M using a patchable encoding scheme that will allow
us to patch M . Furthermore, we can allow the machine size to arbitrarily grow, over a sequence
of updates, since the size of the circuit Cx is independent of the machine size M . However, the
main issue is that their approach is tied to just a single computation M(x) whereas we require
that M be reused on multiple inputs. They propose an approach to achieve reusability by using
another layer of obfuscation, with M hardwired in it, that produces fresh encodings of M for
every computation. This is highly problematic for us, since patching M would now correspond to
patching the underlying obfuscated circuit.

We need to make the randomized encodings construction of KLW reusable while preserving
the underlying encoding of M . A recent work of Ananth et al. [AJS17], proposed in a different
context of building iO with constant overhead, achieves this goal. In more detail, they showed how
to achieve iO for TMs, with a priori bound in the input length, such that an obfuscation of M
proceeds in two phases: (a) M is encoded using a suitable encoding scheme and, (b) an obfuscation
of a circuit that takes as input x and produces an encoding of x. The evaluation of the obfuscation
on an input x proceeds by first obtaining an encoding of x (using the obfuscated circuit) and then
decoding this using the encoding of M to recover M(x).

While their work offers a starting point for building patchable iO, we still need to address several
issues that specifically arise in the context of patching. For instance, their work only considers the
setting when the adversary is given one obfuscated machine whereas in our setting she also receives
additionally, patches that share some common randomness with the obfuscated machine. We need
to argue that the security holds even with this additional information. Instead of directly digging

5A randomized encoding of (M,x) satisfies two properties: (a) it only reveals M(x) and, (b) the size of the
encoding is polynomial only in the length of M , x and security parameter.
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into the details of [AJS17] to apply it in the context of patching, we undertake a more modular
approach. First, we propose an intermediate primitive called splittable iO and show that it suffices
for building single-program patchable iO. We then show that splittable iO can be implemented
assuming only iO for circuits by using the framework of [AJS17]. We describe this primitive in
detail next.

Splittable iO: Intermediate Notion between iO and Patchable iO. A splittable iO scheme
is a strengthening of iO and is associated with respect to a patchable encoding scheme. A patchable
encoding scheme consists of algorithms: Setup, Encode and Decode. Setup generates a secret key
sk that will be used by Encode procedure to obtain an encoding of M , Esk(M). Decode recovers
the Turing machine M from the encoding Esk(M) using the secret key sk. Additionally, it is
associated with two algorithms: patch generation algorithm, used to generate secure patches and
patch application algorithm,, that enables applying secure patches on encodings of TMs. The
security property requires that the encodings and patches hide the underlying TMs and patches,
respectively.

We start with a oversimplified template of splittable iO and make suitable modifications later.
An obfuscation of M , with respect to splittable iO, consists of two parts: (Esk(M), auxM ), where
(i) Esk(M) is a patchable encoding of M computed using secret key sk, (ii) auxM computed as a
function of an additional PPT algorithm AuxGen, on (sk, Esk(M)).

Armed with the notion of splittable iO, we show how to construct single-program patchable iO.
At first glance, it seems that splittable iO already allows for patching: indeed, since M is encoded
with respect to a patchable encoding scheme, we can use the patching algorithm to update this
encoding. However, this does not work because the obfuscation also contains auxM that is tied to
encoding of M . Indeed, this is necessary for the security of obfuscation to hold. So if the encoding
of M is updated, it is necessary to also update auxM . A naive way of achieving this is to issue a
fresh auxM every time the encoding is patched. That is, initially the user is issued an encoding
of M , Esk(M) and auxiliary information auxM . During the patching phase, a secure version of
patch P with respect to the patchable encoding scheme is issued. Along with this, a fresh auxM ′ is
issued, which is generated by first patching Esk(M) using P̃ , secure patch of P , and then executing
AuxGen on input (sk, Esk(M ′)).

However this raises the question of efficiency: the patch size now grows with the size of auxM ′ .
This can be taken care of imposing an efficiency constraint on splittable iO: we require that the
size of aux be a polynomial in security parameter and specifically, independent of the size of the
machine obfuscated. The next issue is correctness: why should the patched obfuscated machine
be correct? for instance: AuxGen could abort on input patched encodings. To take care of this
issue, we impose an additional property on splittable iO: the correctness of the obfuscated machine
should hold irrespective of whether fresh encodings or patched encodings of the machine are fed to
AuxGen.

Finally, we move on to proving the security of patchable iO. A first attempt is to use the
security of the underlying patchable encoding scheme to argue this. However, it is unclear why
the security of encoding scheme is guaranteed at all given that aux contains information about
the secret key of the encoding scheme. If we additionally impose aux to hide the secret key,
we can then hope to invoke the security of patchable encoding scheme to argue the security of
patchable iO. A natural approach of formalizing this is to use a simulation-based argument – there
exists a simulator that can simulate the aux even without knowing the secret key. But this would
mean that aux will not able to decode any information about the encoding of M . In order to
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maintain correctness of the obfuscation of M , we need to hardwire all possible outputs which is
clearly infeasible. Instead we use an indistinguishability-based definition: instead of having one
encoding of M , we will consider a pair of encodings of M . That is, obfuscation of M consists of
(Esk0(M), Esk1(M)), computed with respect to secret keys sk0, sk1. In addition, it consists of aux
generated using AuxGen(sk0, Esk0(M), Esk1(M)). Now, we impose a security property that says that
aux generated using sk0 is computationally indistinguishable from aux generated using sk1.

We summarize the (informal) definition of splittable iO below. The formal definition can be
found in Section 4.2. In addition to the properties of any iO scheme, a splittable iO scheme has
the following properties.

1. Splittable Property: An obfuscation of M can be performed in two steps: the first step is
encoding M twice using two secret keys sk0 and sk1 of a patchable encoding scheme. The
second step is generation of aux by computing AuxGen on input (sk0, Esk0(M), Esk1(M)),
where Esk0(M) and Esk1(M) are two encodings of M and sk0 is the secret key used to encode
Esk0(M).

2. Correctness of AuxGen: The correctness of obfuscation of M holds irrespective of whether
AuxGen is executed on fresh encodings of M or whether it is executed on encodings of M
obtained as a result of patching. This will be used to argue the correctness of the resulting
patchable iO scheme.

3. Efficiency of aux: We require that the size of aux is a polynomial in λ and in particular,
independent of the size of the machine obfuscated. This will be used to argue the patch size
efficiency of patchable iO.

4. Indistinguishability of aux: We require that it is computationally hard to distinguish aux
generated using secret key sk0 from aux generated using sk1. This property will be helpful
to argue security of patchable iO.

Going from Single-Program to Multi-Program Patchable Obfuscation. In the solution
sketched above, every time the authority has to generate a patch, she has to spend time proportional
to the size of the obfuscated machine. In particular, recall that one of the steps in the generation
of secure patch is computing auxM : this step involves first patching the old encoding Esk(M) and
then executing AuxGen. We will use the trick described earlier to solve the problem: we delegate
the state of the authority as well as the computation of the secure patches to the user. This can
be implemented by using a suitable garbling scheme that works in the persistent memory setting.
Once this mechanism is implemented, the authority is only required to store the garbling key.

While this is a viable solution in the single-program setting, this is undesirable when the au-
thority is issuing multiple obfuscated programs. She has to store the garbling keys corresponding to
all the machines in this case. The storage space of the authority thus puts a bound on the number
of obfuscated machines it can issue.

To overcome this difficulty, we employ another idea for delegating responsibility to the user!
The garbling key of every user is maintained at her own storage space in an encrypted form. The
computation of the garbled program encodings are then delegated to every user. This mechanism
is implemented by using a functional encryption scheme. Every user along with the obfuscated
machine, garbled encoding of state, also contains an FE encryption of the garbling key. During the
patching phase, the authority sends a FE key containing patch P , that takes as input a garbling
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key and produces a garbled encoding of P with respect to this garbling key. To carry this out, we
only require a secret-key FE scheme for circuits.

Putting it Together: A Framework for (Multi-Program) Patchable Obfuscation. Putting
all the components together, we construct a multi-program patchable iO in the following steps:

1. The first step involves formalizing the notion of splittable iO. This is shown in Section 4.

2. Next, we show how to obtain single-program patchable iO from splittable iO. This is shown
in Section 5. The resulting single-program patchable iO scheme is statefull, i.e., the authority
is required to maintain a large state.

3. We show how to overcome this problem by giving a transformation from any statefull to a
stateless single-program patchable iO scheme. This is shown in Section 6.

4. In the next step, we give a transformation from single-program to multi-program patchable
iO. This is shown in Section 7.

5. In the last step, we instantiate splittable iO using the framework of [AJS17]. This is shown
in Section 8.

1.3 Related Work: Incremental Cryptography

The area of incremental cryptography was pioneered by Bellare, Goldreich and Goldwasser [BGG94].
Subsequently, this concept of incremental updates has been studied for various standard primitives
such as encryption schemes, signature schemes and so on [BGG95, Mic97, Fis97, BKY01, MPRS12].
We remark that none of these works handled the setting of arbitrary updates.

In a concurrent and independent work, [GP15] consider a related notion called incremental
obfuscation. In incremental obfuscation, individual bits of an existing obfuscated program can
be updated one-by-one. While their work shares much in spirit with our work, there are several
important differences that we describe below.

Our work focuses on support for arbitrary, adaptively chosen patches that may potentially
increase the size of the program(s) being patched, and we consider both single-program and multi-
program setting. In contrast, their work considers the single-program setting where bit-wise, non-
adaptively chosen patches can be applied such that the size of the circuit being patched remains
unchanged. Our main efficiency requirement is that the size of the secure patches (or more strongly,
the time to generate the secure patches) is independent of the size of the program. In contrast,
their work considers the stronger runtime efficiency requirement where the time to apply the secure
patch is also independent of the size of the circuit.

2 Patchable iO: Definitions and Implications

In this section, we present the formal definitions of patchable indistinguishability obfuscation
(pa-iO) in the single program and multi program setting.
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2.1 Definition: Single-Program pa-iO

In this section, we present a formal definition of single-program patchable indistinguishability ob-
fuscation, denoted as pa-iOsp. We start by presenting the syntax, and then proceed to give a
security definition for sequential updates.

Syntax. A pa-iOsp scheme, defined for a class of Turing machines M with an associated family
of patches P and update algorithm Update, consists of a tuple of probabilistic polynomial-time
algorithms pa-iOsp = (Setup,Obf,GenPatch,AppPatch,Eval) which are defined below.

• Setup, Setup(1λ): It takes as input the security parameter λ and outputs the secret key SK.

• Obfuscate, Obf(SK,M): It takes as input the secret key SK and a TM M ∈M. It outputs
an obfuscated TM 〈M〉 along with state st.

• (Stateful) Patch Generation, GenPatch(SK, P, st): It takes as input the secret key SK, a
description of a patch P ∈ P, and state st. It outputs a patch encoding 〈P 〉 along with the
updated state st′.

• Applying Patch, AppPatch
(
〈M〉, 〈P 〉

)
: It takes as input an obfuscated TM 〈M〉 and a

patch encoding 〈P 〉. It outputs an updated obfuscation 〈M ′〉.

• Evaluation, Eval
(
〈M〉, x

)
: It takes as input an obfuscated TM 〈M〉 and an input x. It

outputs a value y.

Efficiency. We define two efficiency properties:

• Patch Size Efficiency: For every patch P ∈ P, we require that the size of the patch encoding
|〈P 〉| is a fixed polynomial in (|P |, λ), where (〈P 〉, st′)← GenPatch(SK, P, st).

• Patch Generation Efficiency: For every patch P ∈ P, we require that the running time of
GenPatch(SK, P, st) to be a fixed polynomial in (|P |, λ). The length of st could depend on the
size of the obfuscated machine its associated with and we require that the running time of
GenPatch to be independent of |st|.

It is easy to see that the second property implies the first property. Our first construction of
pa-iOsp (see Sections 5 and 8) only satisfies the first property. Later, in Section 6, we describe a
modified construction that also achieves the second property.

Correctness for Sequential Patches. At a high level, the correctness property states that
executing Update on a TM M and a patch P is equivalent to executing AppPatch on the obfuscation
of M and a secure patch of P . In fact we require that this holds even if there are multiple patches
that are applied sequentially.

For any TM M0 ∈M, L > 0, sequence of patches P1, . . . , PL ∈ P, consider two processes:

• Obfuscate-then-Update: Compute the following: (a) SK← Setup(1λ), (b)
(
〈M0〉, st0

)
←

Obf(SK,M0), (c)
(
〈Pi〉, sti

)
← GenPatch(SK, Pi, sti−1), (d) 〈Mi〉 ← AppPatch

(
〈Mi−1〉, 〈Pi〉

)
.
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• Update: Mi ← Update(Mi−1, Pi).

We require that for all x ∈ {0, 1}∗, every i ∈ [L], Eval
(
〈Mi〉, x

)
= Mi(x).

Remark 1. For the case of parallel patching, we require that 〈Mi〉 ← AppPatch
(
〈M0〉, 〈Pi〉

)
is a

valid obfuscation of machine Mi. We emphasize that for the case of parallel patching, the patches
are applied only on the original machine.

Adaptive Security for Sequential Patches. We next give an indistinguishability (IND)-style
definition for modeling the security of an pa-iOsp scheme for the case of sequential patches. In an
IND-security definition, we consider a security game between the challenger and the adversary. In
this game, the adversary sends two machines (M0

0 ,M
0
1 ) to the challenger and in response receives

an obfuscation 〈M0
b 〉, where b is the challenge bit chosen randomly by the challenger. Then the ad-

versary submits patch queries, adaptively, to the challenger in a series of phases. In each phase, the
adversary chooses a pair of patches (P i0, P

i
1) and in return gets the patch encoding 〈P ib 〉. The patch

queries of the adversary are restricted in the following manner: suppose
(

(P 1
0 , P

1
1 ), . . . , (PL0 , P

L
1 )
)

is a sequence of adaptive patch queries made by the adversary. We require that the machine
M i

0 is functionally equivalent with M i
1, for every i ∈ [L], where M i

0 ← Update(M i−1
0 , P i0) (resp.,

M i
1 ← Update(M i−1

1 , P i1)). At the end of the game, the adversary attempts to guess the bit b. If
the adversary’s guess is the same as b only with probability negligibly close to 1/2, then we say
that the scheme is secure. Henceforth, we use the term adaptive security to refer to this notion.
We proceed to formally defining this notion.

The experiment for the adaptive security definition is formulated below. Let A be any PPT
adversary.

Expt
pa-iOsp

A (1λ, b):

1. A sends (M0
0 ,M

0
1 ) to the challenger.

2. Challenger executes the setup algorithm to obtain SK ← Setup(1λ). It then sends 〈M0
b 〉 ←

Obf(SK,M0
b ) to A.

3. Repeat the following steps for i ∈ {1, . . . , L}, where L is chosen by A.

• A sends (P i0, P
i
1) to the challenger.

• Challenger checks if M i
0 ≡M i

1, where M i
0 ← Update(M i−1

0 , P i0) and M i
1 ← Update(M i−1

1 ,
P i1).

• Challenger computes 〈P ib 〉 ← GenPatch(SK, P ib ) and sends 〈P ib 〉 to A.

4. A outputs the bit b′.

Definition 1 (Adaptive Security). A single-program patchable indistinguishability obfuscation scheme
pa-iOsp is said to be adaptively secure against sequential updates if for any PPT adversary A, there
exists a negligible function negl(·) s.t.∣∣∣Pr [1← Expt

pa-iOsp

A (1λ, 1)
]
− Pr

[
1← Expt

pa-iOsp

A (1λ, 0)
]∣∣∣ ≤ negl(λ)
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Remark 2. For the case of parallel patching, the same security is defined with the only difference
being that it is required that the machine M i

0 is functionally equivalent to M i
1, where M i

b is obtained
by patching M0

b (the original machine) using Pi .

2.2 Definition: Multi-Program pa-iO

We now present a formal definition of multi-program pa-iO, denoted as pa-iOmp. Informally speak-
ing, pa-iOmp allows an authority to obfuscate an arbitrary number of programs in such a way that
it is possible to later issue a patch encoding that can be used to update all the obfuscated programs
at once. The authority who issues the obfuscated programs stores just a “short” information about
all the obfuscated programs issued that enables it to produce a single patch that can act on all
these programs. In particular, the size of the storage space of the authority is independent of the
joint size of all these programs.6 This is in contrast to the single-program setting described above,
where the authority maintains state and this state can be as big as the program whose obfuscation
is issued. There is another difference between both the settings: in the single-program setting, if
we were to relax the size of the secure patch to be proportional to the size of the updated program
then achieving a feasibility result is straightforward – the secure patch will just be the obfuscation
of the updated program. Hence the primary goal is to reduce the size of the patch. However, in the
multi-program setting, even if we relax the size of the secure patch to be proportional to the size
of any of the updated programs, achieving a feasibility result is already non-trivial. As mentioned
earlier, the authority does not have enough space to store all the updated programs and hence the
above näıve solution, of sending a fresh obfuscation of the updated program, does not work. As
we will see later we not only give a feasibility result in this setting but we also achieve a solution
with optimal efficiency where the size of the secure patches depend only on the size of their original
patches and in particular, independent of the size of any obfuscated programs issued.

Syntax. A pa-iOmp scheme, defined for a class of Turing machinesM and a family of patches P,
consists of a tuple of probabilistic polynomial-time algorithms pa-iOmp = (Setup,Obf,GenPatch,
AppPatch,Eval) which are defined below. We denote the update algorithm associated with (M,P)
to be Update.

• Setup, Setup(1λ): It takes as input the security parameter λ and outputs the secret key SK.

• Obfuscate, Obf(SK,M): It takes as input the secret key SK and a TM M ∈M id. It outputs
an obfuscated TM 〈M〉.

• (Stateless) Patch Generation, GenPatch(SK, P ): It takes as input the secret key SK and
a description of a patch P ∈ P. It outputs a patch encoding 〈P 〉.

• Applying Patch, AppPatch
(
〈M〉, 〈P 〉

)
: It takes as input an obfuscated TM 〈M〉 and a

patch encoding 〈P 〉. It outputs an updated obfuscation 〈M ′〉.

• Evaluation, Eval
(
〈M〉, x

)
: It takes as input an obfuscated TM 〈M〉 and an input x. It

outputs a value y.

6The reason why the authority can’t store all the programs is because it is a machine that has a priori bounded
memory and yet has the capability to produce an unbounded number of obfuscated programs.
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Efficiency. Similar to pa-iOsp, we define two efficiency properties for pa-iOmp:

• Patch Size Efficiency: For every patch P ∈ P, we require that the size of the patch encoding
|〈P 〉| is a fixed polynomial in (|P |, λ), where (〈P 〉, st′)← GenPatch(SK, P, st).

• Patch Generation Efficiency: For every patch P ∈ P, we require that the running time of
GenPatch(SK, P, ) to be a fixed polynomial in (|P |, λ).

It is easy to see that the second property implies the first property. Our construction of pa-iOmp

presented in Section 7 achieves both of the properties.

Correctness for Sequential Patches. For every Q,L > 0, any sequence of TMs M1
0 , . . . ,M

Q
0 ∈

M, sequence of patches P1, . . . , PL ∈ P, consider the following two processes. For every j ∈
{1, . . . , Q}, i ∈ {1, . . . , L}, we have:

• Obfuscate-then-Update: Compute the following: (a) SK ← Setup(1λ), (b) 〈M j
0 〉 ←

Obf(SK,M j
0 ), (c) 〈Pi〉 ← GenPatch(SK, Pi), (d) 〈M j

i 〉 ← AppPatch
(
〈M j

i−1〉, 〈Pi〉
)

.

• Update: M j
i ← Update(M j

i−1, Pi).

We require that ∀x ∈ {0, 1}∗, ∀j ∈ [Q], ∀i ∈ [L], we have Eval
(
〈M j

i 〉, x
)

= M j
i (x).

Adaptive Security for Sequential Patches. We next give indistinguishability (IND)-style
definitions for modeling the security of a patchable obfuscation scheme. As in the case of single-
program patchable obfuscation, the definition is based on a game between the challenger and the
adversary. The adversary makes TM queries and patch queries to the challenger. One impor-
tant distinction is that in this setting, the adversary can make multiple TM queries whereas in the
case of single-program obfuscation, it makes just one TM query. We describe the experiment below.

Expt
pa-iOmp

A (1λ, b):

1. A submits a sequence of TM pairs
(

(M1
0,0,M

1
0,1), . . . , (M

Q
0,0,M

Q
0,1)
)

.

2. Challenger executes the setup algorithm to obtain SK ← Setup(1λ). For every j ∈ [Q], it

computes 〈M j
0,b〉 ← Obf(SK,M j

0,b) and sends
{
〈M j

0,b〉
}
j∈[Q]

to the adversary.

3. Repeat the following steps for i ∈ {1, . . . , L}, where L(λ) is chosen by A:

• A sends (P i0, P
i
1) to the challenger.

• Challenger computes 〈P ib 〉 ← GenPatch(SK, P ib ). It sends 〈P ib 〉 to A.

4. For every i ∈ {1, . . . , L}, every j ∈ {1, . . . , Q}, the challenger checks if M j
i,0 ≡ M j

i,1, where

M j
i,0 ← Update(M j

i−1,0, P
i
0) and M j

i,1 ← Update(M j
i−1,1, P

i
1). If check fails then the challenger

aborts the experiment.

5. A outputs the bit b′.
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Definition 2 (Adaptive security). A multi-program patchable obfuscation scheme pa-iOmp is said
to be adaptively secure if for any PPT adversary A, there exists a negligible function negl(·) s.t.∣∣∣Pr [0← Expt

pa-iOmp

A (1λ, 0)
]
− Pr

[
0← Expt

pa-iOmp

A (1λ, 1)
]∣∣∣ ≤ negl(λ)

Remark 3. For the case of parallel patching, the correctness and security can be similarly defined.

3 Preliminaries

We denote the security parameter by λ. We assume familiarity of the reader with standard cryp-
tographic notions.

3.1 Turing Machines

A Turing machine is a tuple M = 〈Q,Σinp,Σtape,⊥, δ, q0, qacc, qrej〉, where every element in the tuple
is defined as follows: (a) Q is the set of finite states. (b) Σinp is the set of input symbols. (c) Σtape is
the set of tape symbols. (d) ⊥ denotes the blank symbol. (e) δ : Q×Σtape → Q×Σtape×{+1,−1}
is the transition function. (f) q0 ∈ Q is the start state. (g) qacc ∈ Q is the accept state. (h) qrej ∈ Q
is the reject state, where qacc 6= qrej.

Transforming Turing machines to Circuits. A Turing machine running in time at most T (n)
on inputs of size n, can be transformed into a circuit of input length n and of size O

(
(T (n))2

)
.

This theorem proved by Pippenger and Fischer [PF79] is stated below.

Theorem 7. Any Turing machine M running in time at most T (n) for all inputs of size n,
can be transformed into a circuit CM : {0, 1}n → {0, 1} such that (i) CM (x) = M(x) for all
x ∈ {0, 1}n, and (ii) the size of CM is |CM | = O

(
(T (n))2

)
. We denote this transformation procedure

as TMtoCKT.

Adopted Conventions. We denote by RunTime(M,x), the time taken by a Turing machine M
to evaluate on input x. We adopt the convention that the Turing machine also additionally outputs
the time taken to execute. Thus, if we have two inputs x and y, a Turing machine M , then if
M(x) = M(y), by this notation, means that not only does M on x output the same value as M on
y but also that the running time of M on both x and y are the same.

In this work, we only consider TMs which run in polynomial time on all its inputs, i.e., there
exists a polynomial p such that the running time is at most p(n) for every input of length n.

Equivalence of Programs. Let M0 and M1 be two Turing machines. We denote by M0 ≡ M1

if both M0 and M1 are functionally equivalent, i.e., if M0(x) = M1(x), for all x ∈ {0, 1}∗.

3.2 Patching Turing Machines

Throughout this work, we consider various families of Turing machines. We assume that any
Turing machine family has an associated family of patches that come equipped with a polynomial-
time update algorithm. For example, let M be any Turing machine family with associated patch
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family P and update algorithm UpdateM,P . Algorithm UpdateM,P takes as input a Turing machine
M ∈M and a patch P ∈ P and outputs an updated Turing machine Mnew ∈M. That is:

Mnew ← UpdateM,P(M,P )

A natural way to model patches is to consider them as arbitrary polynomial-time Turing ma-
chines. That is, we can model a patch P ∈ P as a polynomial-time Turing machine that takes
M ∈ M as input and outputs a new machine Mnew = P (M) ∈ M. In this case, the UpdateM,P
algorithm simply executes P with input M . One could also consider an alternative modeling of
patches where P is simply a string such that UpdateM,P on input (M,P ) makes appropriate changes
in M as per the description of P to compute Mnew.

The primitives we discuss and construct in this work are robust to any such formulation of P
and UpdateM,P .

3.3 Indistinguishability Obfuscation

The notion of indistinguishability obfuscation (iO), first conceived by Barak et al. [BGI+12],
guarantees that the obfuscation of two circuits are computationally indistinguishable as long as
they both are equivalent circuits, i.e., the output of both the circuits are the same on every
input. Analogous to the case of circuits, we can define indistinguishability obfuscation for Tur-
ing machines (TMs). We work in a weaker setting of iO for TMs, as considered by the recent
works [CHJV15, BGL+15, KLW15, AJS17], where the inputs to the TM are upper bounded by a
pre-determined value. This definition of iO for TMs is referred as succinct iO. The security prop-
erty of this notion states that the obfuscations of two machines M0 and M1 are computationally
indistinguishable as long as M0(x) = M1(x) and the time taken by both the machines on input x
are the same, i.e., RunTime(M0, x) = RunTime(M1, x).

iO for Circuits. We define the notion of indistinguishability obfuscation (iO) for circuits below.

Definition 3 (Indistinguishability Obfuscator (iO) for Circuits). A uniform PPT algorithm iO is
called an indistinguishability obfuscator for a circuit family {Cλ}λ∈N, where Cλ consists of circuits
C of the form C : {0, 1}inp → {0, 1}, if the following holds:

• Completeness: For every λ ∈ N, every C ∈ Cλ, every input x ∈ {0, 1}inp, where inp = inp(λ)
is the input length of C, we have that

Pr
[
C ′(x) = C(x) : C ′ ← iO(λ,C)

]
= 1

• Indistinguishability: For any PPT distinguisher D, there exists a negligible function negl(·)
such that the following holds: for all sufficiently large λ ∈ N, for all pairs of circuits C0, C1 ∈
Cλ such that C0(x) = C1(x) for all inputs x ∈ {0, 1}inp, where inp = inp(λ) is the input length
of C0, C1, we have:∣∣∣Pr [D(λ, iO(λ,C0)) = 1]− Pr[D(λ, iO(λ,C1)) = 1]

∣∣∣ ≤ negl(λ)
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iO for Turing Machines. Analogous to the case of circuits, we can define indistinguishability
obfuscation for Turing machines (TMs). The security property states that the obfuscations of two
Turing machines M0 and M1 are computationally indistinguishable as long as M0(x) = M1(x). Note
that by our convention adopted for Turing machines, the condition that M0(x) = M1(x) already
ensures that the running time of M0(x) and M1(x) are the same. The succinctness property states
that the running time of the obfuscation algorithm on input M is independent of the worst case
running time of machine M . The same guarantee also holds for the evaluation of the obfuscated
TM. We note that this definition was adopted in the works of [BGL+15, CHJV15, KLW15, AJS17].

Definition 4 (Succinct iO). A uniform PPT algorithm SuccIO is called an succinct indistinguisha-
bility obfuscator for a class of Turing machines {Mλ}λ∈N with an input bound L, if the following
holds:

• Completeness: For every λ ∈ N, every M ∈ Mλ, every input x ∈ {0, 1}≤L, we have that:
Pr [M ′(x) = M(x) : M ′ ← SuccIO(λ,M,L)] = 1.

• Indistinguishability: For any PPT distinguisher D, there exists a negligible function negl(·)
such that the following holds: for all sufficiently large λ ∈ N, for all pairs of Turing machines
M0,M1 ∈Mλ such that M0(x) = M1(x) for all inputs x ∈ {0, 1}≤L, we have:∣∣∣Pr [D(λ,SuccIO(λ,M0, L)) = 1]− Pr[D(λ,SuccIO(λ,M1, L)) = 1]

∣∣∣ ≤ negl(λ)

• Succinctness: For every λ ∈ N, every M ∈ Mλ, we have the running time of SuccIO on
input (λ,M,L) to be poly(λ, |M |, L, log(T )) and the evaluation time of M̃ on input x, where

|x| ≤ L, to be poly(|M |, L, t), where M̃ ← SuccIO(λ,M,L) and t = RunTime(M,x).

3.4 Garbled TMs with Persistent Memory

A garbled Turing machine is a randomized encoding, where the encoding time is independent of
the computation time. It consists of two components – an input encoding and a TM encoding. The
input encoding is an encoding of the input tape of the TM. We consider the concept of garbled TMs
(GTM) with persistent memory. In this setting, there are multiple TM encodings that sequentially
operate on the same input encoding. To be more precise, denote the input encoding of x to be x̃.
Now, GTM with persistent memory allows the issue of multiple TM encodings M̃1, . . . , M̃` such
that (i) M̃1 executes on x̃ and outputs a value y1 and also updates the input tape to be x̃1, (ii) M̃i

operates on encoding x̃i−1; outputs yi and updates the input tape to be x̃i.
The concept of persistent memory has been studied in the context of RAMs [GHRW14, GLOS15].

For our work, it suffices to consider Turing machines. We describe the primitive formally below.
Suppose M = {Mλ}λ∈N be a class of Turing machines where every M ∈ Mλ is such that

the maximum space taken by M on any input x ∈ {0, 1}poly(λ) is 2λ, for every sufficiently large
λ ∈ N. A garbled TM with persistent memory GTM, consists of a tuple of algorithms (Gen,GarbDB,
GarbTM,GarbEval).

• Setup, k← Gen(1λ): It takes as input a security parameter and outputs a secret key k.

• Garbling of Turing Machine, M̂ ← GarbTM(k,M): It takes as input a secret key k,

Turing machine M ∈M and outputs an encoding of M , M̂ .
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• Garbling of Input Tape, D̂B ← GarbDB(k, DB): It takes as input a secret key k, contents

of an input tape DB and outputs an encoding of DB, D̂B.

• Evaluation, (y, D̂B′)← GarbEval(M̂, D̂B): It takes as input an encoding M̂ , encoding D̂B

and outputs a value y and also the updated encoding D̂B′.

Remark 4. Previous works considered definitions, where the algorithms also take as input a space
bound. In our setting, we set the space bound of the computations to be 2λ and hence the space
bound does not explicitly feature in the definitions.

We require that the above scheme satisfy the following properties.

Correctness. Consider a sequence of Turing machines M1, . . . ,M` ∈ M, input tape DB ini-
tialized with x. Suppose a sequential evaluation of M1, . . . ,M` on DB leads to outputs y1, . . . , y`
respectively. By this, we mean that Mi when operated on the input tape updated by Mi−1 would
output value yi.

We require that for every i ∈ [`], it should hold that (yi, D̂Bi)← GarbEval(M̂i, D̂Bi−1), where

• k← Gen(1λ)

• M̂1 ← GarbTM(k,M1)

• D̂B0 ← GarbDB(k, DB)

Efficiency. We require that the generation time of the TM encodings be a polynomial only in
the size of the TM and security parameter and in particular, independent of either the input
tape size or the computation time. More formally, |GarbTM(k,M)| = poly(λ, |M |). Furthermore,
the generation time of the input tape encoding is independent of the program size. That is,
|GarbDB(k, DB)| = poly(λ, |DB|). Finally, we require the running time of the evaluation procedure,

on input M̂ and D̂B (notation as defined above), is polynomial in λ and runtime of M on DB.

Security

We consider a simulation-based definition of GTMs with persistent memory. We first consider the
adaptive security notion and provide the definition below. Let A be a (stateful) PPT adversary.
And let Sim = (Sim1,Sim2) be a PPT simulator.

Ad.ExptGTM,SimA (1λ):
Consider the two processes.

• Honest Execution:

– DB ← A(1λ)
– k← Gen(1λ),

– D̂B ← GarbDB(k, DB),

– `(λ)← A(D̂B)

– ∀i ∈ [`],
{
Mi ← A(M̂i−1); M̂i ← GarbTM(k,Mi)

}
, where M̂0 = ⊥.
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– breal ← A(M̂`)

• Simulation:

– DB ← A(1λ)

– (stSim, D̂Bideal)← Sim1(1
λ, 1|DB|),

– `(λ)← A(D̂Bideal)

– ∀i ∈ [`],
{
Mi ← A(M̂ ideal

i−1 ); (M̂ ideal
i , stSim)← Sim2(stSim, yi, 1

|Mi|)
}

,

where M̂0 = ⊥ and (yi, DBi)←Mi(DBi−1) with DB0 = DB.

– bideal ← A(M̂ ideal
` ).

If breal 6= bideal then output 1.

Definition 5 (Adaptive GTM with Persistent Memory). A GTM with persistent memory GTM is

said to be adaptively secure if for every PPT adversary A, we have |Pr[1← Ad.ExptGTM,SimA (1λ)]| ≤
1
2 + negl(λ).

We can similarly consider the selective notion, where the adversary declares all the programs ahead
of time. And so, the simulator gets to see all the outputs of the programs at once. We define the
corresponding experiment to be Sel.ExptGTM,SimA .

Definition 6 (Selective GTM with Persistent Memory). A GTM with persistent memory GTM is

said to be selectively secure if for every PPT adversary A, we have |Pr[1← Sel.ExptGTM,SimA (1λ)]| ≤
1
2 + negl(λ).

Succinct and Non-Succinct GTM Schemes. In the above definition of garbled TMs with
persistent memory, we considered the setting where we require that the size of the program en-
codings are independent of the execution time. We can formalize this by naming such schemes as
succinct GTM schemes.

Definition 7 (Succinct Garbled TM). A garbled TM with persistent memory scheme GTM is said

to be succinct if |M̂ | = poly(λ, |M |), where M̂ ← GarbTM(k,M).

We can alternately consider a definition where the size of the program encodings depend on
the runtime. Such schemes have been studied in the literature in the context of RAMs [LO13,
GHL+14, GLOS15, GLO15] and can be constructed based on one-way functions.

Definition 8 (Non-Succinct Garbled TM). A garbled TM with persistent memory scheme GTM

is said to be non-succinct if |M̂ | = poly(λ, |M |, T ), where M̂ ← GarbTM(k,M) and T is a time
bound on the running time of M .

Feasibility. The existence of (selectively-secure) garbled TMs with persistent memory was ex-
plored in the work of [CH16, CCC+16]. Recently, the works of [CCHR B, ACC+ B] show the exis-
tence of adaptively secure garbled TMs with persistent memory. Their constructions are based on
the existence of ε

2λ
-secure indistinguishability obfuscation and ε′

2λ
-secure decisional Diffie-Hellman

(DDH) assumption, where λ is the security parameter and ε, ε′ ≤ 1
p(λ) for some fixed polynomial

p. Here we emphasize that the security loss ε′

2λ
, ε′

2λ
do not depend on either the size of the Turing
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machines or the input. We note that their construction is designed for the more general RAM
model of computation, however it suffices for our work to just consider the Turing machine model
of computation.

3.5 Secret-Key Functional Encryption

A secret-key functional encryption (FE) scheme FE over a message space MSG = {MSGλ}λ∈N and
a function space F = {Fλ}λ∈N is a tuple (FE.Setup,FE.KeyGen,FE.Enc,FE.Dec) of PPT algorithms
with the following properties:

• FE.Setup(1λ): The setup algorithm takes as input the unary representation of the security
parameter, and outputs a secret key FE.MSK.

• FE.KeyGen(FE.MSK, f): The key-generation algorithm takes as input the secret key FE.MSK
and a function f ∈ Fλ, and outputs a functional key FE.SKf .

• FE.Enc(FE.MSK,m): The encryption algorithm takes as input the secret key FE.MSK and a
message m ∈ MSGλ, and outputs a ciphertext CT.

• FE.Dec(FE.SKf ,CT): The decryption algorithm takes as input a functional key FE.SKf and
a ciphertext CT, and outputs m ∈ MSGλ ∪ {⊥}.

Correctness. There exists a negligible function negl(·) such that for all sufficiently large λ ∈ N,
for every message m ∈ MSGλ, and for every function f ∈ Fλ it holds that

FE.Dec(FE.KeyGen(FE.MSK, f),FE.Enc(FE.MSK,m)) = f(m)

with probability at least 1− negl(λ), where FE.MSK← FE.Setup(1λ), and the probability is taken
over the random choices of all algorithms.

Function privacy. The notion of function privacy is modeled as a game. In the game, a function
query made by the adversary is a pair of functions and in response it receives a functional key
corresponding to either of the two functions. As long as both the functions are such that they do
not split the challenge message-pairs, the adversary should not be able to tell which function was
used to generate the functional key. That is, the output of the left function on the left message
should be the same as the output of the right function on the right message.

Definition 9 (Function-private adaptively-secure FE). A secret-key functional encryption scheme
FE = (Setup, KeyGen, Enc, Dec) over a function space F = {Fλ}λ∈N and a message space MSG =
{MSGλ}λ∈N is a function-private adaptively-secure secret-key FE scheme if for any PPT
adversary A, there exists a negligible function negl(λ) such that for all sufficiently large λ ∈ N, the
advantage of A is defined to be

AdvA =
∣∣∣Pr[ExptA(1λ, 0) = 1]− Pr[ExptAdA (1λ, 1) = 1]

∣∣∣ ≤ negl(λ),

where for each b ∈ {0, 1} and λ ∈ N the experiment ExptA(1λ, b), modeled as a game between the
challenger and the adversary A, is defined as follows:
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1. The challenger first executes MSK ← Setup(1λ). The adversary then makes the following
message queries and function queries in no particular order.

• Message queries: The adversary submits a message-pair (m0,m1) to the challenger.
In return, the challenger sends back CT = Enc(MSK,mb).

• Function queries: The adversary then makes functional key queries. For every function-
pair query (f0, f1), the challenger sends SKfb to the adversary, where SKfb is the output
of KeyGen(MSK, fb) only if f0(m0) = f1(m1), for all message-pair queries (m0,m1).
Otherwise, it aborts.

2. The output of the experiment is b′, where b′ is the output of A.

Compactness. We now recall the notion of compact FE from [AJ15, BV15]. In a compact FE
scheme, the running time of the encryption algorithm only depends on the security parameter and
the input message length. In particular, it is independent of the complexity of the function family
supported by the FE scheme. We refer to [AJ15, BV15] for a formal definition of this notion.

4 Splittable iO

We describe the notion of splittable iO next. This notion will be associated with a patchable
encoding scheme. We define patchable encoding scheme first.

4.1 Patchable Encoding Scheme

A patchable encoding scheme is an encoding scheme associated with a class of Turing machines.
This scheme allows for updating an encoding of a machine M using an encoding of a patch P to
obtain an encoding of another machine M ′, where M ′ ← Update(M,P ). The secret key, used in
the computation of the encodings, is generated using algorithm Gen. Turing machines are encoded
using Encode and the patches are encoded using GenPatch. Algorithm AppPatch is used to apply
update the encoding of machine M using encoding of patch P . Finally, Decode is used to decode
an encoding of M using the secret key produced by Gen.
Syntax. A patchable encoding scheme is described by the algorithms UE = (Gen,Encode,GenPatch,
AppPatch,Decode) which are defined below. We denote by M, the class of Turing machines it is
associated with. We further denote the update algorithm associated with M to be Update.

• sk ← Gen(1λ): On input λ, it produces the secret key sk.

• Esk(M)← Encode(sk,M): On input secret key sk, Turing machine M , it produces an encod-
ing of M , namely Esk(M), with respect to sk.

• P̃ ← GenPatch(sk, P ): On input secret key sk, patch P , it produces a secure patch P̃ .

• Esk(M ′) ← AppPatch
(
Esk(M), P̃

)
: On input encoding Esk(M), secure patch P̃ , it produces

the updated encoding Esk(M).

• M ← Decode(sk, Esk(M)): On input secret key sk, machine encoding Esk(M), it produces
the machine M .
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Efficiency. We require that the size of the secure patches is a (a priori fixed) polynomial in
the security parameter and the size of the underlying patch. That is, |P̃ | = poly(λ, |P |), where
P̃ ← GenPatch(sk, P ).

Correctness of Sequential Updating. Consider M ∈M and a sequence of patches P1, . . . , PL.
We consider the following two processes:

• Encode-then-Update: Compute the following: (a) sk ← Gen(1λ); (b) Esk(M1)← Encode(sk,

M); (c) For every i ∈ [L], P̃i ← GenPatch(sk, Pi); (d) Esk(Mi+1)← AppPatch
(
Esk(Mi), P̃i

)
.

• Update: For every i ∈ [L], Mi+1 ← Update(Mi, Pi) with M1 = M .

We require that Decode(sk, Esk(ML)) = ML.

Security. We require any patchable encoding scheme to satisfy the following.

Definition 10. A patchable encoding scheme, UE = (Gen,Encode,GenPatch,AppPatch,Decode) is
said to be secure if the following holds: Consider the game between a challenger and an adversary.
The adversary submits machines (M1

0 ,M
1
1 ) . . . , (MQ

0 ,M
Q
1 ) ∈ M to the challenger. In return, the

adversary receives {Esk(M j
b )}j∈[Q], where b ∈ {0, 1} is picked at random. The adversary can then

make patch queries (P i0, P
i
1), for every i ∈ [L], adaptively. In return it receives P̃ ib . The probability

that the adversary outputs b is negligibly close to 1/2.

We can correspondingly define an encoding scheme supporting parallel patches.

Instantiation. We can instantiate patchable encoding scheme using a secret key fully homomor-
phic encryption (FHE) scheme. Let FHE = (FHE.Setup,FHE.Enc,FHE.Eval,FHE.Dec) be a secret
key FHE scheme. We can construct a patchable encoding scheme UE as follows:

• Gen(1λ): Execute FHE.Setup(1λ) to obtain FHE.sk. Set the secret key sk to be FHE.sk.

• Encode(sk,M): Execute the FHE encryption algorithm FHE.Enc(FHE.sk,M) to obtain FHE.CTM .
Set the encoding Esk(M) = FHE.CTM .

• GenPatch(sk, P ): Execute the FHE encryption algorithm FHE.Enc(FHE.sk, P ) to obtain FHE.CTP .
Set the encoding P̃ = FHE.CTP .

• AppPatch
(
Esk(M), P̃

)
: Execute the evaluation algorithm of FHE; FHE.CTM ′ ← FHE.Eval(

UUpdate,FHE.CTM ,FHE.CTP ). Here, UUpdate is a function that takes as input TM-patch pair
(M,P ) and produces an updated TM M ′. Set Esk(M ′) = FHE.CTM ′ .

• Decode(sk, Esk(M)): Execute the FHE decryption algorithm FHE.Dec(FHE.sk,FHE.CT), where
FHE.sk = sk and FHE.CT = Esk(M). The decrypted value is output.

The correctness of sequential updating and efficiency properties of UE follows from the correspond-
ing correctness and compactness properties of FHE. The security of UE follows from the semantic
security of FHE.
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Parallel Patches. Fully homomorphic encryption can also be used to instantiate encoding schemes
supporting parallel patches. The construction is same as before.

4.2 Definition of Splittable iO

We define the notion of splittable iO next. A splittable iO is an indistinguishability obfuscation
scheme, satisfying additional properties. The model of computation is Turing machines and we
work in succinct iO setting (Definition 4). Although the algorithms associated with succinct iO
take the input length bound as input, we omit this in the description below. For simplicity, set the
input length bound to be λ. Our results can easily be extended to the case when the input bound
is an arbitrary polynomial in λ and our parameter sizes would blow accordingly.

Firstly, we require that the obfuscation of M proceeds in two steps: in the first step, M is
encoded (twice) using the underlying patchable encoding scheme UE. This is done by generating
the setup of UE twice and encoding M using both these secret keys sk0 and sk1. Call the two
encodings Esk0(M) and Esk1(M). The second step involves generation of auxiliary information as
a function of the encodings Esk0(M) and Esk1(M) and one of the secret keys. This is enabled via
an additional algorithm AuxGen. This requirement on the structure of the obfuscate algorithm
is termed as splittable property. The second property we require is correctness of AuxGen – this
says that the correctness of the obfuscated machine should not be affected by whether the two
encodings (part of the obfuscated machine) fed to AuxGen are freshly computed or if they are
obtained as a result of patching. The third property, which is efficiency of aux, states that the
auxiliary information produced by AuxGen should be a fixed polynomial in λ. Finally, we have the
indistinguishability of aux property that states that the auxiliary information obtained by AuxGen
on input two encodings Esk0(M) and Esk1(M) and secret key sk0 is indistinguishability the output
of AuxGen on input Esk0(M), Esk1(M) and secret key sk1.

Definition 11 (Splittable iO). A splittable iO scheme, denoted by siO = (Obf,Eval) for a class of
Turing machines M, is an indistinguishability obfuscation scheme that is associated with a patch-
able encoding scheme UE = (Gen,Encode,GenPatch,AppPatch,Decode) and satisfies the following
properties:

- Splittable Property: Obf consists of Gen,Encode and an additional PPT algorithm AuxGen.
On input (1λ,M) it proceeds in the following three phases:

1. Encoding of M using UE: (a) sk0 ← Gen(1λ); sk1 ← Gen(1λ). (b) Esk0(M) ←
Encode(sk0,M); Esk1(M)← Encode(sk1,M)

2. Generation of aux: aux← AuxGen (sk0, Esk0(M), Esk1(M))

Output 〈M〉 = (Esk0(M), Esk1(M), aux). The secret state associated with this execution is set
to be (sk0, sk1).

- Correctness of AuxGen: Let M ∈ M and let P1, . . . , PL be a sequence of patches. Let Mi

be the ith updated machine, Mi ← Update(Mi−1, P ), for every i ∈ [L], where M0 = M .

Consider the following process:

– Let sk0, sk1 be such that sk0 ← UE.Gen(1λ), sk1 ← UE.Gen(1λ).

– Let Esk0(M)← UE.Encode(sk0,M) and Esk1(M)← UE.Encode(sk0,M).
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– Consider the ith updated encodings, Esk0(Mi)← UE.AppPatch(Esk0(Mi−1),UE.GenPatch(sk0,
Pi)) and Esk1(Mi)← UE.AppPatch (Esk1(Mi−1),UE.GenPatch(sk1, Pi)).

– Let aux← AuxGen(sk0, Esk0(ML), Esk1(ML)) and set 〈ML〉 = (Esk0(ML), Esk1(ML), aux).

For every x, we have Eval(〈ML〉, x) = ML(x).

- Efficiency of aux: There exists a polynomial p such that the following holds. Let (Esk0(M),
Esk1(M), aux)← Obf(1λ,M) for M ∈M. Then, |aux| = p(λ).

- Indistinguishability of aux: Consider M0,M1 ∈ M such that M0(x) = M1(x) for ev-
ery x ∈ {0, 1}∗. Suppose E0, E1, sk0, sk1 are such that M0 ← Decode(sk0, E0) and M1 ←
Decode(sk1, E1). We have,

{E0, E1, sk0, sk1, aux0} ≈c {E0, E1, sk0, sk1, aux1} ,

where auxb ← AuxGen(skb, E0, E1) for b ∈ {0, 1}.

An instantiation of splittable iO is presented in Section 8.
We note that the above definition can be extended to the parallel patches setting if the under-

lying patchable encoding scheme supports parallel patches.

5 Splittable iO to Single-Program pa-iO
We give a generic transformation from splittable iO to single-program patchable iO.

Construction. The main tool we use in our construction is a splittable iO scheme siO = (siO.Obf,
siO.Eval) associated with the updatable encoding scheme UE = (Gen,Encode,GenPatch,AppPatch,
Decode). We construct a single-program patchable obfuscation scheme pa-iO below.

Setup, Setup(1λ): It outputs SK = ⊥.

Obfuscate, Obf(SK,M): It takes as input the secret key SK = ⊥ and a TM M ∈ M. The obfus-
cation of M is essentially the obfuscation of M with respect to siO. That is, it executes the obfuscate
algorithm of siO onM ; (Esk0(M), Esk1(M), aux)← siO.Obf(1λ,M). Denote (Esk0(M), Esk1(M), aux)
by 〈M〉. Let the state associated with this execution be (sk0, sk1) (refer to Splittable Property in
Definition 11).

It outputs the obfuscated TM 〈M〉. The state is set to be st = (sk0, sk1, Esk0(M), Esk1(M)).
That is, the state consists of the two secret keys and the patchable encodings of M with respect to
sk0 and sk1.

Secure Patch Generation, GenPatch(SK, P, st): It takes as input the secret key SK = ⊥, a
description of a patch P ∈ P and state st = (sk0, sk1, Esk0(M), Esk1(M)). Then,

- It computes the secure patches, P̃ 0 ← UE.GenPatch(sk0, P ) and P̃ 1 ← UE.GenPatch(sk1, P ).

- It applies the secure patches on the encodings, Esk0(M ′) ← UE.AppPatch(Esk0(M), P̃ 0) and
Esk1(M ′)← UE.AppPatch(Esk1(M), P̃ 1).
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- It then executes AuxGen algorithm of siO. It computes aux′ ← AuxGen(sk0, Esk0(M0), Esk1(M1)).

It outputs a secure patch 〈P 〉 = (P̃ 0, P̃ 1, aux′). It updates the state to be st′ = (sk0, sk1,
Esk0(M ′), Esk1(M ′)).

Note: It suffices to just include the encodings (P̃ 0, P̃ 1) (and not the updated encodings Esk0(M ′), Esk1(M ′)
) as part of secure patch because anyone having the original pair of encodings (Esk0(M), Esk1(M))
can now recompute the (Esk0(M ′), Esk1(M ′)) by using just (P̃ 0, P̃ 1).

Applying Patch, AppPatch (〈M〉, 〈P 〉): It takes as input an obfuscated TM 〈M〉 = (Esk0(M),

Esk1(M), aux) and a secure patch 〈P 〉 = (P̃ 0, P̃ 1, aux′).

- It applies the secure patches on the encodings, Esk0(M ′) ← UE.AppPatch(Esk0(M), P̃ 0) and
Esk1(M ′)← UE.AppPatch(Esk1(M), P̃ 1).

- It replaces aux with aux′ which is sent as part of the patch.

It outputs an updated obfuscation 〈M ′〉 = (Esk0(M ′), Esk1(M ′), aux′).

Evaluation, Eval (〈M〉, x): It takes as input an obfuscated TM 〈M〉 and an input x. It executes
the evaluation algorithm of siO; y ← siO.Eval(〈M〉, x). Output y.

Efficiency. We claim that the size of the secure patch solely depends on the size of the patch and
the security parameter. In particular, it is independent of the size of the machine.

Consider a patch P . Let the output of GenPatch(SK, P, st) be 〈P 〉 = (P̃ 0, P̃ 1, aux′). From
the efficiency of the underlying patchable encoding scheme, |(P̃ 0, P̃ 1)| = poly(λ, |P |). From the
efficiency of the underlying spittable iO scheme, |aux′| = poly(λ).

Remark 5. The secure patch generation time in the above scheme is proportional to the size of
the obfuscated machine. This is in general undesirable and we show how to deal with this issue in
Section 6.

Correctness of Sequential Updating. Consider a TM M0 ∈ M and a sequence of patches
P1, . . . , PL ∈ P. Consider the following two processes generated using the above scheme. For every
i ∈ {1, . . . , L}, we have:

• Obfuscate-then-Update: Compute the following: (a) SK ← Setup(1λ), (b) (〈M0〉, st0) ←
Obf(SK,M0), (c) (〈Pi〉, sti)← GenPatch(SK, Pi, sti−1), (d) 〈Mi〉 ← AppPatch

(
〈Mi−1〉, 〈Pi〉

)
.

• Update: Mi ← Update(Mi−1, Pi).

We have the following claim.

Claim 1. For every x, we have Eval(〈ML〉, x) = ML(x).

Proof. Let 〈M0〉 = (E0
0 , E

0
1 , aux

0), st = (sk0, sk1, E
0
0 , E

0
1) and 〈ML〉 = (EL0 , E

L
1 , aux

L). Note that
E0 is the output of an execution of Encode(sk0,M0) and aux0 is the output of AuxGen(sk0, E

0
0 , E

0
1).

From the correctness of patchable encoding scheme, we have Decode(SK0, E
L
0 ) = ML. Using this

fact along with the correctness of AuxGen property of siO, we get that the output of Eval(〈ML〉, x)
to be ML(x).
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Security of Sequential Updating. We prove,

Theorem 8. pa-iO satisfies security of sequential updating property.
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Proof. We begin with a high level proof overview and then provide the formal details.

Overview. Consider two functionally equivalent Turing machines M0 and M1. The goal is to show
that any PPT adversary cannot distinguish the obfuscations of M0 and M1 even when he is allowed
to patch M0 or M1 sequentially as long as the patching does not destroy functional equivalence.

In the first hybrid, the adversary is given the obfuscation (Esk0(Mb), Esk1(Mb), auxsk0), where
auxsk0 is generated as auxsk0 ← AuxGen(sk0, Esk0(Mb), Esk1(Mb)) and bit b is picked at random.
Similarly, the bth patch is used to generate secure patch in every patch query. In the next step,
we change (Esk0(Mb), Esk1(Mb), auxsk0) to (Esk0(Mb), Esk1(M1), auxsk0). Similarly we switch the
patches encoded under sk1 from P̃ ib to P̃ i1 for every i ∈ [L]. This is legal since sk1 is not present
in the encodings and thus we can invoke the security of patchable encoding. Then, we switch from
generating aux using sk0 to generating aux using sk1. We do this, one at a time, for every aux
present as part of the obfuscation as well as the secure patches. We explain shortly how this is
done. After we have completely switched all the aux, generated using sk0 to being generated using
sk1, we then switch from (Esk0(M1), Esk1(M1), auxsk0). Also, every secure patch encodes P1 under
both sk0 and sk1. At this point, the challenge bit b is completely hidden.

All is remaining is to show that we can indeed switch from aux from sk0 to sk1 at every step.
A first thought would be to reduce this to the indistinguishability of aux property of siO. That is,
a reduction uses the adversary of patchable iO to break the indistinguishability of aux property.
Suppose we are switching aux in the secure patch corresponding to ith patch query. The reduc-
tion computes the encoding of ith updated machine pair (Esk0(M i

b), Esk1(M i
1)) along with (sk0, sk1)

and sends it to the challenger of siO. In response, it receives aux∗i generated using either sk0 or
sk1. The reduction now is expected to use this to respond to the adversary. The main issue here
is that the reduction has to, along with aux∗i , also send patch encodings of (P ib , P

i
1). Moreover,

these encodings might not be compatible with aux∗i . To resolve this issue, the reduction generates
(Esk0(M i

b), Esk1(M i
1)), not afresh as done before, but instead by updating the (i − 1)th encoding

using patch encodings of (P ib , P
i
1). Refer to the hybrids for more details.

Formal Details. Consider the following hybrids. In some of the hybrids below, we use a box
around the text to highlight the difference from the previous hybrids.

Hyb1: Let (M0,M1) ∈M be the TM query made by adversary A. Challenger picks a bit b at ran-
dom and sends the obfuscation of Mb, namely 〈Mb〉, to the adversary. Then, adversary adaptively
submits the patch queries

(
(P 1

0 , P
1
1 ), . . . , (PL0 , P

L
1 )
)

and in response receives the secure patches(
〈P 1

b 〉, . . . , 〈PLb 〉
)
. The adversary outputs b′. The output of hybrid is 1 if b′ = b.

Hyb2: Let (M0,M1) ∈ M be the TM query made by adversary A. Challenger picks a bit b at
random. It then executes the setup of patchable encoding scheme twice: sk0 ← Gen(1λ); sk1 ←
Gen(1λ). It then encodes Mb using sk0; Esk0(Mb)← Encode(sk0,Mb) and it encodes M1 using sk1;
Esk1(M1) ← Encode(sk1,M1). It then generates aux by executing aux ← AuxGen(sk0, Esk0(Mb),

Esk1(M1)). It sets 〈Mb〉 = (Esk0(Mb), Esk1(M1) , aux). The challenger handles patch queries as

follows: upon receiving the patch query (P i0, P
i
1), for every i ∈ [L], it first computes the secure

patches, (P̃ ib )
0 ← UE.GenPatch(sk0, P

i
b ) and (P̃ i1)1 ← UE.GenPatch(sk1, P

i
1). It then computes auxi

as a function of sk0 and the updated machine encodings as given in the description of the scheme.

It sets 〈P ib 〉 = ((P̃ ib )
0, (P̃ i1)1 , auxi). The rest of the hybrid is same as before.
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Hyb3: Let (M0,M1) ∈ M be the TM query made by adversary A. Challenger picks a bit b at
random. It then executes the setup of patchable encoding scheme twice: sk0 ← Gen(1λ); sk1 ←
Gen(1λ). It then encodes Mb using sk0; Esk0(Mb)← Encode(sk0,Mb) and it encodes M1 using sk1;

Esk1(M1) ← Encode(sk1,M1). It then generates aux by executing aux ← AuxGen( sk1 , Esk0(Mb),
Esk1(M1)). Observe that sk1 is used to generate aux; this is the only difference between this hybrid
and the previous hybrid. It sets 〈Mb〉 = (Esk0(Mb), Esk1(M1), aux). The patch queries are handled
as in the previous hybrid.

Hyb4.i for i ∈ [L]: The machine query is handled as in the previous hybrid. Let the ini-
tial state be st0 = (sk0, sk1, Esk0(M0

b ), Esk1(M0
1 )). Upon receiving a patch query (P k0 , P

k
1 ), the

challenger does the following: It computes the encodings of the patches using UE by comput-
ing (P̃ kb )0 ← UE.GenPatch(sk0, P

k
b ) and (P̃ k1 )1 ← UE.GenPatch(sk1, P

k
1 ). It applies the secure

patches on the updated encodings, Esk0(Mk
b )← UE.AppPatch(Esk0(Mk−1

b ), (P̃ kb )0) and Esk1(Mk
1 )←

UE.AppPatch(Esk1(Mk−1
1 ), (P̃ k1 )1). Here, M j

b (resp., M j
1 ) is the machine obtained as the output of

M j
b ← Update(M j−1

b , P jb ) (resp., M j
1 ← Update(M j−1

1 , P j1 )) for every 1 ≤ j ≤ k − 1 and M0
b = Mb

(resp., M0
1 = M1). It then executes AuxGen algorithm of siO. There are two cases:

• If k < i: It computes auxk ← AuxGen(sk1, Esk0(Mk
b ), Esk1(Mk

1 )). That is, sk1 is the secret
key used to compute auxk. It sets the secure patch as:

〈P kb 〉 =
(

(P̃ kb )0, (P̃ k1 )1, auxk

)
• If k ≥ i: If k < i: It computes auxk ← AuxGen(sk0, Esk0(Mk

b ), Esk1(Mk
1 )). That is, sk0 is the

secret key used to compute auxk. It sets the secure patch as:

〈P kb 〉 =
(

(P̃ kb )0, (P̃ k1 )1, auxk

)
The rest of the hybrid is as before.

Hyb5: Let (M0,M1) ∈ M be the TM query made by adversary A. Challenger picks a bit b at
random. It then executes the setup of patchable encoding scheme twice: sk0 ← Gen(1λ); sk1 ←
Gen(1λ). It then encodes M1 using sk0; Esk0(M1)← Encode(sk0,M1) and it encodes M1 using sk1;
Esk1(M1) ← Encode(sk1,M1). It then generates aux by executing aux ← AuxGen(sk0, Esk0(M1),

Esk1(M1)). It sets 〈Mb〉 = ( Esk0(M1) , Esk1(M1), aux). The challenger handles patch queries as

follows: upon receiving the patch query (P i0, P
i
1), for every i ∈ [L], it first computes the secure

patches, (P̃ i1)0 ← UE.GenPatch(sk0, P
i
1) and (P̃ i1)1 ← UE.GenPatch(sk1, P

i
1). It then computes

auxi as a function of sk1 and the updated machine encodings as in Hyb4.L+1. It sets 〈P ib 〉 =

( (P̃ i1)0 , (P̃ i1)1, auxi). The rest of the hybrid is same as before.

Indistinguishability of Hybrids. Consider the following claims.

Claim 2. Assuming the security of UE, we have |Pr[1← Hyb1]−Pr[1← Hyb2]| ≤ negl(λ), for some
negligible function negl.
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Proof. We define a reduction B that uses A to break the security of UE. We denote the challenger
of UE by Ch.
B receives a pair of Turing machines (M0,M1) from A. It picks a bit b at random. It sends

(Mb,M1) to Ch. In response B gets back E∗1 . It then samples a secret key sk0 ← Gen(1λ) and
encodes Mb using sk0 to get Esk0(Mb) ← Encode(sk0,Mb). It then computes aux as aux ←
AuxGen(sk0, Esk0(Mb), E

∗
1). Reduction B then sends 〈Mb〉 = (Esk0(Mb), E

∗
1 , aux) to A. Adversary

A then makes patch queries of the form (P i0, P
i
1). To compute the secure patch, B first sends the

query (P ib , P
i
1) to Ch. In response it receives (P̃ i∗)

1. B then computes (P̃ ib )
0 ← UE.GenPatch(sk0, P

i
b ).

It then computes auxi as auxi ← AuxGen(sk0, Esk0(M i
b), E

i
1), where (a) Esk0(M i

b) is obtained by

updating Esk0(Mb) using the patches {(P̃ jb )0}j≤i and, (b) Ei1 is obtained by updating E∗1 using the

patches {(P̃ j∗ )1}j≤i. Reduction B then sends 〈Pi〉 =
(

(P̃ ib )
0, (P̃ i∗)

1, auxi

)
to A. This completes the

description of the reduction.
Suppose Ch used the challenge bit 0 then we are in Hyb1, else if it used bit 1 then we are in

Hyb2. From the security of UE, the claim follows.

Claim 3. Assuming the indistinguishability of aux property of siO, we have |Pr[1← Hyb2]−Pr[1←
Hyb3]| ≤ negl(λ), for some negligible function negl.

Proof. We define a reduction B that uses A to break the security of siO. We denote the challenger
of siO to be Ch.
B receives a pair of Turing machines (M0,M1) from A. It picks a bit b at random. It then

encodes Mb using sk0 to get Esk0(Mb) ← Encode(sk0,Mb) and M1 using sk1 to get Esk1(M1) ←
Encode(sk1,M1). It sets (E0, E1) = (Esk0(Mb), Esk0(M1)). It sends (E0, E1, sk0, sk1) to Ch and in
response it receives aux∗. It then sets 〈Mb〉 = (Esk0(M0), Esk1(M1)). B sends 〈Mb〉 to A. The patch
queries are answered by B as in Hyb2.

Note that E0 and E1 are such that Decode(sk0, E0) = Mb and Decode(sk1, E1) = M1. Further-
more, M0 and M1 are functionally equivalent. If Ch uses sk0 to generate aux∗ then we are in Hyb2.
If it uses sk1 to generate aux∗ then we are in Hyb3. From the indistinguishability of aux property
of siO, the claim follows.

Claim 4. Pr[1← Hyb3] = Pr[1← Hyb4.1].

Proof. This follows from the fact that Hyb3 and Hyb4.1 are identical hybrids.

Claim 5. Assuming the indistinguishability of aux property of siO, we have |Pr[1← Hyb4.i]−Pr[1←
Hyb4,i+1]| ≤ negl(λ), for every i ∈ [L] and for some negligible function negl.

Proof. We define a reduction B that uses A to break the security of siO. We denote the challenger
of siO to be Ch.
B receives a pair of Turing machines (M0,M1) from A. It picks a bit b at random. It then

encodes Mb using sk0 to get Esk0(Mb) ← Encode(sk0,Mb) and M1 using sk1 to get Esk1(M1) ←
Encode(sk1,M1). It generates aux← AuxGen(sk1, Esk0(Mb), Esk1(M1)). It sends (Esk0(Mb), Esk1(M1),
aux) to A.

Upon receiving the kth patch query (P k0 , P
k
1 ), the challenger first computes P̃ kb ← UE.GenPatch(sk0,

P kb ) and P̃ k1 ← UE.GenPatch(sk1, P
k
1 ). Denote by Esk0(Mk

b ) and Esk1(Mk
1 ) be the kth update phase

encodings obtained by patching Esk0(Mb) and Esk1(M1) using {P̃ jb }j≤k and {P̃ j1 }j≤k respectively.
The next step is decided depending on the following three cases:
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• k < i: Execute auxk ← AuxGen(sk1, Esk0(Mk
b ), Esk1(Mk

1 )). Set 〈P kb 〉 = (P̃ kb , P̃
k
1 , auxk).

• k = i: B sends (Esk0(Mk
b ), Esk1(Mk

1 ), sk0, sk1) to Ch. In response it receives aux∗k. Set

〈P kb 〉 = (P̃ kb , P̃
k
1 , aux

∗
k).

• k > i: Execute auxk ← AuxGen(sk0, Esk0(Mk
b ), Esk1(Mk

1 )). Set 〈P kb 〉 = (P̃ kb , P̃
k
1 , auxk).

B sends 〈P kb 〉 to A.
Note that Esk0(M i

b) and Esk1(Mk
1 ) are such that Decode(sk0, Esk0(M i

b)) = M i
b and Decode(sk1,

Esk1(M i
1)) = M i

1. Here M i
b and M i

1 are obtained by updating Mb and M1 using the sequence of

patches {P jb }j≤i and {P j1 }j≤i respectively. Since A is a valid adversary, M i
b and M i

1 are functionally
equivalent. Thus, B is a valid adversary in the security property of siO. If Ch uses sk0 in the
generation of aux∗k then we are in Hyb4.i, else if it uses sk1 then we are in Hyb4.i+1. From the
indistinguishability of aux security, the claim follows.

Claim 6. Assuming the security of UE, we have Pr[1 ← Hyb4.L+1]− Pr[1 ← Hyb5]| ≤ negl(λ), for
some negligible function negl.

Proof. This is identical to the proof of Claim 2.

Claim 7. Pr[1← Hyb5] = 0.5.

Proof. The bit b is information theoretically hidden from A. Hence, the probability that A outputs
b is 0.5.

From the above claims, we have that Pr[1← Hyb1] ≤ 1/2 + negl(λ). This proves the theorem.

Parallel Patches. The above transformation yields a parallel patchable iO if the underlying
splittable iO support parallel patches. The correctness and the security proof follow along the
same lines as the sequential setting.
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6 Single-Program pa-iO: Stateful to Stateless

We give a generic transformation from any single-program patchable iO that maintains state to one
that does not maintain any state. The main idea in our transformation is that the state, instead of
being maintained at the authority’s end, will be maintained at the user’s end. That is, the authority
delegates the state to the user. Now, the authority can no longer compute the secure patches since
these patches are computed as a function of the state. Hence, the authority also delegates the
computation of the patch to the user. However, new issues arise: we need to make sure that the
state as well as the patches are hidden from the user and yet the user should be able to compute the
secure patches. In order to resolve this issue, we use a garbled TM with persistent memory (refer to
Section 3.4). The authority initially encodes the state using the database encoding algorithm. This
encoded state will be included as part of the initial obfuscated machine. Whenever the authority
wants to generate a secure patch of P , it computes a program encoding of GenPatch(sk, P, ·) and
sends this program encoding to the user. The user then evaluates this program encoding on encoding
of the state and outputs the secure patch 〈P 〉 along with the encoding of the updated state.

We formally define stateless single-program patchable iO below.

Definition 12 (Stateless Single-Program Patchable iO). A single-program patchable obfuscation
pa-iO = (Setup,Obf,GenPatch,AppPatch,Eval) for a class of Turing machines M is said to be
stateless if the following holds: (a) For every M ∈M, st = ⊥; where SK← Setup(1λ), (〈M〉, st)←
Obf(SK,M) and, (b) For every patch P , st′ = ⊥; where (〈P 〉, st′)← GenPatch(SK, P, st).

Remark 6. From now on, we omit the parameter st in the description of the algorithms of single-
program patchable iO.

Transformation. The main tool in our transformation is garbled TM with persistent memory
(Section 3.4). We denote this by GTM = (Gen,GarbDB,GarbTM,GarbEval).

Let pa-iOST = (Setup,Obf,GenPatch,AppPatch,Eval) be any single-program patchable iO scheme.
We construct a stateless single-program patchable iO scheme pa-iO below.

Setup(1λ): On input security parameter λ, execute the setup of GTM; GTM.k ← GTM.Gen(
1λ). Execute the setup of the underlying patchable obfuscation scheme pa-iOST; pa-iOST.SK ←
pa-iOST.Setup(1λ). Output the secret key SK = (GTM.k, pa-iOST.SK).

Obf(SK,M): On input secret key SK = (GTM.k, pa-iOST.SK), Turing machine M ∈ M, ex-
ecute the obfuscate algorithm of the underlying patchable obfuscation scheme; (〈M〉ST, st) ←
pa-iOST.Obf(pa-iOST.SK,M). Encode the state st using the garbled TM scheme. That is, compute
ŝt← GTM.GarbDB(GTM.k, st).

Output the obfuscation 〈M〉 =
(
〈M〉ST, ŝt

)
.

GenPatch(SK, P ): On input secret key SK = (GTM.k, pa-iOST.SK) and patch P , generate the
garbled TM program encoding of the program GP = GP [pa-iOST.SK, P, r], where (i) r is picked at
random and, (ii) GP is defined as follows: GP takes as input st, it first computes (〈P 〉ST, st′) ←
pa-iOST.GenPatch(pa-iOST.SK, P, st; r). It updates st to be now st′. It outputs 〈P 〉ST. That is, GP
takes as input the database st and essentially executes the patch generation of pa-iOST. The state
output by patch generation will be used to update the current state and the secure patch will be
the output of GP.
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Once GP is defined, compute the encoding, ĜP ← GTM.GarbTM(GTM.k,GP). Finally, output

the secure patch 〈P 〉 = ĜP.

AppPatch(〈M〉, 〈P 〉): On input obfuscation 〈M〉 =
(
〈M〉ST, ŝt

)
and secure patch 〈P 〉 = ĜP, execute

the evaluation algorithm of the garbled TM scheme. That is, compute 〈P 〉ST ← GarbEval(ĜP , ŝt)

and denote the updated databased encoding to be ŝt′. After this, compute the AppPatch algorithm
of pa-iOST. That is, compute 〈M ′〉ST ← pa-iOST.AppPatch(〈M〉ST, 〈P 〉ST).

Output the updated obfuscated machine, 〈M ′〉 =
(
〈M ′〉ST, ŝt′

)
.

Eval(〈M〉, x): On input 〈M〉 = (〈M〉ST, ŝt) and instance x, execute the evaluation algorithm of
pa-iOST; y ← pa-iOST.Eval(〈M〉ST, x). Output y.

Efficiency. The efficiency requirements satisfied by the underlying garbled TMs scheme and
the single-program patchable iO scheme, affect the corresponding efficiency requirements on the
stateless pa-iO scheme. If we start from a succinct garbled TM scheme then the resulting pa-iO
scheme satisfies ‘Patch Generation Efficiency’ property assuming that pa-iOST satisfied ‘Patch Size
Efficiency’ property. This is because the running time of patch generation of pa-iO now depends
only on the time require to generate the GTM encoding of pa-iOST’s patch generation algorithm.
The size of the patch encoding, and hence the secure patch of pa-iO, is at least as big as the size of
the secure patch of pa-iOST. Note that even if pa-iOST did not satisfy patch generation efficiency
property, the resulting pa-iO will satisfy this property.

However, on the other hand if we start off with a non-succinct garbled TM scheme, then the
running time of patch generation of pa-iO will be proportional to the running time of patch gen-
eration time of pa-iOST. This is because the running time of GTM encoding now is proportional
to the worst-case running time of the program it is encoding. Hence, in order for pa-iO to sat-
isfy ‘Patch Generation Efficiency’ property, we require that pa-iOST satisfies ‘Patch Generation
Efficiency’ property.

Summarising, we have

Claim 8. Suppose GTM is a succinct garbled TM scheme (Definition 7) and if pa-iOST satisfied
‘Patch Size Efficiency’ property then pa-iO satisfies ‘Patch Generation Efficiency’ property.

Claim 9. Suppose GTM is a non-succinct garbled TM scheme (Definition 8) and if pa-iOST satisfied
‘Patch Generation Efficiency’ property then pa-iO satisfies ‘Patch Generation Efficiency’ property.

Correctness of Sequential Updating. Consider a TM M0 ∈ M and a sequence of patches
P1, . . . , PL ∈ P. Consider the following two processes generated using the above scheme. For every
i ∈ {1, . . . , L}, we have:

• Obfuscate-then-Update: Compute the following: (a) SK ← Setup(1λ), (b) 〈M0〉 ←
Obf(SK,M0), (c) 〈Pi〉 ← GenPatch(SK, Pi), (d) 〈Mi〉 ← AppPatch

(
〈Mi−1〉, 〈Pi〉

)
.

• Update: Mi ← Update(Mi−1, Pi).

We need to show that Eval(〈ML〉, x) = ML(x). In order to do this, it suffices to prove the following.
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Claim 10. For every i ∈ [L], the output of AppPatch(〈Mi−1〉, 〈Pi〉) is exactly the output of pa-iOST.AppPatch(
〈Mi−1〉ST, 〈Pi〉ST), where 〈Mi−1〉ST is an obfuscation of Mi−1 and 〈Pi〉ST is a secure patch of Pi
computed honestly according to the description of pa-iOST.

Suppose we have the above claim, then we invoke the correctness of pa-iOST. This would show
that for every i ∈ [L] ∪ {0}, for every x, we have pa-iOST.Eval(〈Mi〉ST, x) = Mi(x), where 〈Mi〉ST
is the output of pa-iOST.AppPatch (〈Mi−1〉ST, 〈Pi〉ST). We now prove the above claim.

Proof of Claim 10: We prove a stronger statement: Let 〈Mi〉 =
(
〈Mi〉ST, ŝti

)
and let 〈Pi〉 = ĜPi;

where GPi = GPi[pa-iOST.SK, Pi]. We claim that for every i ∈ [L], 〈Mi〉ST is an obfuscation

of Mi computed honestly under pa-iOST. We also claim that the output of GarbEval(ĜPi, ŝti)
is a secure patch of Pi and ŝti be an encoding of sti computed honestly under GTM; where sti
is generated as (〈Pi〉ST, sti) ← pa-iOST.GenPatch (pa-iOST.SK, Pi, sti−1; ri) and (〈M0〉ST, st0) ←
pa-iOST.Obf(pa-iOST.SK,M0).

We prove both these claims by induction. The base case corresponds to showing that Eval(〈M0〉, x)
= M0(x). This corresponds to showing that pa-iOST.Eval(〈M0〉ST, x) = M0(x), where 〈M0〉ST is an
obfuscation of M0 under pa-iOST. Thus, the correctness of pa-iOST implies the base case.

We move on to the induction hypothesis: Suppose the claim is true for some k ∈ [L−1]∪{0}. We
need to prove the claim for k+1. From the correctness of garbled TMs and correctness of pa-iOST,
we have that ŝtk+1 is a valid encoding of stk+1, where ŝtk+1 is computed as (〈Pk+1〉ST, ŝtk+1) ←
GarbEval(ĜPk, ŝtk). Furthermore from the correctness of pa-iOST, we have that the output of
pa-iOST.AppPatch(〈Mk〉ST, 〈Pk〉ST) is an obfuscation of Mk+1 with respect to pa-iOST.

Security. We show,

Theorem 9. Assuming adaptive (resp., selectively) security of GTM and adaptive (resp., selec-
tively) pa-iOST, the scheme pa-iO is adaptively (resp., selectively) secure.

Proof. We prove this is in two steps. In the first step, we simulate the garbled TM encodings. This
is done by the reduction computing the secure patches (instead of delegating it to the adversary)
and then executing the simulator on these secure patches. In the second step, we invoke the secu-
rity of pa-iOST, which allows us to switch from using one branch of computation to another. The
formal details are provided below.

Hyb1: Let (M0,M1) ∈ M be the TM query made by adversary A. Challenger picks a bit b at
random and sends the obfuscation of Mb, namely 〈Mb〉, to the adversary. Then, adversary submits
the adaptive patch queries

(
(P 1

0 , P
1
1 ), . . . , (PL0 , P

L
1 )
)

and in response receives the secure patches(
〈P 1

b 〉, . . . , 〈PLb 〉
)
. The adversary outputs b′. The output of hybrid is 1 if b′ = b.

Hyb2: Let (M0,M1) ∈ M be the TM query made by adversary A. The challenger executes
(〈Mb〉ST, st) ← pa-iOST.Obf(pa-iOST.SK,Mb). It then executes (StSim, ŝtideal) ← Sim1(1

λ, 1|st|).
It sets 〈Mb〉 = (〈Mb〉ST, ŝtideal). It sends 〈Mb〉 to the adversary. Upon receiving the patch query
(P i0, P

i
1) from the adversary, the challenger executes (P̃ ib , sti)← pa-iOST.GenPatch(pa-iOST.SK, P

i
b , sti−1).

It then executes (ĜPiSim, stSim) ← Sim2

(
stSim, P̃

i
b , 1
|GP|
)

. It sets 〈P ib 〉 = ĜPiSim. Challenger sends

〈P ib 〉 to the adversary. The rest of the hybrid is as before.
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From the security of GTM, probability that Hyb1 outputs 1 is negligibly close to the probability
that Hyb2 outputs 1.

Hyb3: In this hybrid, the challenge bit b will not be used in the computation of either the ob-
fuscated machine or the secure patches. In more detail, the challenger at the beginning of the
game picks a bit b at random. Let (M0,M1) ∈ M be the TM query made by adversary A.
The challenger executes (〈M1〉ST, st) ← pa-iOST.Obf(pa-iOST.SK,M1). The simulated encod-

ing ŝtideal is as computed in the previous hybrid. It sends 〈Mb〉 =
(
〈M1〉ST, ŝtideal

)
to the ad-

versary. Upon receiving the patch query (P i0, P
i
1) from the adversary, the challenger executes

(P̃ i1, sti)← pa-iOST.GenPatch(pa-iOST.SK, P
i
1, sti−1). It then computes the simulated program en-

coding ĜPiSim as before. It sends ĜPiSim to the adversary. The rest of the hybrid is as before.
From the security of pa-iOST, probability that Hyb2 outputs 1 is negligibly close to the proba-

bility that Hyb3 outputs 1.

Furthermore, the probability that Hyb3 outputs 1 is 1/2 since the bit b is information-theoretically
hidden from the adversary. Thus, the probability that Hyb1 outputs 1 is negligibly close to 1/2.

Extending to Parallel Patches. A similar stateful to stateless transformation can be provided
for the parallel patches setting. Instead of using GTM with persistent memory, we require functional
encryption to make the above transformation to work in the context of parallel patching. The ideas
employed are very similar and we omit the details.

7 Stateless Single-Program pa-iO to Multi-Program pa-iO
In this section, we present a general transformation from any stateless single-program pa-iO scheme
to a multi-program pa-iO scheme. Our transformation relies on a compact secret-key functional
encryption scheme for general circuits.

Notation. Let pa-iOsp = (SP.Setup, SP.Obf, SP.GenPatch, SP.AppPatch, SP.Eval) be stateless single-
program pa-iO scheme for TMs. Let FE = (FE.Setup,FE.KeyGen,FE.Enc,FE.Dec) be a compact
function-private adaptively secure secret-key FE scheme. Using these two ingredients, we will con-
struct a multi-program pa-iO scheme pa-iOmp = (MP.Setup,MP.Obf,MP.GenPatch,MP.AppPatch,MP.Eval)
for TMs. Our transformation preserves the patching mode supported by the underlying single-
program pa-iO scheme. That is, if pa-iOsp is secure against sequential (resp., parallel) updates,
then so will the resulting pa-iOmp scheme.

For concreteness, we will present our transformation for the setting of sequential updates, i.e.,
starting from a pa-iOsp that is secure against unbounded sequential patches, we will construct
pa-iOmp that is also secure against unbounded sequential patches. Our transformation can be
adapted in a straightforward way to the case of parallel updates.

Construction. We now present our construction of pa-iOmp = (MP.Setup,MP.Obf,MP.GenPatch,
MP.AppPatch,MP.Eval).

MP.Setup(1λ): Compute MSK← FE.Setup(1λ). Output SK = FE.MSK.
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MP.Obf(SK,M): Perform the following sequence of steps:

• Compute SKsp ← SP.Setup(1λ).

• Compute 〈M〉sp ← SP.Obf(SKsp,M).

• Sample a PRF Key K.

• Compute FE.CT← FE.Enc(FE.MSK,m) where m = (SKsp,K).

Output 〈M〉 = (〈M〉sp,FE.CT).

MP.GenPatch(SK, P ): Perform the following sequence of steps:

• Parse SK = FE.MSK.

• Compute FE.SKfP ← FE.KeyGen(FE.MSK, fP ) where fP is described in Figure 1.

fP

Constants: Patch P .
Inputs: Obfuscation key SKsp, PRF key K.

1. Compute r ← PRFK(P ).

2. Compute 〈P 〉sp ← SP.GenPatch(SKsp, P ; r) using randomness r.

3. Output 〈P 〉sp.

Figure 1: Function fP

Output 〈P 〉 = FE.SKfP .

MP.AppPatch(〈M〉, 〈P 〉): Perform the following sequence of steps:

• Parse 〈M〉 = (〈M〉sp,FE.CT) and 〈P 〉 = SKfP .

• Compute 〈P 〉sp ← FE.Dec(FE.CT, SKfP ).

• Compute 〈M ′〉sp ← SP.AppPatch(〈M〉sp, 〈P 〉sp).

Output 〈M ′〉 = (〈M ′〉sp,FE.CT).

MP.Eval(〈M〉, x): Parse 〈M〉 = (〈M〉sp,FE.CT) and output y ← SP.Eval(〈M〉sp, x).

This completes the construction of pa-iOmp.

Remark 7. Some remarks regarding the above construction are in order:

• The above description implicitly assumes that each patch P issued by the authority is unique.
Note that this is without loss of generality since we can modify the ith patch Pi to (i, Pi).

• It is crucial in the above construction that the FE scheme is compact. Indeed, since we
allow patch size to be arbitrary, we require that the FE scheme supports general functions of
arbitrary size (with an a priori fixed input length).

• The FE plaintexts m = (SKsp,K) and the functions fP in above construction are padded with
sufficient zeros to match the sizes of the corresponding plaintexts and functions in the security
proof.

The correctness and efficiency properties of the above construction are easy to verify. Below,
we provide a proof of security.
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7.1 Proof of Security

We prove the security of our construction by a hybrid argument.

Hybrid Hyb0: Same as real world experiment with challenge bit b = 0. That is, for every j ∈ Q,
machine M j

0,0 is obfuscated, and for every i ∈ L, patch P i0 is encoded.

Hybrid Hyb1: Same as Hyb0, except that:

1. For every j ∈ [Q], the jth obfuscated machine 〈M j
0,0〉 = (〈M j

0,0〉sp,FE.CT
j) is modified such

that FE.CTj is now an encryption of mj = (j,SKjsp,K
j).

2. for every i ∈ [L], the ith patch encoding is computed as an FE key FE.SK
f i,1
[Pi0,P

i
1]

for function

f i,1
[P i0,P

i
1]

, where f i,1
[P i0,P

i
1]

is described in Figure 2.

f i,1
[P i

0 ,P
i
1 ]

Constants: Patches P i0, P i1.
Inputs: Index `, obfuscation key SK`sp, PRF key K`.

(a) Compute r ← PRFK`(P i0).

(b) Compute 〈P i0〉sp ← SP.GenPatch(SK`sp, P
i
0; r) using randomness r.

(c) Output 〈P i0〉sp.

Figure 2: Function f i,1
[P i0,P

i
1]

Next, for every j ∈ Q, and t ∈ [5], we describe hybrids Hyb2:j:t.

Hybrid Hyb2:j:1: Same as the previous hybrid, except that:

• For every i ∈ [L], the ith patch encoding is computed as an FE key FE.SK
f i,j:1
[Pi0,P

i
1,j,〈P

i
0〉
j
sp]

for

function f i,j:1
[P i0,P

i
1,j,〈P i0〉

j
sp]

, where f i,j:1
[P i0,P

i
1,j,〈P i0〉

j
sp]

is described in Figure 3. The encoding 〈P i0〉
j
sp

hardwired in f i,j:1
[P i0,P

i
1,j,〈P i0〉

j
sp]

is computed as 〈P i0〉
j
sp ← SP.GenPatch(SKjsp, P

i
0; r) using PRF

generated randomness r ← PRFKj (P i0).

• The jth obfuscated machine 〈M j
0,0〉 = (〈M j

0,0〉sp,FE.CT
j) is modified such that FE.CTj is now

an encryption of mj = (j,⊥,⊥).

Hybrid Hyb2:j:2: Same as the previous hybrid, except that for every i ∈ [L], the encoding 〈P i0〉
j
sp

hardwired in f i,j:2
[P i0,P

i
1,j,〈P i0〉

j
sp]

is computed as 〈P i0〉
j
sp ← SP.GenPatch(SKjsp, P

i
0; r) using true random-

ness r.
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f i,j:1
[P i

0 ,P
i
1 ,j,〈P i

0〉
j
sp]

Constants: Patches P i0, P i1, index j, patch encoding 〈P i0〉jsp.
Inputs: Index `, obfuscation key SK`sp, PRF key K`.

1. If ` = j, output 〈P i0〉jsp.

2. If ` < j, let P = P i1, else let P = P i0.

3. Compute r ← PRFK`(P ).

4. Compute 〈P 〉sp ← SP.GenPatch(SK`sp, P ; r) using randomness r.

5. Output 〈P 〉sp.

Figure 3: Function f i,j:1
[P i0,P

i
1,j,〈P i0〉

j
sp]

Hybrid Hyb2:j:3: Same as the previous hybrid, except that:

1. For every i ∈ [L], we now hardwire the encoding 〈P i1〉
j
sp in f i,j:3

[P i0,P
i
1,j,〈P i1〉

j
sp]

, where 〈P i1〉
j
sp is

computed as 〈P i1〉
j
sp ← SP.GenPatch(SKjsp, P

i
1; r) using true randomness r.

2. For every j ∈ [Q], the jth obfuscated machine is now computed as 〈M j
0,1〉 = (〈M j

0,1〉sp,FE.CT
j),

where 〈M j
0,1〉sp ← SP.Obf(SKjsp,M

j
0,1).

Hybrid Hyb2:j:4: Same as the previous hybrid, except that for every i ∈ [L], the encoding 〈P i1〉
j
sp

hardwired in f i,j:4
[P i0,P

i
1,j,〈P i1〉

j
sp]

is computed as 〈P i1〉
j
sp ← SP.GenPatch(SKjsp, P

i
1; r) using PRF generated

randomness r ← PRFKj (P i1).

Hybrid Hyb2:j:5: Same as the previous hybrid, except that the jth obfuscated machine 〈M j
0,1〉 =

(〈M j
0,1〉sp,FE.CT

j) is modified such that FE.CTj is now an encryption of mj = (j,SKjsp,K
j).

Hybrid Hyb3: Same as the previous hybrid, except that:

1. For every j ∈ [Q], the jth obfuscated machine 〈M j
0,1〉 = (〈M j

0,1〉sp,FE.CT
j) is modified such

that FE.CTj is now an encryption of mj = (SKjsp,K
j).

2. for every i ∈ [L], the ith patch encoding is computed as an FE key FE.SK
f i,3
[Pi0,P

i
1]

for function

f i,3
[P i0,P

i
1]

, where f i,1
[P i0,P

i
1]

is described in Figure 2.

Hybrid Hyb4: Same as real world experiment with challenge bit b = 1. That is, for every j ∈ Q,
machine M j

0,1 is obfuscated, and for every i ∈ L, patch P i1 is encoded.

This completes the description of the hybrids. We now argue the following:

• Hyb0 ≈ Hyb1

• Hyb1 ≈ Hyb2:1:1
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f i,3
[P i

0 ,P
i
1 ]

Constants: Patches P i0, P i1.
Inputs: Obfuscation key SKsp, PRF key K.

(a) Compute r ← PRFK(P i1).

(b) Compute 〈P i1〉sp ← SP.GenPatch(SKsp, P
i
1; r) using randomness r.

(c) Output 〈P i1〉sp.

Figure 4: Function f i,3
[P i0,P

i
1]

• For every j ∈ [Q]:

– Hyb2:j:1 ≈ Hyb2:j:2

– Hyb2:j:2 ≈ Hyb2:j:3

– Hyb2:j:3 ≈ Hyb2:j:4

– Hyb2:j:4 ≈ Hyb2:j:5

• Hyb2:j:5 ≈ Hyb2:j+1:1 for every j ∈ [Q− 1],

• Hyb2:Q:5 ≈ Hyb3

• Hyb3 ≈ Hyb4

Combining the above, we obtain that Hyb0 ≈ Hyb4, as desired.

Indistinguishability of Hyb0 and Hyb1: The only difference between Hyb0 and Hyb1 is how the
FE ciphertexts and functions keys are generated. Specifically, for every j ∈ [Q], i ∈ [L]: in Hyb0,
FE.CTj is computed as an encryption of mj = (SKjsp,K

j) (prepended with sufficient zeros) and the

ith function key FE.SK
f i,0
[Pi0]

is computed for the function f i,0
[P i0]

= f[P i0]
, where f[P i0]

is as described in

Figure 1. In Hyb1, m
j = (j,SKjsp,K

j) and the ith function key FE.SK
f i,1
[Pi0,P

i
1]

is computed for the

function f i,1
[P i0,P

i
1]

. The indistinguishability of Hyb0 and Hyb1 immediately follows from the function

privacy of the FE scheme.

Indistinguishability of Hyb1 and Hyb2:1:1: The only difference between Hyb1 and Hyb2:1:1 is
how the FE ciphertexts and functions keys are generated. Specifically, for every i ∈ [L], and j = 1:
in Hyb1, FE.CTj is computed as an encryption of mj = (j,SKjsp,K

j) and the ith function key

FE.SK
f i,1
[Pi0,P

i
1]

is computed for the function f i,1
[P i0,P

i
1]

. In Hybrid Hyb2:1:1, FE.CT
j is computed as an

encryption of mj = (j,⊥,⊥) and FE.SK
f i,j:1
[Pi0,P

i
1,j,〈P

i
0〉
j
sp]

is computed for the function f i,j:1
[P i0,P

i
1,j,〈P i0〉

j
sp]

.

Further, the only difference between f i,1
[P i0,P

i
1]

and f i,j:1
[P i0,P

i
1,j,〈P i0〉

j
sp]

(where j = 1) is that on input (j, ·, ·),

f i,1
[P i0,P

i
1]

computes 〈P i0〉
j
sp “on-the-fly”, while f i,j:1

[P i0,P
i
1,j,〈P i0〉

j
sp]

outputs the same hardwired value. Thus,

they have the same input-output behavior. The indistinguishability of Hyb0 and Hyb1 immediately
follows from the function privacy of the FE scheme.
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Indistinguishability of Hyb2:j:1 and Hyb2:j:2: The only difference between Hyb2:j:1 and Hyb2:j:2
is how the patch encodings 〈P i0〉

j
sp are computed. Specifically, for every i ∈ [L]: in Hyb2:j:1, 〈P i0〉

j
sp is

computed using PRF generated randomness (using key Kj) while in Hyb2:j:2, it is computed using
true randomness. Further, note that the PRF key Kj is not used anywhere else in the experiments.
The indistinguishability of Hyb2:j:1 and Hyb2:j:2 follows from the security of the PRF.

Indistinguishability of Hyb2:j:2 and Hyb2:j:3: The only difference between Hyb2:j:2 and Hyb2:j:3
is that in Hyb2:j:2, we use patch encodings 〈P i0〉

j
sp (for every i ∈ [L]) and obfuscation 〈M j

0,1〉sp, while

in Hyb2:j:3 we use patch encodings 〈P i1〉
j
sp (for every i ∈ [L]) and obfuscation 〈M j

0,1〉sp. Further, note

that the obfuscation key SKjsp is not used anywhere else in the experiments. The indistinguishability
of Hyb2:j:2 and Hyb2:j:3 follows from the adaptive security of pa-iOsp.

Indistinguishability of Hyb2:j:3 and Hyb2:j:4: This follows in the same manner as the indistin-
guishability of Hyb2:j:1 and Hyb2:j:2. We omit the details.

Indistinguishability of Hyb2:j:4 and Hyb2:j:5: This follows in a straightforward way from the
security of the FE scheme.

Indistinguishability of Hyb2:j:5 and Hyb2:j+1:1: This follows in a similar manner as the indis-
tinguishability of Hyb1 and Hyb2:1:1. We omit the details.

Indistinguishability of Hyb2:Q:5 and Hyb3: This follows in a similar manner as the indistin-
guishability of Hyb1 and Hyb2:1:1. We omit the details.

Indistinguishability of Hyb3 and Hyb4: This follows in a similar manner as the indistinguisha-
bility of Hyb0 and Hyb1. We omit the details.

8 Instantiation of Splittable iO

We explain how to instantiate splittable iO (Section 4) assuming indistinguishability obfuscation
for circuits and re-randomizable encryption schemes7 secure against sub-exponential adversaries.
In order to show this, we employ the framework of Ananth et al. [AJS17] proposed in the context
of obtaining succinct iO with constant multiplicative overhead. While their result is not directly
applicable to our setting, their approach will be useful in the context of patching. Their framework
consists of the following steps:

1. Firstly, they construct attribute based encryption (ABE) schemes where the decryption keys
are associated with Turing machines. They consider the weaker security, where the adversary
gets only one decryption key. An ABE scheme that satisfies this security notion is termed as
1-key ABE. They show how to construct this based on iO for circuits and one-way functions.

7The existence of re-randomizable encryption schemes can be based on assumptions such as decisional Diffie-
Helman, learning with errors and so on.
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2. Next, they adapt the notion of two-outcome ABE, on the lines of [GKP+12] in the context of
Turing machines. They apply the transformation from ABE to two-outcome ABE, proposed
by [GKP+12]8, in the single-key setting.

3. Then, they introduce a notion called oblivious evaluation encodings (OEE). It can be thought
of as “iO-friendly” version of reusable randomized encodings for Turing machines. They show
how to construct OEE starting from any 1-key two-outcome ABE scheme. This transforma-
tion additionally assumes the existence of FHE and garbled circuits.

4. Finally, they show how to transform any OEE scheme into a succinct iO scheme assuming
sub-exponentially secure iO for circuits.

We extend their framework to our setting. In particular, we employ the following steps:

1. We propose a notion called splittable ABE. This is an ABE scheme with an additional property.
We show that the ABE construction of [AJS17] already satisfies this additional property and
thus is a splittable ABE scheme.

2. In the next step, we propose a notion called splittable 1-key two-outcome ABE. If we replace
the 1-key ABE with splittable 1-key ABE in the construction of 1-key two-outcome ABE
by [AJS17], we obtain a splittable two-outcome ABE scheme.

3. In the next step, we propose a notion called splittable OEE. This is an OEE scheme with
additional properties. If we replace the 1-key ABE scheme in the OEE construction of [AJS17]
with a splittable ABE scheme then we show that the resulting OEE scheme is a splittable
OEE scheme.

4. Finally, we show that if we replace the OEE scheme in the succinct iO construction of [AJS17]
with a splittable OEE scheme then the resulting iO scheme is a splittable iO scheme.

We first start with the definitions of splittable 1-key ABE, splittable 1-key two-outcome ABE and
splittable OEE.

8.1 Definitions

Splittable 1-Key ABE for TMs. We first recall that definition of 1-key ABE from [AJS17].
A 1-key ABE for Turing machines scheme, defined for a class of Turing machines M, consists

of four PPT algorithms, ABE = (ABE.Setup,ABE.KeyGen,ABE.Enc,ABE.Dec). We denote the
associated message space to be MSG. The syntax of the algorithms is given below.

• Setup, ABE.Setup(1λ): On input a security parameter λ in unary, it outputs a public key-
secret key pair (ABE.PP,ABE.SK).

• Key Generation, ABE.KeyGen(ABE.SK,M): On input a secret key ABE.SK and a TM
M ∈M, it outputs an ABE key ABE.skM .

8Unlike [GKP+12], the transformation of [AJS17] is not generic and uses the structure of the underlying 1-key
ABE scheme.
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• Encryption, ABE.Enc(ABE.PP, x,msg): On input the public parameters ABE.PP, attribute
x ∈ {0, 1}∗ and message msg ∈ MSG, it outputs the ciphertext ABE.CT(x,msg).

• Decryption, ABE.Dec(ABE.skM ,ABE.CT(x,msg)): On input the ABE key ABE.skM and en-
cryption ABE.CT(x,msg), it outputs the decrypted result out.

Correctness. The correctness property dictates that the decryption of a ciphertext of (x,msg)
using an ABE key for M yields the message msg if M(x) = 1. In formal terms, the output of the
decryption procedure ABE.Dec(ABE.skM ,ABE.CT(x,msg)) is (always) msg if M(x) = 1, where

- (ABE.SK,ABE.PP)← ABE.Setup(1λ),

- ABE.skM ← ABE.KeyGen(ABE.SK,M ∈M) and,

- ABE.CT(x,msg) ← ABE.Enc(ABE.PP, x,msg).

Security. The security framework we consider is identical to the indistinguishability based se-
curity notion of ABE for circuits except that (i) the key queries correspond to Turing machines
instead of circuits and (ii) the adversary is only allowed to make a single key query. Furthermore,
we only consider the setting when the adversary submits both the challenge message pair as well
as the key query at the beginning of the game itself. We term this weak selective security. We
formally define this below.

The security is defined in terms of the following security experiment between a challenger and
a PPT adversary. We denote the challenger by Ch and the adversary by A.

ExptABEA (1λ, b):

1. A sends to Ch a tuple consisting of a Turing machine M , an attribute x and two messages
(msg0,msg1). If M(x) = 1 then the experiment is aborted.

2. The challenger Ch replies to A with the public key, decryption key of M , the challenge
ciphertext;

(
ABE.PP,ABE.skM ,ABE.CT(x,msgb)

)
, where the values are computed as follows:

• (ABE.PP,ABE.SK)← ABE.Setup(1λ),

• ABE.skM ← ABE.KeyGen(ABE.SK,M)

• ABE.CT(x,msgb)
← ABE.Enc(ABE.PP, x,msgb).

3. The experiment terminates when the adversary outputs the bit b′.

We say that a 1-key ABE for TMs scheme is weak-selectively secure if any PPT adversary can
guess the challenge bit only with negligible probability.

Definition 13. A 1-key attribute based encryption for TMs scheme is said to be weak-selectively
secure if there exists a negligible function negl(λ) such that for every PPT adversary A,∣∣∣Pr[0← ExptABEA (1λ, 0)]− Pr[0← ExptABEA (1λ, 1)]

∣∣∣ ≤ negl(λ)
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Remark 8. Henceforth, we will omit the term “weak-selective” when referring to the security of
ABE schemes.

We propose the definition of splittable 1-key ABE below. It is essentially a 1-key ABE scheme,
with additional property that we call Split Decryption Key property: it says that the decryption
key of a machine M is of the form (M,aux), where |aux| is of size polynomial in λ. Note that any
splittable 1-key ABE scheme has decryption keys with additive overhead in the size of the machine
its associated with.

Definition 14 (Splittable 1-key ABE). A 1-key attribute based encryption scheme ABE = (Setup,Enc,
KeyGen,Dec) for a class of TMs M is said to be splittable if it satisfies the following property:

• Split Decryption Key: For every M ∈ M, we have ABE.skM = (M,aux), where (i)
(SK,PP)← Setup(1λ), (ii) skM ← KeyGen(SK,M). Furthermore, |aux| is a fixed polynomial
in λ. In particular, it is independent of |M |.

Splittable 1-Key Two-Outcome ABE for TMs. We first recall that definition of 1-key ABE
from [AJS17]. Goldwasser et al. [GKP+13a] proposed the notion of 1-key two-outcome ABE for
circuits as a variant of 1-key ABE for circuits where a pair of secret messages are encoded as
opposed to a single secret message. Depending on the output of the predicate, exactly one of the
messages is revealed and the other message remains hidden. That is, given an encryption of a
single attribute x and two messages (msg0,msg1), the decryption algorithm on input an ABE key
TwoABE.skM , outputs msg0 if M(x) = 0 and msg1 otherwise. The security guarantee then says
that if M(x) = 0 (resp., M(x) = 1) then the pair (TwoABE.skM ,TwoABE.CT(x,msg0,msg1)

), reveal
no information about msg1 (resp., msg0).

We adapt their definition to the case when the predicates are implemented as Turing machines
instead of circuits. We give a formal definition below.

A 1-key two-outcome ABE for TMs scheme, defined for a class of Turing machinesM and mes-
sage space MSG, consists of four PPT algorithms, (TwoABE.Setup,TwoABE.KeyGen,TwoABE.Enc,
TwoABE.Dec). The syntax of the algorithms is given below.

• Setup, TwoABE.Setup(1λ): On input a security parameter λ in unary, it outputs a secret
key TwoABE.SK and public key TwoABE.PP.

• Key Generation, TwoABE.KeyGen(TwoABE.SK,M ∈M): On input a secret key TwoABE.SK
and a TM M ∈M, it outputs an ABE key TwoABE.SKM .

• Encryption, TwoABE.Enc(TwoABE.PP, x,msg0,msg1): On input the public key TwoABE.PP,
attribute x ∈ {0, 1}∗ and a pair of messages (msg0 ∈ MSG,msg1 ∈ MSG), it outputs the ci-
phertext TwoABE.CT(x,msg0,msg1)

.

• Decryption, TwoABE.Dec(TwoABE.SKM ,TwoABE.CT(x,msg0,msg1)
): On input the ABE key

ABE.SKM and ciphertext ABE.CT(x,msg0,msg1)
, it outputs the decrypted value out.

Correctness. The correctness property dictates that the decryption of a ciphertext of (x,msg0,msg1)
using an ABE key for M yields the message msg0 if M(x) = 0, and msg1 otherwise. Formally,
TwoABE.Dec(TwoABE.SKM ,TwoABE.CT(x,msg0,msg1)

) is (always) msg0 if M(x) = 0 or msg1 if
M(x) = 1, where
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• (TwoABE.SK,TwoABE.PP)← TwoABE.Setup(1λ),

• TwoABE.SKM ← TwoABE.KeyGen(TwoABE.SK,M ∈M) and

• TwoABE.CT(x,msg0,msg1)
← TwoABE.Enc(TwoABE.PP, x,msg0,msg1).

Security. Similar to 1-key ABE for TMs, we define an indistinguishability based security notion
of 1-key two-outcome ABE for TMs. The security notion is formalized in the form of the following
security experiment between a challenger and a PPT adversary. We denote the challenger by Ch
and the adversary by A.

ExptTwoABEA (1λ, b):

1. A sends to Ch a key query M , and input comprising of the attribute x and two pairs of

messages
(

(msg0,0,msg0,1), (msg1,0,msg1,1)
)

.

2. Ch checks if (i) M(x) = 0 and msg0,0 = msg1,0 or if (ii) M(x) = 1 and msg0,1 = msg1,1. If
both the conditions are not satisfied then Ch aborts the experiment. Otherwise, it replies to
A with (TwoABE.PP,TwoABE.SKM ,TwoABE.CT

∗) as defined below.

• (TwoABE.PP,TwoABE.SK)← TwoABE.Setup(1λ),

• (TwoABE.SKM )← ABE.KeyGen(1λ,M)

• TwoABE.CT∗ ← TwoABE.Enc(TwoABE.PP, x,msgb,0,msgb,1).

3. The experiment terminates when the adversary outputs the bit b′.

We are now ready to define the security of 1-key two-outcome ABE for TMs scheme. We say that
a 1-key two-outcome ABE for TMs scheme is secure if any PPT adversary can guess the challenge
bit only with negligible probability.

Definition 15. A 1-key two-outcome ABE for TMs scheme is said to be secure if there exists a
negligible function negl(·) s.t. for every PPT adversary A:∣∣∣Pr[0← ExptTwoABEA (1λ, 0)]− Pr[0← ExptTwoABEA (1λ, 1)]

∣∣∣ ≤ negl(λ)

We can define the notion of splittable 1-Key two-outcome ABE for TMs scheme on the lines of
splittable ABE scheme.

Definition 16 (Splittable Two-Outcome 1-key ABE). A two-outcome 1-key attribute based encryp-
tion scheme TwoABE = (Setup,Enc,KeyGen,Dec) for a class of TMs M is said to be splittable if
it satisfies the following property:

• Split Decryption Key: For every M ∈ M, we have ABE.skM = (M,aux), where (i)
(SK,PP)← Setup(1λ), (ii) skM ← KeyGen(SK,M). Furthermore, |aux| is a fixed polynomial
in λ. In particular, it is independent of |M |.
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Splittable Oblivious Evaluation Encodings (OEE). We begin by describing the notion of
oblivious evaluation encodings (OEE) scheme as introduced by [AJS17]. Later, we define the notion
of splittable OEE scheme.

This primitive was introduced as a strengthening of the notion of machine hiding encodings
(MHE) introduced in [KLW15]. Very briefly, machine hiding encodings are essentially randomized
encodings (RE), except that in MHE, the machine needs to be hidden whereas in RE, the input
needs to be hidden. More concretely, an MHE scheme for Turing machines has an encoding proce-
dure that encodes the output of a Turing machine M and an input x. This is coupled with a decode
procedure that decodes the output M(x). The main efficiency requirement is that the encoding
procedure should be much “simpler” than actually computing M on x. The security guarantee
states that the encoding does not reveal anything more than M(x).

Several changes are made to the notion of MHE to obtain our definition of OEE. First, we
require that the machine and the input can be encoded separately. Secondly, the machine encoding
takes as input two Turing machines (M0,M1) and outputs a joint encoding. Correspondingly, the
input encoding now also takes as input a bit b in addition to the actual input x, where b indicates
which of the two machines M0 or M1 needs to be used. The decode algorithm on input an encoding
of (M0,M1) and (x, b), outputs Mb(x). In terms of security, we require the following two properties
to be satisfied:

• Any PPT adversary should not be able to distinguish encodings of (M0,M0) and (M0,M1)
(resp., (M1,M1) and (M0,M1)) even if the adversary is given a punctured input encoding key
that allows him to encode inputs of the form (x, 0) (resp., (x, 1)).

• Any PPT adversary is unable to distinguish the encodings of (x, 0) and (x, 1) even given an
oblivious evaluation encoding (M0,M1), where M0(x) = M1(x) and another type of punctured
input encoding key that allows him to generate input encodings of (x′, 0) and (x′, 1) for all
x′ 6= x.

Syntax. We describe the syntax of a oblivious evaluation encoding scheme OEE below. The class
of Turing machines associated with the scheme is M and the input space is {0, 1}∗. Although we
consider inputs of arbitrary lengths, during the generation of the parameters we place an upper
bound on the running time of the machines which automatically puts an upper bound on the length
of the inputs.

• Setup, Setup(1λ): It takes as input a security parameter λ and outputs a secret key sk.

• TM Encode, TMEncode(sk,M0,M1): It takes as input a secret key sk, a pair of Turing

machines M0,M1 ∈M and outputs a joint encoding ˜(M0,M1).

• Input Encode, InpEncode(sk, x, b): It takes as input a secret key sk, an input x ∈ {0, 1}∗, a

choice bit b and outputs an input encoding (̃x, b).

• Decode, Decode( ˜(M0,M1), ˜(x, b)): It takes as input a joint Turing machine encoding ˜(M0,M1),

an input encoding (̃x, b), and outputs a value z.

In addition to the above main algorithms, there are four helper algorithms.
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• Input Puncturing, puncInp(sk, x): It takes as input a secret key sk, input x ∈ {0, 1}∗ and
outputs a punctured key skx.

• Encoding using Inp. Punctured Key, PIEncode(skx, x
′, b): It takes as input a punctured

secret key skx, an input x′ 6= x, a bit b and outputs an input encoding (̃x′, b).

• Puncturing at Choice Bit, puncBit(sk, b): It takes as input a secret key sk, an input bit b
and outputs a key OEE.skb.

• Encoding using Bit Puncture Key, PBEncode(OEE.skb, x): It takes as input a punctured

key OEE.skb, an input x and outputs an input encoding (̃x, b).

Correctness. We say that an OEE scheme is correct if it satisfies the following three properties:

1. Correctness of Encode and Decode: For all M0,M1 ∈M, x ∈ {0, 1}∗ and b ∈ {0, 1},

Decode
(

˜(M0,M1), (̃x, b)
)

= Mb(x),

where (i) sk← Setup(1λ), (ii) ˜(M0,M1)← TMEncode(sk,M0,M1) and, (iii) (̃x, b)← InpEncode(
sk, x, b).

2. Correctness of Input Puncturing: For all M0,M1 ∈ M, x, x′ ∈ {0, 1}∗ such that x′ 6= x and
b ∈ {0, 1},

Decode
(

˜(M0,M1), (̃x′, b)
)

= Mb(x
′),

where (i) sk ← Setup
(
1λ
)
; (ii) ˜(M0,M1) ← TMEncode(sk,M0,M1) and, (iii) (̃x′, b) ←

PIEncode (puncInp (sk, x) , x′, b).

3. Correctness of Bit Puncturing: For all M0,M1 ∈M, x ∈ {0, 1}∗ and b ∈ {0, 1},

Decode
(

˜(M0,M1), (̃x, b)
)

= Mb(x),

where (i) sk← Setup
(
1λ
)
, (ii) ˜(M0,M1)← TMEncode(sk,M0,M1) and, (iii) (̃x, b)← PBEncode(

puncBit (sk, b) , x).

Efficiency. We require that an OEE scheme satisfies the following efficiency conditions. Infor-
mally, we require that the Turing machine encoding (resp., input encoding) algorithm only has a
logarithmic dependence on the time bound. Furthermore, the running time of the decode algo-
rithm should take time proportional to the computation time of the encoded Turing machine on
the encoded input.

1. The running time of TMEncode(sk,M0 ∈ M,M1 ∈ M) is a polynomial in (λ, |M0|, |M1|),
where sk← Setup(1λ).

2. The running time of InpEncode(sk, x ∈ {0, 1}∗, b) is a polynomial in (λ, |x|), where sk ←
Setup(1λ).
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3. The running time of Decode( ˜(M0,M1), (̃x, b)) is a polynomial in (λ, |M0|, |M1|, |x|, t), where

sk ← Setup(1λ), ˜(M0,M1) ← TMEncode(sk,M0 ∈ M,M1 ∈ M), (̃x, b) ← InpEncode(sk,
x ∈ {0, 1}∗, b) and t is the running time of the Turing machine Mb on x.

Indistinguishability of Encoding Bit. We describe security of encoding bit as a multi-stage
game between an adversary A and a challenger.

• Setup: A chooses two Turing machines M0,M1 ∈ M and an input x such that |M0| = |M1|
and M0(x) = M1(x). A sends the tuple (M0,M1, x) to the challenger.

The challenger chooses a bit b ∈ {0, 1} and computes the following: (a) sk ← Setup(1λ),

(b) machine encoding ˜(M0,M1) ← TMEncode(sk,M0,M1), (c) input encoding (̃x, b) ←
InpEncode(sk, x, b), and (d) punctured key skx ← puncInp(sk, x). Finally, it sends the fol-
lowing tuple to A: (

˜(M0,M1), (̃x, b), skx
)
.

• Guess: A outputs a bit b′ ∈ {0, 1}.

The advantage of A in this game is defined as advOEE1 = Pr[b′ = b]− 1
2 .

Definition 17 (Indistinguishability of encoding bit). An OEE scheme satisfies indistinguishability
of encoding bit if there exists a neglible function negl(·) such that for every PPT adversary A in the
above security game, advOEE1 = negl(λ).

Indistinguishability of Machine Encoding. We describe security of machine encoding as a
multi-stage game between an adversary A and a challenger.

• Setup: A chooses two Turing machines M0,M1 ∈ M and a bit c ∈ {0, 1} such that |M0| =
|M1|. A sends the tuple (M0,M1, c) to the challenger.

The challenger chooses a bit b ∈ {0, 1} and computes the following: (a) sk ← Setup(1λ),

(b) ˜(TM1,TM2) ← TMEncode(sk,TM1,TM2), where TM1 = M0,TM2 = M1⊕b if c = 0 and
TM1 = M0⊕b,TM2 = M1 otherwise, and (c) skb ← puncBit(sk, c). Finally, it sends the
following tuple to A: (

˜(TM1,TM2), skc
)
.

• Guess: A outputs a bit b′ ∈ {0, 1}.

The advantage of A in this game is defined as adv = Pr[b′ = b]− 1
2 .

Definition 18 (Indistinguishability of machine encoding). An OEE scheme satisfies indistinguisha-
bility of machine encoding if there exists a negligible function negl(·) such that for every PPT
adversary A in the above security game, advOEE2 = negl(λ).

We extend the above primitive and define the notion of splittable OEE. A splittable OEE is asso-
ciated with a patchable encoding scheme and has additionally the following properties associated
with it. The first property, being split machine encoding property. This property requires that both
the setup and TM encode algorithms of the OEE scheme are divided into two steps. In the case
of setup algorithm, the first step involves executing the setup of patchable encoding scheme twice
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to yield (sk0, sk1) and the second step involves generating auxiliary parameters auxstp. In the case
of Turing machine encode algorithm, the first step involves encoding the machines (M0,M1) using
the patchable encoding scheme. The second step involves generating the auxiliary parameters as
a function of these encodings. The output of TM encode algorithm are the encodings of (M0,M1)
along with auxiliary parameters. The second property is special bit punctured key property. This
property states that the bit punctured key consists of auxstp and one of (sk0, sk1). The third
property states that the correctness of OEE is maintained irrespective of whether fresh encodings
or updated encodings are input to AuxGenoee. The final property is termed as efficiency of aux
property. This requires that the size of auxiliary parameters output by TM encode algorithm has
size polynomial in λ.

Definition 19 (Splittable OEE). An oblivious evaluation encodings (OEE) scheme OEE = (Setup,
InpEncode,TMEncode,Decode) for a class of Turing machines M is said to be splittable if it is
associated with a patchable encoding scheme UE = (Gen,Encode,GenPatch,AppPatch,Decode) and
it satisfies the following properties:

• Split Machine Encoding: Let M0,M1 ∈M.

– Setup(1λ) runs in two steps: (i) execute the setup of UE twice, sk0 ← Gen(1λ); sk1 ←
Gen(1λ), (ii) generate auxiliary parameters auxstp; auxstp ← AuxGenstp(1λ). Output
sk = (sk0, sk1, auxstp).

– TMEncode(sk,M0,M1) runs in two steps: (i) execute the encode procedure on M0 and
M1; Esk0(M0) ← Encode(sk0,M0), Esk1(M1) ← Encode(sk1,M1), (ii) generate auxil-
iary parameters auxtm; auxtm ← AuxGenoee(sk0, auxstp, Esk0(M0), Esk1(M1)). Output
(Esk0(M0), Esk1(M1), auxtm).

• Special Bit Punctured Key: Let sk = (sk0, sk1, auxstp)← Setup(1λ). Puncture the secret
key at bit b, skb ← puncBit(sk, b). We require that skb is of the form (skb, auxstp).

• Correctness of AuxGenoee: Let M ∈M and let P1, . . . , PL be a sequence of patches. Let Mi

be the ith updated machine, Mi ← Update(Mi−1, P ), for every i ∈ [L], where M0 = M .

Consider the following process:

– Let sk0, sk1 be such that sk0 ← UE.Gen(1λ), sk1 ← UE.Gen(1λ).

– Let Esk0(M)← UE.Encode(sk0,M) and Esk1(M)← UE.Encode(sk0,M).

– Consider the ith updated encodings, Esk0(Mi)← UE.AppPatch(Esk0(Mi−1),UE.GenPatch(sk0,
Pi)) and Esk1(Mi)← UE.AppPatch (Esk1(Mi−1),UE.GenPatch(sk1, Pi)).

– Let auxtm ← AuxGenoee(sk0, Esk0(ML), Esk1(ML)) and set 〈ML〉 = (Esk0(ML), Esk1(ML), auxtm).

For every x, we have Eval(〈ML〉, x) = ML(x).

• Efficiency of auxtm: We require that |auxtm| is a fixed polynomial in security parameter,
where (Esk0(M0), Esk1(M1), auxtm)← TMEncode(sk,M0,M1). In particular, it is independent
of |M0| or |M1|.

We now proceed to demonstrate feasibility results for the above definitions. The preliminaries for
the tools employed in these constructions are provided in Section A.
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8.2 Splittable 1-key ABE for TMs

We first recall the construction of 1-key ABE from [AJS17]. We then prove that this construction
is a splittable 1-key ABE scheme.

Construction of 1-Key ABE for TMs [AJS17]. We will use the following primitives in our
construction:

1. A puncturable PRF family denoted by F.

2. A storage accumulator scheme based on iO and one-way functions that was constructed by
[KLW15]. We denote it by Acc = (SetupAcc, EnforceRead, EnforceWrite, PrepRead, PrepWrite,
VerifyRead, WriteStore, Update). Let Σtape be the associated message space with accumulated
value of size `Acc bits.

3. An iterators scheme denoted by Itr =(SetupItr, ItrEnforce, Iterate). Let {0, 1}2λ+`Acc be the
associated message space with iterated value of size `Itr bits.

4. A splittable signatures scheme denoted by SplScheme = (SetupSpl,SignSpl,VerSpl,SplitSpl,
SignSplAbo). Let {0, 1}`Itr+`Acc+2λ be the associated message space.

Our Scheme. We now describe our construction of a 1-key ABE scheme ABE = (ABE.Setup,
ABE.KeyGen,ABE.Enc,ABE.Dec) for the Turing machine familyM. Without loss of generality, the
start state of every Turing machine in M is denoted by q0. We denote the message space for the
ABE scheme as MSG.

ABE.Setup(1λ): On input a security parameter λ, it first executes the setup of splittable signatures

scheme to compute (SKtm,VKtm,VKrej)← SetupSpl(1λ). Next, it executes the setup of the accumu-

lator scheme to obtain the values (PPAcc, w̃0, s̃tore0) ← SetupAcc(1λ). It then executes the setup
of the iterator scheme to obtain the public parameters (PPItr, v0)← SetupItr(1λ).

It finally outputs the following public key-secret key pair,(
ABE.PP = (VKtm,PPAcc, w̃0, s̃tore0,PPItr, v0),ABE.SK = (ABE.PP, SKtm)

)
ABE.KeyGen(SKtm,M ∈M): On input a master secret key ABE.SK = (ABE.PP,SKtm) and a Turing
machine M ∈M, it executes the following steps:

1. Parse the public key ABE.PP as (VKtm,PPAcc, w̃0, s̃tore0,PPItr, v0).

2. Initialization of the storage tree: Let `tm = |M | be the length of the machine M . For 1 ≤
j ≤ `tm, compute s̃torej = WriteStore(PPAcc, s̃torej−1, j − 1,Mj), auxj = PrepWrite(PPAcc,

s̃torej−1, j − 1), w̃j = Update(PPAcc, w̃j−1,Mj , j − 1, auxj) , where Mj denotes the jth bit of
M . Set the root w0 = w̃`tm .

3. Signing the accumulator value: Generate a signature on the message (v0, q0, w0, 0) by
computing σ0 ← SignSpl(SKtm, µ = (v0, q0, w0, 0)), where q0 is the start state of M .
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It outputs the ABE key ABE.skM = (M,w0, σtm, v0, s̃tore0).

[Note: The key generation does not output the storage tree store0 but instead it just outputs the
initial store value s̃tore0. As we see later, the evaluator in possession of M , s̃tore0 and PPAcc can
reconstruct the tree store0.]

ABE.Enc(ABE.PP, x,msg): On input a public key ABE.PP = (VKtm,PPAcc, w̃0, s̃tore0,PPItr, v0),
attribute x ∈ {0, 1}∗ and message msg ∈ MSG, it executes the following steps:

1. Sample a PRF key KA at random from the family F.

2. Obfuscating the next step function: Consider a universal Turing machine Ux(·) that
on input M executes M on x for at most 2λ steps and outputs M(x) if M terminates,
otherwise it outputs ⊥. Compute an obfuscation of the program NxtMsg described in Figure
5, namely N ← iO(NxtMsg{Ux(·),msg,PPAcc,PPItr,KA}). NxtMsg is essentially the next
message function of the Turing machine Ux(·) – it takes as input a TM M and outputs M(x)
if it halts within 2λ else it outputs ⊥. In addition, it performs checks to validate whether the
previous step was correctly computed. It also generates authentication values for the current
step.

3. Compute an obfuscation of the program S ← (SignProg{KA,VKtm}) where SignProg is defined
in Figure 6. The program SignProg takes as input a message-signature pair and outputs a
signature with respect to a different key on the same message.

It outputs the ciphertext ABE.CT = (N,S).

ABE.Dec(ABE.skM ,ABE.CT): On input the ABE key ABE.skM = (M,w0, σtm, v0, s̃tore0) and a

ciphertext ABE.CT = (N,S), it first executes the obfuscated program S
(
y = (v0, q0, w0, 0), σtm

)
to

obtain σ0. It then executes the following steps.

1. Reconstructing the storage tree: Let `tm = |M | be the length of the TM M . For 1 ≤ j ≤
`tm, update the storage tree by computing, s̃torej = WriteStore(PPAcc, s̃torej−1, j − 1,Mj).

Set store0 = s̃tore`tm .

2. Executing N one step at a time: For i = 1 to 2λ,

(a) Compute the proof that validates the storage value storei−1 (storage value at (i − 1)th

time step) at position posi−1. Let (symi−1, πi−1)← PrepRead(PPAcc, storei−1, posi−1).

(b) Compute the auxiliary value, auxi−1 ← PrepWrite(PPAcc, store−1, posi−1).

(c) Run the obfuscated next message function. Compute out← N(i, symi−1, posi−1, sti−1, wi−1,
vi−1, σi−1, πi−1, auxi−1). If out ∈ MSG ∪ {⊥}, output out.

Else parse out as (symw,i, posi, sti, wi, vi, σi).

(d) Compute the storage value, storei ←WriteStore(PPAcc, storei−1, posi−1, symw,i).

This concludes the construction.
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Program NxtMsg

Constants: Turing machine Ux = 〈Q,Σtape, δ, q0, qacc, qrej〉, message msg, Public parameters for accumula-
tor PPAcc, Public parameters for Iterator PPItr, Puncturable PRF key KA ∈ K.

Input: Time t ∈ [T ], symbol symin ∈ Σtape, position posin ∈ [T ], state stin ∈ Q, accumulator value
win ∈ {0, 1}`Acc , Iterator value vin, signature σin, accumulator proof π, auxiliary value aux.

1. Verification of the accumulator proof:

• If VerifyRead(PPAcc, win, symin, posin, π) = 0 output ⊥.

2. Verification of signature on the input state, position, accumulator and iterator values:

• Let F (KA, t− 1) = rA. Compute (SKA,VKA,VKA,rej) = SetupSpl(1λ; rA).

• Let min = (vin, stin, win, posin). If VerSpl(VKA,min, σin) = 0 output ⊥.

3. Executing the transition function:

• Let (stout, symout, β) = δ(stin, symin) and posout = posin + β.

• If stout = qrej output ⊥.

• If stout = qacc output msg.

4. Updating the accumulator and the iterator values:

• Compute wout = Accumulate(PPAcc, win, symout, posin, aux). If wout = Reject, output ⊥.

• Compute vout = Iterate(PPItr, vin, (stin, win, posin)).

5. Generating the signature on the new state, position, accumulator and iterator values:

• Let F (KA, t) = r′A. Compute (SK′
A,VK

′
A,VK

′
A,rej)← SetupSpl(1λ; r′A).

• Let mout = (vout, stout, wout, posout) and σout = SignSpl(SK′
A,mout).

6. Output symout, posout, stout, wout, vout, σout.

Figure 5: Program NxtMsg

Program SignProg

Constants: PRF key KA and verification key VKtm.
Input: Message y and a signature σtm.

1. If VerSpl(VKtm, y, σtm) = 0 then output ⊥.

2. Execute the pseudorandom function on input 0 to obtain rA ← F (K, 0). Execute the setup of splittable
signatures scheme to compute (SK0,VK0)← SetupSpl(1λ; rA).

3. Compute the signature σ0 ← SignSpl(SK0, y).

4. Output σ0.

Figure 6: Program SignProg

Theorem 10. The scheme ABE is a 1-key ABE for TMs scheme.
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The proof of the above theorem can be found in [AJS17].

Proof that ABE is Splittable. We now claim that the above scheme is a splittable 1-key ABE
scheme.

Theorem 11. ABE is a splittable 1-key ABE for TMs scheme.

Proof. To prove this, we just need to show that ABE satisfies the split decryption key property.
Let M ∈M. The decryption key of M is generated as (M,w0, σtm, v0, s̃tore0)← ABE.KeyGen(

SKtm,M). Thus, ABE satisfies the split decryption key property since (w0, σtm, v0, s̃tore0) can be
viewed as aux and furthermore, |aux| is indeed a fixed polynomial in λ (independent of |M |).

8.3 Splittable 1-Key Two-Outcome ABE from Splittable 1-Key ABE

We first recall the construction of 1-key two-outcome ABE scheme from [AJS17]. We then demon-
strate why this scheme is splittable.

Construction of 1-Key Two-Outcome ABE from 1-Key ABE [AJS17]. The only tool
we use in our construction is a 1-key ABE for TMs with additive overhead, ABE = (ABE.Setup,
ABE.KeyGen,ABE.Enc,ABE.Dec). We denote the associated class of TMs to be M and the associ-
ated message space to be MSG.

TwoABE.Setup(1λ): On input a security parameter λ in unary, execute ABE.Setup twice to ob-

tain (ABE.PP0,ABE.SK0) ← ABE.Setup(1λ) and (ABE.PP1,ABE.SK1) ← ABE.Setup(1λ). Output(
TwoABE.PP = (ABE.PP0,ABE.PP1),TwoABE.SK = (ABE.SK0,ABE.SK1)

)
.

TwoABE.KeyGen(TwoABE.SK,M ∈M): On input a secret key TwoABE.SK = (ABE.SK0,ABE.SK1)

and a Turing machineM ∈M, first compute two ABE keys: ABE.SK0
M ← ABE.KeyGen(ABE.SK0,M ∈

M) and ABE.SK1
M ← ABE.KeyGen(ABE.SK1,M), where M (complement of M) on input x outputs

1−M(x).9 Output the attribute key, TwoABE.SKM = (ABE.SK0
M ,ABE.SK

1
M ).

TwoABE.Enc(TwoABE.PP, x,msg0,msg1): On input a public key TwoABE.PP = (ABE.PP0,ABE.PP1),

attribute x ∈ {0, 1}∗ and messages (msg0,msg1) ∈ MSG2, compute two ciphertexts: ABE.CT0 ←
ABE.Enc(ABE.PP, x,msg0) and ABE.CT1 ← ABE.Enc(ABE.PP, x,msg1). Output the ciphertext,
TwoABE.CT = (ABE.CT0,ABE.CT1).

TwoABE.Dec(TwoABE.SKM ,TwoABE.CT): On input an attribute key TwoABE.SKM = (TwoABE.SK0
M ,

TwoABE.SK1
M ) and TwoABE.CT = (ABE.CT0,ABE.CT1), first compute out0 ← ABE.Dec(ABE.SK0

M ,
ABE.CT0) and then compute out1 ← ABE.Dec(ABE.SK1

M ,ABE.CT1). Let outb, for some b ∈ {0, 1},
be such that outb 6= ⊥. Output out = outb.

The following theorem was proved by [AJS17].

Theorem 12. twoabe is a 1-key two-outcome ABE scheme.

9Here we are only considering Turing machines with boolean output.
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Proof that TwoABE is a Splittable 1-Key Two-Outcome ABE scheme. We show that
TwoABE is splittable if the scheme ABE used in the above construction is a splittable ABE scheme.

Theorem 13. Assuming ABE is a splittable 1-key ABE scheme, we have TwoABE is a splittable
1-key two-outcome ABE scheme.

Proof. Notice that a TwoABE key of M is a pair of ABE keys of machines M and M , respectively.
Denote the keys to be ABE.skM ,ABE.skM . Here, M is defined to be: M(x) = 1−M(x). Since ABE
is splittable, we have ABE.skM = (M,aux) and ABE.skM = (M,aux′). Since, M can be derived
from M , the TwoABE key of M can be represented by (M,aux, aux′). Since |aux| and |aux′| is
a fixed polynomial in λ, TwoABE satisfies split decryption property of 1-key two-outcome ABE
scheme.

8.4 Splittable OEE from Splittable 1-Key Two-Outcome ABE

We start with the construction of OEE from [AJS17] starting from a 1-key two-outcome ABE
scheme. We then show how this construction already yields a splittable OEE scheme when the
underlying 1-key two-outcome ABE is a splittable scheme.

Construction of OEE from 1-Key Two-Outcome ABE [AJS17]. To construct a patchable
oblivious evaluation encoding scheme, we will use the following ingredients.

1. A 1-key two-outcome PABE for TMs scheme defined for a class of Turing machinesM, repre-
sented by TwoABE = (TwoABE.Setup,TwoABE.TMEncode,TwoABE.InpEncode,TwoABE.Decode).

2. A fully homomorphic encryption scheme for circuits with additive overhead (Section 3), rep-
resented by FHE = (FHE.Setup,FHE.Enc,FHE.Eval,FHE.Dec).

3. A garbling scheme GC = (Garble,EvalGC).

Construction. We denote the patchable oblivious evaluation encoding scheme to be OEE =
(Setup, InpEncode,TMEncode,Decode) that is equipped with auxiliary algorithms (puncInp,PIEncode,
puncBit,PBEncode). The construction of OEE is presented below.

Setup(1λ): On input a security parameter λ in unary, it executes the following steps.

• Run TwoABE.Setup(1λ) to obtain a secret key-public parameters pair, (TwoABE.SK,TwoABE.PP).

• Run FHE.Setup(1λ) twice to obtain FHE public key-secret key pairs (FHE.pk0,FHE.sk0) and
(FHE.pk1,FHE.sk1).

It finally outputs sk = (TwoABE.SK,TwoABE.PP,FHE.pk0,FHE.sk0,FHE.pk1,FHE.sk1).

TMEncode(sk,M0,M1): On input a secret key sk and a pair of Turing machines M0,M1 ∈ M, it
does the following.

• Parse sk as (TwoABE.SK,TwoABE.PP,FHE.pk0,FHE.sk0,FHE.pk1,FHE.sk1).
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• Compute FHE encryptions of TMs M0 and M1 w.r.t public keys FHE.pk0 and FHE.pk1,
respectively. That is, compute FHE.CTM0 ← FHE.Enc(FHE.pk0,M0) and FHE.CTM1 ←
FHE.Enc(FHE.pk1,M1).

• Compute a TwoABE decryption key TwoABE.SKN ← TwoABE.KeyGen(TwoABE.SK, N) for
the machine N = N(

{FHE.pkc,FHE.CTMc}c∈{0,1}
) described in Figure 7.

It outputs the TM encoding ˜(M0,M1) = TwoABE.SKN .

N(
{FHE.pkc,FHE.CTMc}c∈{0,1}

)(x, i, indt)
• Let U = Ux,indt(·) be a universal Turing machine that on input a Turing machine M , outputs M(x) if

the computation terminates within 2indt number of steps, otherwise it outputs ⊥.

• Transform the universal Turing machine U into a circuit using Theorem 7 (Section 3) by computing
C ← TMtoCKT(U).

• Execute FHE.Eval(FHE.pk0, C,FHE.CTM0
) to obtain z1. Similarly execute

FHE.Eval(FHE.pk1, C,FHE.CTM1
) to obtain z2.

• Set z = (z1||z2). Output the ith bit of z.

Figure 7: Description of program N .

InpEncode(sk, x, b): On input the secret key sk, input x and bit b, it executes the following steps.

• Parse sk as (TwoABE.SK,TwoABE.PP,FHE.pk0,FHE.sk0,FHE.pk1,FHE.sk1).

• For indt ∈ [λ], compute a garbled circuit along with the wire keys,
(
GC indt , {w

indt
i,0 , w

indt
i,1 }i∈[q]

)
← Garble(1λ, G), where G = G(FHE.skb,b)(·) is a circuit that takes as input FHE ciphertexts
(FHE.CT0, FHE.CT1) and outputs ab, where ab ← FHE.Dec(FHE.skb,FHE.CTb). Here, q
denotes the total length of two FHE ciphertexts (FHE.CT0,FHE.CT1).

• For every i ∈ [q] and indt ∈ [λ], compute a TwoABE ciphertext TwoABE.CTi,indt ← TwoABE.Enc
(

TwoABE.PP, (x, i, indt), w
indt
i,0 , w

indt
i,1

)
of the message pair (windt

i,0 , w
indt
i,1 ) along with attribute

(x, i, indt).

Finally, it outputs the encoding (̃x, b) =
(
TwoABE.PP, {GC}indt∈[λ], {TwoABE.CTi,indt}i∈[q],indt∈[λ]

)
.

Decode( ˜(M0,M1), (̃x, b)): On input a TM encoding ˜(M0,M1) and an input encoding (̃x, b), it
executes the following steps.

• Parse the TM encoding ˜(M0,M1) = TwoABE.SKN and the input encoding (̃x, b) =
(
TwoABE.PP,

{GC}indt∈[λ], {TwoABE.CTi,indt}i∈[q],indt∈[λ]
)
.

• For every indt ∈ [λ], do the following:

1. For every i ∈ [q], execute the decryption procedure of TwoABE to obtain the wire keys
of the garbled circuit, w̃indt

i ← TwoABE.Dec(TwoABE.SKN ,TwoABE.CTi,indt).
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2. Execute EvalGC(GC indt , w̃
indt
1 , . . . , w̃indt

q ) to obtain outindt .

3. If outindt 6= ⊥ then output out = outindt . Otherwise, continue.

This completes the description of the main algorithms. We now describe the auxiliary algorithms.

puncInp(sk, x): The secret key sk = (TwoABE.SK,TwoABE.PP,FHE.pk0,FHE.sk0,FHE.pk1,FHE.sk1)
punctured at point x is skx = (TwoABE.PP,FHE.pk0,FHE.sk0,FHE.pk1,FHE.sk1). That is, the
punctured key is same as the original secret key except that the master secret key of TwoABE is
removed. Output skx.

PIEncode(skx, x
′): On input a punctured key skx and input x′ 6= x, it executes InpEncode(skx, x

′, b)

to obtain the result (̃x′, b) which is set to be the output.

[Note: The algorithm InpEncode can directly be executed on the punctured key skx and input x′

because the master secret key TwoABE.SK is never used during its execution.]

puncBit(sk, b): On input a secret key sk and a bit b ∈ {0, 1}, it first interprets sk as (TwoABE.SK,
TwoABE.PP,FHE.pk0,FHE.sk0,FHE.pk1,FHE.sk1). It then outputs a punctured key skb = (TwoABE.PP,
FHE.pk0,FHE.pk1,FHE.skb).

PBEncode(skb, x): On input the punctured key skb, it computes (̃x, b) ← InpEncode(skb, x, b). The

result (̃x, b) is then output.

[Note: The algorithm InpEncode can directly be executed on the punctured key skb and input x be-
cause the FHE secret key associated to b, namely FHE.skb, is never used during the execution.]

Theorem 14. OEE is a oblivious evaluation encodings scheme.

The proof of the above theorem can be found in [AJS17].

Proof that OEE is Splittable OEE. We now claim that the above scheme is a splittable OEE
scheme.

Theorem 15. OEE is a splittable OEE scheme assuming that TwoABE is a splittable two-outcome
ABE scheme.

Proof. We need to show that OEE satisfies the following properties:

(1) Split Machine Encoding: We first remark about setup ofOEE, Setup. Note that we gener-
ate the FHE setup twice to get two pairs of public key-secret key pairs (FHE.pk0,FHE.sk0) and
(FHE.pk1,FHE.sk1). This can be viewed as executing the setup of UE twice since a fully homo-
morphic encryption scheme is an instantiation of UE (refer to Section 4). More specifically, we can
treat the UE secret keys as sk0 = FHE.sk0 and sk1 = FHE.sk1. The computation of the ABE secret
key-public key pair can be treated as computation of auxstp. In addition, we include the FHE
public keys as part of auxstp. That is, AuxGenstp outputs TwoABE.Setup and (FHE.pk0,FHE.pk1).
Thus, Setup satisfies the requirements of the split machine encoding property.
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We now move on to TMEncode. Consider the execution of TMEncode on input (sk,M0,M1).
Observe that the first step involves FHE encrypting M0 using FHE.pk0 and FHE encrypting M1

using FHE.pk1. Denote the output of this step by (FHE.CT0,FHE.CT1). The second step is the
generation of a TwoABE decryption key on a program N . Finally, the output of TMEncode is
the decryption key on N . Observe that N can be written as FHE.CT0||FHE.CT1||α, where α is
of size polynomial in λ. Furthermore, from the decomposability property of TwoABE, we have
the decryption key to be of the form (N, auxabe). Thus, the output of TMEncode is of the form
(FHE.CT0,FHE.CT1, auxtm). This fact combined with our earlier observation that FHE is an in-
stantiation of UE, it follows that TMEncode satisfies the requirements of the split machine encoding
property.

(2) Special Bit Punctured Key: Observe that skb is of the form (TwoABE.PP,FHE.pk0,FHE.pk1,
FHE.skb). From the above discussion, this is of the form skb = (auxstp, skb).

(3) Correctness of AuxGenoee: This property follows along the same lines as the correctness of OEE.
Intuitively, the main reason boils down to showing that the correctness is maintained irrespective
of whether evaluated FHE ciphertexts or fresh FHE ciphertexts are used.

(4) Efficiency of auxtm: Observe that auxtm = (α, auxabe). As described above, α is a polynomial
in λ. From the efficiency requirement associated with the split decryption property of TwoABE, we
have that auxabe has size polynomial in λ. Thus, auxtm has size polynomial in λ.

8.5 Splittable iO from Splittable OEE

We recall (a modified version of) the construction of iO from OEE in [AJS17]. We then demonstrate
that if the underlying OEE scheme is splittable then the resulting scheme is a splittable iO scheme.

Modified Construction of iO from OEE [AJS17]. Let OEE = (Setup, InpEncode,TMEncode,
Decode) be an OEE scheme with constant multiplicative overhead that is equipped with auxiliary
algorithms (puncInp,PIEncode, puncBit,PBEncode). Let iO be an indistinguishability obfuscator
for general circuits. Let PRF be a puncturable PRF family. Using these primitives, we now give
a construction of a succinct indistinguishability obfuscator with constant multiplicative overhead.
We denote it by SuccIO.

Let M denote the family of turing machines. On input the security parameter and a turing
machine M ∈M, SuccIO(1λ,M) computes the following:

• sk← Setup(1λ).

• Compute the punctured key, sk0 ← puncBit(sk, 0).
Remark: In the construction of AJS, the secret key is not punctured.

• ˜(M,M)← TMEncode(sk,M,M).

• C̃ ← iO
(
C[K,sk0]

)
, where K is a randomly chosen key for the puncturable PRF family and

C[K,sk0] is the circuit described in Figure 8.
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C[K,sk0] (x)

1. Compute r ← PRFK(x).

2. Compute (̃x, 0)← PBEncode(sk0, x) using randomness r.
Remark: In the construction of AJS,

3. Output (̃x, 0).

Figure 8: Circuit C[K,sk0].

The output of the obfuscator is
(

˜(M,M), C̃
)

.

To evaluate the obfuscated machine on an input x, the evaluator first computes C̃(x) to obtain

(̃x, 0). Next, it computes y ← Decode
(

˜(M,M), (̃x, 0)
)

and outputs y.

Theorem 16. The above scheme SuccIO is an indistinguishability obfuscation scheme.

While the construction of [AJS17] does not involve puncturing the OEE secret key, their security
proof however can be adopted to prove the above theorem.

Proof that SuccIO is Splittable iO. We now claim that the above scheme is a splittable iO
scheme.

Theorem 17. SuccIO is a splittable iO scheme, assuming that OEE is a splittable OEE scheme.

Proof. We prove the properties below.

(1) Splittable Property: Consider a machine M ∈M.

• The first step of SuccIO(1λ,M) involves executing the setup of OEE. From the splittable ma-
chine encoding property, Setup(1λ) runs in two steps: (i) execute the setup of UE twice, sk0 ←
Gen(1λ); sk1 ← Gen(1λ), (ii) generate auxiliary parameters auxstp; auxstp ← AuxGenstp(1λ).
The secret key is set to be sk = (sk0, sk1, auxstp).

• From the special bit punctured key property, the second step just sets the punctured key sk0
to be (sk0, auxstp).

• From the splittable machine encoding property, we have the following. TMEncode(sk,M0,M1)
runs in two steps: (i) execute the encode procedure onM0 andM1; Esk0(M0)← Encode(sk0,M0),
Esk1(M1)← Encode(sk1,M1), (ii) generate auxiliary parameters auxtm; auxtm ← AuxGenoee(
sk0, auxstp, Esk0(M0), Esk1(M1)). Output (Esk0(M0), Esk1(M1), auxtm).

The above can be re-written as follows. On input (1λ,M), SuccIO computes:

1. Execute the setup of UE twice, sk0 ← Gen(1λ); sk1 ← Gen(1λ)

2. Execute the encode procedure on M0 and M1; Esk0(M0) ← Encode(sk0,M0), Esk1(M1) ←
Encode(sk1,M1)

3. Generate auxiliary parameters by executing AuxGen(sk0, Esk0(M0), Esk1(M1)) as defined be-
low:
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- Generate auxiliary parameters auxstp; auxstp ← AuxGenstp(1λ).
- Generate auxiliary parameters auxtm; auxtm ← AuxGenoee(sk0, auxstp, Esk0(M0), Esk1(M1))
- Set aux = auxtm.

4. Output the obfuscated machine 〈M〉 = (Esk0(M), Esk1(M), aux).

Note that the execution of AuxGenstp and Encode can be switched because the execution of Encode
does not depend on the output of AuxGenstp.

From the above, we have that SuccIO satisfies splittable property.

(2) Correctness of AuxGen: This follows directly from the correctness of AuxGen.

(3) Efficiency of aux: We have |auxstp| = poly(λ) since AuxGen just takes the security parameter
as input. From the efficiency of OEE, we have |auxtm| = poly(λ). This proves that SuccIO satisfies
efficiency of aux property.

(4) Indistinguishabiliy of aux: We prove the following lemma that shows that SuccIO satisfies
indistinguishability of aux property.

Lemma 1. Consider M0,M1 ∈ M such that M0(x) = M1(x) for every x ∈ {0, 1}∗. Suppose
E0, E1, sk0, sk1 are such that M0 ← Decode(sk0, E0) and M1 ← Decode(sk1, E1). Assuming sub-
exponential security of OEE, we have:

{E0, E1, sk0, sk1, aux0} ≈c {E0, E1, sk0, sk1, aux1} ,

where auxb ← AuxGen(skb, E0, E1) for b ∈ {0, 1}.

Proof. Consider the following hybrids.

Hybrid H1: Real world experiment where machine M0 is obfuscated. The adversary is given the

obfuscated program
(

˜(M0,M0), C̃
)

.

Hybrid H2: Same as H1, except that we replace the machine encoding ˜(M0,M0) with ˜(M0,M1).
The indistinguishability of H1 and H2 follows from the indistinguishability of machine encoding

property of the OEE scheme.

Hybrid H3: Same as H2, except that C̃ is now computed as C̃ ← iO
(
C3
[K,sk1]

)
, where sk1 ←

puncBit(sk, 1) and C3
[K,sk1]

is the circuit described in Figure 9.

C3
[K,sk1]

(x)

1. Compute r ← PRFK(x).

2. Compute (̃x, 1)← PBEncode(sk1, x) using randomness r.

3. Output (̃x, 1).

Figure 9: Circuit C3
[K,sk1]

.
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Indistinguishability of H2 and H3. Let x1, . . . , xN denote the N inputs to machines M0 and
M1, sorted in lexicographic order. To argue ε′-indistinguishability of H2 and H3, we will consider
N +1 internal hybrids H2:0, . . . ,H2:N . Below, we describe the hybrids H2:i, starting with i = 0 and
then 0 < i ≤ N .

Hybrid H2:0: Same as H2, except that C̃ is now computed as C̃ ← iO
(
C2:0
[K,sk]

)
, where C2:i

[K,sk] is

the same as circuit C[K,sk] described in Figure 8.

Hybrid H2:i: Same as H2:i−1, except that C̃ is now computed as C̃ ← iO
(
C2:i
[K,sk]

)
, where C2:i

[K,sk]

is the circuit described in Figure 10.

C2:i
[K,sk] (x)

1. If x ≤ xi, then b = 1, else b = 0.

2. Compute r ← PRFK(x).

3. Compute (̃x, b)← InpEncode(sk, x, b) using randomness r.

4. Output (̃x, b).

Figure 10: Circuit C2:i
[K,sk].

For every 0 ≤ i ≤ L, we will argue the indistinguishability of H2:i and H2:i+1. To facilitate
this, we consider another sequence of intermediate hybrids H2:i:1, . . . ,H2:i:4, where 0 ≤ i < L. We
describe them below.

Hybrid H2:i:1: Same as H2:i, except that C̃ is now computed as C̃ ← iO

(
C2:i:1[

Kxi+1 ,skxi+1 ,
˜(xi+1,0)

]
)

,

where:

• Kxi+1 ← PRFPunc(K,xi+1).

• skxi+1 ← puncInp(sk, xi+1).

• ˜(xi+1, 0)← InpEncode(sk, xi+1, 0) using randomness r ← PRF(K,xi+1).

• Circuit C2:i:1[
Kxi+1 ,skxi+1 ,

˜(xi+1,0)
] contains the values Kxi+1 , skxi+1 and ˜(xi+1, 0) hardwired, and

is described in Figure 11.

Hybrid H2:i:2: Same as H2:i:1, except that the hardwired value ˜(xi+1, 0) ← InpEncode(sk, x, 0) is
now computed using true randomness (as opposed to PRF generated randomness).

Hybrid H2:i:3: Same as H2:i:2, except that we now replace the hardwired value ˜(xi+1, 0) with
˜(xi+1, 1), where ˜(xi+1, 1)← InpEncode(sk, x, 1) is computed using true randomness.

Hybrid H2:i:4: Same as H2:i:3, except that the hardwired value ˜(xi+1, 1) ← InpEncode(sk, x, 1) is
now computed using randomness r ← PRFK(xi+1‖1).

This completes the description of the intermediate hybrids. We now make the following indis-
tinguishability claims:
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C2:i:1[
Kxi+1

,skxi+1
, ˜(xi+1,0)

] (x)

1. If x = xi+1, output ˜(xi+1, 0).

2. If x ≤ xi, then b = 1, else b = 0.

3. Compute r ← PRFKxi+1
(x).

4. Compute (̃x, b)← InpEncode(skxi+1
, x, b) using randomness r.

5. Output (̃x, b).

Figure 11: Circuit C2:i:1
[K,sk].

• H2 ≈ H2:0.

• For every 0 ≤ i < N :

– H2:i ≈ H2:i:1.

– H2:i:1 ≈ H2:i:2.

– H2:i:2 ≈ H2:i:3.

– H2:i:3 ≈ H2:i:4.

– H2:i:4 ≈ H2:i+1.

• H2:N ≈ H2.

Finally, we will combine all these claims to argue the indistinguishability of H2 and H3.

Indistinguishability of H2 and H2:0. Let C2:0
[K,sk] denote the circuit used in hybrid H2:0. We will

show that the circuits C2:0
[K,sk] and C2

[K,sk0]
are functionally equivalent. The indistinguishability of

H2:0 and H2 then follows from the security of the indistinguishability obfuscator iO.
Circuit C2:0

[K,sk] on input x computes InpEncode(sk, x, 0) using randomness r ← PRFK(x) while

C2
[K,sk0]

computes PBEncode(sk0, x) using randomness r. From the correctness of bit puncturing

property of the OEE scheme, we have that InpEncode(sk, x, 0) = PBEncode(sk0, x). Thus, C2:0
[K,sk]

and C2
[K,sk0]

are functionally equivalent.

Indistinguishability of H2:i and H2:i:1. We show that the two circuits C2:i
[K,sk] and C2:i:1[

Kxi+1 ,skxi+1 ,
˜(xi+1,0)

]
are functionally equivalent. The indistinguishability of H2:i and H2:i:1 then follows from the security
of the indistinguishability obfuscator iO.

First observe that since the punctured PRF preserves functionality under puncturing and the
OEE scheme satisfies correctness of input puncturing property, it follows that the behavior of
circuits C2:i

[K,sk] and C2:i:1[
Kxi+1 ,skxi+1 ,

˜(xi+1,0)
] is identical on all inputs x 6= xi+1. On input xi+1, circuit

C2:i
[K,sk] outputs InpEncode(sk, xi+1, 0) that is computed using randomness r ← PRFK(xi+1), while

circuit C2:i:1[
Kxi+1 ,skxi+1 ,

˜(xi+1,0)
] outputs the hardwired value ˜(xi+1, 0). However, it follows from the

description of H2:i:1 that ˜(xi+1, 0) = InpEncode(sk, xi+1, 0) (where randomness r as described above
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is used). Then, combining the above, we have that C2:i
[K,sk] and C2:i:1[

Kxi+1 ,skxi+1 ,
˜(xi+1,0)

] are functionally

equivalent.

Indistinguishability of H2:i:1 and H2:i:2. This follows immediately from the security of the
punctured PRF family used in the construction.

Indistinguishability of H2:i:2 and H2:i:3. Note that in both experiments H2:i:2 and H2:i:3, only
the punctured key skxi+1 is used. Then, the indistinguishability of H2:i:2 and H2:i:3 follows from
the indistinguishability of encoding bit property of the OEE scheme.

Indistinguishability of H2:i:3 and H2:i:4. This follows immediately from the security of the
punctured PRF family used in the construction.

Indistinguishability of H2:i:4 and H2:i+1. This follows in the same manner as the proof of the
indistinguishability of hybrids H2:i and H2:i:1. We omit the details.

Indistinguishability of H2:L and H3. This follows in the same manner as the proof of the
indistinguishability of hybrids H2 and H2:0. We omit the details.

By instantiating the tools used in [AJS17], we have the following theorem.

Theorem 18. Assuming the existence of sub-exponentially secure iO for circuits and sub-exponentially
secure re-randomizable encryption schemes, there exists a splittable iO scheme for Turing machines
(with bounded input length).

Since we can instantiate re-randomizable encryption schemes from standard assumptions such as
DDH, LWE, we have the following corollary.

Corollary 1. Assuming the existence of sub-exponentially secure iO for circuits and sub-exponentially
secure DDH, there exists a splittable iO scheme for Turing machines (with bounded input length).

9 Implications of pa-iO
In this section, we first show how to use multi-program pa-iO for parallel updates to construct
a secret-key functional encryption (FE) scheme for unbounded-input Turing machines. We then
extend our construction in a simple manner to obtain a secret-key multi-input functional encryption
(MIFE) scheme for functions of unbounded arity. Starting from adaptively secure multi-program
pa-iO, both of our constructions achieve indistinguishability security against pre-ciphertext key
queries, namely, where the adversary first submits all the function key queries and then issues
ciphertext queries in an adaptive fashion. We refer the reader to [AS16] and [BGJS15] for formal
definitions of FE for unbounded-input Turing machines and MIFE for functions of unbounded arity,
respectively.
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9.1 FE for Unbounded-Input Turing Machines

Let M be any family of Turing machines that supports arbitrary length inputs. We describe
a secret-key FE scheme FE = (FE.Setup, FE.KeyGen, FE.Enc, FE.Dec) for M that achieves in-
distinguishability security against pre-ciphertext key queries. The only ingredient in our con-
struction is an adaptively secure multi-program patchable indistinguishability obfuscation scheme
pa-iOmp = (Setup,Obf,GenPatch,AppPatch,Eval) for a Turing machine family Mmp that supports
an unbounded number of parallel updates from an associated patch family Pmp. We denote that
associated update algorithm by Updatemp.

• A Turing machine TM ∈Mmp is of the form TM = TM[M,x] where M ∈M and x ∈ {0, 1}∗∪∅.
On any input y, TM outputs ⊥ if x = ∅. Otherwise, it computes and outputs M(x).

• A patch P ∈ Pmp is of the form P = P[x′] where x′ ∈ {0, 1}∗.

• The update algorithm Updatemp on input (TM[M,x], P[x′]) outputs TM′ = TM[M,x′].

We now proceed to describe FE.

• FE.Setup(1λ): On input the security parameter λ in unary, compute SK← Setup(1λ). Output
FE.MSK = SK.

• FE.KeyGen(FE.MSK,M): On input FE.MSK = SK and a Turing machine M ∈ M, compute
〈TMM 〉 ← Obf(SK,TM[M,∅]) where TM[M,∅] ∈Mmp. Output FE.SKM = 〈TMM 〉.

• FE.Enc(FE.MSK, x): On input FE.MSK = SK and a message x ∈ {0, 1}∗, compute 〈Px〉 ←
GenPatch(SK, P[x]) where P[x] ∈ Pmp. Output CT = 〈Px〉.

• FE.Dec(FE.SKM ,CT): On input a functional key FE.SKM = 〈TMM 〉 and a ciphertext CT =

〈Px〉, compute 〈TMM ′〉 ← AppPatch
(
〈TMM 〉, 〈Px〉

)
. Output Eval

(
〈TMM ′〉, 0

)
.

Correctness. Let FE.SKM = 〈TMM 〉 be a functional key for Turing machine M ∈ M where
〈TMM 〉 = Obf(SK,TM[M,∅]) for TM[M,∅] ∈ Mmp. Let CT = 〈Px〉 be a ciphertext where 〈Px〉 ←
GenPatch(SK, P[x]) for P[x] ∈ Pmp. Now, from the correctness properties of pa-iOmp, it follows that

AppPatch
(
〈TMM 〉, 〈Px〉

)
= 〈TMM ′〉 s.t. 〈TMM ′〉 is functionally equivalent to Updatemp(TM[M,∅], P[x]) =

TM[M,x]. From the definition of TM[M,x], we have that TM[M,x](0) = M(x), as required.

Security. We briefly sketch the proof of security here. Let M1, . . . ,Mk be the function key
queries and let (x10, x

1
1), . . . , (x

n
0 , x

n
1 ) be the (adaptive) ciphertext queries made by the adversary

for polynomials k = poly(λ) and n = poly(λ) in the pre-ciphertext key query security game for
secret-key FE. For every i ∈ [k], let FE.SKMi = Obf(SK,TM[Mi,∅]) where TM[Mi,∅] ∈Mmp. Further,
for every j ∈ [n], let CTj = GenPatch(SK, P

[xjb]
), where P

[xjb]
∈ Pmp and b is the challenge bit chosen

by the adversary.
Now, from the requirement in the security definition of FE, we have that for every i ∈ [k],

j ∈ [n], Mi(x
j
0) = Mi(x

j
1). This implies that Update(TM[Mi,∅], P[xj0]

) and Update(TM[Mi,∅], P[xj1]
) are

functionally equivalent. The security of FE now easily follows from the security of pa-iOmp.
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9.2 MIFE for Unbounded-Arity Functions

LetM be any family of Turing machines that supports arbitrary number of arbitrary length inputs.
We describe a secret-key MIFE scheme MIFE = (MIFE.Setup, MIFE.KeyGen, MIFE.Enc, MIFE.Dec)
for M that achieves indistinguishability security against pre-ciphertext key queries. The only
ingredient in our construction is an adaptively secure multi-program patchable indistinguishability
obfuscation scheme pa-iOmp = (Setup,Obf,GenPatch,AppPatch,Eval) for a Turing machine family
Mmp that supports an unbounded number of parallel updates from an associated patch family Pmp.
We denote that associated update algorithm by Updatemp.

• A Turing machine TM ∈Mmp is of the form TM = TM[M,`,x1,...,x`] where M ∈M, ` ≥ 0 and
xi ∈ {0, 1}∗. On any input y, TM outputs ⊥ if ` = 0. Otherwise, it computes and outputs
M(x1, . . . , x`).

• A patch P ∈ Pmp is of the form P = P[x] where x ∈ {0, 1}∗.

• The update algorithm Updatemp on input (TM[M,`,x1,...,x`], P[x]) outputs TM′ = TM[M,`′,x1,...,x`′ ]

where `′ = `+ 1 and x`′ = x.

We now proceed to describe MIFE.

• MIFE.Setup(1λ): On input the security parameter λ in unary, compute SK ← Setup(1λ).
Output MIFE.MSK = SK.

• MIFE.KeyGen(MIFE.MSK,M): On input MIFE.MSK = SK and a Turing machine M ∈ M,
compute 〈TMM0〉 ← Obf(SK,TM[M,0]) where TM[M,0] ∈Mmp. Output MIFE.SKM = 〈TMM0〉.

• MIFE.Enc(MIFE.MSK, x): On input MIFE.MSK = SK and a message x ∈ {0, 1}∗, compute
〈Px〉 ← GenPatch(SK, P[x]) where P[x] ∈ Pmp. Output CT = 〈Px〉.

• MIFE.Dec(MIFE.SKM ,CT1, . . . ,CT`): On input a functional key MIFE.SKM = 〈TMM 〉 and an
arbitrary number of ciphertexts CT1, . . . ,CT` where CTi = 〈Pxi〉, compute for every i ∈ [`],

〈TMMi〉 ← AppPatch
(
〈TMMi−1〉, 〈Pxi〉

)
. Output Eval

(
〈TMM`

〉, 0
)

.

Correctness. Let FE.SKM = 〈TMM0〉 be a functional key for Turing machine M ∈ M where
〈TMM0〉 = Obf(SK,TM[M,0]) for TM[M,0] ∈ Mmp. Let CT1, . . . ,CT` be an arbitrary number of
ciphertexts s.t. CTi = 〈Pxi〉 where 〈Pxi〉 ← GenPatch(SK, P[xi]) for P[xi] ∈ Pmp. Now, from the

correctness properties of pa-iOmp, it follows that for every i ∈ [L], AppPatch
(
〈TMMi−1〉, 〈Pxi〉

)
=

〈TMMi〉 s.t. 〈TMMi〉 is functionally equivalent to Updatemp(TM[M,i−1,x1,...,xi−1], P[xi]) = TM[M,i,x1,...,xi].
From the definition of TM[M,i,x1,...,xi], we have that TM[M,`,x1,...,x`](0) = M(x1, . . . , x`), as required.

Security. The security of the above construction can be easily argued by extending the security
proof of the single-ary FE construction.
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A Preliminaries: Instantiation of Splittable iO

A.1 Puncturable Pseudorandom Functions

A pseudorandom function family F consisting of functions of the form PRFK(·), that is defined
over input space {0, 1}η(λ), output space {0, 1}χ(λ) and key K in the key space K, is said to be a
secure puncturable PRF family if there exists a PPT algorithm PRFPunc that satisfies the following
properties:

• Functionality preserved under puncturing. PRFPunc takes as input a PRF key K,
sampled from K, and an input x ∈ {0, 1}η(λ) and outputs Kx such that for all x′ 6= x,
PRFKx(x′) = PRFK(x′).

• Pseudorandom at punctured points. For every PPT adversary (A1,A2) such that

A1(1
λ) outputs an input x ∈ {0, 1}η(λ), consider an experiment where K

$←− K and Kx ←
PRFPunc(K,x). Then for all sufficiently large λ ∈ N, for a negligible function µ,∣∣Pr[A2(Kx, x,PRFK(x)) = 1]− Pr[A2(Kx, x, Uχ(λ)) = 1]

∣∣ ≤ µ(λ)

where Uχ(λ) is a string drawn uniformly at random from {0, 1}χ(λ).

As observed by [BW13, BGI14, KPTZ13], the GGM construction [GGM86] of PRFs from one-way
functions yields puncturable PRFs.

Theorem 19 ([GGM86, BW13, BGI14, KPTZ13]). If µ-secure one-way functions10 exist, then for
all polynomials η(λ) and χ(λ), there exists a µ-secure puncturable PRF family that maps η(λ) bits
to χ(λ) bits.

A.2 Garbling schemes

Yao in his seminal work [Yao86, LP09] proposed the notion of garbled circuits as a solution to
the problem of secure two party computation. Recently, Bellare et al. [BHR12] formalized this in
the form of a primitive called garbling scheme. We adopt this notion. The syntax of the garbling
scheme, defined below, is similar to the definition of Bellare et al.

A garbling scheme GC for a class of circuits C = {Cn}n∈N consists of two PPT algorithms namely
(Garble,EvalGC).

• Garbling algorithm, Garble(1λ, C ∈ C): On input a security parameter λ in unary and
a circuit C ∈ Cn of input length n, it outputs a garbled circuit along with its wire keys,(
GC, {wi,0, wi,1}i∈[n]

)
.

• Garbled circuit evaluation algorithm, EvalGC
(
GC, {wi,xi}i∈[n]

)
: On input the garbled

circuit GC and wire keys {wi,xi}i∈[n] corresponding to x, it outputs out.

The correctness property of a garbling scheme dictates that for every C ∈ Cn, the output of the
evaluation procedure EvalGC(GC, {wi,xi}i∈[n]) is C(x), where (GC, {wi,0, wi,1}i∈[n])← Garble(1λ, C).

10We say that a one-way function family is µ-secure if the probability of inverting a one-way function, that is
sampled from the family, is at most µ(λ).
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Security. A garbling scheme is said to be secure if the joint distribution of garbled circuit along
with the wire keys, corresponding to some input, reveals only the output of the circuit and nothing
else. This can be formalized in the form of a simulation-based notion as given below.

Definition 20. A garbling scheme GC = (Garble,EvalGC) for a class of circuits C = {Cn}n∈N is said
to be secure if there exists a simulator SimGarble such that for any C ∈ Cn, any input x ∈ {0, 1}n,
the following two distributions are computationally distinguishable.

1.
{
SimGarble

(
1λ, φ(C), C(x)

) }
, where φ(C) denotes the topology of the circuit C.

2.
{

(GC, {wi,xi}i∈[n])
}

, where (GC, {wi,0, wi,1}i∈[n])← Garble(1λ, C).

A.3 Fully Homomorphic Encryption for circuits

Another main tool that we use in one of our constructions is a fully homomorphic encryption
scheme [RAD78] (FHE).

A public key fully homomorphic encryption (FHE) scheme for a class of circuits C = {Cλ}λ and
message space MSG = {MSGλ}λ∈N consists of four PPT algorithms, namely, (FHE.Setup,FHE.Enc,
FHE.Eval,FHE.Dec). The syntax of the algorithms are described below.

• Setup, FHE.Setup(1λ): On input a security parameter 1λ it outputs a public key-secret key
pair (FHE.pk,FHE.sk).

• Encryption, FHE.Enc(FHE.pk,m ∈ MSGλ): On input public key FHE.pk and message m ∈
MSGλ, it outputs a ciphertext denoted by FHE.CT.

• Evaluation, FHE.Eval(FHE.pk, C ∈ C,FHE.CT): On input public key FHE.pk, a circuit C ∈
Cλ and a FHE ciphertext FHE.CT, it outputs the evaluated ciphertext FHE.CT′.

• Decryption, FHE.Dec(FHE.sk,FHE.CT): On input the secret key FHE.sk and a ciphertext
FHE.CT, it outputs the decrypted value out.

The correctness property guarantees the following, where (FHE.pk,FHE.sk) ← FHE.Setup(1λ) and
FHE.CT← FHE.Enc(FHE.pk,m ∈ MSGλ):

• m← FHE.Dec(FHE.sk,FHE.CT)

• For any circuit C ∈ Cλ where the input length of C is |m|, we have C(m)← FHE.Dec(FHE.sk,
FHE.Eval(FHE.pk, C,FHE.CT)).

The security notion of an FHE scheme is identical to the definition of semantic security of a public
key encryption scheme.

An FHE scheme should also satisfy the so called compactness property. At a high level, the
compactness property ensures that the length of the ciphertext output by FHE.Eval(FHE.pk, C, ·)
is independent of the size of C.
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FHE from iO and Re-Randomizable Encryption. Recently, Canetti et al. [CLTV15] pro-
posed a construction of fully homomorphic encryption from (sub-exponentially secure) iO and
re-randomizable encryption schemes. We instantiate the FHE scheme we use in our work using this
construction.

B KLW Building Blocks [KLW15]

We recall some notions introduced in the work of Koppula, Lewko, Waters [KLW15]. There are
three main building blocks: positional accumulators, splittable signatures and iterators. The fol-
lowing definitions are stated verbatim from [KLW15]. In this section, we only state the essential
security properties of these primitives we explicitly use in this work. There are other security prop-
erties associated with these primitives - we define them in Appendix B.1.

I. Positional Accumulators. We give a brief overview of this primitive. It consists of the algo-
rithms (Setup,EnforceRead,EnforceWrite,PrepRead,PrepWrite, VerifyRead,WriteStore,Update) and
is associated with message space Msgλ.

The algorithm Setup generates the accumulator public parameters along with the initial storage
value and the initial root value. It helps to think of the storage as being a hash tree and its associated
accumulator value being the root and they both are initialized to ⊥. There are two algorithms
that generate “fake” public parameters, namely, EnforceRead and EnforceWrite. The algorithm
EnforceRead takes as input a special index INDEX∗ along with a sequence of k computational steps
(m1, INDEX1), . . . , (mk, INDEXk) (symbol-index pairs) and produces fake public parameters along
with initialized storage and root values. Later, we will put forth a requirement that any PPT
adversary cannot distinguish “real” public parameters (generated by Setup) and “fake” public
parameters (generated by EnforceRead). Also we put forth an information theoretic requirement
that any storage generated by the “fake” public parameters is such that the accumulator value
associated with the storage determines a unique value at the location INDEX∗. The algorithm
EnforceWrite has a similar flavor as EnforceRead and we describe in the formal definition.

Once the setup algorithm is executed, there are two algorithms that deal with arguing about the
correctness of the storage. The first one, PrepRead takes as input a storage, an index and produces
the symbol at the location at that index and an accompanying proof – we later require this proof to
be “short” (in particular, independent of the size of storage). PrepWrite essentially does the same
task except that it does not output the symbol at that location – that it only produces the proof (in
the formal definition, we call this aux). Another procedure, VerifyRead then verifies whether the
proof produced by PrepRead is valid or not. The above algorithms help to verify the correctness of
storage. But how do we compute the storage? WriteStore takes as input an old storage along with
a new symbol and the location where the new symbol needs to be assigned. It updates the storage
appropriately and outputs the new storage. The algorithm Update describes how to “succinctly”
update the accumulator by just knowing the public parameters, accumulator value, message symbol,
index and auxiliary information aux (produced by WriteStore). Here, “succinctness” refers to the
fact that the update time of Update is independent of the size of the storage.

Syntax. A positional accumulator for message space Msgλ consists of the following algorithms.

• SetupAcc(1λ, T ) → (PPAcc, w0, store0): The setup algorithm takes as input a security pa-
rameter λ in unary and an integer T in binary representing the maximum number of values

76



that can stored. It outputs public parameters PPAcc, an initial accumulator value w0, and an
initial storage value store0.

• EnforceRead(1λ, T, (m1, INDEX1), . . . , (mk, INDEXk), INDEX∗) → (PPAcc, w0, store0) : The
setup enforce read algorithm takes as input a security parameter λ in unary, an integer T in
binary representing the maximum number of values that can be stored, and a sequence of
symbol, index pairs, where each index is between 0 and T − 1, and an additional INDEX∗

also between 0 and T − 1. It outputs public parameters PPAcc, an initial accumulator value
w0, and an initial storage value store0.

• EnforceWrite(1λ, T, (m1, INDEX1), . . . , (mk, INDEXk)) → (PPAcc, w0, store0): The setup en-
force write algorithm takes as input a security parameter λ in unary, an integer T in binary
representing the maximum number of values that can be stored, and a sequence of symbol,
index pairs, where each index is between 0 and T − 1. It outputs public parameters PPAcc,
an initial accumulator value w0, and an initial storage value store0.

• PrepRead(PPAcc, storein, INDEX) → (m,π): The prep-read algorithm takes as input the
public parameters PPAcc, a storage value storein, and an index between 0 and T − 1. It
outputs a symbol m (that can be ε) and a value π.

• PrepWrite(PPAcc, storein, INDEX)→ aux: The prep-write algorithm takes as input the public
parameters PPAcc, a storage value storein, and an index between 0 and T − 1. It outputs an
auxiliary value aux.

• VerifyRead(PPAcc, win,mread, INDEX, π)→ ({True, False}): The verify-read algorithm takes
as input the public parameters PPAcc, an accumulator value win, a symbol, mread, an index
between 0 and T − 1, and a value π. It outputs True or False.

• WriteStore(PPAcc, storein, INDEX,m) → storeout: The write-store algorithm takes in the
public parameters, a storage value storein, an index between 0 and T − 1, and a symbol m.
It outputs a storage value storeout.

• Update(PPAcc, win,mwrite, INDEX, aux) → (wout or Reject): The update algorithm takes in
the public parameters PPAcc, an accumulator value win, a symbol mwrite, and index between
0 and T − 1, and an auxiliary value aux. It outputs an accumulator value wout or Reject.

Remark 9. In our construction, we will set T = 2λ and so T will not be an explicit input to all
the algorithms.

Correctness. We consider any sequence (m1, INDEX1), . . . , (mk, INDEXk) of symbolsm1, . . . ,mk

and indices INDEX1, . . . , INDEXk each between 0 and T−1. Let (PPAcc, w0, store0)← SetupAcc(1λ, T ).
For j from 1 to k, we define storej iteratively as storej := WriteStore(PPAcc, storej−1, INDEXj ,mj).
We similarly define auxj and wj iteratively as auxj := PrepWrite(PPAcc, storej−1, INDEXj) and
wj := Update(PPAcc, wj−1,mj , INDEXj , auxj). Note that the algorithms other than SetupAcc are
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deterministic, so these definitions fix precise values, not random values (conditioned on the fixed
starting values PPAcc, w0, store0).

We require the following correctness properties:

1. For every INDEX between 0 and T −1, PrepRead(PPAcc, storek, INDEX) returns mi, π, where
i is the largest value in [k] such that INDEXi = INDEX. If no such value exists, then mi = ε.

2. For any INDEX, let (m,π)← PrepRead(PPAcc, storek, INDEX). Then VerifyRead(PPAcc, wk,m,
INDEX, π) = True.

Efficiency. We require that |π| is a fixed polynomial in λ, where (m,π) ← PrepRead(PPAcc,
storein, INDEX). In particular, |π| should be independent of |storein|. We similarly, require that
|aux| to be a fixed polynomial in λ, where aux← PrepWrite(PPAcc, storein, INDEX).

The security properties are defined in Section B.1.

II. Splittable Signatures. A splittable signature scheme is a deterministic signature scheme con-
sisting of the basic algorithms (SetupSpl,SignSpl,VerSpl) (i.e, setup, signing and verification algo-
rithms) as in a standard signature scheme except that SetupSpl, in addition to the standard signing
key-verification key pair (SK,VK), also outputs a rejection-verification key VKrej. VKrej is defined
to be such that it rejects every message-signature pair – this will be useful in the security proof. In
addition to the above algorithms, the scheme is associated with algorithms SplitSpl and SignSplAbo.
The algorithm SplitSpl takes as input a signing key-message pair (SK,m∗) and outputs a verification
key VKone, an all-but-one signing key SKabo and an all-but-one verification key VKabo. Using VKone

we can verify whether a signature associated with m∗ is valid or not. For any other message, VKone

is useless – that is, the output of the verification algorithm is 0. Similarly, VKabo is used to verify
the signatures on all messages except m∗. The key SKabo is used to sign all the messages except
m∗. To sign using the key SKabo we use a special signing algorithm SignSplAbo.

The security properties associated are described at a high level below:

1. VKrej indistinguishability: VKrej is indistinguishable from the standard verification key VK
when no signatures are given to the adversary.

2. VKone indistinguishability: It is computationally hard to distinguish VKone and VK even when
the adversary is given a signature on m∗ (and no other signatures).

3. VKabo indistinguishability: It is hard to distinguish VKabo and VK even when the adversary
is given the signing key SKabo.

4. Splitting Indistinguishability: Suppose (SK,VK,VKrej) be the output of one execution of
SetupSpl of the signature scheme. This security property says that for any message m∗ it
is hard to distinguish the following: (a) (σone,VKone,SKabo,VKabo) with (SKabo,VKabo) de-
rived from (SK,VK) and, (b) (σone,VKone,SK

∗
abo,VK

∗
abo) with (SK∗abo,VK

∗
abo) derived from

(SK∗,VK∗) which in turn is generated independently of (SK,VK).

Syntax. A splittable signature scheme SplScheme for message space Msg consists of the following
algorithms:
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• SetupSpl(1λ) The setup algorithm is a randomized algorithm that takes as input the security
parameter λ and outputs a signing key SK, a verification key VK and reject-verification key
VKrej.

• SignSpl(SK,m) The signing algorithm is a deterministic algorithm that takes as input a signing
key SK and a message m ∈ Msg. It outputs a signature σ.

• VerSpl(VK,m, σ) The verification algorithm is a deterministic algorithm that takes as input
a verification key VK, signature σ and a message m. It outputs either 0 or 1.

• SplitSpl(SK,m∗) The splitting algorithm is randomized. It takes as input a secret key SK
and a message m∗ ∈ Msg. It outputs a signature σone = SignSpl(SK,m∗), a one-message
verification key VKone, an all-but-one signing key SKabo and an all-but-one verification key
VKabo.

• SignSplAbo(SKabo,m) The all-but-one signing algorithm is deterministic. It takes as input an
all-but-one signing key SKabo and a message m, and outputs a signature σ.

Correctness. Let m∗ ∈ Msg be any message. Let (SK,VK,VKrej) ← SetupSpl(1λ) and (σone,
VKone, SKabo,VKabo)← SplitSpl(SK,m∗). Then, we require the following correctness properties:

1. For all m ∈ Msg, VerSpl(VK,m,SignSpl(SK,m)) = 1.

2. For all m ∈ Msg,m 6= m∗, SignSpl(SK,m) = SignSplAbo(SKabo,m).

3. For all σ, VerSpl(VKone,m
∗, σ) = VerSpl(VK,m∗, σ).

4. For all m 6= m∗ and σ, VerSpl(VK,m, σ) = VerSpl(VKabo,m, σ).

5. For all m 6= m∗ and σ, VerSpl(VKone,m, σ) = 0.

6. For all σ, VerSpl(VKabo,m
∗, σ) = 0.

7. For all σ and all m ∈ Msg, VerSpl(VKrej,m, σ) = 0.

Security: VKone indistinguishability. We describe VKone indistinguishability security property
at a high level below. The rest of the security properties (that will only implicitly be used in our
work) is described in Appendix B.1.

Definition 21 (VKone indistinguishability). A splittable signature scheme SplScheme for a message
space Msg is said to be VKone indistinguishable if any PPT adversary A has negligible advantage
in the following security game:

Expt(1λ,SplScheme,A):

1. A sends a message m∗ ∈ Msg.
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2. Challenger computes (SK,VK,VKrej)← SetupSpl(1λ). Next, it computes (σone, VKone, SKabo,
VKabo)← SplitSpl(SK,m∗). It chooses b← {0, 1}. If b = 0, it sends (σone,VKone) to A. Else,
it sends (σone,VK) to A.

3. A sends its guess b′.

A wins if b = b′.

We note that in the game above, A only receives the signature σone on m∗, on which VK and
VKone behave identically.

III. Iterators. This notion is similar in spirit to the notion of accumulators described earlier.
While accumulators were used to bind the storage, the role of iterators is to bind the state of
the Turing machines. An iterator scheme consists of three algorithms (SetupItr, ItrEnforce, Iterate).
SetupItr is used to generate the public parameters. ItrEnforce is used to generate “fake” parameters,
that is indistinguishable from the real parameters. These parameters can then be used to generate
iterator values using the algorithm Iterate.

Syntax. Let ` be any polynomial. An iterator PPItr with message space Msgλ = {0, 1}`(λ) and
state space Sλ consists of three algorithms SetupItr, ItrEnforce and Iterate as defined below.

• SetupItr(1λ, T ) The setup algorithm takes as input the security parameter λ (in unary), and
an integer bound T (in binary) on the number of iterations. It outputs public parameters
PPItr and an initial state v0 ∈ Sλ.

• ItrEnforce(1λ, T, ~m = (m1, . . . ,mk)) The enforced setup algorithm takes as input the security
parameter λ (in unary), an integer bound T (in binary) and k messages (m1, . . . ,mk), where
each mi ∈ {0, 1}`(λ) and k is some polynomial in λ. It outputs public parameters PPItr and a
state v0 ∈ Sλ.

• Iterate(PPItr, vin,m) The iterate algorithm takes as input the public parameters PPItr, a state
vin, and a message m ∈ {0, 1}`(λ). It outputs a state vout ∈ Sλ.

Remark 10. As in the case of positional accumulators, we set T to be 2λ and not mention T as
an explicit input to the above algorithms.

For any integer k ≤ T , we will use the notation Iteratek(PPItr, v0, (m1, . . . ,mk)) to denote Iterate(PPItr, vk−1,mk),
where vj = Iterate(PPItr, vj−1,mj) for all 1 ≤ j ≤ k − 1.

Remark 11. Unlike standard cryptographic primitives, positional iterators (as defined by [KLW15])
does not have any correctness notion associated with it.

B.1 Security Properties of Primitives of [KLW15]

We provide the security properties of the primitives verbatim from [KLW15].
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B.2 Security Properties of Positional Accumulators

Let Acc = (SetupAcc, EnforceRead, EnforceWrite, PrepRead, PrepWrite, VerifyRead, WriteStore,
Update) be a positional accumulator for symbol set M. We require Acc to satisfy the following
notions of security.

Definition 22 (Indistinguishability of Read Setup). A positional accumulator Acc is said to sat-
isfy indistinguishability of read setup if any PPT adversary A’s advantage in the security game
ExptAcc(1

λ,A) is at most negligible in λ, where ExptAcc is defined as follows.

ExptAcc(1
λ,A)

1. Adversary chooses a bound T ∈ Θ(2λ) and sends it to challenger.
2. A sends k messages m1, . . . ,mk ∈ M and k indices INDEX1, . . . ,

indexAk ∈ {0, . . . , T − 1} to the challenger.
3. The challenger chooses a bit b. If b = 0, the challenger outputs (PPAcc, w0, store0) ←

SetupAcc(1λ, T ). Else, it outputs (PPAcc, w0, store0)← EnforceRead(1λ, T, (m1, INDEX1), . . . ,
(mk, INDEXk)).

4. A sends a bit b′.

A wins the security game if b = b′.

Definition 23 (Indistinguishability of Write Setup). A positional accumulator Acc is said to sat-
isfy indistinguishability of write setup if any PPT adversary A’s advantage in the security game
ExptAcc(1

λ,A) is at most negligible in λ, where ExptAcc is defined as follows.

ExptAcc(1
λ,A)

1. Adversary chooses a bound T ∈ Θ(2λ) and sends it to challenger.
2. A sends k messages m1, . . . ,mk ∈ M and k indices INDEX1, . . . ,

indexAk ∈ {0, . . . , T − 1} to the challenger.
3. The challenger chooses a bit b. If b = 0, the challenger outputs (PPAcc, w0, store0) ←

SetupAcc(1λ, T ). Else, it outputs (PPAcc, w0, store0)← EnforceWrite(1λ, T, (m1, INDEX1), . . . ,
(mk, INDEXk)).

4. A sends a bit b′.

A wins the security game if b = b′.

Definition 24 (Read Enforcing). Consider any λ ∈ N, T ∈ Θ(2λ), m1, . . . ,mk ∈ M, INDEX1, . . . , INDEXk ∈
{0, . . . , T − 1} and any INDEX∗ ∈ {0, . . . , T − 1}.

Let (PPAcc, w0, st0) ← EnforceRead(1λ, T, (m1, INDEX1), . . . , (mk, INDEXk), INDEX∗). For j
from 1 to k, we define storej iteratively as storej := WriteStore(PPAcc, storej−1, INDEXj ,mj). We
similarly define auxj and wj iteratively as auxj := PrepWrite(PPAcc, storej−1, INDEXj) and wj :=
Update(PPAcc, wj−1,mj , INDEXj , auxj). Acc is said to be read enforcing if VerifyRead(PPAcc, wk,m, INDEX∗,
π) = True, then either INDEX∗ /∈ {INDEX1, . . . , INDEXk} and m = ε, or m = mi for the largest
i ∈ [k] such that INDEXi = INDEX∗. Note that this is an information-theoretic property: we are
requiring that for all other symobls m, values of π that would cause VerifyRead to output True at
INDEX∗ do no exist.
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Definition 25 (Write Enforcing). Consider any λ ∈ N, T ∈ Θ(2λ), m1, . . . ,mk ∈ M, INDEX1, . . . , INDEXk ∈
{0, . . . , T − 1}. Let (PPAcc, w0, st0) ← EnforceWrite(1λ, T, (m1, INDEX1), . . . , (mk, INDEXk)). For
j from 1 to k, we define storej iteratively as storej := WriteStore(PPAcc, storej−1, INDEXj ,mj).
We similarly define auxj and wj iteratively as auxj := PrepWrite(PPAcc, storej−1, INDEXj) and
wj := Update(PPAcc, wj−1,mj , INDEXj , auxj). Acc is said to be write enforcing if Update(PPAcc,
wk−1,mk, INDEXk, aux) = wout 6= Reject, for any aux, then wout = wk. Note that this is an
information-theoretic property: we are requiring that an aux value producing an accumulated value
other than wk or Reject deos not exist.

B.3 Security Properties of Splittable Signatures

We will now define the security notions for splittable signature schemes. Each security notion is
defined in terms of a security game between a challenger and an adversary A.

Definition 26 (VKrej indistinguishability). A splittable signature scheme § is said to be VKrej in-
distinguishable if any PPT adversary A has negligible advantage in the following security game:

ExptVKrej(1
λ,A):

1. Challenger computes (SK,VK,VKrej) ← SetupSpl(1λ) .Next, it chooses b ← {0, 1}. If b = 0,
it sends VK to A. Else, it sends VKrej.

2. A sends its guess b′.

A wins if b = b′.

We note that in the game above, A never receives any signatures and has no ability to produce
them. This is why the difference between VK and VKrej cannot be tested.

Definition 27 (VKone indistinguishability). A splittable signature scheme § is said to be VKone

indistinguishable if any PPT adversary A has negligible advantage in the following security game:

ExptVKone(1
λ,A):

1. A sends a message m∗ ∈ M.
2. Challenger computes (SK,VK,VKrej)← SetupSpl(1λ). Next, it computes (σone, VKone, SKabo,

VKabo)← SplitSpl(SK,m∗). It chooses b← {0, 1}. If b = 0, it sends (σone,VKone) to A. Else,
it sends (σone,VK) to A.

3. A sends its guess b′.

A wins if b = b′.

We note that in the game above, A only receives the signature σone on m∗, on which VK and
VKone behave identically.

Definition 28 (VKabo indistinguishability). A splittable signature scheme § is said to be VKabo

indistinguishable if any PPT adversary A has negligible advantage in the following security game:

ExptVKabo(1
λ,A):

1. A sends a message m∗ ∈ M.
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2. Challenger computes (SK,VK,VKrej)← SetupSpl(1λ). Next, it computes (σone, VKone, SKabo,
VKabo) ← SplitSpl(SK,m∗). It chooses b ← {0, 1}. If b = 0, it sends (SKabo,VKabo) to A.
Else, it sends (SKabo,VK) to A.

3. A sends its guess b′.

A wins if b = b′.

We note that in the game above, A does not receive or have the ability to create a signature on
m∗. For all signatures A can create by signing with SKabo, VKabo and VK will behave identically.

Definition 29 (Splitting indistinguishability). A splittable signature scheme § is said to be splitting
indistinguishable if any PPT adversary A has negligible advantage in the following security game:

ExptSpl(1
λ,A):

1. A sends a message m∗ ∈ M.
2. Challenger computes (SK,VK,VKrej)← SetupSpl(1λ), (SK′,VK′,VK′rej)← SetupSpl(1λ). Next,

it computes (σone, VKone, SKabo, VKabo) ← SplitSpl(SK,m∗), (σ′one, VK
′
one, SK

′
abo, VK′abo) ←

SplitSpl(SK′,m∗). . It chooses a bit b. If b = 0, it sends (σone,VKone,SKabo,VKabo) to A.
Else, it sends (σ′one,VK

′
one,SKabo,VKabo) to A.

3. A sends its guess b′.

A wins if b = b′.

In the game above, A is either given a system of σone,VKone, SKabo,VKabo generated together
by one call of SetupSpl or a “split” system of (σ′one,VK

′
one,SKabo,VKabo) where the all but one keys

are generated separately from the signature and key for the one message m∗. Since the correctness
conditions do not link the behaviors for the all but one keys and the one message values, this split
generation is not detectable by testing verification for the σone that A receives or for any signatures
that A creates honestly by signing with SKabo.

B.4 Security Properties of Iterators

Let Itr = (SetupItr, ItrEnforce, Iterate) be an interator with message space {0, 1}` and state space §λ.
We require the following notions of security.

Definition 30 (Indistinguishability of Setup). An iterator Itr is said to satisfy indistinguishability
of Setup phase if any PPT adversary A’s advantage in the security game ExptItr(1

λ,A) at most is
negligible in λ, where ExptItr is defined as follows.

ExptItr(1
λ,A)

1. The adversary A chooses a bound T ∈ Θ(2λ) and sends it to challenger.
2. A sends k messages m1, . . . ,mk ∈ {0, 1}` to the challenger.
3. The challenger chooses a bit b. If b = 0, the challenger outputs (PPItr, v0)← SetupItr(1λ, T ).

Else, it outputs (PPItr, v0)← ItrEnforce(1λ, T, 1k, ~m = (m1, . . . ,mk)).
4. A sends a bit b′.

A wins the security game if b = b′.
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Definition 31 (Enforcing). Consider any λ ∈ N, T ∈ Θ(2λ), k < T and m1, . . . ,mk ∈ {0, 1}`. Let
(PPItr, v0) ← ItrEnforce(1λ, T, ~m = (m1, . . . ,mk)) and vj = Iteratej(PPItr, v0, (m1, . . . ,mj)) for all
1 ≤ j ≤ k. Then, Itr = (SetupItr, ItrEnforce, Iterate) is said to be enforcing if

vk = Iterate(PPItr, v
′,m′) =⇒ (v′,m′) = (vk−1,mk).

Note that this is an information-theoretic property.
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