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Abstract. Earlier in 2015, Bos, Costello, Naehrig, and Stebila (IEEE
Security & Privacy 2015) proposed an instantiation of Peikert's ring-
learning-with-errors (Ring-LWE) based key-exchange protocol (PQCrypto
2014), together with an implementation integrated into OpenSSL, with
the a�rmed goal of providing post-quantum security for TLS. In this
work we revisit their instantiation and stand-alone implementation. Specif-
ically, we propose new parameters and a better suited error distribu-
tion, analyze the scheme's hardness against attacks by quantum com-
puters in a conservative way, introduce a new and more e�cient error-
reconciliation mechanism, and propose a defense against backdoors and
all-for-the-price-of-one attacks. By these measures and for the same lat-
tice dimension, we more than double the security parameter, halve the
communication overhead, and speed up computation by more than a fac-
tor of 8 in a portable C implementation and by more than a factor of
20 in an optimized implementation targeting current Intel CPUs. These
speedups are achieved with comprehensive protection against timing at-
tacks.
Keywords. Post-quantum key exchange, Ring-LWE, high-speed soft-
ware, vectorization.

1 Introduction

The last decade in cryptography has seen the birth of numerous constructions
of cryptosystems based on lattice problems, achieving functionalities that were
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previously unreachable (e.g., fully homomorphic cryptography [38]). But even for
the simplest tasks in asymmetric cryptography, namely public-key encryption,
signatures, and key exchange, lattice-based cryptography o�ers an important
feature: resistance to all known quantum algorithms. In those times of quantum
nervousness [2, 68], time has come for the community to deliver and optimize
concrete schemes, and to get involved in the standardization of a lattice-based
cipher-suite in an open process.

For encryption and signatures, several competitive schemes have been pro-
posed; examples are NTRU encryption [48, 78], Ring-LWE encryption [62] as
well as the signature schemes BLISS [31], PASS [47] or the proposal by Bai and
Galbraith presented in [6]. To complete the lattice-based cipher-suite, Bos et
al. [18] recently proposed a concrete instantiation of the key-exchange scheme of
Peikert's improved version of the original protocol of Ding, Xie and Lin [49,71].
Bos et al. proved its practicality by integrating their implementation as addi-
tional cipher-suite into the transport layer security (TLS) protocol in OpenSSL.
In the following we will refer to this proposal as BCNS.

Unfortunately, the performance of BCNS seemed rather disappointing. We
identify two main sources for this ine�ciency. First the analysis of the failure
probability was far from tight, resulting in a very large modulus q ≈ 232. As a
side e�ect, the security is also signi�cantly lower than what one could achieve
with Ring-LWE for a ring of rank n = 1024. Second the Gaussian sampler, used
to generate the secret parameters, is fairly ine�cient and hard to protect against
timing attacks. This second source of ine�ciency stems from the fundamental
misconception that high-quality Gaussian noise is crucial for encryption based
on LWE5, which has also made various other implementations [29,73] slower and
more complex than they would have to be.

1.1 Contributions

In this work, we propose solutions to the performance and security issues of the
aforementioned BCNS proposal [18]. Our improvements are possible through a
combination of multiple contributions:

� Our �rst contribution is an improved analysis of the failure probability of
the protocol. To push the scheme even further, inspired by analog error-
correcting codes, we make use of the lattice D4 to allow error reconciliation
beyond the original bounds of [71]. This drastically decreases the modulus
to q = 12289 < 214, which improves both e�ciency and security.

� Our second contribution is a more detailed security analysis against quantum
attacks. We provide a lower bound on all known (or even pre-supposed)
quantum algorithms solving the shortest-vector problem (SVP), and deduce
the potential performance of a quantum BKZ algorithm. According to this
analysis, our improved proposal provides 128 bits of post-quantum security
with a comfortable margin.

5 This is very di�erent for lattice-based signatures or trapdoors, where distributions
need to be meticulously crafted to prevent any leak of information on a secret basis.
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� We furthermore propose to replace the almost-perfect discrete Gaussian dis-
tribution by something relatively close, but much easier to sample, and prove
that this can only a�ect the security marginally.

� We replace the �xed parameter a of the original scheme by a freshly chosen
random one in each key exchange. This incurs an acceptable overhead but
prevents backdoors embedded in the choice of this parameter and all-for-
the-price-of-one attacks.

� We specify an encoding of polynomials in the number-theoretic transform
(NTT) domain which allows us to eliminate half of the NTT transformations
inside the protocol computation.

� To demonstrate the applicability and performance of our design we provide
a portable reference implementation written in C and a highly optimized
vectorized implementation that targets recent Intel CPUs and is compatible
with recent AMD CPUs. We describe an e�cient approach to lazy reduction
inside the NTT, which is based on a combination of Montgomery reductions
and short Barrett reductions.

Availability of software. We place all software described in this paper in
the public domain. It is available online at https://cryptojedi.org/crypto/
#newhope and https://github.com/tpoeppelmann/newhope.

Acknowledgments. We are thankful to Mike Hamburg for pointing out a mis-
take in a previous version of this paper.

Organization of this paper. Section 2 �rst describes previous proposals for
lattice-based key exchange and then introduces our proposal. Sections 3�6 dis-
cuss security properties of our proposal; Section 7 gives details about the message
encoding and implementation techniques; and �nally Section 8 presents perfor-
mance results for our implementation.

2 Lattice-based key exchange

Let Z be the ring of rational integers. We de�ne for an x ∈ R the rounding
function bxe = bx+ 1

2c ∈ Z. Let Zq, for an integer q ≥ 1, denote the quotient ring
Z/qZ. We de�ne R = Z[X]/(Xn + 1) as the ring of integer polynomials modulo
Xn+1. ByRq = Zq[X]/(Xn+1) we mean the ring of integer polynomials modulo
Xn + 1 where each coe�cient is reduced modulo q. In case χ is a probability

distribution over R, then x $← χ means the sampling of x ∈ R according to χ.

When we write a
$← Rq this means that all coe�cients of a are chosen uniformly

random from Zq. For a probabilistic algorithm A we denote by y
$← A that the

output of A is assigned to y and that A is running with randomly chosen coins.
We recall the discrete Gaussian distribution DZ,σ which is parametrized by the
Gaussian parameter σ ∈ R and de�ned by assigning a weight proportional to

exp(−x
2

2σ2 ) to all integers x.
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2.1 The scheme of Peikert

In this section we brie�y revisit the passively secure key-encapsulation mecha-
nism (KEM) that was proposed by Peikert [71] and instantiated in [18] (BCNS).
Peikert's KEM scheme is de�ned by the algorithms (Setup, Gen, Encaps, Decaps)
and after a successful protocol run both parties share an ephemeral secret key
that can be used to protect further communication (see Protocol 1).

The KEM scheme by Peikert closely resembles a previously introduced Ring-
LWE encryption scheme [61] but due to a new error-reconciliation mechanism,
one Rq component of the ciphertext can be replaced by a more compact element
inR2. This e�ciency gain is possible due to the observation that its not necessary
to transmit an explicitly chosen key to establish a secure ephemeral session
key. In Peikert's scheme the reconciliation just allows both parties to derive the
session key from an approximately agreed pseudorandom ring element. For Alice
this ring element is us = ass′+e′s and for Bob it is v = bs′+e′′ = ass′+es′+e′′.
For a full explanation of the reconciliation we refer to the original paper [71] but
brie�y recall the cross-rounding function 〈·〉2 de�ned as 〈v〉2 := b 4q · ve mod 2

and the randomized function dbl(v) := 2v − ē for some random ē where ē = 0
with probability 1

2 , ē = 1 with probability 1
4 , and ē = −1 with probability 1

4 .
Let I0 = {0, 1, . . . , b q2e − 1}, I1 = {−b q2c, . . . ,−1}, and E = [− q4 ,

q
4 ) then the

reconciliation function rec(w, b) is de�ned as

rec(w, b) =

{
0, if w ∈ Ib + E (mod q)

1, otherwise.

If these functions are applied to polynomials this means they are applied to each
of the coe�cients separately.

Parameters: q, n, χ
KEM.Setup() :

a
$←Rq

Alice (server) Bob (client)
KEM.Gen(a) : KEM.Encaps(a,b) :

s, e
$← χ s′, e′, e′′

$← χ

b←as + e
b−→ u←as′ + e′

v←bs′ + e′′

v̄
$← dbl(v)

KEM.Decaps(s, (u,v′)) :
u,v′←−−− v′ = 〈v̄〉2

µ←rec(2us,v′) µ←bv̄e2

Protocol 1: Peikert's KEM mechanism.
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2.2 The BCNS proposal

In a work by Bos, Costello, Naehrig, and Stebila [18] (BCNS), Peikert's KEM [71]
was phrased as a Di�e-Hellman related protocol (see again Protocol 1), instan-
tiated for a concrete parameter set, and integrated into OpenSSL (see Section 8
for a performance comparison). Selection of parameters was necessary as Peik-
ert's original work does not contain concrete parameters and the security as
well as error estimation are based on asymptotics. The authors of [18] chose
a dimension n = 1024, a modulus q = 232 − 1, χ = DZ,σ and the Gaussian
parameter σ = 8/

√
2π ≈ 3.192. It is claimed that these parameters provide

a classical security level of at least 128 bits considering the distinguishing at-
tack [58] with distinguishing advantage less than 2−128 and 281.9 bits against an
optimistic instantiation of a quantum adversary. The probability of a wrong key
being established is less than 2−2

17

= 2−131072. The message b sent by Alice is a
ring element and thus requires at least log2(q)n = 32 kbits while Bob's response
(u, r) is a ring element Rq and an element from R2 and thus requires at least 33
kbits. As the polynomial a ∈ Rq is shared between all parties this ring element
has to be stored or generated on-the-�y. For timings of their implementation we
refer to Table 2. We would also like to note that besides its aim for securing
classical TLS, the BCNS protocol has already been proposed as a building block
for Tor [79] on top of existing elliptic-curve infrastructure [41].

2.3 Our proposal

In this section we detail our proposal and modi�cations of Peikert's protocol6.
For the same reasons as described in [18] we opt for an unauthenticated key-
exchange protocol; the protection of stored transcripts against future decryption
using quantum computers is much more urgent than post-quantum authentica-
tion. Authenticity will most likely be achievable in the foreseeable future using
proven pre-quantum signatures and attacks on the signature will not compro-
mise previous communication. Additionally, by not designing or instantiating a
lattice-based authenticated key-exchange protocol (see [33, 81]) we reduce the
complexity of the key-exchange protocol and simplify the choice of parameters.
We actually see it as an advantage to decouple key exchange and authentication
as it allows a protocol designer to choose the optimal algorithm for both tasks
(e.g., an ideal-lattice-based key exchange and a hash-based signature like [14] for
authentication). Moreover, this way the design, security level, and parameters
of the key-exchange scheme are not constrained by requirements introduced by
the authentication part.

Parameter choices. A high-level description of our proposal is given in Proto-
col 2 and as in [18, 71] all polynomials except for r ∈ Zn4 are de�ned in the ring
Rq = Zq[X]/(Xn + 1) with n = 1024 and q = 12289. We decided to keep the

6 For the TLS use-case and for compatibility with BNCS [18] the key exchange is
initiated by the server. However, in di�erent scenarios the roles of the server and
client can be exchanged.
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dimension n = 1024 as in [18] to be able to achieve appropriate long-term secu-
rity7. As polynomial arithmetic is fast and also scales better (doubling n roughly
doubles the time required for a polynomial multiplication), our choice of n ap-
pears to be acceptable from a performance point of view. We chose the modulus
q = 12289 as it is the smallest prime for which it holds that q ≡ 1 mod 2n so
that the number theoretic transform (NTT) can be realized e�ciently and that
we can transfer polynomials in NTT encoding (see Section 7).

As the security level grows with the noise-to-modulus ratio, it makes sense to
choose the modulus as small as possible, improving compactness and e�ciency
together with security. The choice is also appealing as the prime is already used
by some implementations of Ring-LWE encryption [29, 59, 76] and BLISS sig-
natures [31, 72]; thus sharing of some code (or hardware modules) between our
proposal and an implementation of BLISS would be possible.

Changed noise distribution and improved reconciliation. Notably, we
also change the distribution of the LWE secret and error and replace discrete
Gaussians by the centered binomial distribution ψk of parameter k = 12 (see
Section 3). The reason is that it turned out to be challenging to implement
a discrete Gaussian sampler e�ciently and protected against timing attacks
(see [18] and Section 4). On the other hand, sampling from the centered binomial
distribution is easy and does not require high-precision computations or large
tables as one may sample from ψk by computing

∑k
i=0 bi− b′i, where the bi, b′i ∈

{0, 1} are uniform independent bits. The distribution ψk is centered (its mean is
0), has variance k/2 and for k = 12 this gives a standard deviation of ς =

√
12/2.

Contrary to [18, 71] we hash the output of the reconciliation mechanism, which
makes a distinguishing attack irrelevant and allows us to argue security for the
modi�ed error distribution.

Moreover, we generalize Peikert's reconciliation mechanism using an analog
error-correction approach (see Section 4). The design rationale is that we only
want to transmit a 256-bit key but have n = 1024 coe�cients to encode data
into. Thus we encode one key bit into four coe�cients; by doing so we achieve
increased error resilience which in turn allows us to use larger noise for better
security. With an error probability provably less than 2−110 this event is still
negligible but not so unlikely that we have weakened our scheme. An additional
bene�t of this method over approaches like digital error-correcting codes is that
it is very simple and can be implemented in constant time using only integer
arithmetic�which is important on constrained devices without a �oating-point
unit.

Short-term public parameters and caching. At last, we do not rely on a
globally chosen public parameter a as the e�ciency increase in doing so is not

7 An acceptable security level could probably also be achieved with n = 512 given
today's state of the art in cryptanalysis (see scripts/PQsecurity.py) . However,
in order to be able to claim long term security properties we opted for a more
conservative choice, anticipating further advances in cryptanalysis and cryptanalytic
hardware or software.
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worth the measures that have to be taken to allow trusted generation of this
value and the defense against backdoors [12]. Moreover, this approach avoids
the rather uncomfortable situation that all connections rely on a single instance
of a lattice problem (see Section 6) in the �avor of the �Logjam� DLP attack [1].

If e�ciency is a concern, the public parameter a chosen by the server may still
be cached for some time (say two hours) on the server side without substantially
a�ecting the security of our scheme. The saving would be quite signi�cant, espe-
cially in our AVX2 implementation where the generation of a costs roughly 44%
of the cycles on the server side. Another opportunity for practical optimization
and low-latency operation would be the precomputation of parts of the protocol
that are independent of the inputs (e.g., s, e, s′, e′, e′′) or, in combination with
caching of a, of parts that only depend on a (e.g., b,u).

However, the secrets must never be cached. Note that for ephemeral Di�e-
Hellman key-exchange in TLS it is common for servers to cache a key pair for a
short time to increase performance. For example, according to [22], Microsoft's
SChannel library caches ephemeral keys for 2 hours. We remark that for the
lattice-based key exchange described in [71], for the key exchange described
in [18], and also for the key exchange described in this paper, such short-term
caching would be disastrous for security. Indeed, it is crucial that both parties use
fresh secrets for each instantiation (thus the performance of the noise sampling
is crucial). As short-term key caching typically happens on higher layers of TLS
libraries than the key-exchange implementation itself, we stress that particular
care needs to be taken to eliminate such caching when switching from ephemeral
(elliptic-curve) Di�e-Hellman key exchange to post-quantum lattice-based key
exchange.

Parameters: q = 12289 < 214, n = 1024
Error distribution: ψ12

Alice (server) Bob (client)

seed
$← {0, 1}256

a←Parse(SHAKE-128(seed))

s, e
$← ψn

12 s′, e′, e′′
$← ψn

12

b←as + e
(b,seed)−−−−−→ a←Parse(SHAKE-128(seed))

u←as′ + e′

v←bs′ + e′′

v′←us
(u,r)←−−− r

$← HelpRec(v)
ν←Rec(v′, r) ν←Rec(v, r)

µ←SHA3-256(ν) µ←SHA3-256(ν)

Protocol 2: Our Scheme. For the de�nitions of HelpRec and Rec see Section 4.
For the de�nition of encodings and the de�nition of Parse see Section 7.
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3 Choice of the error distribution

On non-Gaussian errors. In works like [18, 29, 76], a signi�cant algorithmic
e�ort is devoted to sample from a discrete Gaussian distribution to a rather high
precision. In the following we argue that such e�ort is not necessary.

Indeed, we recall that the original worst-case to average-case reductions for
LWE [74] and Ring-LWE [62] state hardness for continuous Gaussian distri-
butions (and therefore also trivially apply to rounded Gaussian, which di�er
from discrete Gaussians). This also extends to discrete Gaussians [19] but such
proofs are not necessarily intended for direct implementations. We recall that
the use of discrete Gaussians (or other distributions with very high-precision
sampling) is only crucial for signatures [60] and lattice trapdoors [39], to pro-
vide zero-knowledgeness. As for LWE, we do not know any attacks exploiting
non-Gaussianity, and several works have established its hardness for other dis-
tributions, like uniform in a small interval [30,64], but such proofs do not carry
over to Ring-LWE. Below, we will provide a simple ad-hoc reduction for our
application, based on Rényi divergence, similarly to [7].

A simple security reduction to rounded Gaussians. In [7], Bai et al.
identify Rényi divergence as a powerful tool to improve or generalize security
reductions in lattice-based cryptography. We review the key properties. The
Rényi divergence [7, 75] is parametrized by a real a > 1, and de�ned for two
distributions P,Q by:

Ra(P‖Q) =

 ∑
x∈Supp(P )

P (x)a

Q(x)a−1

 1
a−1

.

It is multiplicative: if P, P ′ are independents, and Q,Q′ are also independents,
then Ra(P × P ′‖Q × Q′) ≤ Ra(P‖Q) · Ra(P ′‖Q′). Finally, Rényi divergence
relates the probabilities of the same event E under two di�erent distributions P
and Q:

Q(E) ≥ P (E)a/(a−1)/Ra(P ||Q).

For our argument, recall that because the �nal shared key µ is obtained
through hashing as µ←SHA3-256(ν) before being used, then, in the random
oracle model (ROM), any successful attacker must recover ν exactly. We call this
event E. We also de�ne ξ to be the rounded Gaussian distribution of parameter
σ =

√
k/2 =

√
6, that is the distribution of b

√
6 ·xe where x follows the standard

normal distribution.
As idealized protocol we denote Protocol 2 where the distribution ψ12 is

replaced by ξ.
A simple script (scripts/Renyi.py) computes R9(ψ12‖ξ) ≈ 1.00103. Yet

because 5n = 5120 samples are used per instance of the protocol, we need to
consider the divergence R9(P‖Q) = R9(ψ12, ξ)

5n ≤ 195 where P = ψ5n
12 and

Q = ξ5n. We conclude as follows.
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Lemma 1. If an (unbounded) algorithm, given as input the transcript of an
instance of Protocol 2 succeeds in recovering the pre-hash key ν with probability
p, then it would also succeed against the idealized protocol with probability at least

q ≥ p9/8/195.

The choice a = 9 is rather arbirtrary but seemed a good trade-o� between
the coe�cient 1/Ra(ψ12‖ξ) and the exponent a/(a − 1). This reduction is pro-
vided as a safeguard: switching from Gaussian to binomial distributions can not
dramatically decrease the security of the scheme. With practicality in mind,
we will simply ignore the loss factor induced by the above reduction, since the
best-known attacks against LWE do not exploit the structure of the error distri-
bution, and seem to depend only on the standard deviation of the error (except
in extreme cases [4, 50]).

Simple implementation.We remark that sampling from the centered binomial
distribution ψ12 is rather trivial in hardware and software, given the availability
of a uniform binary source. Additionally, the implementation of this sampling
algorithm is much easier to protect against timing attacks as no large tables
or data-dependent branches are required (c.f. to the issues caused by the table-
based approach used in [18]).

4 Improved error-recovery mechanism

The algorithms described in this section are provided in a python script for
testing purposes (scripts/Rec.py), in addition to the fast C and AVX imple-
mentations.

Splitting for recovery. By S = Z[X]/(X4 + 1) we denote the 8-th cyclotomic
ring, having rank 4 over Z. Recall that our full ring isR = Z[X]/(Xn+1) for n =
1024. An element of the full ring R can be identi�ed to a vector (f ′0, . . . , f

′
255) ∈

Sn/4 such that

f(X) = f ′0(X256) +Xf ′1(X256) + · · ·+X255f ′255(X256).

In other words, the coe�cients of f ′i are the coe�cients fi, fi+256, fi+512, fi+768.

4.1 Low-density encoding

In most of the literature, Ring-LWE encryption allows to encrypt 1 bit per
coordinate of the ciphertext. It is also well known how to increase the encryption
space allowing more than 1 bit per coordinate by having a larger modulus-
to-error ratio (and therefore decreasing the security for a �xed dimension n).
Nevertheless, when it comes to exchanging a symmetric key (of, say, 256 bits),
we end up having a message space larger than necessary.

In [73] Pöppelmann and Güneysu introduced a technique to encode one bit
into two coordinates, and veri�ed experimentally that it led to a better error
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tolerance. This allows to either increase the error and therefore improve the
security of the resulting scheme or to decrease the probability of decryption
failures. Below we propose a generalization of this technique in dimension 4
together with a geometric interpretation and a rigorous analysis.

Le lattice D4. One may construct the lattice D4 as two shifted copies of Z4

using a glue vector g:

D4 = Z4 ∪ g + Z4 where gt =

(
1

2
,

1

2
,

1

2
,

1

2

)
.

We recall that D4 provides the densest lattice sphere packing in dimension
4 [26]. The Voronoi cell V of D4 is the icositetrachoron [57] (a.k.a. the 24-cell,
the convex regular 4-polytope with 24 octahedral cells) and the Voronoi rele-
vant vectors of two types: 8 type-A vectors (±1, 0, 0, 0), (0,±1, 0, 0), (0, 0,±1, 0),
(0, 0, 0,±1), and 16 type-B vectors (± 1

2 ,±
1
2 ,±

1
2 ,±

1
2 ). The natural condition to

correct decoding in D4 should therefore be e ∈ V, and this can be expressed
as 〈e, v〉 ≤ 1/2 for all Voronoi relevant vectors v. Interestingly, those 24-linear
inequalities can be split as ‖e‖1 ≤ 1 (providing the 16 inequalities for the type-B
vectors) and ‖e‖∞ ≤ 1/2 (providing the 8 inequalities for the type-A vectors). In
other words, the 24-cell V is the intersection of an `1-ball (an hexadecachoron)
and an `∞-ball (a tessaract).

As our basis for D4, we will choose B = (u0,u1,u2,g) where ui are the
canonical basis vectors of Z4. The construction of D4 with a glue vector gives
a simple and e�cient algorithm for �nding closest vectors in D4. Note that we
have u3 = −u0 − u1 − u2 + 2g = B · (−1,−1,−1, 2)t.

Algorithm 1 CVPD4
(x ∈ R4)

Ensure: An integer vector z such that Bz is a closest vector to x: x−Bz ∈ V
1: v0←bxe
2: v1←bx− ge
3: k←(‖x− v0‖1 < 1) ? 0 : 1
4: (v0, v1, v2, v3)t←vk

5: return (v0, v1, v2, k)t + v3 · (−1,−1,−1, 2)t

Decoding inD4/Z4. Because u0,u1,u2 and 2g belong to Z4, a vector inD4/Z4

is simply given by the parity of its last coordinate in base B. This gives an even
simpler algorithm to encode and decode a bit in D4/Z4. The encoding is given
by LDEncode(k ∈ {0, 1}) = kg and the decoding is given below.

10



Algorithm 2 LDDecode(x ∈ R4/Z4)

Ensure: A bit k such that kg is a closest vector to x + Z4: x− kg ∈ V + Z4

1: v = x− bxe
2: return 0 if ‖v‖1 ≤ 1 and 1 otherwise

When we want to decode to D4/Z4 rather than to D4, the 8 inequalities given
by type-A vectors are irrelevant since those vectors belong to Z4. It follows that:

Lemma 2. For any k ∈ {0, 1} and any e ∈ R4 such that ‖e‖1 < 1, we have
LDDecode(kg + e) = k.

4.2 Reconciliation

We de�ne the following r-bit reconciliation function:

HelpRec(x; b) = CVPD4

(
2r

q
(x + bg)

)
mod 2r,

where b ∈ {0, 1} is a uniformly chosen random bit (sometimes omitted). This
random vector is equivalent to the �doubling� trick of Peikert [71]. Indeed, be-
cause q is odd, it is not possible to map deterministically the uniform distribution
from Z4

q to Z2, which necessary results in a �nal bias.

Lemma 3. Assume r ≥ 1 and q ≥ 9. For any x ∈ Z4
q, set r := HelpRec(x) ∈

Z4
2r . Then,

1
qx −

1
2rBr mod 1 is close to a point of D4/Z4, precisely, for α =

1/2r + 2/q:

1

q
x− 1

2r
Br ∈ αV + Z4 or

1

q
x− 1

2r
Br ∈ g + αV + Z4.

Additionally, for x uniformly chosen in Z4
q we have LDDecode( 1

qx −
1
2rBr) is

uniform in {0, 1} and independent of r.

Proof. One can easily check the correctness of the CVPD4
algorithm: for any y,

y − B · CVPD4
(y) ∈ V. To conclude with the �rst property, it remains to note

that g ∈ 2V, and that V is convex.
For the second property, we show that there is a permutation π : (x, b) 7→

(x′, b′) of Z4
q × Z2, such that, forall (x, b) it holds that:

HelpRec(x; b) = HelpRec(x′; b′) (= r) (1)

LDDecode

(
1

q
x− 1

2r
Br

)
= LDDecode

(
1

q
x′ − 1

2r
Br

)
⊕ 1 (2)

where ⊕ denotes the xor operation. We construct π as follows: set b′ := b ⊕ 1
and x′ = x + (b − b′ + q)g mod q. Note that b − b′ + q is always even so
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(b− b′+ q)g is always well de�ned in Zq(recall that g = (1/2, 1/2, 1/2, 1/2)t). It
follows straightforwardly that 2r

q (x + bg)− 2r

q (x′ + b′g) = −2rg mod 2r. Since

g ∈ D4, condition (1) holds. For condition (2), notice that:

1

q
x− 1

2r
Br ∈ kg + αV mod 1 =⇒ 1

q
x′ − 1

2r
Br ∈ (k ⊕ 1)g + α′V mod 1

for α′ = α + 2/q. Because r ≥ 1 and q ≥ 9, we have α′ = 1/2r + 4/q < 1,
and remembering that e ∈ V ⇒ ‖e‖1 ≤ 1 (inequalities for type-B vectors), one
concludes by Lemma 2. ut

It remains to de�ne Rec(x, r) = LDDecode( 1
qx −

1
2rBr) to describe a 1-

bit-out-of-4-dimensions reconciliation protocol (Protocol 3). Those functions are
extended to 256-bits out of 1024-dimensions by the splitting described at the
beginning of this section.

Alice Bob
x′ ∈ Z4

q x′ ≈ x x ∈ Z4
q

r←−−−− r←HelpRec(x) ∈ Z4
2r

k′←Rec(x′, r) k←Rec(x, r)

Protocol 3: Reconciliation protocol in qD4/qZ4.

Lemma 4. If ‖x − x′‖1 < (1 − 1/2r) · q − 2, then the above protocol 3 ensures
k = k′. Additionally, if x is uniform, then k is uniform independently of r.

Fixed-point implementation. One remarks that, while we described our al-
gorithm in R for readability, �oating-point-arithmetic is not required in practice.
Indeed, all computation can be performed using integer arithmetic modulo 2rq.
Our parameters (r = 2, q = 12289) are such that 2rq < 216, which o�ers a good
setting also for small embedded devices.

4.3 Failure probability

To proceed with the task of bounding�as tightly as possible�the failure prob-
ability, we rely on the notion of moments of a distribution and of subgaussian
random variables [80]. We recall that the moment-generating function of a real
random variable X is de�ned as follows:

MX (t) := E[exp(t(X − E[X ]))].

We extend the de�nition to distributions over R: Mφ := MX where X←φ. Note
that Mφ(t) is not necessary �nite for all t, but it is the case if the support of φ
is bounded. We also recall that if X and Y are independent, then the moment-
generating functions verify the identity MX+Y(t) = MX (t) ·MY(t).

12



Theorem 1 (Cherno�-Cramer inequality). Let φ be a distribution over R
and let X1 . . .Xn be i.i.d. random variable of law φ, with average µ. Then, for
any t such that Mφ(t) <∞ it holds that

P

[
n∑
i=1

Xi ≥ nµ+ β

]
≤ exp (βt+ n ln(Mφ(t))) .

De�nition 1. A centered distribution φ over R is said to be σ-subgaussian if
its moment-generating function veri�es EX←φ[exp(tX )] ≤ exp(2t2σ2).

A special case of Cherno�-Cramer bound follows by choosing t appropriately.

Lemma 5 (Adapted from [80]). If x has independently chosen coordinates
from φ, a σ-subgaussian distribution, then, for any vector v ∈ Rn, except with
probability less than exp(−τ2/2), we have:

〈x,v〉 ≤ ‖v‖στ.

The centered binomial distribution ψk of parameter k is
√
k/2-subgaussian.

This is established from the fact that b0 − b′0 is 1
2 -subgaussian (which is easy

to check), and by Euclidean additivity of k independent subgaussian variables.
Therefore, the binomial distribution used (of parameter k = 12) is

√
6-subgaussian.

We here propose a rather tight tail-bound on the error term. We recall that
the di�erence d in the agreed key before key reconciliation is d = es′− e′s+ e′′.
We wish to bound ‖d′i‖1 for all i ≤ 255, where the d′i ∈ S form the decomposition
of d described in Section 4.1. Note that, seen as a vector over R, we have

‖x‖1 = max
y
〈x, y〉,

where y ranges over {±1}4. We also remark that for a,b ∈ R, one may rewrite
(ab)i ∈ S

(ab)i =

255∑
j=0

±ajb(i−j) mod 256,

where the sign ± depends only on the indices i, j. This allows to rewrite

‖(es′ − e′s)i‖1 = max
y

255∑
j=0

±
(
〈ei, si−jy〉+ 〈e′i, s′i−jy〉

)
(3)

where y ∈ S ranges over all polynomials with ±1 coe�cients.

Lemma 6. For each y ∈ S with ±1 coe�cients, and if s, s′ ∈ S are drawn with
independent coe�cients from ψ12, then, except with probability 2−111, the vector
v = (s0y, . . . , s255y, s

′
0y, . . . , s

′
255y) ∈ Z2048 veri�es ‖v‖22 ≤ 77000.
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Proof. Let us �rst remark that ‖v‖22 =
∑512
i=0 ‖siy‖22 where the si'ss are i.i.d.

random variables following distribution ψ4
12. Because the support of ψ

4
12 is rea-

sonably small (of size 234 ≈ 218), we numerically compute the distribution
ϕy : ‖sy‖22 where s ← ψ4

12 for each y (see scripts/Lem6Cor1.py). Note that
such numerical computation of the probability density function does not raise
numerical stability concern, because it involves a depth-2 circuit of multipli-
cation and addition of positive reals: the relative error growth remain at most
quadratic in the length of the computation.

From there, one may compute µ = EX←ϕy [X ](= 96) and Mϕy (t) (similarly
this computation has polynomial relative error growth assuming exp is computed
with constant relative error growth).

We apply Cherno�-Cramer inequality with parameters n = 512, nµ + β =
77000 and t = 0.0055, and obtain the desired inequality for each given y, except
with probability at most 2−115.06. We conclude by union-bound over the 24

choices of y. ut

Corollary 1. For se, e′, e′′, s, s′ ∈ R drawn with independent coe�cients ac-
cording to ψ12, except with probability at most 2−110 we have simultaneously for
all i ≤ 255 that

‖(e′s + es′ + e′′)i‖1 ≤ 9021 < b3q/4c − 2 = 9214.

Proof. First, we know that ‖(e′′)i‖1 ≤ 4 ·12 = 48 for all i's, because the support
of ψ is [−12, 12]. Now, for each i, write

‖(e′s + es′)i‖1 = max
y
〈vi,y, e+〉

according to Equation 3, where vy depends on s, s′, and e+ is a permutation
of the 2048 coe�cients of e and e′, each of them drawn independently from
ψ8. By Lemma 6 ‖v0,y‖2 ≤ 77000 for all y with probability less that 2−111.
Because vi,y is equal to v0,y up to a signed permutation of the coe�cient, we
have ‖vi,y‖ ≤ 77000 for all i, y.

Now, for each i, y, we apply the tail bound of Lemma 5 with τ = 13.2 knowing
that ψ12 is σ-subgaussian for σ =

√
12/2, and we obtain, except with probability

at most 2 · 2−125.6 that
|〈vi,y, e〉| ≤ 8973.

By union bound, we conclude that the claimed inequality holds except with
probability less than 2−111 + 2 · 8 · 256 · 2−125 ≤ 2−110. ut

5 Post-quantum security analysis

In [18] the authors chose Ring-LWE for a ring of rank n = 1024, while most
previous instantiations of the Ring-LWE encryption scheme, like the ones in [29,
42,59,73], chose substantially smaller rank n = 256 or n = 512. It is argued that
it is unclear if dimension 512 can o�er post-quantum security. Yet, the concrete
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post-quantum security of LWE-based schemes has not been thoroughly studied,
as far as we know. In this section we propose such a (very pessimistic) concrete
analysis. In particular, our analysis reminds us that the security depends as
much on q and its ratio with the error standard deviation ς as it does on the
dimension n. That means that our e�ort of optimizing the error recovery and its
analysis not only improves e�ciency but also o�ers superior security.

Better safe than sorry. With all our improvements, it would be possible to
build a scheme with n = 512 (and k ≈ 8, q = 12289) and to obtain security
similar to the one of [18], and therefore further improve e�ciency. Nevertheless,
as history showed us with RSA-512 [27], the standardization and deployment of
a scheme awakens further cryptanalytic e�ort. In particular, our parameter set
could withstand a dimension-halving attack in the line of [36, Sec 8.8.1] based
on the Gentry-Szydlo algorithm [40,56]. Note that so far, such attacks are only
known for principal ideal lattices and there are serious obstructions to extend
them to Ring-LWE, but such precaution seems reasonable for long-term security.

If e�ciency dictates to downgrade the scheme to n = 512, we strongly advise
that the option n = 1024 should also be included, easing a potential transition.

5.1 Methodology: the core SVP hardness

We analyze the hardness of Ring-LWE as an LWE problem, since, so far, the best
known attacks do not make use of the ring structure. There are many algorithms
to consider in general (see the survey [3]), yet many of those are irrelevant for
our parameter set. In particular, because there are only m = n samples available
one may rule out BKW types of attacks [50] and linearization attacks [4]. This
essentially leaves us with two BKZ [24,77] attacks, usually referred to as primal
and dual attacks that we will brie�y remind below.

The algorithm BKZ proceeds by reducing a lattice basis using an SVP oracle
in a smaller dimension b. It is known [46] that the number of calls to that
oracle remains polynomial, yet concretely evaluating the number of calls is rather
painful, and this is subject to new heuristic ideas. We choose to ignore this
polynomial factor, and rather evaluate only the core SVP hardness, that is the
cost of one call to an SVP oracle in dimension b, which is clearly a pessimistic
estimation (from the defender's point of view).

5.2 Enumeration versus quantum sieve

Typical implementations [20, 24, 35] use an enumeration algorithm as this SVP
oracle, yet this algorithm runs in super-exponential time. On the other hand,
the sieve algorithms are known to run in exponential time, but are so far slower
in practice for accessible dimensions n ≈ 130. We choose the latter to predict
the core hardness and will argue that for the targeted dimension, enumerations
are expected to be greatly slower than sieving.

Quantum sieve. A lot of recent work has pushed the e�ciency of the orig-
inal lattice sieve algorithms [65, 67], improving the heuristic complexity from
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(4/3)n+o(n) ≈ 20.415n down to
√

3/2
n+o(n)

≈ 20.292n (see [9, 51]). The hidden
sub-exponential factor is known to be much greater than one in practice, so again,
estimating the cost ignoring this factor leaves us with a signi�cant pessimistic
margin.

Most of those algorithm have been shown [52] to bene�t from Grover's quan-
tum search algorithm, bringing the complexity down to 20.268n. It is unclear if
further improvements are to be expected. Yet because all those algorithm require

to classically build lists of size
√

4/3
n+o(n)

≈ 20.2075n, it is very plausible that
the best quantum SVP algorithm would run in time greater than 20.2075n.

Irrelevance of enumeration for our analysis. In [24], predictions of the
cost of solving SVP classically using the most sophisticated heuristic enumera-
tion algorithms are given. For example, solving SVP in dimension 100 requires
visiting about 240 nodes, and 2103 nodes in dimension 190. While it is unclear if
enumeration is easy to accelerate using quantum algorithms, a nested Grover's
search approach [21] would at best square root those running times, therefore
going from 220 to 251 as the dimension increases from 100 to 190.

On the other hand, our best-known attack bound 20.268n gives a cost of 251

in dimension 190, and the best plausible attack bound 20.2075n ≈ 239. Because
enumeration is super-exponential (both in theory and practice), its cost will be
worse than our bounds in dimension larger than 200 and we may safely ignore
this kind of algorithm.

5.3 Primal attack

The primal attack consists of constructing a unique-SVP instance from the LWE
problem and solving it using BKZ. We examine how large the block dimension
b is required to be for BKZ to �nd the unique solution. Given the matrix LWE
instance (A,b = As + e) one builds the lattice Λ = {x ∈ Zm+n+1 : (A| − Im| −
b)x = 0 mod q} of dimension d = m + n + 1, volume qm, and with a unique-
SVP solution v = (s, e, 1) of norm λ ≈ ς

√
n+m. Note that the number of used

samples m′ may be chosen between 0 and n in our case, but we numerically
veri�ed that the choice m = n was optimal.

Remark. Technically, more samples than m = n are available to attack Bob's
secret: an extra Ring-LWE sample is used to construct to the reconciliation bits r,
which is available to the attacker (allowing m up to 2n). Yet those reconciliation
bits give away too little information to be useful in a lattice attack. Precisely,
the rounding to q

22D4 provides no more information than a rounding to q
8Z

4,
and such rounding introduces an error of standard deviation of q

8
√
12
. Such errors

are way too large to help lattice attacks, as one may verify by setting mr>0 in
scripts/PQsecurity.py.

Success condition. We model the behavior of BKZ using the geometric series
assumption (which is known to be optimistic from the attacker's point of view),
that �nds a basis whose Gram-Schmidt norms are given by ‖b?i ‖ = δd−2i−1 ·
Vol(Λ)1/d where δ = ((πb)1/b · b/2πe)1/2(b−1) [3, 23]. The unique short vector v
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will be detected if the projection of v onto the vector space spanned by the last
b Gram-Schmidt vectors is shorter than b?d−b. Its projected norm is expected to

be ς
√
b, that is the attack is successful if and only if

ς
√
b ≤ δ2b−d−1 · qm/d. (4)

5.4 Dual attack

The dual attack consists of �nding a short vector in the dual lattice w ∈ Λ′ =
{(x,y) ∈ Zm × Zn : Atx = y mod q}. Assume we have found a vector (x,y)
of length ` and compute z = vt · b = vtAs + vte = wts + vte mod q which is
distributed as a Gaussian of standard deviation `ς if (A,b) is indeed an LWE
sample (otherwise it is uniform mod q). Those two distribution have statistical
distance about ε = exp(−πτ2) where τ = `ς/q, that is, given such a vector of
length ` one has an advantage ε against decision-LWE.

The length ` of a vector given by the BKZ algorithm is given by ` = ‖b0‖.
Knowing that Λ′ has dimension d = m+ n and volume qn we get ` = δd−1qn/d.
Therefore, obtaining an ε-distinguisher requires running BKZ with block dimen-
sion b where

− πτ2 ≥ ln ε. (5)

Again, we numerically observed that the choice m = n was optimal, with the
same remark as for the primal attack concerning choosing m > n.

In the context of key exchange, it is unclear that we want to consider this
attack for very small advantages like ε = 2−128. Indeed, only a distinguisher
with large advantage (say ε = 1/2) signi�cantly decreases the key space. We will
therefore give the cost for both those extreme cases.

5.5 Security claims

According to our analysis, we claim that our proposed parameters o�er at
least (and quite likely with a large margin) a post-quantum security of 128
bits. The cost of the primal attack and dual attacks (estimated by our script
scripts/PQsecurity.py) are given in Table 1. For comparison we also give a
lower bound on the security of [18] and do notice a signi�cantly improved secu-
rity in our proposal. Yet, because of the numerous pessimistic assumption made
in our analysis, we do not claim any quantum attacks reaching those bounds.

6 Preventing backdoors and all-for-the-price-of-one

attacks

One serious concern about the original design [18] is the presence of the poly-
nomial a as a �xed system parameter. As described in Protocol 2, our proposal
includes pseudorandom generation of this parameter for every key exchange. In
the following we discuss the reasons for this decision.
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Quantum core hardness of the BCNS proposal [18]: small-secret LWE with modulus
q ≈ 232, dimension n = 1024, error standard deviation ς = 3.192, and m = n samples.

Attack BKZ block dim. b log2(BKC) log2(BPC)

Primal 294 79 61
Dual (ε = 2−128) 228 61 47
Dual (ε = 1/2) 330 88 68

Quantum core hardness of our proposal: small-secret LWE with modulus q = 12289,
dimension n = 1024, error standard deviation ς =

√
6 and m = n samples.

Attack BKZ block dim. b log2(BKC) log2(BPC)

Primal 934 250 194
Dual (ε = 2−128) 691 185 143
Dual (ε = 1/2) 1498 401 311

Table 1: Core hardness of the proposal in [18] and of our proposal. BKC is the Best
Known (Quantum) Cost for solving SVP in dimension b, which is 20.268b (see [52]).
BPC is the Best Plausible (Quantum) Cost, that is 20.2075b as argued above. Note that
our estimation is very optimistic about the abilities of the attacker so that our result
for the parameter set from [18] does not indicate that it can be broken with ≈ 280 bit
operations, given today's state-of-the-art in cryptanalysis.

Backdoor. In the worst scenario, the �xed parameter a could be backdoored.
For example, inspired by NTRU trapdoors [48, 78], a dishonest authority may
choose mildly small f ,g such that f = g = 1 mod p for some prime p ≥ 33
and set a = gf−1 mod q. Then, given (a,b = as + e), the attacker can compute
bf = afs+fe = gs+fe mod q, and, because g, s, f , e are small enough, compute
gs + fe in Z. From this he can compute t = s + e mod p and, because the
coe�cients of s and e are smaller than 8, their sums are in [−16, 16]: knowing
them modulo p ≥ 33 is knowing them in Z. It now only remains to compute
(b− t) · (a− 1)−1 = (as− s) · (a− 1)−1 = s mod q to recover the secret s.

One countermeasure against such backdoors is the �nothing-up-my-sleeve�
process, which would, for example, choose a as the output of a hash function
on a common universal string like the digits of π. Yet, even this process may be
partially abused [12] or at least lower the trust into the generated parameters,
and, whenever possible should be avoided.

All-for-the-price-of-one attacks. Even if this common parameter has been
honestly generated, it is still rather uncomfortable to have the security of all con-
nections rely on a single instance of a lattice problem. The scenario is an entity
that discovers an unforeseen cryptanalytic algorithm, making the required lat-
tice reduction still very costly, but say, not impossible in a year of computation,
given its outstanding computational power. By �nding once a good enough basis
of the lattice Λ = {(a, 1)x+ (q, 0)y|x, y ∈ R}, this entity could then compromise
all communications, using for example Babai's decoding algorithm [5].
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This idea of massive precomputation that is only dependent on a �xed pa-
rameter a and then afterwards can be used to break all key exchanges is similar
in �avor to the 512-bit �Logjam� DLP attack [1]. This attack was only possible
in the required time limit because most TLS implementations use �xed primes
for Di�e-Hellman. One of the recommended mitigations by the authors of [1] is
to avoid �xed primes.

Against all authority. Fortunately, all those pitfalls can be avoided by having
the communicating parties generating a fresh a at each instance of the protocol
(as we propose). As mentioned in Section 2.3, if in practice it turns out to be
too expensive to generate a for every connection, it is also possible to cache
a on the server side8 for, say a few hours without signi�cantly weakening the
protection against all-for-the-price-of-one attacks. Additionally, the performance
impact of generating a is reduced by sampling a uniformly directly in NTT
format (recalling that the NTT is one-to-one map), and by transferring only a
short 256-bit seed for a (see Section 7).

A subtle question is to choose an appropriate primitive to generate a �random-
looking� polynomial a out of a short seed. For a security reduction, it seems to
the authors that there is no way around the (non-programmable) random oracle
model (ROM). It is argued in [34] that such requirement is in practice an overkill,
and that any pseudorandom generator (PRG) should also work. And while it is
an interesting question how such a reasonable pseudo-random generator would
interact with our lattice assumption, the cryptographic notion of a PRG is not
helpful to argue security. Indeed, it is an easy exercise9 to build (under the
NTRU assumption) a �backdoored� PRG that is, formally, a legitimate PRG,
but that makes our scheme insecure.

Instead, we prefer to base ourselves on a standard cryptographic hash-function,
which is the typical choice of an �instantiation� of the ROM. As a suitable op-
tion we see Keccak [17], which has recently been standardized as SHA3 in FIPS-
202 [70], and which o�ers extendable-output functions (XOF) named SHAKE.
This avoids costly external iteration of a regular hash function and directly �ts
our needs.

We use SHAKE-128 for the generation of a, which o�ers 128-bits of (post-
quantum) security against collisions and preimage attacks. With only a small
performance penalty we could have also chosen SHAKE-256, but we do not see
any reason for such a choice, in particular because neither collisions nor preim-
ages lead to an attack against the proposed scheme.

8 Note that the secrets s, e, s′, s′, e′′ have to be sampled fresh for every connection.
9 Consider a secure PRG p, and parse its output p(seed) as two small polynomial

(f ,g): an NTRU secret-key. De�ne p′(seed) = gf−1 mod q: under the decisional
NTRU assumption, p′ is still a secure PRG. Yet revealing the seed does reveal (f ,g)
and provides a backdoor as detailed above.
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7 Implementation

In this section we provide details on the encodings of messages and describe
our portable reference implementation written in C, as well as an optimized
implementation targeting AVX vector instructions.

7.1 Encodings and generation of a

The key-exchange protocol described in Protocol 1 and also our protocol as de-
scribed in Protocol 2 exchange messages that contain mathematical objects (in
particular, polynomials in Rq). Implementations of these protocols need to ex-
change messages in terms of byte arrays. As we will describe in the following,
the choice of encodings of polynomials to byte arrays has a serious impact on
performance. We use an encoding of messages that is particularly well-suited for
implementations that make use of quasi-linear NTT-based polynomial multipli-
cation.

De�nition of NTT and NTT
−1. The NTT is a tool commonly used in im-

plementations of ideal lattice-based cryptography [29,42,59,73]. For some back-
ground on the NTT and the description of fast software implementations we refer
to [45, 63]. In general, fast quasi-logarithmic algorithms exist for the computa-
tion of the NTT and a polynomial multiplication can be performed by computing
c = NTT−1(NTT(a) ◦ NTT(b)) for a,b, c ∈ R. An NTT targeting ideal lattices
de�ned in Rq = Zq[X]/(Xn + 1) can be implemented very e�ciently if n is
a power of two and q is a prime for which it holds that q ≡ 1 mod 2n. This
way a primitive n-th root of unity ω and its square root γ exist. By multiplying
coe�cient wise by powers of γ =

√
ω mod q before the NTT computation and

after the reverse transformation by powers of γ−1, no zero padding is required
and an n-point NTT can be used to transform a polynomial with n coe�cients.

We de�ne G = NTT(g) for G,g ∈ Rq with ω = 49 and γ = 7 (note that
γ2 = ω) as10

g = (g0, . . . , g1023) = (g0, γg1, γ
2g2, . . . , γ

1023g1023).

Then

NTT(g) =

1023∑
i=0

GiX
i, with

Gi =

1023∑
j=0

gjω
ij .

10 Note that in our implementation we use an in-place NTT algorithm which requires
bit-reversal operations. As an optimization these bit-reversals are skipped for the
forward transformation as all inputs are only randomly chosen noise. This optimiza-
tion is transparent to the protocol and for simplicity not speci�ed in this version of
the paper.
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The function g = NTT−1(G) is the inverse of the function NTT where ω is
replaced by ω−1 = 49−1 mod q = 1254 so that

NTT−1(G) =

1023∑
i=0

ĝiX
i, with

ĝi =

1023∑
j=0

Gjω
−ij .

where γ−1 mod q = 8778 and n−1 mod q = 12277 so that

g = (g0, . . . , g1023) = (n−1ĝ0, n
−1γ−1ĝ1, n

−1γ−2ĝ2, . . . , n
−1γ−1023ĝ1023).

De�nition of Parse. The public parameter a is generated from a 256-bit seed
through the extendable-output function SHAKE-128 [70, Sec. 6.2]. The output of
SHAKE-128 is considered as an array of 16-bit, unsigned, little-endian integers.
Each of those integers is reduced modulo 214 (the two most-signi�cant bits are
set to zero) and then used as a coe�cient of a if it is smaller than q and rejected
otherwise. The �rst such 16-bit integer is used as the coe�cient of X0, the next
one as coe�cient of X1 and so on. Due to a small probability of rejections,
the amount of output required from SHAKE-128 depends on the seed � what is
required is n = 1024 coe�cients that are smaller than q. The minimal amount of
output is thus 2KB; the average amount is 2730.66KB. Using a variable amount
of output from SHAKE-128 does not create a timing leak, simply because inputs
and outputs are public. The resulting polynomial a is considered to be in NTT

domain. This is possible because the NTT transforms uniform noise to uniform
noise.

The message format of (b, seed) and (u, r).With the de�nition of the NTT,
we can now de�ne the format of the exchanged messages. In both (b, seed) and
(u, r) the polynomial is transmitted in the NTT domain (as in works like [73,76]).
Polynomials are encoded as an array of 1024 little-endian 16-bit unsigned integers
in {0, . . . , q−1}. Each of these integers encodes one coe�cient, starting with the
constant term, followed by the coe�cient of X1 and so on. This leaves two bits
unused in every second byte, because q has only 14 bits. These bits are used to
store seed (in the unused upper bits of the �rst 128 coe�cients of b) and r (in
the unused upper bits of the coe�cients of u). Note that r is an array of 1024
2-bit integers and thus makes use of all the available space in the upper bits. We
denote these encodings to byte arrays as encodeA and encodeB and their inverses
as decodeA and decodeB. For a description of our key-exchange protocol including
encodings and with explicit NTT and NTT−1 transformations, see Protocol 4.

7.2 Portable C implementation

This paper is accompanied by a C reference implementation described in this
section and an optimized implementation for Intel and AMD CPUs described
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Parameters: q = 12289 < 214, n = 1024
Error distribution: ψ12

Alice (server) Bob (client)

seed
$← {0, . . . , 255}32

Parse(SHAKE-128(seed))

s, e
$← ψn

12 s′, e′, e′′
$← ψn

12

b←a ◦ NTT(s) + NTT(e)
ma=encodeA(b,seed)−−−−−−−−−−−−−→

2048Bytes
(b, seed)←decodeA(ma)

a←Parse(SHAKE-128(seed))
t←NTT(s′)
u←a ◦ t + NTT(e′)
v←NTT−1(b ◦ t + NTT(e′′))

(u, r)←decodeB(mb)
mb=encodeB(u,r)←−−−−−−−−−−−

2048 Bytes
r

$← HelpRec(v)

v′←NTT−1(u ◦ s) ν←Rec(v, r)
ν←Rec(v′, r) µ←SHA3-256(ν)
µ←SHA3-256(ν)

Protocol 4: Our proposed protocol including NTT and NTT−1 computations and
sizes of exchanged messages; ◦ denotes pointwise multiplication.

in the next section. The main emphasis in the C reference implementation is
on simplicity and portability. It does not use any �oating-point arithmetic and
outside the Keccak (SHA3-256 and SHAKE-128) implementation only needs 16-
bit and 32-bit integer arithmetic. In particular, the error-recovery mechanism
described in Section 4 is implemented with �xed-point (i.e., integer-) arithmetic.
Furthermore, the C reference implementation does not make use of the division
operator (/) and the modulo operator (%). The focus on simplicity and portability
does not mean that the implementation is not optimized at all. On the contrary,
we use it to illustrate various optimization techniques that are helpful to speed
up the key exchange and are also of independent interest for implementers of
other ideal-lattice-based schemes.

NTT optimizations. All polynomial coe�cients are represented as unsigned
16-bit integers. Our in-place NTT implementation transforms from bit-reversed
to natural order using Gentleman-Sande butter�y operations [25,37]. One would
usually expect that each NTT is preceded by a bit-reversal, but all inputs to NTT
are noise polynomials that we can simply consider as being already bit-reversed.
Note that the NTT−1 operation still involves a bit-reversal. The core of the NTT
and NTT−1 operation consists of 10 layers of transformations, each consisting of
512 butter�y operations of the form described in Listing 2.

Montgomery arithmetic and lazy reductions. The performance of oper-
ations on polynomials is largely determined by the performance of NTT and
NTT−1. The main computational bottleneck of those operations are 5120 but-
ter�y operations, each consisting of one addition, one subtraction and one mul-
tiplication by a precomputed constant. Those operations are in Zq; recall that q
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is a 14-bit prime. To speed up the modular-arithmetic operations, we store all
precomputed constants in Montgomery representation [66] with R = 218, i.e., in-
stead of storing ωi, we store 218ωi (mod q). After a multiplication of a coe�cient
g by some constant 218ωi, we can then reduce the result r to gω (mod q) with
the fast Montgomery reduction approach. In fact, we do not always fully reduce
modulo q, it is su�cient if the result of the reduction has at most 14 bits. The fast
Montgomery reduction routine given in Listing 1a computes such a reduction to
a 14-bit integer for any unsigned 32-bit integer in {0, . . . , 232 − q(R − 1) − 1}.
Note that the speci�c implementation does not work for any 32-bit integer; for
example, for the input 232 − q(R − 1) = 1073491969 the addition a=a+u causes
an over�ow and the function returns 0 instead of the correct result 4095. We will
establish in the following that this is not a problem for our software.

Aside from reductions after multiplication, we also need modular reductions
after addition. For this task we use the �short Barrett reduction� [8] detailed
in Listing 1b. Again, this routine does not fully reduce modulo q, but reduces
any 16-bit unsigned integer to an integer of at most 14 bits which is congruent
modulo q.

In the context of the NTT and NTT−1, we make sure that inputs have
coe�cients of at most 14 bits. This allows us to avoid Barrett reductions af-
ter addition on every second level, because coe�cients grow by at most one
bit per level and the short Barrett reduction can handle 16-bit inputs. Let
us turn our focus to the input of the Montgomery reduction (see Listing 2).
Before subtracting a[j+d] from t we need to add a multiple of q to avoid
unsigned under�ow. Coe�cients never grow larger than 15 bits and 3 · q =
36867 > 215, so adding 3 · q is su�cient. An upper bound on the expression
((uint32_t)t + 3*12289 - a[j+d]) is obtained if t is 215 − 1 and a[j+d]

is zero; we thus obtain 215 + 3 · q = 69634. All precomputed constants are in
{0, . . . , q − 1}, so the expression (W * ((uint32_t)t + 3*12289 - a[j+d]),
the input to the Montgomery reduction, is at most 69634 · (q − 1) = 855662592
and thus safely below the maximum input that the Montgomery reduction can
handle.

Listing 1 Reduction routines used in the reference implementation.

(a) Montgomery reduction (R = 218).

uint16_t montgomery_reduce(uint32_t a)
{
uint32_t u;

u = (a * 12287);
u &= ((1 << 18) - 1);
u *= 12289;
a = a + u;
return a >> 18;

}

(b) Short Barrett reduction.

uint16_t barrett_reduce(uint16_t a)
{

uint32_t u;

u = ((uint32_t) a * 5) >> 16;
u *= 12289;
a -= u;
return a;

}
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Listing 2 The Gentleman-Sande butter�y inside odd levels of our NTT com-
putation. All a[j] and W are of type uint16_t.

W = omega[jTwiddle++];
t = a[j];
a[j] = barrett_reduce(t + a[j+d]);
a[j+d] = montgomery_reduce(W * ((uint32_t)t + 3*12289 - a[j+d]));

Fast random sampling. As a �rst step before performing any operations on
polynomials, both Alice and Bob need to expand the seed to the polynomial a
using SHAKE-128. The implementation we use is based on the �simple� imple-
mentation by Van Keer for the Keccak permutation and slightly modi�ed code
taken from the �TweetFIPS202� implementation for everything else.

The sampling of centered binomial noise polynomials is based on a fast PRG
with a random seed from /dev/urandom followed by a quick summation of 12-
bit chunks of the PRG output. Note that the choice of the PRG is a purely
local choice that every user can pick independently based on the target hard-
ware architecture and based on routines that are available anyway (for example,
for symmetric encryption following the key exchange). Our C reference imple-
mentation uses ChaCha20 [11], which is fast, trivially protected against timing
attacks, and is already in use by many TLS clients and servers [53,54].

7.3 Optimized AVX2 implementation

Intel processors since the �Sandy Bridge� generation support Advanced Vector
Extensions (AVX) that operate on vectors of 8 single-precision or 4 double-
precision �oating-point values in parallel. With the introduction of the �Haswell�
generation of CPUs, this support was extended also to 256-bit vectors of integers
of various sizes (AVX2). It is not surprising that the enormous computational
power of these vector instructions has been used before to implement very high-
speed crypto (see, for example, [13,15,43]) and also our optimized reference im-
plementation targeting Intel Haswell processors uses those instructions to speed
up multiple components of the key exchange.

NTT optimizations. The AVX instruction set has been used before to speed
up the computation of lattice-based cryptography, and in particular the number-
theoretic transform. Most notably, Güneysu, Oder, Pöppelmann and Schwabe
achieve a performance of only 4480 cycles for a dimension-512 NTT on Intel
Sandy Bridge [45]. For arithmetic modulo a 23-bit prime, they represent coe�-
cients as double-precision integers.

We experimented with multiple di�erent approaches to speed up the NTT
in AVX. For example, we vectorized the Montgomery arithmetic approach of
our C reference implementation and also adapted it to a 32-bit-signed-integer
approach. In the end it turned out that �oating-point arithmetic beats all of
those more sophisticated approaches, so we are now using an approach that is
very similar to the approach in [45]. One computation of a dimension-1024 NTT
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takes 10 984 cycles, unlike the numbers in [45] this does include multiplication
by the powers of γ and unlike the numbers in [45], this excludes a bit-reversal.

Fast sampling. Intel Haswell processors support the AES-NI instruction set and
for the local choice of noise sampling it is obvious to use those. More speci�cally,
we use the public-domain implementation of AES-256 in counter mode written by
Dolbeau, which is included in the SUPERCOP benchmarking framework [16].
Transformation from uniform noise to the centered binomial is optimized in
AVX2 vector instructions operating on vectors of bytes and 16-bit integers.

For the computation of SHAKE-128 we use the same code as in the C refer-
ence implementation. One might expect that architecture-speci�c optimizations
(for example, using AVX instructions) are able to o�er signi�cant speedups, but
the benchmarks of the eBACS project [16] indicate that on Intel Haswell, the
fastest implementation is the �simple� implementation by Van Keer that our C
reference implementation is based on. The reasons that vector instructions are
not very helpful for speeding up SHAKE (or, more generally, Keccak) are the
inherently sequential nature and the 5 × 5 dimension of the state matrix that
makes internal vectorization hard.

Error recovery. The 32-bit integer arithmetic used by the C reference imple-
mentation for HelpRec and Rec is trivially 8-way parallelized with AVX2 instruc-
tions. With this vectorization, the cost for HelpRec is only 3 569 cycles, the cost
for Rec is only 2 796 cycles.

8 Benchmarks and comparison

In the following we present benchmark results of our software. All benchmark
results reported in Table 2 were obtained on an Intel Core i7-4770K (Haswell)
that was running at 3491.444 MHz with Turbo Boost and Hyperthreading dis-
abled for a fair comparison. We compiled our software with gcc-4.9.2 and �ags
-O3 -fomit-frame-pointer -msse2avx -march=corei7-avx. As described in
Section 7, the sampling of a is not running in constant time; we report the median
running time and (in parentheses) the average running time for this generation,
the server-side key-pair generation and client-side shared-key computation; both
over 1000 runs. For all other routines we report the median of 1000 runs. We
built the software from [18] on the same machine as ours and�like the authors
of [18]�used openssl speed for benchmarking their software and converted the
reported results to approximate cycle counts as given in Table 2.

Comparison with BCNS and RSA/ECDH. As previously mentioned, the
BCNS implementation [18] also uses the dimension n = 1024 but the larger
modulus q = 232−1 and the Gaussian error distribution with Gaussian parameter
σ = 8/

√
2π = 3.192. When the authors of BCNS integrated their implementation

into SSL it only incurred a slowdown by a factor of 1.27 compared to ECDH when
using ECDSA signatures and a factor of 1.08 when using RSA signatures with
respect to the number of connections that could be handled by the server. As a
reference, the reported cycle counts in [18] for a nistp256 ECDH on the client
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Table 2: Intel Haswell cycle counts of our proposal as compared to the BCNS
proposal from [18].

BCNS [18] Ours (C ref) Ours (AVX2)

Generation of a 57 134a 57 546a

(56 957)a (57 329)a

NTT 55 532 10 948

NTT−1 59 220b 11 896b

Sampling of a noise polynomial 31 912c 4 760c

HelpRec 14 368 3 596

Rec 10 024 2 796

Key generation (server) ≈ 2 477 958 265 968 107 534

(265 933) (107 385)

Key gen + shared key (client) ≈ 3 995 977 380 676 126 236

(380 936) (126 336)

Shared key (server) ≈ 481 937 82 312 22 104
a Includes reading a seed from /dev/urandom
b Includes one bit reversal
c Excludes reading a seed from /dev/urandom, which is shared across multiple calls
to the noise generation

side are 2 160 000 cycles (0.8 ms @2.77 GHz) and on the server side 3 221 288
cycles (1.4 ms @2.33 GHz). These numbers are obviously not state of the art
for ECDH software. Even on the nistp256 curve, which is known to be a far-
from-optimal choice, it is possible to achieve cycle counts of less than 300, 000
cycles for a variable-basepoint scalar multiplication on an Intel Haswell [44]. Also
OpenSSL includes fast software for nistp256 ECDH by Käsper and Langley.
This implementation has to be enabled using the enable-ec_nistp_64_gcc_128
�ag; we assume that the authors of [18] omitted this. Compared to BCNS, our
C implementation is more than 8 times faster and our AVX implementation
even achieves a speedup factor of more than 20. At this performance it is in the
same ballpark as state-of-the-art ECDH software, even when TLS switches [55]
to faster 128-bit secure ECDH key exchange based on Curve25519 [10].

When looking at the BCNS proposal, one reason for our performance advan-
tage is certainly the switch to the binomial error distribution. In [18] the inversion
method [32] is used to sample from a discrete Gaussian distribution with a high
precision, which basically requires a search operation in a precomputed lookup
table. In BCNS this lookup table has 52 entries of 192 bits representing integer
values to achieve a statistics distance of less than 2−128. Sampling of one coe�-
cient requires 192 random bits that were generated using the AES so that one
polynomial consisting of 1024 coe�cients requires 296 608 bits of random data
and the constant time linear search takes 1 042 700 cycles. Our C implementa-
tion just requires 21 068 cycles to sample from the binomial distribution. Another
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factor is that we use the NTT in combination with a smaller modulus. Polyno-
mial multiplication in [18] is using Nussbaumer's symbolic approach based on
recursive negacyclic convolutions [69]. An advantage of Nussbaumer's algorithm
compared to the NTT is that it allows to choose a non-prime modulus. However,
the implementation in [18] still only achieves lower performance of 342 800 cycles
for a constant-time multiplication. Nevertheless, it appears to be an interesting
future work to investigate optimization and vectorization of Nussbaumer's algo-
rithm. Additionally, the authors of [18] did not perform pre-transformation of
constants (e.g., a) or transmission of coe�cients in FFT/Nussbaumer represen-
tation. Note also that the on-the-�y generation of a, which is not implemented
in BCNS, results in a certain overhead in our implementation and caching of a
would lead to an even better (server-side) performance in our implementation.

Comparison with an authenticated key exchange. The most recent pro-
posal of an authenticated key exchange based on ideal lattices is given by Zhang,
Zhang, Ding, Snook, and Dagdelen in [81]. Their proposal is based on the HMQV
protocol being adapted to Ring-LWE under the observation that Ring-LWE sup-
ports kind of "approximate" multiplication of group elements where only small
noise is not recoverable. The security proof relies on the random oracle model
and the Fiat-Shamir transform; due to some uncertainty regarding rewinding
transforms like Fiat-Shamir in the random oracle model [28], no quantum resis-
tance is claimed. In [81] several parameter sets for a one-pass and a two-pass
variant of the protocol are proposed. For their low-security two-pass protocol
(75�80 bits) they choose dimension n = 1024 and modulus q in the range of
45�47 bits and for high security (210�230 bits) they choose n = 2048 and q in
the range of 47�50 bits. For the same dimension n the one-pass instantiation
provides higher security and requires moduli in the range of 30 − 33 bits. The
proof-of-concept implementation uses the NTL library to implement FFT-based
polynomial arithmetic and thus cannot be compared in a fair manner to an op-
timized C or assembly implementation. Gaussian sampling is also realized using
the inversion method. The probability of a decryption error is about 2−87. On
a 2.83 GHz Intel Core 2 Quad CPU the key generation requires between 14.26
ms and 49.77 ms, the response between 19 ms and 60.31 ms and the �nalization
step 4.35 ms to 9.59 ms. This is more than an order of magnitude slower than
the unauthenticated key exchange presented by [18] and more than two orders
of magnitude slower than our proposal.
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