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Abstract. Side-channel and fault injection analysis are well-known domains
that have been used for years to evaluate the resistance of hardware based
products. These techniques remain a threat for the secret assets embedded in
products like smart cards or System On Chip. But most of these products
contain nowadays several strong protections rendering side-channel and fault
attacks difficult or not efficient. For two decades now embedded cryptography
for payment, pay tv, identity areas have been mainly focused on secure ele-
ments. However recently, alternative solutions on mobile phones appeared to
offer services including payment and security solutions as the HCE and DRM
products. Cryptographic operations running in such applications are then exe-
cuted most often on unprotected hardware devices. Therefore the binary code is
accessible to attackers who can use static and dynamic reverse engineering tech-
niques to extract and analyse operations including data modification as faults.
Hence, hiding or obfuscating secrets and/or obfuscated or whitebox-ed cryp-
tography becomes mainly the alternatives to secure element storage for assets.
Although not proven secure, attacking such implementations in practice on a
binary is another story. We explain in this paper how directly from the binary
or with the extracted source code we can perform statistical and fault analysis
in a manner that seems familiar with hardware side channel and fault attacks
knowledge. The main difference is, using our tool and virtualization technique,
an attacker can emulate and trace and modify any chosen computational data
(memory or register manipulation, any machine language operation) executed
in the mobile application. It means the attacker is not restricted any-more by
any physical limitations as the Hamming leakage model (and additional noise)
and the difficulty to fault a dedicated operation. Hence statistical and fault
attacks becomes more efficient than in standard physical devices. As a conse-
quence, complex techniques like high order, collision and horizontal statistical
attacks becomes very efficient and can be easily performed on the computa-
tional data execution traces. A similar consequence applies for fault injection
attacks. Hence the word statistical and fault analysis on computational data
becomes more appropriate and one can wonder who has been the first between
computational data or physical attack techniques? Chicken or the Egg?

Keywords: statistical, fault analysis, mobile, obfsuscated crypto, whitebox
crypto, embedded cryptography, side-channel, physical attacks, computational
data, DRM, HCE.



1 Introduction

Cryptographic implementations have been the heart of security for years as
most of the secret assets of any security products are manipulated during their
internal computations. These algorithms were embedded in hardware devices
like smart cards that offered tampered resistance for years. A first security
gap appeared with the first side channel attack publications from Kocher in
1996 [16] and 1998 [17]. From these initial publications, during two decades
a myriad of attack paths and statistical techniques have been published. It
has been concerning either new attack paths related to different cryptographic
algorithms or different statistical treatment (distinguishers) to exploit the sta-
tistical dependency between the Hamming weight of the data computed by the
hardware device and the physical leakage of the hardware device that is often
linear in the Hamming weight of the data allowing the use of the correlation
side-channel analysis technique [5] and linear regression analysis technique [9].
The second security gap was initiated by the Bellcore fault attacks on RSA [3]
and the differential fault attack on DES [2]. Fault attacks have become today
very powerful attacks taking advantage of powerful attack bench user laser or
ElectroMagnetic means to inject the fault on the hardware device. For years
payment products have been relying on hardware devices and particularly se-
cure elements (i.e. smart cards) including several software and hardware coun-
termeasures to defeat most of the time side-channel and fault injection attacks.
This hardware security domain can be seen as a mature security area involving
a lot of academic and industrial actors. However for months now a new area
is emerging with the increasing use of mobile application for security services.
The Host based Card Emulation (HCE in short) taking advantage of the NFC
interface has become a serious market that is used for payment services. Even
if this new products are connected services several sensitive assets have to be
protected in confidentiality and integrity in the mobile memory. That require-
ment is very difficult to achieve in a open area like Android with the absence
of a secure element. Such solutions requires the secret assets to be hidden as
best as possible into the embedded code. It can vary from a simple code in-
cluding the secret in plain to obfuscation techniques used to hide the secret or
several whitebox cryptography solutions [] that embeds (hides) the secret key
in the code of the algorithm itself with more or less resistance against attacks.
Several techniques have been published for years but none of them has been
proven secure. However recovering hidden secret in a binary or in a whitebox
cryptographic implementation in real product life is very difficult to perform.
Indeed for security means the secrets are hidden in a binary within thousands
of code lines including sometimes obfuscation and anti tampering techniques.
Performing reverse engineering and targeting this cryptographic implementa-
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tions can be a considerable waste of time. A first solution would be to perform
side-channel analysis on the mobile processor in order to analyse the computa-
tions that is possible but it can be quite difficult to perform in practice due to
the complexity of the hardware processor of mobile phones.

We present in this paper a very efficient and easy to use solution that
allows to perform statistical analysis on the computation and inject fault during
these same data computations. We are able to perform statistical attacks and
fault attacks in a perfect world having direct access to data themselves and
being in control and knowledge of the execution environment. We illustrate
our techniques with practical results and explain how efficient this innovative
technique can be.

Roadmap. The paper is organized as follows. Section 2 reminds basics on phys-
ical side-channel and fault attacks and give the reader the necessary knowledge
on embedded cryptography including whitebox cryptography for use in mobile
like products. We also give the reader the necessary knowledge and background
on simple side-channel and fault analysis to understand the attack techniques
we are presenting. Section 3 is explaining the simulation and virtualization tools
we have developed to perform our attack on the targeted embedded software
products. Section 4 describes the statistical computational data analysis we can
perform using such data execution traces to recover hiden embedded secrets of
the product when Section 5 is explaining the fault injection techniques we can
perform using our simulation and virtualization environment. Practical results
are presented in section 6 and discussed in section 7. Finally we conclude in
section 8.

2 Preliminaries

2.1 Side-channel Analysis

It has been studied for years since it has been introduced by Kocher et al. [16].
Many attack paths have been published on the different cryptosystems like DES
[10] and RSA [21] which are widely used in the majority of the hardware embed-
ded devices like Banking or Identity products. In the same time many statistical
attack techniques have improved the original Differential Side-Channel Analy-
sis (DSCA) (ie. Difference of Mean - DoM) from Kocher et al. [18]. We can for
instance mention the Correlation Side-Channel Analysis (CSCA) introduced by
Brier et al. [5], the Mutual Information Side-Channel Analysis (MISCA) from
Gierlichs et al. [12] or the Linear Regression Side-Channel Analysis [9,22].

Physical Behavior and Secret Dependancy Side-channel analysis requires
some measurements to be performed on the targeted device to extract some in-
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formation from its physical characteristics. An electronic device such a smart
card, a mobile phone or a computer is made of thousands of logical gates
that switch differently depending on the complexity of the operations executed.
These commutations creates power consumptions for a few nanoseconds. Hence
the power consumption (or Electromagnetic emanations) are dependant from
the operations of its several peripherals including the memory transfers and core
or accelerator operations on data manipulated. When targeting the recovery of
a secret data involved in computations it becomes obvious that some part of
the device behavior is dependant of this secret data. The main difficulty consist
in detecting and measuring this physical information to exploit it for the secret
recovery. The most critical part consist then in finding the right physical source
of leakage. When such attack has been performed for years on small devices
like smart cards it has been proven also efficient on bigger devices like phones
or computers. However the physical leakage identification and measurement is
much more difficult on such complex system on chips. Such a measurement
phase has become today a complex and time consuming operation when side-
channel analysis has to be performed on hardware devices. An exemple of such
physiscal measurement is given in Figure .

However when this step has been performes the second attack step to be
performed is the statistical attack that will extract the secret from the collected
physical measurement traces.

Several techniques have been published for years in the literature since the
initial Differential Power Analysis (DPA) publication from Kocher et al. One of
this technique is the Correlation Power Analysis (CPA) that is often considered
most often as the most efficient technique for side-channel analysis. We detail
this technique in the following as we are also considering later in the paper
that correlation analysis is the most efficient statistical technique to be used on
computational data analysis.

Correlation analysis is a statistical mathematical test allowing to define the
dependancy of two different set of (same length) of values whatever the origin
of the values is. It has been defined by Bravais Pearson in ...

Correlation side-channel analysis relies upon a linear leakage model in the
Hamming weight of a sensitive manipulated data:

W = a ·HW (D) + b+ ε (1)

where a and b are real values characteristic of the hardware targeted and ε is
a white gaussian of mean 0 and standard deviation σ. In order to measure the
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Fig. 1. Exemple of Physical Measurement Bench

dependency between the estimated value of a sensitive data and the correspond-
ing value manipulated and represented in the physical traces measurement, the
linear correlation factor from Bravais-Pearson is classically used.

Let C(i) with 1 6 i 6 ` a set of ` side-channel traces captured from a device
processing the targeted computations with input value X(i) whose processing
occurs at time sample t with l the number of points acquired at time sample t.
We consider Θ0 = {C1(t), . . . , C`(t)}. We denote S(i) with 1 6 i 6 ` a set of `
guessed intermediate sensible values based on a power model, which is generally
linear in the Hamming weight of the data. Let f(X(i), K̂) be a function of the
input value X(i) and (a part of) the targeted guessed secret K̂. All l points in
the leakage trace are equal to this value f(X(i), K̂) for the time sample t. We
then consider Θ1 = {S(1), . . . , S(`)}. The objective is to evaluate the dependency
between both sets Θ0 and Θ1 by using the linear correlation factor ρΘ0,Θ1 .

ρΘ0,Θ1 =
Cov(Θ0, Θ1)

σΘ0σΘ1

=
`
∑

(C(i)(t) · S(i))−
∑
C(i)(t)

∑
S(i)√

`
∑

(C(i)(t))2 − (
∑
C(i)(t))2

√
`
∑

(S(i))2 − (
∑
S(i))2

,

where summations are taken over 1 6 i 6 `.

The correlation value between both series is equal to 1 when the simulated
model perfectly matches with the measured power traces. It then indicates
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that the guess on the secret corresponds to the correct key value handled by
the device in the computations.

When dealing with physical measurement of a hardware device crypto-
graphic calculations it is then obvious that correlation is not reaching such
values but the importance is that the correlation value for the right key value
is higher than the others. An exemple of practical result of a side-channel cor-
relation analysis on a hardware TDES device is given in figure 2.
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Fig. 2. Side-channel correlation attack result on hardware TDES engine measurements

Countermeasures In hardware devices efficient countermeasure can be de-
signed and they can be classified in three categories. First countermeasures
are inherently induced by the kind of application using the cryptographic algo-
rithm. For instance the use of refreshed session keys in block ciphers or (random)
padding in a RSA signature prevents the implementation from chosen message
attacks; similarly the use of counter value(s) into the data sent to the card does
not allow an attacker to sent twice the same data to the cryptographic algo-
rithm. The second category targets to modify the signal either with hardware
security features (noise generators, dummy cycles, clock jitters or power filtering
aim at reducing the circuit leakage) or software countermeasures (e.g. dummy
operations). The aim is to desynchronizing the curves and prevent an attacker
from correctly exploiting them during their statistical treatment. The third kind
of countermeasures consists in de-correlating the curves with the data related
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to the algorithm’s execution. The principle is to prevent attackers from predict-
ing any intermediate value manipulated during the known algorithm execution.
For instance code with constant time execution, masking and randomization
techniques on input data and secret key are in this category [1,6,7,8]. Such
countermeasures being sensitive to higher order side-channel attack [] it has
been necessary to develop also stronger countermeasures as for instance [].

2.2 Fault Injection Analysis

Inducing a fault during a sensitive code execution may turn out to be a very
effective way to downgrade the security of a program. When able to induce a
fault, an adversary can take benefit of a large range of different code behaviour
changes leading to malevolent benefits. As an example one could target to skip
one or a set of operations with the aim to avoid some security sensitive code
execution. This can be achieved by interfering directly into the runtime vari-
ables, by modifying some code offsets or even by turning some operations into
other operations, like NOP.

Another way to disturb fraudulently a code execution flow targets the vari-
ables, either located in volatile memory or in non-volatile memory. Number of
attack scenarios can be built from this ability. For instance one could force a
part or the whole secret key to a deterministic value, as explained in [reference
sorcerer apprentice], in order to guess a secret or to lose all the benefit of the
secret. A second example concerns execution variables, such as outcome of sen-
sitive comparison, resulting to severely downgrade a secure operations, such as
a authentication.

In the same vein of unveiling secrets, specific techniques were developed to
target cryptographic keys. Some are using differential tricks, like DFA, and were
introduced in [3] for CRT RSA or in [2] and [20,14] for respectively DES and
AES. Some interesting articles [ANSSI] showed that a secret AES key could be
exhibited without even a knowledge of the non faulty cryptogram. Besides, the
so-called safe error attacks make use of monitoring the consequences of a fault
to guess the part of the secret. For a comprehensive idea of the fault injection
possibilities, the best is to refer to [15] in sections 5.3 and 5.4.

An adversary with the ability to apply a meaningful fault injection has a
very powerful mean to downgrade the security of a code. As a result developers
need to pay a thorough attention to this threat and need to implement dedi-
cated countermeasures. This kind of attack has been widely studied in the secure
hardware execution, particularly in the secure element area [13]. As the code
execution is confined in the hardware without obvious access to the runtime,
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the best chance to induce a fault in a secure element is a physical disruption.
This can be obtained with a laser, providing that a direct access to the silicone
is possible, an electrical glitch or even an electromagnetic pulse. Whereas such
a technique has shown to be efficient, the fault model remains highly uncon-
trollable as it is related to the physical consequences of the disruption. Indeed,
when a variable or a code is modified as a consequence of a disruption, it is
unlikely that the adversary has any control of the value.

Countermeasures The nature of the countermeasure relies highly on the
execution environment of the sensitive code. In the secure element technology,
the code execution is only accessible via its physical aspect. Therefore the best
security is achieved with a balanced combination using hardware protections
and software hardening. The countermeasures can follow various principles. The
first one is to work at the source of the disruption. This is the case when strong
filters are implemented to annihilate electrical glitches or when light sensors are
spread over the die surface to trigger any laser pulses.

A second and more generic way is to implement logical controls, by adding
hardware or software redundancy and by this way to detect any discrepancy
during a code execution. As an example, it is common to execute the inverse
of an AES or a DES computation subsequently to an execution in order to
check that both computations are consistent together. Implementing such kind
of control is necessarily costly and must therefore be tuned with care. Indeed,
redundancy has a cost either in hardware or performance level.

To achieve a cost-effective security, a strong set of assumption about the
fault must be defined in order to pick up the right level of redundancy. This
needs to ascertain the adversary ability in terms of fault model. In a hardware
execution typically, it is very unlikely that a physical disruption will be able to
force a variable to a chosen value whatever it is. Some exception lie with 0x00
or 0xFF though, as it corresponds to a set of bits forced to 0 or 1. By doing
so, a secure developer can greatly increase the difficulty of an attack making
its realisation very unlikely. Such logical controls is often hardened by random
executions and jitters in order to make the attack synchronisation tedious and
more unlikely.

In software, this is no longer the case. Indeed, a software ability to inject
code may open more opportunities for an attacker to tamper with a sensitive
execution. Indeed, the fault is no longer limited by a physical disruption. In
the worse case, the adversary has all control of the execution, a bit like having
debug features when executing a code. For this reason, all debug features are
usually taken with great care to avoid an adversary to get this control. This is
typically the case when a JTAG interface is available on a secure device.
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Having an open environments with full control of the code execution would
dramatically change the paradigm and consequently oblige the developers to
implement specific counter measures adapted to this extreme adversary model.

3 Software Simulation and Virtualization for Data Execution
Traces

3.1 Objective

As it has been often seen in the literature, the evaluation of side-channel re-
sistance can be performed by physically measuring the power consumption,
or the Electromagnetic emanation. Later on, further analysis on the collected
traces can then be performed. On the other hand, the virtualization technique
introduces a new approach that allows to collect more precise data. It aims at
directly generating the exact computational data or the Hamming weight of
the data values. This step is directly performed at the runtime. An example
would be the evaluation of some whitebox cryptography algorithms. Compu-
tational data are processed while those algorithms are executed. Furthermore,
all the intermediate values that are stored into registers or within a stack can
be gathered. It is then possible to collect any of these values at any point of
the program execution. Consequently, computational data execution traces can
be generated. Statistical attacks can then be applied on these traces. The lat-
ters can be seen as the software side-channel information in opposition to the
physical measurements of hardware components.

As an example, in one of our practical test, we targeted a program that is
executed within a mobile environment. More specifically, the Android platform
has been chosen. The device embeds an ARM processor. Some software pro-
tections (obfuscation, software tampering, etc.) are in place in order to ensure
the correct execution of the program in an untrusted platform. This paper does
not go into further details regarding those software protections. However one
should note that they can be highlighted during the analysis according to the
acquisition technique model. An important property for the acquisition system
is to be least invasive in order to not trigger those software protections. Con-
cluding that the Dynamic Binary Analysis (DBA) based on the OS resource
abuse and manipulation is the most powerful approach.

Multiple techniques can be used in order to acquire such computational
data execution traces at runtime. Later on, they enable a post-computational
data analysis like:

– Manipulation of the program during idle mode by adding debugging state-
ments with the aim of producing relevant computational data during its
execution
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– Manipulation of the program at runtime hooking the OS resources i.e.:
shared libraries or calls to OS API framework with the aim of producing
relevant computational data during its execution

– Execution of the program in a debugger or simulator or even a tracer with
the aim of producing relevant computational data handled by their virtual
resources

– Execution of the program in a legacy Operating System version with the
aim of producing relevant computational data without the security enhance-
ments introduced by new version of the Operating System.

– . . .

Fig. 3. In-depth runtime analysis for statistical analysis

3.2 Dynamic Binary Analyser

We have developed a simulation tool that can be used to provide data traces
for performing such kind of analysis. It was then possible to trace with this
method the registers and memory addressed areas and collect all these values
in traces. Then as previously said traces were exploited with statistical analysis
for recovering secret involved in computations.

Our DBI framework also allows an attacker to run the targeted binary, in
emulated environment, instruction by instruction giving access on processes
memory and CPU register, between each instruction. The programmer is able
therefore to generate traces on stack, heap, CPU register in use and others data
as instruction being executed. Hence it allows executing the program minimiz-
ing the effect of the current software protections and customized techniques in
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order to bypass of those expected inherently from the mobile Operating system,
amount others: add Loadable kernel modules (LKM) using Custom Kernel Im-
ages, bypass the Address Space Layout Randomization (ASRL) or enable the
SELinux permissive mode, etcetera. Additionally UL DBI framework provides
an open and extensible environment to add plugins in order to improve the post-
Statistical Analysis with for example but not limited to pre-characterization of
the binary combining with the result of the Static Analysis, trace alignment or
ARM code instruction matching with disassembled code, etcetera.

In practice, for the example, lets go to assume the following function de-
picted in Figure 4 based on a trivial masking algorithm performing an exclusive
or between a secret key byte and a message byte and how the code looks like
in the binary depicted in figure 5. Note that the ARM assembly code shown
in figure 5 has been generated with a Capstone lightweight multi-platform,
multi-architecture disassembly framework.

Fig. 4. Code example Fig. 5. Binary code related

Using the DBI framework on the binary, the output provided after running
it in a verbose fashion way would be as it is depicted in Figure 6. Then it
becomes simple to store these data to build the code execution data traces.

3.3 Virtualizer

A first simulator capable of tracing such data executions was presented in detail
by Georges Gagnerot in 2013 [11]. This simulator was dedicated at this time
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Fig. 6. DBI Output

to characterize the resitance of hardware product masks and implementations.
Thus it was used for instance to validate the resistance of cryptographic imple-
mentations with regards to side-channel and fault attacks and add the following
properties.

– Multi Architecture: initially dedicated to simulate side-channel traces on
hardware implementations we developed a first tool version. Indeed using
open source libraries we built first a simulator able to perform side channel
analysis for different standard processor architecture like ARM, x86, MIPS,
SPARC, SH4 . . . .

– Linux Compatibility: the simulator has been made compatible with stan-
dard Linux program. It can for instance use any program already compiled
for a supported architecture and get nice side-channel traces out of the box.
No special work is required for the compilation. It is important to note
though that kernel calls were not traced by the current implementation so
you only get side-channel consumption for the user space.

– Automatized Tests: software cryptographic libraries providing the good
interfaces could then be tested automatically by the tool on a first step. It
could be seen as a preliminary work for an security evaluator but was giving
surprisingly good results close to the target.
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At this time the main objective was to validate or defeat secure elements im-
plementations and evaluate their resistance to future side-channel attack when
being embedded into integrated circuits lie secure elements with different CPUs.
Some exemples were given in [11]: figure 7 is giving the Hamming weight data
ad code execution traces for an AES-128 encryption for an ARM 32-bit core.
Same results were obtained for public key implementation like RSA as depicted
by Figures 8 and 9.

Fig. 7. Unprotected AES-128 trace

Fig. 8. ARM RSA execution trace Fig. 9. x86 RSA execution trace
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It has become obvious that it was also possible to improve this tool to trace
the execution for our new objective and output either Hamming weight of plain
data value of the executed operations into any code that can be an unprotected
or a whitebox implementation.

Hence, it has been decided to adapt the simulator from [11] to address binary
code of other products like mobile HCE application including sensitive secrets
hidden in embedded libraries code or whitebox cryptography implementations.
This initial simulator has then be improved to address these new requirements
with success.

It has then become possible to trace any code instructions and data value
manipulated by a binary on one of the supported architecture by the simulator.
Hence it has been possible to scrutinize any code including whitebox cryp-
tography using sour tool and then we were capable to perform very efficient
statistical analysis as we explained previously.

Traces obtained from a whitebox AES execution are given in Figures 10 and
11 to illustrate this tool adaptation.
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Fig. 10. Computational Data Execution
Trace in whitebox AES binary
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Fig. 11. Computational HammingWeight
Execution trace in whitebox AES

A significant interest is that we are not relying on a particular model of
information leakage. Hence the statistical analysis can directly target the real
data and not a function of this data (like the Hamming weight or Hamming
distance for instance in power models). Addressing directy the data and opcode
values we can decide to build the execution traces we want including the data
or the Hamming weight of these values. We can also get rid of any noise related
to computation we do not care that is not the case in physical measurement
even when dealing with EM measurements. It has then be observed that such
computation data traces were allowing very powerful attacks.
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It makes the analysis much more efficient than classical side-channel attacks
on physical measurements.

3.4 Other Solutions

Another solution taking advantage of the Valgrind tool has been presented in [4]
with practical results. It is worth to notice this solution is different from the one
we present here and when the memory accesses during calls where targeted by
the Valgrind solution we focus here in the registers. Indeed secret values can be
hidden at different level of the code. When targeting the internal computation of
a (whitebox) cryptographic algorithm to perform statistical analysis it seems us
also accurate and preferable to target the registers and internal manipulations of
the cryptographic internal computations. Indeed such algorithms can be written
in assembly and sensitive value related to the leakage could be only present in
the local memory and/or into the registers. As described by the authors in
[4] it would then need to access registers even if the traces become bigger.
However we think the presented solution is of strong interest and can be used
as a complementary too with our methods.

4 Performing Statistical Computational Data Analysis

Side-channel analysis has only always consisted in analysing statistical depen-
dancy between the set of intermediate computational Hamming weight or Ham-
ming weight distance of the data guesses and the set of the real performed data
in the executed operations represented by points from a measurement trace. It
is important to notice that such an analysis could not be obtained if not leaking
through a physical side-channel.

The objective here to reproduce a similar statistical attack with data ob-
tained from the execution of a program (like in a debugging mode you can
access any data) and the guessed values set. It is obvious but very important
here to observe that computational data analysis is much more powerful than
the so-named side-channel techniques used in the hardware evaluation field. In-
deed as we can directy address the data itself without any model leakage, hence
wihtout any restriction, most of the attacks will be more efficient .

4.1 Statistical Data Analysis

Simple Data Analysis This computational data set generation can be ana-
lyzed using graphical observation targeting information recovery on the secret.
It very similar to the simple side-channel analysis but can be applied to the
data itself, to its Hamming weight, to some particular bits. All kind of simple
statistical test can be used here.
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Fig. 12. Computational Data Analysis

Computational Data Correlation Analysis Computational Data Statis-
tical analysis can be performed in many different ways as it is a subset of
statistical data analysis. The important point here is that statistical analysis
that can be performed using computational data execution traces which can
be much more powerful than the so-named side-channel techniques used in the
hardware evaluation field. Correlation analysis we explained previously can then
be applied very efficiently to such computational execution data traces [19].

[On going completion – Benoit]

Other Statistical Tests It is also possible to perform successful attacks using
different statistical tests than the Pearson correlation one. The basic Difference
of Mean use in DPA hardware attacks can be used but it is well known to be not
optimal. The Spearman rank, the Goodman Kruskal Gamma, the HoeffdingD,
the Kendall Tau . . . . Different statistical tests could be used on data execution
traces to determine and recover secret assets.

Comparing Side-Channel and Computational Data Efficiency

Computational Data Efficiency to Dynamic Reverse Engineering on a Single
Execution The idea behind the dynamic analysis or also called dynamic reverse
engineering is to extract program properties when the program is executed fo-
cusing on primarily on control flow or data flow. Several well-known techniques
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are used by researchers by this purpose, such as: debugging, tracing, emulating,
hooking and profiling. Indeed a wide variety of tools are available to support
these techniques therefore the goal of this section is show how these tools and
techniques have been combined by us in order to find a new use case to retrieve
the program properties which allows disclosing the code secrets using Statistical
Analysis.

Computational Data Correlation Analysis can defeat a non protected im-
plementation but it requires using only few data execution traces. The main
advantage compared to Hamming weight model leakage is that knowing the
leaking point a single trace is enough to recover the whole secret key. Indeed
in the case of the AES when attacking the output of ByteSub or the output of
the Te tables of the open SSL implementation a single data value is enough to
recover a key byte when knowing the input plaintext given to the AES. It is
due to the bijectivity of the ByteSub operation and only data knowledge can
permit such a single trace attack. Reproducing the attack once the characteri-
sation has been done a first time would then require few seconds only using a
single execution. It means even an ephemeral secret like a token with limited
used could be compromised and recovered thanks to such computational data
analysis. Hence, we observe here that computational data analysis and dynamic
reverse engineering are joining in a combined attack technique take advantage
of each of their properties.

5 Simulation and Virtualization for Fault Analysis and
Reverse Engineering

We also taken into consideration, the need to perform fault attacks on a targeted
binary. It has then be of strong importance to render the tools we presented
previously (DBA and Virtualizer) for statistical attacks on data execution trace
capable to perform fault attacks in the execution of this binary as it has been
previously published in [11].

Assuming the code is available to an adversary, typically by extraction, it
becomes possible to perform a sensitive code execution on an emulation plat-
form. This can be achieved relatively easily for object-oriented code, such a
Java codes, by setting up a virtual machine processing the java byte codes.
This remains more complex however for native codes as the binary code is ma-
chine dependant. The virtualization, as it has been designed by us, implements
a platform giving the opportunity to get a full control of the runtime execution
for native codes.

Using such a tool an adversary gains the ability to monitor the execution
flow at different levels of the runtime. Indeed it gives the access to the runtime
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variables (program counter, intermediate registers values, the arithmetic logic,
etc) as well as the memory accesses, like those in the volatile memory. Doing
so, it provides the same level of control as a debugger with the opportunity to
execute dynamic testing, such as analyses requiring a high number of execution
occurrences.

First of all, such capability can be exploited to perform advanced reverse
engineering. Indeed, multiple execution can be performed with the aim to mon-
itor a targeted variable or memory access and consequently to collect the cor-
responding values for further statistical analyses. Doing so, it becomes possible
to perform statistical profiling and consequently to carry out some advanced
reverse engineering. This can be the case for some encoding functions relying
on random representation, as it can be found in some whitebox cryptography
solutions. Running statistical studies of variable representations may lead to ex-
ploitable results in case deterministic information is exhibited about the code
or the variables. To perform the analysis, the tool provides capabilities to run
successive executions with a given set of input data inserted at different stages
of the execution.

Fig. 13. In-depth runtime analysis for advanced reverse engineering

As a further step of an attack realisation, the knowledge of the code could
lead to target specific mechanisms with the aim to change the code behaviour
and by this way downgrade the security mechanisms. As an example, if a specific
authentication is required to release some secure content, an adversary could
attempt to identify how the authentication is performed and subsequently mod-
ify the execution with the aim to skip it. As software protection against code
modifications, some efficient obfuscation techniques render the code execution
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blurred, complex and extremely hard to interpret. With such a protection in
place, it becomes extremely tedious to target when injecting the fault and the
nature of the fault to induce in order to get the expected faulty behaviour.

One way to potentially circumvent the software obfuscation barrier while a
weakness is there is to target in a more or less exhausting way multiple fault
injection attempts by varying the time of the fault and its model, typically the
variable and its value. Such an extensive campaign may turn out to be very
time consuming without an appropriate tool and would remain unaffordable.
Therefore a virtualisation platform represents a strong option as the runtime
execution can be faulted with no restriction. By this mean an extensive fault
modification campaign can be automated in order to cover a high range of dif-
ferent fault models at different times in an exhaustive manner.

Fig. 14. Meaningful fault injection for downgrading the security

Proceeding this way, a strong coverage can be achieved in order to explore
any potential flaw. By brute forcing the fault injection over a piece of execution
allows an adversary to circumvent the difficulties applied by some obfuscation
techniques. As an example, this can be useful when strong obfuscation methods
protect a whitebox cryptography implementation. Depending on the implemen-
tation, the algorithm variable may follow some path that are hard to interpret.
Implementing a sort of exhaustive fault induction may turn out to be successful
by giving exploitable faulty cipher texts and subsequently applying a Differen-
tial Fault Analysis for disclosing the secret key. This can be particularly valuable
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when it is possible to restrict the execution to the targeted algorithm only and
therefore to avoid some further execution implementing security controls.

Furthermore attacks requiring specific fault models and a high number of
faults become affordable. Initially these attacks were tuned for the hardware
execution context, and turned out to be almost non-realistic as practically they
were too demanding in terms of fault models and number of faults (Benoit: ref
?). Depending on the software implementation, such a technique opens the door
to more complex attacks as the hardware limitation is no longer an issue.

6 Practical Results on DES and AES Implementations

We have tested our virtualisation tools on several implementations of AES and
DES that were hiding the key in the operation as it has been published in
several publications. This implementations were also enforced with obfuscation
mechanims. When these countermeasures were rendering dynamic and static
analysis harder for the attackers it was easily overpassed by using static analysis
on the data execution traces that were generated by the virtualizer. Most of
whitebox implementations are dealing with big lookup tables and often do not
present big desynchronization among the execution traces. Hence it made the
statistical analysis easy to performed and very efficient. On the other hand when
desynchronisation was present it was possible to apply alignment techniques to
make the attack efficient.

6.1 Statistical Analysis on AES Library 1

This first target is an unprotected AES binary library that was enforced with
standard obfuscation mechanism. Both tools have been used to generate the
data execution traces. Correlation analysis has been applied and the secret
key has been recovered using less than 100 traces. This practical test allows
to validate in practice the tools we have developed and highlight how much
efficient in practice the technique we have developed can be.

6.2 Statistical Analysis on AES Library 2

This second analysis has targeted an obfuscated AES binary library that would
have required several weeks/months to be reverse engineered in order to be
cryptanalysed.

We have been able to recover the secret key of the AES computation using
less than 100 computation data execution traces. This result illustrate how
efficient the computational data analysis can be compared to usual reverse
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engineering techniques. It is obvious depending on the instructions traces the
size of the trace can require sometimes cost consuming computations. However
only few days are generally necessary in worth case to perform the attack.

6.3 Round Reduction Fault Analysis on AES Library 1

As an example of fault that could compromise a cryptographic algorithm, a
straightforward attack can severely downgrade an algorithm by reducing the
number of rounds. In the case of an AES 128 encryption, the algorithm math-
ematical strength relies on ten successive rounds, whose last one is unique as
it does not include any MixColumn as described in []. A fault injection of an
AES 128 software implementation could target the mitigation of the number of
round. The factor of success of the attack was to get a faulty AES 128 cipher
text as outcome of a single AES round computation using the first round key.
The objective being to exhibit the 128 bit-long AES secret key from these ci-
pher texts exploiting some cryptanalysis [].

As depicted on the following picture, the practical attack was successful
and the number of rounds could be turned down to one single. This could be
achieved on a naive implementation by emulating the execution emulation and
modifying the Program Counter in an appropriate way when executing the
AES:

Fig. 15. Round Reduction with Fault Attack on AES Library 1
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The outcome of the downgraded execution gave a faulty cipher text corre-
sponding to a single round execution with the message given and the secret key.
From this cipher text, a cryptanalysis was possible to retrieve the secret key.
It is important that an identification phase may be necessary in some cases in
order to interpret the faulty cipher texts and check if they are suitable. To do
so, the knowledge of the secret key can make this task much easier. As the tool
allowed us to run successive scripts, we ran a campaign in order to find dif-
ferent ways to obtain the same outcome injecting different faults (the program
counter, the registers, etc).

6.4 Differential Fault Analysis on AES Library 2

The previous attack cannot be performed on the AES library 2 that With
more sophisticated software implementation, the previous attack cannot be per-
formed when the AES code is flattened and code integrity checks are integrated.
Indeed, the code structure being flat, or in other words not replicating the same
piece of code by successive calls, together with control flows makes the previ-
ous attack difficult or can even prevent it. Other techniques could be applied,
such as a DFA attack as published by Piret et al.[20]. This article demonstrates
that the most efficient way to extract the AES secret key requires two faulty
injections with a specific fault models. As the fault is injected in software, it
was possible to us to target the required fault model at the right time of the
execution by the mean of reverse engineering. Doing this, the whole secret key
could be successfully exhibited.

At some point, particularly when the obfuscation level was strong, our prac-
tical experimentations showed that it was not possible to precisely target a
variable, its value and a good timing in order to get a meaningful faulty cipher
text. In that cases, we ran some intensive campaigns to vary the fault over a
sequence of code with the aim to find the right combination generating the
expected fault cipher text. This turned out to be successful even if the code
was strongly obfuscated. The success of such a campaign lies a lot in the ability
to vary some parameters over the time and over a range of values in order to
exhaustively parse a large range of faults.

7 Limitations and further improvements

Fault attacks are efficient and can be exploited on data but it remains more
difficult on code executions if efficient anti-debug techniques have been imple-
mented and present in the binary. For instance reducing the round number of a
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TDES or an AES to a lower or higher value as published [] could be difficult as
most of the time flattening techniques are used and it would require the code
flow to be modified. In that case the code modification might most of the time
be detected when code integrity checks or hashs are present in the executed
code.

8 Conclusion

Chicken or The Egg? We can answer that Side-channel and fault analysis on
hardware devices are only sub components of what we call here Computational
Data Attacks. This more generic terminology lead to mathematical numerical
statistical data analysis techniques and in a certain manner to cryptanalysis
techniques that have been studied for decades on cryptographic algorithm. It
seems we are here combining all these techniques to exploit it plainly on any
kind of embedded products. We have presented a methodology based on compu-
tational data execution tracing to evaluate with statistical analysis any software
embedded i.e. also obfuscated or whitebox-ed crytographic algorithms. We have
observed these techniques are very powerful to apply all existing first or higher
order statistical attacks on data with success as the information contained in
data traces is complete.

Hence, as we have seen computational data execution trace analysis and
perturbation are opening a new horizon for attacks on mobile environment
where traditionally the main threat was reverse engineering. It is of strong
interest to observe that all the so numerous statistical and fault attacks (and
combined attacks) from the hardware products can be extended to software
products with a much stronger efficiency.

Such techniques are of strong interest to evaluate in depth software tech-
nologies like DRM and HCE products.
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