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Abstract

Sequences generated by maximum-period nonlinear feedback shift registers are known as de
Bruijn sequences. The problem of designing de Bruijn sequences has received considerable atten-
tion. There is only one full cycle in the state graph of de Bruijn sequences. Most popular algo-
rithms for generating de Bruijn sequences start from a nonsingular linear feedback shift register
producing several shorter cycles in its state graph, then join them into one cycle. Unfortunately,
the order n of the resulting de Bruijn sequence by using this kind of algorithms is small so far
(usually n ≤ 40). We introduce a new concept of correlated cycles between the cycles in the
state graph of a LFSR. Based on this concept we present a algorithm for constructing de Bruijn
sequences with large orders (such as n = 128). This is the first publication for designing de Bruijn
sequences with such large orders.

Keywords de Bruijn sequence, state cycle, period of irreducible polynomial, conjugate states,
t-correlated circles.

1 Introduction

Binary n-stage De Bruijn sequences are periodic sequences of period 2n with every n-tuple of 0, 1
appears precisely once in a period. Since their period reach the maximal value 2n, they must be
nonlinear. de Bruijn proved in [1] that the number of binary n-stage de Bruijn sequences is 22

n−1−n.
Fredricksen gave a well survey in [2].

It has been well studied for many years, see for example [2, 10]. For small stage, all the de Bruijn
sequences can be generated. The previous constructions can be divided into two classes:

(1) Constructing the n-stage de Bruijn sequence from two known (n−1)-stage de Bruijn sequences.
In [3], Lempel provided the concept of D-homomorphism from the n-stage de Bruijn graph to the
(n − 1)-stage de Bruijn graph, the preimage of a (n − 1)-stage de Bruijn sequence under the D-
homomorphism is a pair of cycles C and C of length 2n−1, by a pair of conjugate states on C and
C respectively, one can join C and C resulting a n-stage de Bruijn sequence. In [4, 5], the authors
consider the further construction of this method for 2-ary and q-ary de Bruijn sequences.

(2) Join cycles. From the state graph of special linear feedback shift register (LFSR), generating
all the cycles, finding enough pairs of conjugate states, joining all the cycles, and then getting the
de Bruijn sequence. In [6, 7, 8], the authors use this method to construct 2-ary and q-ary de Bruijn
sequences.

Yet, the previous construction of de Bruijn sequences mainly based on the de Bruijn graph, de-
pended heavily on the storing and calculating almost all the states of Fn2 , whence can not generate de
Bruijn sequences with large order, for example can not generate de Bruijn sequences with order 128.

In this paper, we use the second construction, select suitable polynomial f(x) ∈ F2[x], generating
all the cycles of LSFR with the feedback function f(x), finding out enough pairs of conjugate states on
distinct cycle, and joining all the cycles to a one full length cycle, i.e., resulting a de Bruijn sequence.
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Our construction avoid the searching of all the states of Fn2 , without storing all states, therefore can
generate large stage de Bruijn sequences, such as n = 128.

2 Preliminaries

(1) Feedback Shift Register
The binary feedback shift register (FSR) consists of n storage registers and a feedback logic (a

Boolean function f(x1, x2, · · · , xn), where xi ∈ F2 = {0, 1}). When a shift pulse is applied, the state
x = (x1, x2, · · · , xn) of the FSR is succeeded by the state y = (y1, y2, · · · , yn), where

yi = xi+1, i = 1, 2, · · · , n− 1, and yn = f(x). (1)

The Boolean function f is called the feedback function of the FSR. If f(x1, x2, · · · , xn) = a1x1+a2x2+
· · ·+ anxn is linear, the FSR is called linear feedback shift register (LFSR), in this case the feedback
function is often expressed by a one indeterminate polynomial f(x) = 1+a1x+a2x

2+· · ·+anxn ∈ F2[x].
Otherwise, i.e., if the polynomial f is not linear, the FSR is called nonlinear feedback shift register.

By equation (1), the feedback function f induces a mapping Tf : Fn2 → Fn2 . The state graph of
an FSR with feedback function f , or simply the state graph of f , denoted by Gf , is a direct graph
(V,E), where V = Fn2 and E = {(x, y) | y = Tf (x), x ∈ V }. If the mapping Tf is one-to-one, the
FSR or the feedback function f is called nonsingular. It is easy to see that an FSR is nonsingular if
and only if its state graph Gf consists of branchless cycles. A cycle of length l (l-cycle) generated by
s0 in Gf , denoted by < s0 >, is a closed sequence of l distinct states {s0, s1, · · · , sl−1}, such that
Tf (sl−1) = s0, and Tf (si) = si+1 for i = 0, 1, 2, · · · , l − 2.

The following theorem gives the necessary and sufficient condition for an FSR to be nonsingular:

Theorem 2.1. An FSR is nonsingular if and only if its feedback function f(x) is of the form

f(x1, x2, · · · , xn) = x1 + g(x2, x3, · · · , xn)

where g(x2, x3, · · · , xn) is an arbitrary Boolean function in the n− 1 variables x2, x3, · · · , xn.

Let x = (x1, x2, · · · , xn) ∈ Fn2 , we define x̂, the conjugate of x, by x̂ = (x1, x2, · · · , xn), where
x1 = 1⊕ x1 denotes the Boolean complement of x1.

Two cycles Z1 and Z2 are said to be adjacent if they are disjoint and there exists a state s in Z1

such that its conjugate state x̂ belongs to Z2. For a given FSR, we define a relation → called the
shift relation on the state set Fn2 by x → y iff y = Tf (x). In the expression x → y, we say that y is
a successor of x, and that x is a predecessor of y. The following theorem is well known and we shall
use in the sequel.

Theorem 2.2. Let Gf be the state graph of a nonsingular FSR. If a cycle Z of Gf contains one pair
of conjugate states x and x̂, then the cycle Z is split into two adjacent cycles when the successors of
the conjugate pair states x and x̂ in Z are interchanged. Two adjacent cycles Z1 and Z2 of Gf , with
x in Z1 and x̂ in Z2 are joined into a single cycle when the successors of x and x̂ are interchanged.

Moreover, let f(x1, x2, · · · , xn) be the feedback function of the FSR, and x = (a1, a2, · · · , an) and
x̂ = (a1, a2, · · · , an) be the above conjugate pair of states, we define a Boolean function as follows:

h(x1, x2, · · · , xn) = f(x1, x2, · · · , xn)⊕ xa22 x
a3
3 · · ·xann

where x1i and x0i denote xi and xi (i.e., 1 ⊕ xi), respectively. Then the feedback function of the FSR
after interchanging the successors of the conjugate pair of states x and x̂, is h(x1, x2, · · · , xn).

(2) Polynomial of Matrix.
Let F = F2 = {0, 1} be the finite field of order 2 (the following results are also true for general

field, in this paper, we are interesting in this binary field), n be an positive integer, and A = (aij)n×n
be a square matrix of order n over F. The matrix A is called invertible if there exists a matrix B such
that AB = BA = I, where I is the identity matrix.

2



Let f(x) = a0 + a1x+ · · ·+ asx
s ∈ F[x], define

f(A) = a0I + a1A+ a2A
2 + · · ·+ asA

s.

f(A) is called a polynomial matrix of A. Suppose that f(x), g(x) ∈ F[x], for any square matrix A of
order n, we have that

(f + g)(A) = f(A) + g(A), (fg)(A) = f(A)g(A). (2)

Given a square matrix A, define a set F[A] as follows:

F[A] = {f(A) | f(x) ∈ F[x]}

It is easy to see that F[A] form a ring under the addition and multiplication of matrix. By equation
(2), the map

ϕ : F[x] −→ F[A]
g(x) 7−→ g(A)

is a homomorphism from F[x] onto F[A].
If f(x) = 1 + c1x+ c2x

2 + · · ·+ cnx
n is an irreducible polynomial of degree n in F[x], the matrix

T =


0 0 0 · · · 0 cn
1 0 0 · · · 0 cn−1
0 1 0 · · · 0 cn−2
. . . . . . . . . . . . . . . . . . . . . . .
0 0 0 · · · 1 c1


is called the shift register matrix of f(x). In a LFSR with f(x) as feedback function, if si = (ai, ai+1,
· · · , ai+n−1) is a state, then the next state is si+1 = siT . It is well known that, for any non-zero
state s0 ∈ Fn2 , the sequence generated by s0 is period, suppose that the period is l, then the cycle Z
generated by s0 can be represented as follows:

Z =< s0 >= {s0, s0T, s0T 2, · · · , s0T l−1}.

The characteristic polynomial of T is

det(xI − T ) = xn + c1x
n−1 + c2x

n−2 + · · ·+ cn−1x+ cn = xnf(1/x) = f∗(x),

which is the reciprocal polynomial of f(x). By Cayley-Hamilton Theorem, we have that f∗(T ) = 0.
Since f(x) is irreducible, it is easy to see that f∗(x) is also irreducible. The ideal J = (f∗(x)) =

{f∗(x)a(x) | a(x) ∈ F[x]} is a maximal ideal in the polynomial ring F[x]. Suppose that θ is a root of
f∗(x) in some extension field of F, then we have that F[θ] = {a0 + a1θ + a2θ

2 + · · ·+ an−1θ
n−1 | ai ∈

F} ∼= F[x]/J .
It is easy to see that the zero ideal of T is {g(x) ∈ F[x] | g(T ) = 0} = J , hence F[θ] = F2[x]/J ∼=

{a0I+a1T +a2T
2 + · · ·+an−1T

n−1 | ai ∈ F} = F[T ], i.e., the ring F[θ] and F[T ] are isomorphic. Since
F[θ] is a field, so does F[T ], whence every non-zero matrix of F[T ] is invertible:

Theorem 2.3. Suppose that f(x) ∈ F[x] is an irreducible polynomial, and T is the shift register
matrix of f(x). Then for any g(x) ∈ F[x], either g(T ) = 0 or g(T ) is invertible.

(3) Some Properties on the Reciprocal Polynomial.
Suppose that f(x) ∈ F[x] is a polynomial of degree n, we call f∗(x) = xnf(1/x) the reciprocal

polynomial of f(x). If f∗(x) = f(x), then, f(x) is called the auto-reciprocal polynomial. The following
properties of reciprocal polynomials are useful:

Lemma 2.1. If f(x)|g(x), then f∗(x)|g∗(x).

Lemma 2.2. Suppose that f(x)|g(x), and g(x) is auto-reciprocal, then f∗(x)|g(x).
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Lemma 2.3. If f(x) is irreducible, then f∗(x) is irreducible too, and conversely.

(4) Some results on finite cyclic group.
Let G =< a > be a cyclic group of order n, i.e., G = {1, a, a2, · · · , an−1} with an = 1, where the

identity element of G is denoted by 1. The following are useful:

Theorem 2.4. Suppose G is a cyclic group of order n, and H is a subgroup of G, then H is also a
cyclic group, and the order of H is a divisor of n.

Theorem 2.5. Suppose that G is a cyclic group of order n, and l is a divisor of n, then there exists
only one subgroup H of G with order l.

Theorem 2.6. Suppose that G is a cyclic group of order n, and H is the subgroup of order l, then
for every b ∈ G, the necessary and sufficient condition for b in H is that bl = 1.

Theorem 2.7. Let Fq be a finite field, with q a prime power, then the set F∗q of all nonzero elements
of Fq form a cyclic group of order q − 1 under the multiplication of Fq.

(5) The basic theory of LFSR.
Let n be a positive integer, and f(x) be an irreducible polynomial of degree n in F2[x]. The period

of f(x) is defined to be the smallest positive integer l such that f(x)|xl + 1. It is known that l|2n− 1.
Let k = (2n − 1)/l. The state graph of the LFSR, whose feedback function is f(x), consists of k + 1
cycles, one of which is the 1-cycle generated by the zero state (called zero cycle), and the other k
cycles have the same length l.

Let T denote the shift register matrix of f(x). If the period of f(x) is l, then, l is the smallest
positive integer such that f(x)|xl − 1. Therefore f∗(x)|xl − 1, we have T l = I, i.e., the order of the
matrix T is l. The group < T > is the unique subgroup with order l in the multiplicative group F∗2(θ).

If k = 1, then l = 2n − 1, and f(x) is a primitive polynomial, the sequence generated by f(x) is
m-sequence. It is trivial to join the zero cycle and the (2n − 1)-cycle, resulting a de Bruijn sequence.
In the sequel, we always assume that k > 1.

The zero cycle < 0 > and the cycle < 1 > can be joined into one cycle by the conjugate states
s = 0 = (0, 0, · · · , 0) and ŝ = 1 = (1, 0, · · · , 0). From now on, we just consider all the k cycles of
length l, which is denoted by G(f).

Suppose that Z1 and Z2 are two l-cycles generated by s0 and t0 respectively,

Z1 =< s0 > = {s0, s1, s2, · · · , sl−1}
Z2 =< t0 > = {t0, t1, t2, · · · , tl−1}

If s0 ∈ Z2, then Z1 and Z2 are the same cycle.

3 The t-Correlated Cycles of f(x)

Let n and l be positive integers with l|2n−1, and let k = (2n−1)/l, f(x) be an irreducible polynomial
of degree n with period l. In order to generate all the cycles of G(f) and find the conjugate pairs of
states over different cycles, we introduce the following definition:

Definition 3.1. Let n, f(x), l, k be as above, T be the shift register matrix of f(x), and Z =< s0 >
be a cycle of G(f) generated by s0:

Z =< s0 >= {s0, s0T, s0T 2, · · · , s0T l−1} ∈ G(f).

Let t be a integer with 0 < t < l, the 1th t-correlated cycle of Z, denoted by D
(1)
f,t (Z), is the cycle

generated by s0 ⊕ s0T t (the symbol ⊕ denotes the addition of two points in Fn2 ), i.e.,

D
(1)
f,t (Z) =< s0(I + T t) >= {s0(I + T t), s0(I + T t)T, s0(I + T t)T 2, · · · , s0(I + T t)T l−1} (3)

More generally, for any positive integer m, we define the mth t-correlated cycle of Z is the cycle

generated by s0(I + T t)m, and denote it by D
(m)
f,t (Z). We call t the width of the correlated cycles. We

regard D
(0)
f,t (Z) as Z.
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Definition 3.2. Let f(x), l be as above, and 0 < t < l, m be a positive integer. The polynomial
ht,m(x) = (1 + xt)m is called mth t-correlated polynomial.

It is clear that the generated state of the mth t-correlated cycle D
(1)
f,t (Z) of the cycle Z =< s0 >

is s0ht,m(T ).
We have the following properties about the t-correlated cycles.

Lemma 3.1. Suppose that f(x) is an irreducible polynomial of degree n with period l. For any positive

integer t with 0 < t < l, and m, the following map defined by the mth t-correlated cycle D
(m)
f,t (Z):

ψ : G(f) −→ G(f)

Z 7−→ D
(m)
f,t (Z)

is a bijective map.

Proof. It is enough to prove the assertion for the case m = 1, since the product of two bijective maps
is again a bijective map, and the mth t-correlated cycle can be regarded as the product of m 1th
t-correlated cycles.

For every Z ∈ G(f), and for every 0 < t < l, the t-correlated cycle of Z D
(1)
f,t (Z) is not the zero

cycle, hence D
(1)
f,t (Z) ∈ G(f), which means that ψ is a map from G(f) to G(f). As G(f) is a finite

set of k elements, it is enough to prove that ψ is injective, i.e., if ψ(Z1) = ψ(Z2) implies Z1 = Z2 for
any Z1, Z2 ∈ G(f).

For any Z1, Z2 ∈ G(f), generated by s0 and u0 respectively,

Z1 ={s0, s1, s2, · · · , sl−1}
Z2 ={u0, u1, u2, · · · , ul−1}

where si = s0T
i, and ui = u0T

i. If D
(1)
f,t (Z1) = D

(1)
f,t (Z2), then there exists an integer i with 0 ≤ i < l,

such that s0 ⊕ st = ui ⊕ ui+t, therefore, we have

sj ⊕ sj+t = ui+j (mod l) ⊕ ui+j+t (mod l), j = 0, 1, 2, · · · , l − 1 (4)

let vj = sj ⊕ ui+j (mod l), (j = 0, 1, 2, · · · , l − 1), then the cycle generated by v0

< v0 >= {v0, v1, v2, · · · , vl−1}

is also a cycle of f(x). From (4), we have that v0 = vt. Since 0 < t < l, v0 and vt lie in the same
cycle, whence < v0 > is the zero cycle, i.e., v0 = v1 = · · · = vl−1 = 0. So, we have sj = ui+j (mod l)

for all j = 0, 1, 2, · · · , l − 1, and hence Z1 = Z2, which means that ψ is injective.

Lemma 3.2. Suppose that 0 < t < l. For any Z ∈ G(f), there exists a positive integer d, such that

D
(d)
f,t (Z) = Z.

Proof. For any Z ∈ G(f), we consider the following sequence:

Z = D
(0)
f,t (Z), D

(1)
f,t (Z), D

(2)
f,t (Z), · · · ,

Since G(f) is a finite set, and D
(j)
f,t(Z) ∈ G(f) for every j = 0, 1, 2, · · · , there must exist two integer

0 ≤ i < j such that D
(i)
f,t(Z) = D

(j)
f,t(Z). Let i0 be the smallest integer satisfying the condition

that there exists d > i0 such that D
(i0)
f,t (Z) = D

(d)
f,t (Z), then we have i0 = 0. Otherwise, we have

ψ(D
(d−1)
f,t (Z)) = D

(d)
f,t (Z) = D

(i0)
f,t (Z) = ψ(D

(i0−1)
f,t (Z)), by Lemma 3.1, we get that D

(i0−1)
f,t (Z) =

D
(d−1)
f,t (Z), which contradict with the minimality of i0. Therefore, there exists an integer d such that

D
(d)
f,t (Z) = D

(0)
f,t (Z) = Z, which completes the assertion.

The following theorem shows that all the cycles Z ∈ G(f) have the same value d.

5



Theorem 3.1. Suppose 0 < t < l. For every cycle Z ∈ G(f), D
(d)
f,t (Z) = Z if and only if

ht,d(x)l ≡ 1 (mod f(x)). (5)

Proof. Suppose that (ht,d(x))l = (1 + xt)dl ≡ 1 (mod f(x)) holds, then f(x)|(1 + xt)dl − 1. Take
g(x) = (1 + xt)dl − 1− (xtdl − 1) = (1 + xt)dl − xtdl. Since f(x)|g(x), and g∗(x) = (1 + xt)dl − 1, by
Lemma 2.1, we have

f∗(x)|(1 + xt)dl − 1. (6)

Since f∗(T ) = 0, by (6), we have (I + T t)dl = I, whence (I + T t)d ∈< T >, by Theorem 2.6. So,
there exists a positive integer 0 ≤ i < l, such that ht,d(T ) = (I + T t)d = T i.

Let Z =< s0 > be any cycle of G(f), where s0 is a non-zero vector of Fn2 , the initial state of the

dth t-correlated cycle D
(d)
f,t (Z) is s

(d)
0 = s0ht,d(T ) = s0T

i, which means that D
(d)
f,t (Z) = Z.

Conversely, suppose that Z =< s0 > is a cycle of G(f), such that D
(d)
f,t (Z) = Z. The initial

state s
(d)
0 = s0ht,d(T ) of D

(d)
f,t (Z) is in Z, then there exists an integer 0 ≤ i < l such that s

(d)
0 = s0T

i,

therefore, s0(ht,d(T )−T i) = 0. Since s0 6= 0, by Theorem 2.3, we have ht,d(T ) = T i, i.e., (ht,d(x))l ≡ 1
(mod f∗(x)). By using the same way as above we can prove the assertion.

So all the cycles Z in G(f) have the same value d such that D
(d)
f,t (Z) = Z, the smallest positive

integer dt is called the t-correlated order of f(x), and we denote it by dt = Ordt(f).
Two cycles Z1 and Z2 in G(f) are called t-correlated, if there exists an integer i such that Z2 =

D
(i)
f,t(Z1). It is easy to see that this defines an equivalent relation in G(f), each equivalent class has

dt = Ordt(f) cycles. Since G(f) has k cycles, we have thus proved the following corollary:

Corollary 3.1. Suppose that f(x), k, t are as above, then Ordt(f)|k.

If k is a prime number, and f(x) is an irreducible polynomial of degree n with period l = (2n−1)/k,
then for the integer 0 < t < l with Ordt(f) 6= 1, Ordt(f) must be k. In this special case we can obtain
all the cycles of G(f) from any selected cycle Z from G(f) by t-correlated cycles:

G(f) = {Z = D
(0)
f,t (Z), D

(1)
f,t (Z), D

(2)
f,t (Z), · · · , D(k−1)

f,t (Z)}.

4 Conjugate State Pair

Let n, k be positive integers such that k|2n−1, and f(x) be an irreducible polynomial in F2[x] of degree
n with period l = (2n − 1)/k. Let t be an positive integer with 0 < t < l, such that Ordt(f) = d > 1,
it is the same thing that (1 + xt)l 6≡ 1 (mod f(x)), by Theorem 3.1. The set G(f) is divided into k/d
t-correlated classes, each of which has exactly d cycles. Now, we select a special state α0 = 1 = (1, 0,
0, · · · , 0), the cycle generated by α0 is denoted by Z0:

Z0 = {α0 = 1, α0T, α0T
2, · · · , α0T

l−1}.

We are going to find the conjugate pairs of states that lie on Z0 and the other cycles (which are
belonged in the t-correlated class of Z0) respectively.

Note that the mth t-correlated polynomial is ht,m(x) = (1 + xt)m ∈ F2[x], then, for every j = 0,
1, 2, · · · , the 2jth t-correlated polynomial has the following special form:

ht,2j (x) = (1 + xt)2
j

= 1 + (xt)2
j

.

The initial state of the 2jth t-correlated cycle of Z0 is

s = α0ht,2j (T ) = α0(1 + (T t)2
j (mod l)) = α0 ⊕ α0(T t)2

j (mod l) = 1⊕ α2jt (mod l),
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the conjugate state ŝ of s is α2jt (mod l), thus, the conjugate pair of states (s, ŝ) lies in two different
state cycles of G(f), where the state ŝ lies in the cycle Z0, while the state s lies in the 2jth t-correlated

cycle D
(2j)
f,t (Z0) of Z0. By the corollary of theorem 3.1, d|k, so d is odd since k is odd, and 2j 6≡ 0

(mod d), this means that Z0 and D
(2j)
f,t (Z0) are different cycles in G(f). By theorem 2.2, the conjugate

pair of states s and s∗ can join the cycles Z0 and D
(2j)
f,t (Z0) into one cycle.

Let r be the order of 2 mod d = Ordt(f), i.e., r is the smallest positive integer such that 2r ≡ 1
(mod d). The above method can join the cycle Z0 with the following r distinct cycles:{

D
(20 mod d)
f,t (Z0), D

(21 mod d)
f,t (Z0), D

(22 mod d)
f,t (Z0), · · · , D(2r−1 mod d)

f,t (Z0)
}
. (7)

If r+1 = d, then all the cycles in the t-correlated class of Z0 can be joined into one cycle. Furthermore,
if k is a prime number, and 2 is a primitive root mod k, then there is only one t-correlated class in G(f),
whence all the cycles of G(f) can be joined into one full length cycle. However, if r+1 6= Ordt(f), this
method can not join all the cycles in G(f). To solve this problem, we study the relation of different
t-correlated classes.

For any two elements a, b ∈ Zl = {0, 1, 2, · · · , l− 1}, we call a and b are conjugate mod l if there
exists an integer j such that b ≡ 2ja (mod l). It is easy to see that it is an equivalent relation. Then
the set Zl are partitioned into several disjoint conjugate classes. For any t ∈ Zl, the conjugate class
containing t is denoted by [t], the class [0] contains only the element 0. In the following, when we
speak of class [t], we always mean that t 6= 0. The conjugate class [t] contains the following elements:

[t] = {t, 2t (mod l), 22t (mod l), · · · , 2γt−1t (mod l)},

where γt is a smallest positive integer such that 2γtt ≡ t (mod l), γt is called the conjugate order of t
mod l.

Let Z0 denote the cycle of G(f) generated by the state α0 = (1, 0, · · · , 0). Furthermore, we
suppose that dt = Ordt(f) > 1. Then, the cycle Z0 has conjugate pairs of states with the following
t-correlated cycles:

Ωt(Z0) =
{
D

(20)
f,t (Z0), D

(21)
f,t (Z0), · · · , D(2γt−1)

f,t (Z0)
}

In fact, the set Ωt(Z0) has exactly rt cycles, where rt is the order of 2 mod dt = Ordt(f). The set
Ωt(Z0) coincides with the set of (7). By lemma 4.1 below, we will prove rt|γt, the cycle Z0 has γt/rt
pairs of conjugate states with each cycle of Ωt(Z0), so there are (rt)

γt/rt ways to join the cycle Z0

with all the cycles of Ωt(Z0).

Lemma 4.1. Suppose that 0 < t < l, be an integer such that dt = Ordt(f) > 1, let γt be the conjugate
order of t mod l, and rt is the order of 2 mod dt, then rt|γt.

Proof. Let D be an integer, it is easy to see that the equation (1 + xt)Dl ≡ 1 (mod f(x)) holds if and

only if dt|D, by Theorem 3.1. By the assumption that 2γtt ≡ t (mod l), we have that D
(2γt )
f,t (Z) =

D
(1)
f,t (Z), where Z is any cycle of G(Z). By lemma 3.1, we have that D

(2γt−1)
f,t (Z) = D

(0)
f,t (Z) = Z,

hence we obtain that,
2γt ≡ 1 (mod dt),

which completes the proof.

Theorem 4.1. For any two integers 1 ≤ t1, t2 < l, if Ωt1(Z0) and Ωt2(Z0) have a common element,
then Ωt1(Z0) = Ωt2(Z0).

Proof. Let γ1 and γ2 be the conjugate order of t1 and t2 mod l respectively. By the assumption, there

exists two integer i and j, with 0 ≤ i < γ1 and 0 ≤ j < γ2, such that D
(2i)
f,t1

(Z0) = D
(2j)
f,t2

(Z0). The

initial state α0(1+T t1)2
i

of D
(2i)
f,t1

(Z) is in the cycle D
(2j)
f,t2

(Z), there exists an integer u, with 0 ≤ u < l,
such that

α0(1 + T t1)2
i

= α0(1 + T t2)2
j

Tu.
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Since α0 is not the zero state, and by theorem 2.3, we have that

(1 + xt1)2
i

≡ (1 + xt2)2
j

xu (mod f∗(x)).

By taking 2γ1−ith powers on both sides, we have

(1 + xt1)2
γ1 ≡ (1 + xt2)2

j′

x2
j′u (mod f∗(x))

where j′ = j + γ1 − i (mod γ2). Furthermore, by taking lth power on both sides, and noting that
xl ≡ 1 (mod f∗(x)), and (1 + xt1)2

γ1 ≡ (1 + xt1) (mod f∗(x)), we get that

(1 + xt1)l ≡ (1 + xt2)2
j′ l (mod f∗(x)). (8)

Finally, by squaring on both sides of (8) step by step, we have that

(1 + xt1)2
il ≡ (1 + xt2)2

j′+il (mod f∗(x))

So, we have proved that D
(2i)
f,t1

(Z0) = D
(2j
′+i)

f,t2
(Z0) for i = 1, 2, · · · , i.e., Ωt1(Z0) ⊂ Ωt2(Z0). By the

same way, we can prove that Ωt2(Z0) ⊂ Ωt1(Z0), and the lemma is proved.

Corollary 4.1. Suppose that t1 is conjugate with t2 mod l, then Ωt1(Z0) = Ωt2(Z0).

Proof. By assumption, there exists an integer i, such that t1 ≡ 2it2 (mod l), so that T t1 = T 2it2 , and

α0(I+T t1) = α0(I+T t2)2
i

. Therefore, we have that D
(1)
f,t1

(Z) =< α0(I+T t1) >=< α0(1+T t2)2
i

>=

D
(2i)
f,t2

(Z) ∈ Ωt1(Z) ∩ Ωt2(Z), by the Theorem 4.1, the corollary is proved.

Corollary 4.2. Let t1 and t2 be integers with 0 < t1, t2 < l, and let γ1 and γ2 be the conjugate orders
of t1 and t2 mod l respectively, then Ωt1(Z0) = Ωt2(Z0) if and only if there exists an integer j with
0 ≤ j < γ2, such that

(1 + xt1)l ≡ (1 + xt2)2
j l (mod f(x)) (9)

Proof. If Ωt1(Z0) = Ωt2(Z0), then there exists an integer j with 0 ≤ j < γ2, satisfying the equation
(8). By using the properties of auto-reciprocal polynomial, it is easy to check that the equation (9) is
also true.

Conversely, if the equation (9) holds, by the same way, we can prove that the equation (8) is
true. By repeating the proof of Theorem 4.1, we can prove that Ωt1(Z0) ∩ Ωt2(Z0) 6= ∅, hence
Ωt1(Z0) = Ωt2(Z0).

The following example shows that when using different t1 and t2, both Ωt1(Z) = Ωt2(Z) and
Ωt1(Z) ∩ Ωt2(Z) = ∅ can be happened.

Example 1. Let n = 9, then 29 − 1 = 7 · 73, let k = 7, so l = (29 − 1)/k = 73. It is easy to
check that f(x) = x9 +x8 + 1 is an irreducible polynomial of degree 9 with period l = 73. There are 8
conjugate classes mod l in Zl as follows: [1], [3], [5], [9], [11], [13], [17], and [25]. By equation (5), we
can check that if t ∈ [1] ∪ [9], the corresponding t-correlated order of f(x) is dt = Ordt(f) = 1, while
the corresponding of the t-correlated order of f(x) is dt = Ordt(f) = 7 for all t belong to all other 6
conjugate classes.

Let α0 = (1, 0, 0, · · · , 0), and Z0 =< α0 >. Since d2 = Ord3(f) = 7 = k, then we have

G(f) =
{
Z0, D

(1)
f,3(Z0), D

(2)
f,3(Z0), D

(3)
f,3(Z0), D

(4)
f,3(Z0), D

(5)
f,3(Z0), D

(6)
f,3(Z0)

}
For simplicity, D

(j)
f,3(Z0) is denoted by Zj for j = 1, 2, · · · , 6, that is, G(f) = {Z0, Z1, Z2, Z3, Z4, Z5,

Z6}. We list all the cycles of G(f) below (the state (x1, x2, · · · , x9) is represented by the hexadecimal
form of the integer x1 + 2x2 + x2x3 + · · ·+ 28x9).

We will show that Ω3(Z0) = Ω5(Z0), and Ω3(Z0) ∩ Ω11(Z0) = ∅.
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It is easy to check that the order r3 of 2 mod d3 = 7 is 3, so that

Ω3(Z0) =
{
D

(20)
f,3 (Z0), D

(21)
f,3 (Z0), D

(22)
f,3 (Z0)

}
= {Z1, Z2, Z4}.

If we take t2 = 5, by calculating, it is easy to check that (1 + x3)l ≡ (1 + x5)2·l (mod f(x)), so
Ω3(Z0) = Ω5(Z0) by corollary 4.2. In fact, we can check that 1 ⊕ α5 = 011 ∈ Z4, which means that

D
(20)
f,5 (Z0) = Z4 ∈ Ω3(Z0), and that 1⊕ α10 = 181 ∈ Z1, which means that D

(21)
f,5 (Z0) = Z1 ∈ Ω3(Z0),

and that 1⊕ α20 = 0a1 ∈ Z2, which means that D
(22)
f,5 (Z0) = Z2 ∈ Ω3(Z0).

Finally, we consider t3 = 11. By calculation, we can check that for every j = 0, 1, · · · , 8,
(1+x3)l 6≡ (1+x11)2

j ·l (mod f(x)), thus Ω3(Z0)∩Ω11(Z0) = ∅ by corollary 4.2, whence Ω11(Z0) = {Z3,

Z5, Z6}. In fact, we can check that 1⊕ α11 = 0c1 ∈ Z6, which means that D
(20)
f,11(Z0) = Z6, and that

1 ⊕ α22 = 029 ∈ Z5, means that D
(21)
f,11(Z0) = Z5, and that 1 ⊕ α44 = 063 ∈ Z3, means that

D
(22)
f,11(Z0) = Z3.

Z0 = 001, 100, 080, 040, 020, 010, 008, 004, 002, 101, 180, 0c0, 060, 030, 018, 00c, 006, 103,
081, 140, 0a0, 050, 028, 014, 00a, 105, 182, 1c1, 1e0, 0f0, 078, 03c, 01e, 10f, 087, 043,
021, 110, 088, 044, 022, 111, 188, 0c4, 062, 131, 198, 0cc, 066, 133, 099, 14c, 0a6, 153,
0a9, 154, 0aa, 155, 1aa, 1d5, 1ea, 1f5, 1fa, 1fd, 1fe, 1ff, 0ff, 07f, 03f, 01f, 00f, 007, 003

Z1 = 041, 120, 090, 048, 024, 012, 109, 184, 0c2, 161, 1b0, 0d8, 06c, 036, 11b, 08d, 146, 1a3,
0d1, 168, 0b4, 05a, 12d, 196, 1cb, 0e5, 172, 1b9, 1dc, 0ee, 177, 0bb, 05d, 12e, 197, 0cb,
065, 132, 199, 1cc, 0e6, 173, 0b9, 15c, 0ae, 157, 0ab, 055, 12a, 195, 1ca, 1e5, 1f2, 1f9,
1fc, 0fe, 17f, 0bf, 05f, 02f, 017, 00b, 005, 102, 181, 1c0, 0e0, 070, 038, 01c, 00e, 107, 083

Z2 = 009, 104, 082, 141, 1a0, 0d0, 068, 034, 01a, 10d, 186, 1c3, 0e1, 170, 0b8, 05c, 02e, 117,
08b, 045, 122, 191, 1c8, 0e4, 072, 139, 19c, 0ce, 167, 0b3, 059, 12c, 096, 14b, 0a5, 152,
1a9, 1d4, 0ea, 175, 1ba, 1dd, 1ee, 1f7, 0fb, 07d, 13e, 19f, 0cf, 067, 033, 019, 10c, 086,
143, 0a1, 150, 0a8, 054, 02a, 115, 18a, 1c5, 1e2, 1f1, 1f8, 0fc, 07e, 13f, 09f, 04f, 027, 013

Z3 = 148, 0a4, 052, 129, 194, 0ca, 165, 1b2, 1d9, 1ec, 0f6, 17b, 0bd, 15e, 1af, 0d7, 06b, 035,
11a, 18d, 1c6, 1e3, 0f1, 178, 0bc, 05e, 12f, 097, 04b, 025, 112, 189, 1c4, 0e2, 171, 1b8,
0dc, 06e, 137, 09b, 04d, 126, 193, 0c9, 164, 0b2, 159, 1ac, 0d6, 16b, 0b5, 15a, 1ad, 1d6,
1eb, 0f5, 17a, 1bd, 1de, 1ef, 0f7, 07b, 03d, 11e, 18f, 0c7, 063, 031, 118, 08c, 046, 123, 091

Z4 = 061, 130, 098, 04c, 026, 113, 089, 144, 0a2, 151, 1a8, 0d4, 06a, 135, 19a, 1cd, 1e6, 1f3,
0f9, 17c, 0be, 15f, 0af, 057, 02b, 015, 10a, 185, 1c2, 1e1, 1f0, 0f8, 07c, 03e, 11f, 08f,
047, 023, 011, 108, 084, 042, 121, 190, 0c8, 064, 032, 119, 18c, 0c6, 163, 0b1, 158, 0ac,
056, 12b, 095, 14a, 1a5, 1d2, 1e9, 1f4, 0fa, 17d, 1be, 1df, 0ef, 077, 03b, 01d, 10e, 187, 0c3

Z5 = 02d, 116, 18b, 0c5, 162, 1b1, 1d8, 0ec, 076, 13b, 09d, 14e, 1a7, 0d3, 069, 134, 09a, 14d,
1a6, 1d3, 0e9, 174, 0ba, 15d, 1ae, 1d7, 0eb, 075, 13a, 19d, 1ce, 1e7, 0f3, 079, 13c, 09e,
14f, 0a7, 053, 029, 114, 08a, 145, 1a2, 1d1, 1e8, 0f4, 07a, 13d, 19e, 1cf, 0e7, 073, 039,
11c, 08e, 147, 0a3, 051, 128, 094, 04a, 125, 192, 1c9, 1e4, 0f2, 179, 1bc, 0de, 16f, 0b7, 05b

Z6 = 0e8, 074, 03a, 11d, 18e, 1c7, 0e3, 071, 138, 09c, 04e, 127, 093, 049, 124, 092, 149, 1a4,
0d2, 169, 1b4, 0da, 16d, 1b6, 1db, 0ed, 176, 1bb, 0dd, 16e, 1b7, 0db, 06d, 136, 19b, 0cd,
166, 1b3, 0d9, 16c, 0b6, 15b, 0ad, 156, 1ab, 0d5, 16a, 1b5, 1da, 1ed, 1f6, 1fb, 0fd, 17e,
1bf, 0df, 06f, 037, 01b, 00d, 106, 183, 0c1, 160, 0b0, 058, 02c, 016, 10b, 085, 142, 1a1, 1d0

5 The Choice of Polynomial

Given the positive integer n and k such that k|2n − 1, let l = (2n − 1)/k, the following lemma shows
the condition that the irreducible polynomial f(x) of degree n with period l exists.

Lemma 5.1. Let n, k and l be as above, then, the necessary and sufficient condition that there exists
an irreducible polynomial f(x) of degree n with period l is that the order of 2 mod l is n.
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Proof. Suppose that f(x) is an irreducible polynomial of degree n with period l, let β be a root of
f(x), we obtain a finite field F2n = F2[β]. The order of β in the multiplicative group of all non-zero
elements of F2n is l, i.e., l is the smallest positive integer such that βl = 1. Since f(x) is an irreducible
polynomial, it has n distinct roots in F2n , as following:

{β, β2, β22 , · · · , β2n−1

}. (10)

Since l|2n − 1, we have that 2n ≡ 1 (mod l). On the other hand, if the order s of 2 mod l is less than
n, i.e., s < n, then, we have that l|2s − 1, so that β2s = β, which contradicts with (10).

Conversely, let β be an element of order l in the finite field F2n . Since the order of 2 mod l is n,
the following elements

1, 2 mod l, 22 mod l, · · · , 2n−1 mod l

are distinct, so that

β, β2, β22 , · · · , β2n−1

are distinct too. Let f(x) be the minimal polynomial of β, then

f(x) =

n−1∏
i=0

(x− β2i)

is an irreducible polynomial of degree n. The period of f(x) is equal to the order l of β, and the
assertion is proved.

For the given positive integers n, k, and l, such that l = (2n − 1)/k, and the order of 2 mod l is
n, there are exactly ϕ(l) elements of order l in the finite field F2n , where ϕ(·) is the Euler function.
The set of all elements of order l can be divided into ϕ(l)/n conjugate classes, each class corresponds
with an irreducible polynomial of degree n with period l respectively, so, there are ϕ(l)/n irreducible
polynomials of degree n with period l. For a given irreducible polynomial f(x) of degree n with period
l, if the t-correlated order of f(x) is 1 for every 0 < t < l, then, our method will not work, since we
can not generate even one more cycle from Z0. However, the following theorem shows that this case
can not happen:

Theorem 5.1. Suppose that f(x) is an irreducible polynomial of degree n with period l, then there
must exist a positive integer t with 0 < t < l, such that Ordt(f) > 1.

Proof. Suppose on the contrary that Ordt(f) = 1 for every positive integer 0 < t < l. Let β be a root
of f(x), we get a finite field F2n = F2[β]. By theorem 3.1, we have that

hlt,1(x) = (1 + xt)l ≡ 1 (mod f(x))

for every t with 0 < t < l. So, we have that (1 + βt)l = 1, for every 0 < t < l. Consider the set∑
= {1} ∪ {1 + βt | 0 < t < l}.

it is east to see that all the elements of
∑

are the roots of xl = 1 in the finite field F2n . Since the set
F∗2n of all non-zero elements of F2n form a cyclic group of order 2n − 1, and l|2n − 1, there exists only
one subgroup H of order l. Since the order of β is l, we have that H =< β >= {1, β, β2, · · · , βl−1},
also every element of H is a root of xl = 1. Therefore, we get that

H = {1, 1 + β1, 1 + β2, · · · , 1 + βl−1}
= {1, β, β2, · · · , βl−1}.
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The multiplication holds in H, as H is a group under the multiplication. Now, let H ′ = H ∪ {0}.
We are now going to prove that the addition law holds also in the set H ′. It is clear that 1 + βi ∈ H ′
for every 0 < i < l. On the other hand, for every i, j with 0 < i < j < l, we have that βi + βj =
βi(1 + βj−i) ∈ H ′. Thus, the set H ′ form a finite field under the addition and multiplication, there
exists an integer s ≤ n such that |H ′| = 2s. If s = n, then 1 + l = |H ′| = 2n, i.e., l = 2n − 1, it
is impossible since we have assumed that k > 1, so s < n. However, in this case, the condition that
1+ l = 2s means that the order of 2 mod l is less than s < n, which contradicts the assertion of lemma
5.1 (which says that the irreducible polynomial f(x) of degree n with period l exists if and only if the
order of 2 mod l is n), and the theorem is proved.

6 Generating de Bruijn Sequences

Case 1. Let k be a prime number, such that 2 is a primitive root mod k, by theorem 5.1, there exists
an integer t, such that Ordt(f) = k. Let α0 = 1 = (1, 0, · · · , 0) and let Z0 be the cycle generated by
α0. Then, we have Ωt(Z0) = G(f) \ {Z0}, whence we can join all the cycles of G(f) to generate de
Bruijn sequences.

Example 2. Let n = 128, the factorization of 2n − 1 = 2128 − 1 is

2128 − 1 = 3 · 5 · 17 · 257 · 641 · 65537 · 274177 · 6700417 · 67280421310721.

If we take k = 5, then l = (2128 − 1)/5. It is easy to see that 2 is a primitive root mod k = 5. By
calculation, we can choose f(x) as

f(x) =x128 + x88 + x83 + x62 + x57 + x52 + x48 + x43

+ x38 + x31 + x29 + x27 + x26 + x2 + 1,

which is an irreducible polynomial of degree n = 128 with period l. It is easy to check that (1+x)l 6≡ 1
(mod f(x)), so let t = 1, the t = 1-order of polynomial f(x) is Ord1(f) = k = 5. Therefore, we have
that

G(f) =
{
Z0, Z

(1)
0 , Z

(2)
0 , Z

(3)
0 , Z

(4)
0

}
=
{
Z0, Z

(20)
0 , Z

(21)
0 , Z

(22)
0 , Z

(23)
0 = Z

(3)
0

}
By the shift register matrix T , we can find k − 1 = 4 states of the cycle Z0 as follows:

α1 = α0T , α2 = α0T
2, α4 = α0T

4, α8 = α0T
8.

the conjugate states of which lie in all the cycles of G(f) except for Z0, hence we can join all these
cycles of G(f) and obtain a de Bruijn sequence of stage n = 128. We list these four pairs of conjugate
states in the hexadecimal form as follows:

(80000000000000000000000000000000,80000000000000000000000000000001),
(40000000000000000000000000000000,40000000000000000000000000000001),
(50000000000000000000000000000000,50000000000000000000000000000001),
(55000000000000000000000000000000,55000000000000000000000000000001).

By theorem 2.2, we can write out the correspondent connective polynomial, we omit it to save space.
Since the conjugate order of 1 mod l is γ1 = 128, and the order of 2 mod d = Ord1(f) = 5 is

r = 4, there are 128/4 = 32 pairs of conjugate states lying on Z0 and each cycle of Ω1(Z0) respectively,
therefore, we can generate 324 = 220 distinct de Bruijn sequences of stage n = 128.

Case 2. In the case 1, k is a prime number, and 2 is a primitive root mod k, i.e., the order of 2
mod k is k − 1. Since k|2n − 1, we have 2n ≡ 1 (mod k), whence k − 1 ≤ n, k ≤ n + 1. So in this
case, the number of cycles is relatively small.

However, we can select larger integer k, and use distinct t-correlated cycles to generate de Bruijn
sequences.
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Example 3. Let n = 128, and k = 3 ·5 ·17 = 255, l = (2128−1)/255. By calculation, the following
polynomial f(x) is an irreducible polynomial of degree n = 128 with period l.

f(x) =1 + x2 + x3 + x9 + x10 + x13 + x15 + x16 + x17 + x18 + x19 + x21

+ x23 + x28 + x32 + x33 + x34 + x36 + x38 + x41 + x43 + x44 + x45

+ x47 + x48 + x50 + x53 + x57 + x59 + x60 + x66 + x67 + x74 + x75

+ x80 + x81 + x82 + x83 + x85 + x86 + x92 + x93 + x94 + x96 + x98

+ x99 + x101 + x103 + x104 + x106 + x109 + x110 + x111 + x112

+ x113 + x116 + x117 + x119 + x121 + x126 + x128

For t = 1, the 1-correlated order of f(x) is dt = Ordt(f) = 255, the order of 2 mod dt is rt = 8, the

cycle Z0 can join rt = 8 cycles of G(f), i.e., the subset Ω1(Z0) =
{
D

(2j)
f,1 (Z0) | j = 0, 1, 2, · · · , 7

}
of

G(f). The conjugate order of t mod l is γt = 128, the cycle Z0 has γt/rt = 16 pairs of conjugate states
with each cycles of Ω1(Z0), so there are 168 = 232 ways to join the cycle Z0 with the cycles of Ωt(Z0).
We should use many different values t to join all the cycles of G(f). The following table list all the
information about the selected t-correlated cycles: the width t, the t-correlated order dt = Ordt(f)
of f(x), the conjugate order γt of t mod l, the order rt of 2 mod dt, and the number (γt/rt)

rt , which
means that how many ways we can join Z0 with all the cycles of Ωt(Z0).

t dt γt rt number t dt γt rt number
1 255 128 8 232 3 15 128 4 220

5 85 128 8 232 7 255 128 8 232

9 255 128 8 232 11 255 128 8 232

15 85 128 8 232 17 255 128 8 232

19 255 128 8 232 21 17 128 8 232

25 255 128 8 232 27 85 128 8 232

29 255 128 8 232 31 51 128 8 232

35 5 128 4 220 37 85 128 8 232

39 15 128 4 220 41 51 128 8 232

43 85 128 8 232 47 85 128 8 232

49 85 128 8 232 61 17 128 8 232

65 255 128 8 232 67 85 128 8 232

77 51 128 8 232 79 255 128 8 232

87 255 128 8 232 93 255 128 8 232

133 255 128 8 232 143 255 128 8 232

197 255 128 8 232 243 51 128 8 232

337 3 128 2 212 349 255 128 8 232

By this method, we can generate 21032 (all the number in the last column are multiplied) distinct de
Bruijn sequences.

7 Conclusion

In this paper, we propose a method, for a suitable irreducible polynomial, we can generate all the
state cycles of G(f), and find enough pairs of conjugate states, which can join all the cycles of G(f)
resulting a full length cycle. The basic idea is that we use the concept of correlated cycles to generate
pairs of conjugate states, whose computation complexity is polynomial. Therefore, we can generate
de Burijn sequences with such large orders as 128.

When we use different t-correlated cycles to join cycles, we hope that the number k of cycles in
G(f) should be large enough, so that the period of selected polynomial f(x) will be small, and the
resulting sequence will become more complex. However, as our method is to join one special cycle
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Z0 with all other cycles of G(f), the period l of polynomial f(x) can not be too small. Meanwhile,
different t-correlated cycles may join the same cycles by lemma 4.1. To join all the cycles of G(f),
we need to search the width t until we can join all the cycles of G(f). The further problem is to find
some results on the choose of k, such that k is as large as possible.
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