
C∅C∅: A Framework for Building Composable Zero-Knowledge

Proofs

Ahmed Kosba† Zhichao Zhao∗ Andrew Miller† Yi Qian‡

T-H. Hubert Chan∗ Charalampos Papamanthou† Rafael Pass‡ abhi shelat•

Elaine Shi‡

†: UMD ∗: HKU ‡: Cornell •: UVA

Abstract

Non-interactive zero-knowledge proofs are a powerful cryptographic primitive used in privacy-
preserving protocols. We design and build C∅C∅, the first system enabling developers to build
efficient, composable, non-interactive zero-knowledge proofs for generic, user-defined statements.
C∅C∅ extends state-of-the-art SNARK constructions by applying known strengthening trans-
formations to yield UC-composable zero-knowledge proofs suitable for modular use in larger
cryptographic protocols.

To attain fast practical performance, C∅C∅ includes a library of several “SNARK-friendly”
cryptographic primitives. These primitives are used in the strengthening transformations in
order to reduce the overhead of achieving composable security. Our open-source library of
optimized arithmetic circuits for these functions are up to 40× more efficient than standard
implementations and are thus of independent interest for use in other NIZK projects.

Finally, we evaluate C∅C∅ on applications such as anonymous credentials, private smart
contracts, and nonoutsourceable proof-of-work puzzles and demonstrate 5× to 8× speedup in
these application settings compared to naive implementations.

1 Introduction

Non-Interactive Zero-Knowledge proofs (NIZKs) are a powerful building block in the design of
expressive cryptographic protocols such as anonymous credentials, anonymous survey systems [43],
privacy-preserving digital currencies [11,47], and multi-party computation [39] in general. Typically,
NIZKs are used to defend against malicious parties and enforce honest behavior. Specifically, any
deviation from the protocol will result in failure of NIZK verification, and thus translate to an
aborting (i.e., Denial-of-Service) attack.

Excitingly, recent advent of Succinct Non-Interactive ARguments of Knowledge (SNARKs) [19,
37] have greatly accelerated the idea to proof-of-concept cycle for systems that employ NIZKs.
Although SNARKs have non-privacy-focused applications such as verifiable computation [13, 31,
32,48,55,61,63,64,66,67], here we focus on using SNARKs as a concrete instantiation of NIZKs. In
particular, most known SNARK implementations [13, 32, 55, 63] provide a zero-knowledge option,
often referred to as zk-SNARKs.

Despite their well-known drawback of relying on assumptions that are non-falsifiable, SNARKs
are attractive to practitioners not only due to their (relative) practical efficiency, but more im-

1

portantly for their general-purpose nature. In contrast, until recently, most systems [22, 23, 43]
adopted customized NIZK protocols for application-specific statements of interest. Although this
customized approach can result in protocols highly optimized for the specific task at hand, the
enormous cryptography expertise and time required to develop new protocols for each application
severely limit the adoption of modern cryptography building blocks such as NIZKs.

The general-purpose feature of SNARKs is quite compelling, and promises to simplify the usage
of NIZKs in secure systems. With latest open-source SNARK implementations [2,13,32,55,63], even
system builders who are not cryptography experts can easily express a statement to be proven in a
familiar programming language, and automated toolchains will generate a corresponding SNARK
implementation. Further, this approach in turn enables rapid protocol prototyping, and avoids the
need for full-scale protocol redesign when the functionality requirements change (as is often needed
for customized protocols), since it is easy to modify a zk-SNARK to prove a different statement.

SNARKs have made an impact since their invention: they have been adopted to instantiate
NIZKs in various systems [11, 33, 47, 53], including ones built for production usage (e.g., Zero-
Cash [11]); further, new cryptocurrency systems such as Ethereum [65] have pronounced interest
in supporting SNARKs as an opcode [3].

Composability is the recommended best practice in pragmatic cryptography engineer-
ing. Composability of cryptographic building blocks is often imperative in protocol design. When
cryptographic building blocks are composable, they do not interfere with other building blocks in
the same protocol or with other possibly concurrent protocol instances. For this reason, a univer-
sally composable (UC-secure) [24,25,27] NIZK is frequently recommended or necessary in designing
larger cryptographic systems [43,47].

While some may be tempted to dismiss UC as being a theoretical notion, we stress that UC
is of vital importance and the recommended best practice in pragmatic cryptography engineering.
We give a 10-min crash course on UC for the practitioner in Appendix B, and clearly state why
one should care about UC, and why UC provides “worry-free” adoption of cryptographic building
blocks as if were “ideal boxes”, and help avoid numerous perils and subtle attacks that might arise
from lack of composability.

Pitfalls of using zk-SNARKs in protocol design. Unfortunately, known instantiations of zk-
SNARKs [13,32,55,63] are not known to satisfy composability and therefore often cannot be adopted
straight out of the box in the design of larger protocols. From a more technical standpoint, UC-
secure protocols would often require simulation sound extractable zero-knowledge proofs. In other
words, suppose that a simulator answers an adversary’s queries on polynomially many, possibly
false statements—nevertheless, whenever the adversary submits a proof for a new statement, the
simulator must be able to extract a valid witness except with negligible failure probability. Known
zk-SNARKs do not offer such strong soundness properties. Despite the fact that SNARKs allow
“knowledge extraction”, SNARKs’ knowledge extractor is too weak for many UC-secure protocols,
since SNARKs’ extractor is non-blackbox, must know the concrete algorithm of the adversarial
prover. By contrast, in UC-secure protocols, the ideal-world simulator must extract witnesses
without knowing the environment’s algorithm.

1.1 Our Results and Contributions

In this paper, we design and build C∅C∅ (pronounced “coco”, short for Composable 0-knowledge,
Compact 0-knowledge). C∅C∅ is the first system that provides practical, UC-secure, non-interactive

2

zero-knowledge proofs for general, user-defined statements. C∅C∅ makes UC-secure NIZKs an ac-
cessible building block for system builders who are not necessarily cryptography experts.

C∅C∅ provides UC-secure NIZKs that are circuit succinct, but not witness succinct. In other
words, the size of the proofs and verification time are (quasi-)linear in the witness size, but inde-
pendent of the size of the circuit that encodes the language. Note that in comparison, standard,
non-UC-secure SNARKs achieve a stronger notion of succinctness, i.e., they are both circuit- and
witness succinct. We note that currently there is also no known UC-secure zero-knowledge proof
construction that is circuit- and witness succinct, even under non-standard assumptions—whether
or how we can achieve this is left as future work. Below we describe our technical contributions in
more detail.

SNARK-lifting transformations optimized for concrete efficiency. At the core, C∅C∅
builds on top of existing SNARKs and hence inherit their generality. To achieve simulation sound
extractability, we adopt efficient SNARK-lifting transformations that allow us to transform zk-
SNARKs to zero-knowledge proofs with simulation sound extractability, such that they could be
adopted in UC-secure protocols. Our transformations are inspired by the work by De Santis et al.
transforms an ordinary NIZK to a simulation sound NIZK [60]. Although De Santis’s work only
achieves a weaker notion called simulation soundness (without the online extraction property), it
is not theoretically difficult to modify their constructions to additionally allow online extraction of
the witness. In particular, under the common reference string model, one could encrypt the witness
with a public-key encryption scheme, such that the simulator with knowledge of the secret key can
extract the witness.

Our main contribution is not to show the theoretical feasibility of a SNARK lifting transforma-
tion, but to carefully select and optimize these constructions for concrete efficiency, and offer com-
posable NIZKs as a building block to non-expert programmers. To optimize for concrete efficiency,
we made various explorations: 1) we explored and compared different variants of SNARK-lifting
transformations (see Sections 3, 4 and 5); 2) we consider “SNARK-friendly cryptography”, where
we carefully select known cryptographic primitives (e.g., encryption, key exchange, pseudo-random
functions, signatures) and express them as efficient algebraic circuits which is the representation
recognized by SNARKs. Earlier and concurrent works have considered the optimization of such
primitives for specific purposes, such as [11,14,33,34]. In this paper, we study more possible opti-
mizations/alternatives with a focus on composable SNARKs. For example, we study the trade-offs
of existing constructions such as RSA and field extension for key exchange, and propose to use
a customized elliptic curve-based construction that is more efficient. Additionally, we select and
optimize different block ciphers for symmetric encryption, and compare their performance. Overall,
our implementation for encryption for example achieves more than 8x-9x compared to optimized
RSA-based constructions.

Beyond the SNARKs, succinct algebraic circuit representation of cryptographic primitives can
also be of independent interest in other cryptographic applications such as multi-party computa-
tion [10] where computation is expressed as an algebraic circuit. Besides our work, earlier work has
also considered optimizing cryptographic primitives for SNARK-friendliness in other application
contexts [11,33,53].

Programming model. C∅C∅ is a Java-based library that allows developers to encode statements
to be proven as a circuit, where each gate expresses an algebraic constraint. C∅C∅ provides a
development interface similar to that of libsnark [15], where the developer can encode a circuit
modularly by defining and composing “gadgets”.

3

..C
Program

High-level compilers

(e.g. Pinocchio)

C∅C∅ Java Circuit

authoring library

COMM

PKE

PRF

SKE

CRH SIG

Snark-friendly

Crypto Primitives

×
+

+

+

×

+

+

+

×
+

+

+

×

+

+

+

PKE

SKE

SNARK-Lifting

Transformer

PRF

COMM

Augmented

Circuit
To Libsnark

Secret Witness

Additional Transformation

Public Outputs

Symmetric Enc Key

Public Statement

(Public I/O)

Randomness Secret Inputs

One-time Signature Public Key

Figure 1: C∅C∅’s architecture. The components that represent our contributions are highlighted in
blue.

In comparison with directly using earlier SNARK programming frameworks [13,15,32,55,63,64],
C∅C∅ provides the following advantages: with previous frameworks, the developer not only needs
to implement the user-defined statement to be proven as an algebraic circuit, but would also be
faced with the daunting task of implementing the entire SNARK-lifting transformation, including
primitives such as encryption and signatures, as algebraic circuits.

With C∅C∅, the developer only needs to implement the high-level application (i.e., user-defined
statement), and the C∅C∅ framework handles the remaining automatically and results in highly
optimized implementations. To how easy/hard it is to program with C∅C∅, we provide a code
sample in Figure 2 of the Appendix.

Open source and evaluation. Figure 1 presents the high-level architecture of C∅C∅ and high-
lights our contributions. A code example can be found in Appendix A. We report the performance
of C∅C∅ through both micro-benchmarks as well as three end-to-end applications. First, we show
that for individual primitives such as encryption, we achieve 10x to 40x speedup in comparison
with a straightforward, unoptimized baseline. Next, we evaluated C∅C∅ with three end-to-end ap-
plications, and demonstrate 5× to 8× performance improvement over an unoptimized baseline. To
make our work reusable by the community, we are in the process of open sourcing our code and
implementations.

Adoption. C∅C∅ has been adopted in subsequent works [46, 47] to build privacy-preserving pro-
tocols. These works adopted an earlier, naive version of C∅C∅ that implemented unoptimized
constructions described in Section 3 of this paper, and without SNARK-friendly cryptography
optimizations. Since then, we have adopted more efficient constructions and SNARK-friendly op-
timizations, allowing us to demonstrate 5× performance improvements in end-to-end applications
such as Hawk [47] (see Section 7 for detailed evaluations).

4

1.2 Related Work

Non-interactive zero-knowledge proofs were first proposed by Blum, Feldman, and Micali [20], and
later extended to multi-theorem by Blum et al. [21].

Sahai [59] was the first to construct a one-time, simulation-sound NIZK scheme. De Santis et
al. [60] subsequently provide unbounded simulation-sound NIZKs, allowing the adversary to access
many simulated proofs of possibly false statements. Neither technique is practical. Simulation
soundness is a slightly weaker condition than simulation sound extractability—the latter requires
that even after seeing a polynomial number of simulated proofs of possibly false statements, when-
ever a polynomial-time adversary produces a valid proof, an extractor can extract a valid witness
except with negligible failures. It has been observed [41, 42] that simulation sound extractable
NIZKs are UC-secure NIZKs by Canetti’s definition [24] in the presence of a static adversary.
Groth et al. [42] construct perfect NIZK arguments for circuit satisfiability using bilinear groups.
They also extend their scheme to construct UC-secure NIZKs. Groth [41] also gave more practical,
simulation-sound extractable NIZK constructions for an NP language for bilinear groups.

All of the above simulation-sound extractable NIZKs are not succinct—namely the size of the
proof is proportional to the size of the witness verification circuit |C| that encodes the language. In
fact, Gentry and Wichs [38] has shown succinct non-interactive arguments to be impossible from any
falsifiable assumption. Existing SNARKs adopt non-falsifiable assumptions to attain succinctness
as well as practical efficiency [13,31,32,37,55,63].

In general, non-malleability is closely related to and often necessary in composable proto-
cols. Zerocash [11] features a technique bearing resemblance ours to ensure a limited form of
non-malleability, called “transaction non-malleability”. However, Zerocash is not known to satisfy
composable security.

Garman et al. [36] construct a simulation sound SNARK in the CRS model by using well-known
techniques to augment the statement with a trapdoor for the simulator. Their goal was to define an
ideal model for decentralized anonymous payments, and design a scheme that satisfies the model
in the stand-alone setting with static corruptions; their goal was not to achieve composability, and
therefore a weaker notion suffices, and they can also achieve witness succinctness. They do not
provide implementations details for the costs of their choices.

Finally, Appendix B provides an overview of UC, and explains why UC is the best practice for
cryptography engineering.

2 Preliminaries

Notation. In the remainder of the paper, f(λ) ≈ g(λ) means that there exists a negligible function
ν(λ) such that |f(λ)− g(λ)| < ν(λ).

2.1 Non-Interactive Zero-Knowledge Proofs

A non-interactive zero-knowledge proof system (NIZK) for an NP language L consists of the fol-
lowing algorithms:

• crs ← K(1λ,L), also written as crs ← KeyGennizk(1λ,L): Takes in a security parameter λ, a
description of the language L, and generates a common reference string crs.

5

• π ← P(crs, stmt, w): Takes in crs, a statement stmt, a witness w such that (stmt, w) ∈ L, and
produces a proof π.

• b ← V(crs, stmt, π): Takes in a crs, a statement stmt, and a proof π, and outputs 0 or 1,
denoting accept or reject.

• (ĉrs, τ, ek) ← K̂(1λ,L): Generates a simulated common reference string ĉrs, trapdoor τ , and
extract key ek

• π ← P̂(ĉrs, τ, stmt): Uses trapdoor τ to produce a proof π without needing a witness

Perfect completeness. A NIZK system is said to be perfectly complete, if an honest prover with
a valid witness can always convince an honest verifier. More formally, for any (stmt, w) ∈ R, we
have that

Pr

[
crs← K(1λ,L), π ← P(crs, stmt, w) :
V(crs, stmt, π) = 1

]
= 1

Computational zero-knowlege. Informally, an NIZK system is computationally zero-knowledge
if the proof does not reveal any information about the witness to any polynomial-time adver-
sary. More formally, a NIZK system is said to computationally zero-knowledge, if there exists a
polynomial-time simulator S = (K̂, P̂), such that for all non-uniform polynomial-time adversary A,

Pr
[
crs← K(1λ,L) : AP(crs,·,·)(crs) = 1

]
≈ Pr

[
(ĉrs, τ, ek)← K̂(1λ,L) : AP̂1(ĉrs,τ,·,·)(ĉrs) = 1

]
In the above, P̂1(ĉrs, τ, stmt, w) verifies that (stmt, w) ∈ L, and if so, outputs P̂(ĉrs, τ, stmt) which
simulates a proof without knowing a witness. Otherwise, if (stmt, w) /∈ L, the experiment aborts.
This notion is adaptive zero knowledge in the sense that the simulator must specify the reference
string before seeing the theorem statements.

Computational soundness. A NIZK scheme for the language L is said to be computationally
sound, if for all polynomial-time adversaries A,

Pr

[
crs← K(1λ,L), (stmt, π)← A(crs) :
(V(crs, stmt, π) = 1) ∧ (stmt /∈ L)

]
≈ 0

Simulation extractability. Simulation extractability is a strong notion which requires that even

after seeing many simulated proofs (even for false theorems), whenever the adversary makes a
new proof, a simulator is able to extract a witness. Simulation extractability implies simulation
soundness and non-malleability (i.e., it is not feasible for an adversary to take a verifying proof and
“maul” it into a verifying proof for another statement) since if the simulator can extract a valid
witness from an adversary’s proof, the statement must belong to the language. More formally,
a NIZK system is said to be simulation extractable if it satisfies computational zero-knowledge
and additionally, there exists a polynomial-time algorithm E , such that for any polynomial-time
adversary A, it holds that

Pr

(ĉrs, τ, ek)← K̂(1λ,L);

(stmt, π)← AP̂(ĉrs,τ,·)(ĉrs, ek);
w ← E(ĉrs, ek, stmt, π) : stmt /∈ Q and

(stmt, w) /∈ L and V (ĉrs, stmt, π) = 1

 ≈ 0

6

where in the above, Q is the list of oracle queries made by A to P̂(ĉrs, τ, ·). Here the K̂ is identical
to the zero-knowledge simulation setup algorithm.

A few remarks about the definition follow. First, note that the extractor algorithm E works
for all adversaries, and does not therefore depend or have access to the adversary’s code. Rather,
the extractor’s advantage arises entirely from its special access to a trapdoor ek for the ĉrs. Next,
note that the adversary may be able to fake a (different) proof for a statement that has been
queried, however, it is not able to forge a proof for any other invalid statement. There is a natural
strengthening of the above notion where the adversary cannot even fake a different proof for a
statement queried (in fact, it is this stronger notion that is given as the default in [41]). We define
and give constructions for this later in Section 5. In Hawk [47], however, it is shown that the weaker
notion defined above suffices for a typical UC application; therefore we focus on this notion first.

Relation between UC secure NIZKs and simulation sound extractability. It is well
understood that the notion of simulation-sound extractability and UC-secure NIZKs are roughly
speaking interchangeable [26,41]. Therefore, for the remainder of the paper, we will use the notion
simulation-sound extractability, and later in Appendix C, we elaborate on the relationship between
simulation sound extractability and UC security for NIZKs.

2.2 SNARKs

A SNARK is a NIZK that is succint, perfectly complete, computationally zero-knowledge, and has
a knowledge extractor (a stronger property than soundness):

Succinctness. A SNARK is said to be succinct if an honestly generated proof has poly(λ) bits
and that the verification algorithm V(crs, stmt, π) runs in O(|stmt| · poly(λ)).

Adaptive knowledge extraction. Knowledge extraction requires that if a proof generated by an
adversary is accepted by the verifier, then the adversary “knows” a witness for the given instance;
i.e., there exists an algorithm E which recovers a witness. Furthermore, the extraction property
holds adaptively even if the prover picks the statement after seeing the reference string. Formally,
a SNARK for language L satisfies the knowledge extraction property iff:

For all polynomial-sized adversary A, there exists a polynomial-size extractor EA, such that for
all advice strings z ∈ {0, 1}poly(λ),

Pr

 crs← K(1λ,L)
(stmt, π)← A(crs, z)
a← EA(crs, z)

:
V(crs, stmt, π) = 1
(stmt, a) /∈ RL

 ≈ 0

Note that the knowledge extraction property implies computationally soundness (defined for
NIZK).

3 Basic Lifting Transformation

We begin by presenting the theoretical constructions that C∅C∅ implements. In this section, we will
start from a simpler basic construction that is relatively inefficient and provides a slightly weaker
notion of composability (and nonetheless strong enough for many applications); we then describe
improvements and strengthenings in Sections 4 and 5 respectively.

We show a construction that transforms any NIZK to one that satisfies simulation sound ex-
tractability.

7

Typically, a NIZK only guarantees soundness, which simply means that if the verifier accepts
a proof, then the statement must be in the language. However, in many cases, what we actually
desire is to guarantee that the prover actually “knows” a valid witness. For example, given a
collision-resistant hash function, it is necessarily true that a collision exists, though to actually
compute such a collision is intractable. The definition of simulation extractability captures the
desired knowledge property–given a valid proof (and the extraction key produced during setup),
the extractor algorithm can efficiently compute a witness.

Intuition. Our first construction makes use of an asymmetric signature scheme and encryption
scheme, the public keys for which are embedded in the setup parameters, and the private keys for
which are embedded in the trapdoor and extraction key, respectively. The idea is to force every
prover to encrypt a witness and a signature, at least one of which must be legitimate. While an
honest prover will simply provide a valid witness, the simulated prover will use the signing key to
provide a signature. The extractor can simply use the decryption key to recover a valid witness
(or at least a signature) from the proof. This guarantees that an adversary who breaks the system
can be leveraged to either break the soundness of the underlying NIZK or the unforgeability of the
signature scheme.

Construction. In the following, assume Σ is an unforgeable signature scheme, and (KeyGenEnc,Enc,Dec)
is a perfectly correct public key encryption scheme.

• K(1λ,L): Run (pk, sk)← Σ.Gen(1λ). Run (pke, ske)← KeyGenEnc(1
λ).

Let L′ be the following language: ((stmt, c), (r, w, σ)) ∈ L′ iff

(c = Enc(pke, (w, σ), r)) ∧
((stmt, w) ∈ L ∨ (Σ.V(pk, stmt, σ) = 1))

Run nizk.crs← nizk.K(1λ,L′).
Publish crs := (nizk.crs, pk, pke) as the common reference string.

• P(crs, stmt, w): Parse crs := (nizk.crs, pk). Choose random r, and compute c := Enc(pke, (w,⊥), r).

Call π := nizk.P(nizk.crs, (stmt, c), (r, w,⊥)), and output π′ := (c, π).

• V(crs, stmt, π′): Parse π′ := (c, π), and output nizk.V(nizk.crs, (stmt, c), π).

• K̂(1λ,L): Run the honest K algorithm, but retain the signing key sk as the simulation trapdoor
τ := sk. The extraction key ek := ske, the simulated ĉrs := crs = (nizk.crs, pk, pke).

• P̂(ĉrs, τ, stmt): the simulator calls

π := nizk.P(nizk.crs, (stmt, c), (⊥,⊥, σ))

where σ := Σ.Sign(sk, stmt) and c is an encryption of (⊥, σ). Output (c, π).

Theorem 1. Assume that the underlying NIZK scheme satisfies perfect completeness, computa-
tional soundness, and computational zero-knowlege, that the signature scheme satisfies existential
unforgeability under chosen message attack, and that the encryption scheme is semantically secure
and perfectly correct, then the above construction is a zero-knowledge proof system satisfying perfect
completeness, computational zero-knowledge, and simulation extractability.

8

The proof for the above theorem appears in the appendix.
This basic SNARK-lifting construction can be further optimized for concrete performance. We

defer the details of these optimizations to Appendix D, and instead focus on describing a more
efficient construction that avoids evaluating signatures inside a SNARK circuit, but instead relies
on pseudorandom functions and commitments.

4 Improved SNARK Lifting

The previous section demonstrates the possibility of upgrading any NIZK to an SSE-NIZK. How-
ever, the construction relies on the use of signature scheme within an arithmetic circuit, which
limits its performance. In this section, we first show a more efficient construction that avoids the
use of signature schemes.

Our construction makes use of a pseudo-random function and a perfectly-binding commitment
scheme, which together replace the original signature scheme.

Intuition. Recall the intuition for a pseudorandom function f : without the knowledge of the key
a, fa(·) behaves like a true random function. However, given a, one can compute fa(·) easily. In
order to use this in lieu of a signature, we include a commitment to a in the public parameters,
and keep a (and the commitment opening) as the trapdoor.

We then design a transformed language such that a prover with a correct witness can pass;
otherwise, the (simulated) prover must give fa(stmt) and an opening of the commitment to the
same a.

Construction. Let {fs : {0, 1}∗ → {0, 1}λ}s∈{0,1}λ be a pseudo-random function family, let comm
be a perfectly binding commitment scheme, and let (KeyGenEnc,Enc,Dec) be a semantically secure
encryption scheme.

To simplify our description, we assume Enc and comm both take exactly λ random bits as
randomness and that the witness for L is exactly λ bits; it is straightforward to adapt the proof
when they are of different lengths.

Note that in the language L′, c must be a correct encryption of some w and µ, which allows the
extractor to decrypt. For a statement-witness pair to be valid, either a witness in RL is provided
or an opening to ρ together with the value of fa(stmt) is provided, where a is the opened value of
ρ (from crs).

For language L with NP relationRL, let L′ be the language defined as
(
(stmt, c, pke, ρ), (µ, r, r′, w, a)

)
∈

RL′ iff:
c=Enc(pke, (w, µ); r)∧(

(stmt, w) ∈ RL ∨
(
ρ=comm(a; r′) ∧ µ=fa(stmt)

))
Our SSE-NIZK construction is defined as follows:

• K(1λ,L):
nizk.crs← nizk.K(1λ,L′);
(pke, ske)← KeyGenEnc(1

λ);

s0, r0
$← {0, 1}λ; ρ := comm(s0; r0);

return crs := (nizk.crs, pke, ρ).

• P(crs, stmt, w):
Parse crs := (nizk.crs, pke, ρ);

9

Output ⊥ if (stmt, w) /∈ RL;

z0, z1, z2, r1
$← {0, 1}λ;

c← Enc(pke, (w, z0); r1);
nizk.π ← nizk.P(nizk.crs, (stmt, c, pke, ρ),
(z0, r1, z1, w, z2));
return π := (c, nizk.π).

• V(crs, stmt, π):
Parse crs := (nizk.crs, pke, ρ) and π := (c, nizk.π);
Call nizk.V(nizk.crs, (stmt, c, pke, ρ), nizk.π).

• K̂(1λ,L): Run K to get ĉrs := crs, but keep trapdoor τ := (s0, r0), extraction key ek := ske.

• P̂(ĉrs, τ, stmt):
Parse ĉrs := (nizk.crs, pke, ρ) and τ := (s0, r0);

z3, r1
$← {0, 1}λ; µ = fs0(stmt);

c = Enc(pke, (z3, µ); r1);
nizk.π ← nizk.P(nizk.crs, (stmt, c, pke, ρ),
(µ, r1, r0, z3, s0));
return π := (c, nizk.π).

• We also define the extractor here:
E(ĉrs, ek, stmt, π): Parse π := (c, nizk.π);
(w, µ)← Dec(ek, c); return w.

Theorem 2. Assume that the underlying NIZK scheme satisfies perfect completeness, computa-
tional soundness, computational zero-knowledge, and that the encryption scheme is semantically
secure and perfectly correct, and that the pseudo-random function family is secure, and that the
commitment scheme is perfectly binding and computational hiding, then the above construction is
a zero-knowledge proof system satisfying perfect completeness, computational zero-knowledge, and
simulation sound extractability.

We defer the proof to Appendix E.2.

Optimization using hash functions. We demonstrate a way to improve the performance by the
use of hash functions. Intuitively, we can apply a collision resistant hash function to the statement
before applying the PRF.

We need a collision resistant hash function h : {0, 1}∗ → {0, 1}λ. Formally, for any polynomial
time adversary A we have,

Pr[x0, x1 ← A(1λ) : x0 6= x1 ∧ h(x0) = h(x1)] = negl(1k)

Next we show how to change our construction. We modify our language L′ as follows,
For language L with NP relationRL, let L′ be the language defined as

(
(stmt, c, pke, ρ), (µ, r, r′, w, a)

)
∈

RL′ iff:
c=Enc(pke, (w, µ); r)∧(

(stmt, w) ∈ RL ∨
(
ρ=comm(a; r′) ∧ µ=fa(h(stmt))

))

10

Note that instead µ = fa(stmt), we have µ = fa(h(stmt)). That is to say, we apply a hash
function before applying the PRF. We then modify the algorithms accordingly. The algorithms K,
P, K̂ and E are the same as before. The only part that needs changing is P̂,

• P̂(ĉrs, τ, stmt):
Parse ĉrs := (nizk.crs, pke, ρ) and τ := (s0, r0);

z3, r1
$← {0, 1}λ; µ = fs0(h(stmt));

c = Enc(pke, (z3, µ); r1);
nizk.π ← nizk.P(nizk.crs, (stmt, c, pke, ρ),
(µ, r1, r0, z3, s0));
return π := (c, nizk.π).

The change is we apply h to stmt as defined in L′.
Next we argue the proofs can still go through. For the simulation sound extractability part,

the experiments can be defined similarly. The changes are that in step 2, µ = fs0(stmtx) or
µ = F (stmtx) and that in step 5, return condition (3) is changed to fs0(stmt) = µ or F (stmt) = µ.
It can be seen that except Claim 5, all claims can go through. Luckily we can still prove Claim 5
similarly. Observe that since stmt has not appeared before, we can argue that h(stmt) has not been
queried on F except for negligible probability, hence F (h(stmt)) = µ happens with only negligible
probability.

For the zero-knowledge part, we also modify the experiments accordingly. Then it can be seen
that the proofs can go through naturally.

5 A Stronger Version

In this section, we define a strengthened version of simulation sound extractability and provide a
construction.

The original definition of simulation sound extractability says that if the adversary does not
know a witness for a statement, he can only prove that statement if the he has previously submitted
this statement as an oracle query (i.e., to the simulated prover). In our strengthened definition,
which we call “strongly simulation sound extractable”, we further constrain the adversary to only
produce statement-proof pairs that have been previously queried. In other words, under the weaker
definition, it is possible for an adversary to generate novel proofs for previously-queried statements;
this is precluded by the stronger definition.

Strongly simulation sound extractable. We say a NIZK for a language L is strongly simulation
extractable iff there exists an extractor E such that for all polynomial-size adversaryA, the following
holds:

Pr

 (ĉrs, τ, ek)← K̂(1λ)

(stmt, π)← AP̂(ĉrs,τ,·)(ĉrs, ek)
w ← E(ĉrs, ek, stmt, π)

:
(stmt, π) /∈ Q and
(stmt, w) /∈ RL and
V(ĉrs, stmt, π) = 1

= negl(λ)

where Q is the set of statement-proof pairs generated by the oracle calls to P̂.

Intuition. Like before, a prover must always provide an encryption of a (possibly bogus) witness.
Our construction makes use of a one-time signature scheme. A pair of one-time signing/verification
keys are generated for each proof. Compared with Section 4, the difference is that instead of
fa(stmt), a simulated prover is required to provide µ = fa(pk). Then we require the prover to

11

sign the statement together with the proof, the cipher-text, and µ. Briefly, due to the security
of signature scheme, the adversary must use a different pk from the ones returned from oracle
queries. Thus, in order for a statement to pass the verifier without a proper witness, the prover
must generate fa(pk) without the knowledge of a (thus breaking the pseudo-random function).

Construction. Given a language L with NP relation RL, let L′ be the language that(
(stmt, c, µ, pks, pke, ρ), (r, r′, w, a)

)
∈ RL′ iff :

c = Enc(pke, w; r)∧(
(stmt, w) ∈ RL ∨

(
µ = fa(pks) ∧ ρ = comm(a; r′)

))
Next we show the construction from NIZK to strong SE-NIZK.

• K(1λ,L):
nizk.crs← nizk.K(1λ,L′);
(pke, ske)← KeyGenEnc(1

λ); s0, r0
$← {0, 1}λ;

ρ := comm(s0; r0). return crs := (nizk.crs, pke, ρ).

• P(crs, stmt, w):
Parse crs := (nizk.crs, pke, ρ);
Abort if (stmt, w) /∈ RL;

(pks, sks)← KeyGenSig(1
λ); z0, z1, z2, r1

$← {0, 1}λ;
c = Enc(pke, w; r1);
nizk.π ← nizk.P(nizk.crs, (stmt, c, z0, pks, pke, ρ),
(r1, z1, w, z2));
σ ← Sign(sks, (stmt, c, z0, nizk.π));
return π := (c, z0, nizk.π, pks, σ).

• V(crs, stmt, π):
Parse crs := (nizk.crs, pke, ρ) and π := (c, µ, nizk.π, pks, σ);
Abort if Verify(pks, (stmt, c, µ, nizk.π), σ) = 0;
Call nizk.V(nizk.crs, (stmt, c, µ, pks, pke, ρ), nizk.π).

• K̂(1λ,L): Run K to get ĉrs := crs, but keep trapdoor τ := (s0, r0), extraction key ek := ske.

• P̂(ĉrs, τ, stmt):
Parse ĉrs := (nizk.crs, pke, ρ) and τ := (s0, r0);
(pks, sks)← KeyGenSig(1

λ); µ = fs0(pks);

z3, r1
$← {0, 1}λ; c = Enc(pke, z3; r1);

nizk.π ← nizk.P(nizk.crs, (stmt, c, µ, pks, pke, ρ),
(r1, r0, z3, s0));
σ ← Sign(sks, (stmt, c, µ, nizk.π));
return π := (c, µ, nizk.π, pks, σ).

• We also define the extractor here:
E(ĉrs, ek, stmt, π): Parse π := (c, µ, nizk.π, pks, σ); w ← Dec(ek, c); return w.

12

Theorem 3. Assume that the underlying NIZK scheme satisfies perfect completeness, computa-
tional soundness, computational zero-knowledge, that the encryption scheme is semantically secure
and perfectly correct, that the pseudo-random function family is secure, that the commitment scheme
is perfectly binding and computational hiding, and that the one-time signature scheme is strongly
unforgeable. Then the above construction is a zero-knowledge proof system satisfying perfect com-
pleteness, computational zero-knowledge, and strongly simulation sound extractability.

The proof uses a similar idea of that in Section 4, which we defer to Appendix E.3.

6 SNARK-Friendly Cryptography

We now discuss how to efficiently implement the theoretical constructions described in Sections 3,
4, and 5. In particular, our theoretical constructions require implementing several cryptographic
primitives such as encryption, commitment, and pseudorandom functions as statements (i.e., cir-
cuits) to be proven. This raises interesting challenges in terms of practical performance because
traditionally, these cryptographic primitives are optimized for raw execution on modern processor
architectures, not as SNARK statements.

In the remainder of the section, we will describe several important optimizations, and report
the performance improvement attained through micro-benchmarking numbers.

What is efficient and not efficient for SNARKs. Known SNARK constructions model com-
putation as algebraic circuits modulo a large prime p. Standard implementations and parameter
choices for cryptographic primitives are targeted at modern hardware platforms with different
constraints than SNARKs. For example, some algebraic operations, like addition and constant-
scalar multiplication of field elements Fp, which are expensive in hardware, are essentially free in
a SNARK; however, while XORing two 32-bit numbers takes a single cycle on an ordinary CPU,
this is far more costly in an arithmetic circuit.

The following observations guide our choices. These points were noted by other earlier works [6,
11,14,33,34,55,62] as well.

• Addition and multiplications by constants in the field Fp, where p is the SNARK field order, are
almost for free, and in particular are much cheaper than multiplication. Reducing the number
of multiplication gates is the main optimization criteria.

• Bit-level operations are expensive because splitting a field element into n bits requires n + 1
multiplication gates.

• However, once we have a binary representation of a value, operations like Rotation and Shift are
free.

• Random-access lookup tables, such as those used in many S-Box symmetric cryptography im-
plementations, are likely a bottleneck. Typically, there are two main approaches to implement
lookup tables in a circuit. The first approach is a linear scan to select one element, which results
in O(n) cost. The other approach involves using a permutation network to sort a sequence of
memory accesses by address and providing a proof of consistency; the complexity of this depends
on the number of the accesses to the array. [12,13,62]

13

• Verification can be simpler than forward computation. The SNARK circuits do not always
have to compute the result, but can instead represent a verification algorithm. For example, a
multiplicative inverse circuit does not have to encode the computation of the inverse, but can
instead consist of a single multiplication constraint on the value provided by the prover.

Designing SNARK-friendly cryptographic primitives. We explore the following strategies
for designing SNARK-friendly cryptographic primitives.

1. Protocol- and algebraic-level choices. First, for the same cryptographic building block (e.g.,
encryption, signature), we explore building it from different algebraic building blocks such as RSA
and Diffie-Hellman. Certain algebraic structures and operations are by nature more efficient when
encoded as SNARK circuits. We also explore various choices such as using public-key encryption
vs hybrid encryption.

2. Circuit-level optimizations. Once a scheme is fixed, we perform numerous optimizations at
the circuit level to reduce the concrete circuit size.

We now describe our protocol choices and optimizations for the cryptographic tasks needed in
our SNARK-lifting constructions from Sections 3, 4 and 5.

6.1 Encryption

As the costs of all our SNARK-lifting constructions are dominated by the public-key encryption of
the witness, we focus most of our efforts on this task.

Public-Key encryption. Hawk [47] and Gyges [46] use an earlier version of C∅C∅ that has näıve
implementation of RSA with OAEP, which is poorly suited to arithmetic circuits.

We start by implementing an optimized circuit for RSA-OAEP encryption with SHA-256 as the
hash and mask generation function [44]. The essential challenge with RSA is that the arithmetic
operations are over integers mod n, where n is larger (e.g., 1024 bits) than the SNARK field order

p (typically a 254-bit prime). We represent integers mod n as d log2 nm e m-bit elements. To multiply
a pair of such integers z := x∗y mod n, we construct a circuit that verifies x∗y = q ∗n+z, where q
and z are d log2 nm e m-bit elements provided as witnesses by the prover. Our current implementation
for big integers uses m = 64 for easy interfacing. It is possible to use larger m, but this results
in less than 1% savings in our implementation, as this is not the bottleneck of the circuit. To
improve over a naive implementation, we use an efficient approach for long integer equality checks
when the chunks are not aligned to reduce the number of comparisons. Furthermore, we use a
manually-optimized circuit for SHA-256 to implement the OAEP encoding within the circuit.

Hybrid encryption. We consider the use of hybrid encryption, where we use a public-key scheme
to exchange/encrypt a symmetric key, and then use the symmetric key to encrypt the plaintext. To
explore this alternative, we explored various options for key exchange and symmetric-key encryption
as we describe below.

Key exchange. Although it is possible to use the optimized RSA circuit above to encrypt and
exchange a symmetric key, we explored the following schemes for a SNARK-friendly key exchange
in order to find a more efficient alternative than RSA.

• Diffie-Hellman key exchange via a SNARK-friendly field extension. Instead of relying on RSA as
the main PKE scheme, we investigate another scheme based on the Discrete-Logarithm problem

14

in Extension Fields, and use it for symmetric key exchange. Since p is only 254-bit prime, the DL
problem in Fp will not be hard, therefore an extension Fpµ will be used instead. This idea is mainly
inspired by the construction in PinocchioCoin [33]. The key exchange circuit has two generators
in that case g, h ∈ Fpµ , where 〈g〉 = 〈h〉 is a large multiplicative subgroup of order q|pµ − 1. We
follow Lentra’s guidelines for selecting q to be a factor of the µ-th cyclotomic polynomial Φµ(x)
when evaluated at x = p [49].

The hardness of discrete-log in extension fields has been studied for quite some time; recently quasi-
polynomial time algorithms [40,57] have been designed for the special case of fixed-sized, i.e., small,
characteristic fields. The key ideas behind these recent algorithms, however, do not extend to larger
characteristic fields. To estimate the security level in our case, we observe that the finite field in
our context is related to pairing-based curves due to the underlying implementation of SNARKs
using BN curves [7]. In fact, the prime p has a special form in our case (p can be computed
based on a polynomial 36x4 + 36x3 + 18x2 + 6x + 1). This property can be utilized to solve the
Discrete-Logarithm problem faster using the the Special Number Field Sieve algorithm proposed
by Joux et al [45]. This is the best attack (see [56]) we are aware of; using µ = 4 in our scenario
yields about 86-bit security.

The extension field construction requires us to search for large primes that divide Φµ(p). In our
implementation using libsnark [15], in order to get about 80-bit level of security, we set µ to be
4 as mentioned above, and choose q to be the 398-bit prime factor of the Φ4(p), where p is the
SNARK field order of libsnark. For higher security when µ = 6, we found a 313-bit prime order
subgroup for the extension field. However, to get higher security levels (i.e., µ > 6), this may
require expensive factorization.

• Diffie-Hellman key exchange via a SNARK-friendly Elliptic Curve. The field extension approach
above has two drawbacks: 1) The size of public keys and keying material is large. For 80-bit
security, the size of the exchanged key is nearly 128 bytes. A hash-based key derivation function
(KDF) will have a high cost for SNARKs, especially if we raise the security level of the field ex-
tension to above 100. 2) It requires expensive factorization to find suitable parameters to achieve
higher bit security. Therefore, we investigated whether we can construct a SNARK-friendly el-
liptic curve mainly for key exchange. Note that in earlier works that proposed elliptic curves for
SNARKs [14, 32], one goal was to implement the pairing operation efficiently within the circuits.
On the other hand, our goal here to implement the operation required in key exchange, i.e. gx, in
a more efficient way.

Following the guidelines described in constructing Curve25519 [16], we propose a SNARK-friendly
Montgomery elliptic curve over the SNARK field Fp, that is specified by the equation: y2 =
x3 +Ax2 + x, where A = 126932.

Choosing A = 126932 implies that the order of the curve is 8× 251-bit prime, and the order
of its twist is 4× 252-bit prime. Note that the size of the prime order subgroup is above 2250,
achieving about 125-bit security. The secret key in our construction has the same properties as in
Curve25519, i.e. chosen to be a multiple of 8, in order to avoid small subgroup attacks. Note that
we don’t follow the other efficiency guidelines described for Curve25519, due to the different setting
and cost model. Finally, the safety of the parameters of the new curve was verified according to
the script available online on the Safe Curves website [18].

The implementation of point addition and multiplication using the above curve is very efficient.
Assuming affine coordinates, both point doubling and addition can both be encoded using the same

15

number of constraints in our case. In fact, each step only requires 4 multiplication gates. This is
because verifying multiplicative inverses in SNARKs is very cheap, costing one multiplication gate
per operation. Furthermore, to implement the operation gx efficiently, one possible optimization
is to pre-compute all powers for a base g, and hardcode them in the circuit, i.e. {g2, g3, .., g251},
then use them to compute gx. In our implementation, the operation gx costs 6 multiplications per
each bit in x (compared to 60 multiplications in Geppetto’s curve [32]).

Symmetric-key encryption. After exchanging a secret key using a public key scheme, symmetric
encryption is performed in CBC mode using a block cipher. Note that in the case of using the
extension field-based scheme or the elliptic curve scheme, we use a hash-based key derivation
function to derive a secret key and a secret initialization vector for the symmetric encryption. This
process is not required in the RSA case, as the sender can encrypt the random key and initialization
vector directly.

Choosing a standard block cipher like AES can be a poor choice for SNARKs due to its com-
plexity. For example, using an available näıve implementation of AES using snarklib [28], one
AES-128 block requires more than 1 million gates, which would result in very expensive circuits
especially when the plaintext is long. A conservative lower bound for naive AES implementation
using [55] or [62] will be about 65k gates. This high cost is mainly because näıve implementa-
tions use inefficient look up tables for S-boxes, as well as similarly unoptimized procedures. In our
optimized implementation, we substantially reduce the overhead for memory accesses by using a
customized efficient manual implementation for the S-Box, and remove other look up tables when
more efficient alternatives can be used. Our more efficient implementation costs about 23k gates
per block, and about 4.6k gates in the initial key expansion phase (we are also investigating more
optimizations in an ongoing work).

To achieve more practical performance, we looked for lightweight ciphers according to the
criteria we described in the beginning of the section, and found two promising ciphers, Speck and
Chaskey, which were proposed recently. Speck was proposed in 2013 [8] by NSA, and in 2015, no
attacks have been found so far [9]. Chaskey was proposed in [54], where its security was proven
in the standard model. We use a more secure version of Chaskey called Chaskey-LTS, which uses
16 rounds instead of 8 to achieve long-term security. These ciphers have more SNARK-friendly
implementations compared to AES, but the disadvantage of using these ciphers is that they are
new compared to AES. We plan to investigate more lightweight ciphers in the future as well.

Micro-benchmarks. Table 1 provides the micro-benchmarks for the public key and symmetric
key schemes discussed above, compared to their näıve implementations when possible. It should
be noted that for PKE schemes, we assumed that the public key is hardcoded in the circuit, which
is suitable for our purposes in the transformations. If the public keys are not hardcoded, the cost
for the field extension circuit will increase with about 20k gates, and the cost for the elliptic curve
scheme will be about 5K gates, but it will result into minor difference in the RSA case. As noted
in the table, the cost of SNARK-friendly elliptic curve is more than 10x better than the RSA-2048
case. Also, the cost of Field Extension is about 4x better than the RSA-1024 case, but it costs
more gates compared to the elliptic curve setting due to the cost of hash-based key derivation using
SHA-256 (Exploring SNARK-friendly key derivation functions can be a direction for future work).

For the block ciphers, the table shows about 4x better cost for Speck and Chaskey compared to
an optimized version of AES. We also compared with our optimized version of AES (23k multipli-
cation gates) to an auto-generated SNARK circuit using snarklib [28] (> 1 million multiplication

16

Table 1: Number of constraints of PKE and symmetric-key encryption. Numbers between (.) represent naive
implementation cost, when significant. The field extension uses (µ = 4). The block cipher schemes all use a 128-bit
key. The block cipher cost does not include any one-time key expansion cost.

PKE Scheme Key Exchange + Derivation Block Cipher Cost / Block

RSA-OAEP (1024) 205k (330k) + 0 AES 23k (1m, 65k)
Field Extension 3.5k + 52k Speck 6.5k

RSA-OAEP (2048) 435k (654k) + 0 Chaskey 5k
Elliptic Curve 3k + 26k

Table 2: # gates for encrypting 200 bytes for all schemes. RSA uses 2048-bit keys. ECDH refers
to key exchange using the SNARK-friendly elliptic curve.

Total Cost Cost Per Bit Ratio

RSA-OAEP only 868k 542.47 9.5

RSA-OAEP + AES 728k 455.06 7.9
RSA-OAEP + Speck 522k 326.17 5.7
RSA-OAEP + Chaskey LTS 496k 310.11 5.4

ECDH + AES 323k 202.10 3.53
ECDH + Speck 117k 73.21 1.28
ECDH + Chaskey
LTS [Baseline]

91k 57.17 1.0

gates). In this case, our optimized version of AES implementation is at least 40x better than the
auto-generated version, and it is also at least 2-3x better than a lower bound estimate for AES
implementation using current compilers.

Starting from this point, we will only present results for the high security setting using RSA-
2048 and the SNARK-friendly elliptic curve. The results of lower-level security involving Field
Extension can be found in Appendix G. Table 2 provides the cost of encrypting 200 bytes using the
above schemes (after optimizations). It can be noted that using the snark-friendly elliptic curve
with the two lightweight ciphers provides better performance than the other techniques achieving
about 3-9x speedup.

6.2 Other Cryptographic Primitives

PRFs and commitments. In our implementation, we instantiate PRFs and Commitments using
an efficient SHA-256 circuit. An efficient SHA-256 circuit costs about 26k gates for one block (512-
bit input), while its näıve implementation using SNARK compilers costs more than 40k gates. The
optimizations are mainly achieved by representing Boolean operations efficiently, and careful circuit
design. A previous similar implementation and a detailed discussion of SHA-256 optimizations can
be found in [11]. Our implementation has additional 1000 gates savings via further low-level
optimizations across rounds.

Collision resistant hashes. Lattice-based cryptography, including Ajtai’s collision resistant hash,
are promising for use in SNARKs [14]. However, existing estimates of concrete security for such
schemes only extend to lattices over small finite fields, but do not a priori apply to lattices con-
structed over a SNARK’s (much larger) native field. In Appendix F, we establish that these
estimates do indeed apply and show how to parameterize lattice-based schemes.

Signatures. For digital signatures, one possible approach is to use an optimized RSA-PSS signa-

17

Table 3: Application – Privacy-preserving smart contracts: Benchmarks for pour and freeze
circuits in Hawk [47].

Transformation in Section 3

Hyb. Enc. w/ ECDH Hyb. Enc. w/ RSA
RSA

Naive RSA
Chaskey LTS Speck AES Chaskey LTS Speck AES Baseline

[Pour] KeyGen(s) 171.72 190.28 230.14 212.97 213.77 233.48 301.72 451.42
[Pour] Proof(s) 55.26 65.67 86.74 83.81 81.94 85.29 109.36 167.49
[Pour] Verify(s) 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
[Pour] Eval. Key(MB) 295.55 314.25 421.44 383.62 388.84 427.91 559.22 838.33
[Pour] Ver. Key(KB) 9.65 9.65 9.65 9.58 9.58 9.58 12.39 12.39

[Freeze] KeyGen(s) 124.53 130.87 185.56 166.38 170.56 188.68 389.47 389.47
[Freeze] Proof(s) 41.59 44.68 68.7 57.13 54.68 67.01 132.34 132.34
[Freeze] Verify(s) 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
[Freeze] Eval. Key(MB) 213.36 224.09 331.28 285.49 290.71 337.75 732.24 732.24
[Freeze] Ver. Key(KB) 6.22 6.22 6.22 6.15 6.15 6.15 8.95 8.95

Transformation in Section 4

Hyb. Enc. w/ ECDH Hyb. Enc. w/ RSA
RSA

Chaskey LTS Speck AES Chaskey LTS Speck AES

[Pour] KeyGen(s) 100.39 104.03 133.15 150.98 158.21 183.97 192.48
[Pour] Proof(s) 32.83 32.95 44.38 47.93 52.04 66.7 65.41
[Pour] Verify(s) 0.01 0.01 0.01 0.01 0.01 0.01 0.01
[Pour] Eval. Key(MB) 169.31 175.22 228.78 257.65 264.86 315.89 345.26
[Pour] Ver. Key(KB) 7.97 7.97 7.97 9.86 9.86 9.86 10.42

[Freeze] KeyGen(s) 70.68 73.99 103.18 122.9 125.37 150.99 170.38
[Freeze] Proof(s) 21.7 23.78 34.85 41.96 41.07 51.55 54.86
[Freeze] Verify(s) 0.01 0.01 0.01 0.01 0.01 0.01 0.01
[Freeze] Eval. Key(MB) 115.64 122.05 175.11 209.96 215.17 258.23 291.59
[Freeze] Ver. Key(KB) 4.54 4.54 4.54 6.43 6.43 6.43 6.99

Transformation in Section 5

Hyb. Enc. w/ ECDH Hyb. Enc. w/ RSA
RSA

Chaskey LTS Speck AES Chaskey LTS Speck AES

[Pour] KeyGen(s) 94.06 97.92 124.1 146.52 149.68 174.43 137.16
[Pour] Proof(s) 29.98 32.71 43.96 46.87 47.38 57.22 42.09
[Pour] Verify(s) 0.01 0.01 0.01 0.01 0.01 0.01 0.01
[Pour] Eval. Key(MB) 155.25 164.45 211.49 247.86 253.82 299.87 236.11
[Pour] Ver. Key(KB) 8.25 8.25 8.25 10.42 10.42 10.42 8.74

[Freeze] KeyGen(s) 62.48 65.61 93.17 117.35 120.22 144.89 111.02
[Freeze] Proof(s) 20.74 20.95 34.52 41 41.03 48.94 40.52
[Freeze] Verify(s) 0.01 0.01 0.01 0.01 0.01 0.01 0.01
[Freeze] Eval. Key(MB) 103.87 109.09 156.13 200.22 205.43 245.01 188.71
[Freeze] Ver. Key(KB) 4.82 4.82 4.82 6.99 6.99 6.99 5.31

ture verification circuit using the PKCS-1 standard v2.1 [44]. As stated earlier, SNARK circuits
do not necessarily have to compute, and since the signature verification in RSA is cheaper (due to
the small public exponent), we adopt a signature verification circuit instead, and apply the same
optimizations we applied for the RSA Encryption circuit. We currently use SHA-256 to hash the
message to be signed. We use this signature circuit to implement the transformation in Section 3.
Another optimization that can be done is to use the same approach we used for optimized DH key
exchange, by relying on a SNARK-friendly elliptic curve-based scheme for signatures. Such scheme
can actually be derived based on the curve used earlier in key exchange, like the relation between
the curve used in Ed25519 [17] and Curve25519 [16]. Since our final transformation does not rely

18

Table 4: Application – anonymous credential

Transformation in Section 3

Hyb. Enc. w/ ECDH Hyb. Enc. w/ RSA
RSA

Naive RSA
Chaskey LTS Speck AES Chaskey LTS Speck AES Baseline

KeyGen(s) 219.91 235.66 399.83 258.2 277.2 403.58 527.09 777.4
Proof(s) 82.35 83.13 175.61 93.74 98.64 172.92 192.88 269.14
Verify(s) 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
Eval. Key(MB) 403.82 432.46 757.07 469.98 499.09 763.54 990.16 1508.48
Ver. Key(KB) 16.45 16.45 16.45 16.38 16.38 16.38 20.86 20.86

Transformation in Section 4

Hyb. Enc. w/ ECDH Hyb. Enc. w/ RSA
RSA

Chaskey LTS Speck AES Chaskey LTS Speck AES

KeyGen(s) 159.36 178.28 298.85 206.44 218.8 342.64 423.63
Proof(s) 54.54 64.35 117.47 81.64 82.06 137.41 166.47
Verify(s) 0.01 0.01 0.01 0.01 0.01 0.01 0.01
Eval. Key(MB) 273.76 305.55 552.62 376.05 399.17 639.72 804.45
Ver. Key(KB) 14.77 14.77 14.77 16.66 16.66 16.66 18.9

Transformation in Section 5

Hyb. Enc. w/ ECDH Hyb. Enc. w/ RSA
RSA

Chaskey LTS Speck AES Chaskey LTS Speck AES

KeyGen(s) 154.27 172.81 285.92 202.77 215.08 339.11 419.53
Proof(s) 54.27 64.17 108 81.19 82.4 137.2 166.99
Verify(s) 0.01 0.01 0.01 0.01 0.01 0.01 0.01
Eval. Key(MB) 264.34 295.44 528.02 368.66 391.79 632.34 796.9
Ver. Key(KB) 15.05 15.05 15.05 17.22 17.22 17.22 19.46

mainly on signatures within the circuits, we leave investigating this direction to future work.

7 End-to-end Applications

To show the enhancement introduced by our techniques, we evaluate the performance of our trans-
formations and the SNARK-friendly cryptography in the context of three different real applications
that use zk-SNARKs. The evaluation will include the three transformations presented in Section 3
, the transformation in Section 4 , and the stronger version in Section 5. The evaluation will also
compare all the encryption schemes presented earlier in Table 8. The baseline will be a naive im-
plementation that adopts the first transformation while using unoptimized standard RSA for both
encryption and signature. As before, we assume a minimum of 112-bit security in our implemen-
tation. Results for 80-bit security are provided in Appendix G.

We ran our experiments on an Amazon EC2 r2.x8 large instance. Our experiments used a
single core (2.5 GHz), and 19 GB memory in the worst case. The experiments relied on libsnark as
a backend, for which we developed an interface that translates our circuits into libsnark’s gadget
library constructs. The benchmarks include the initial one-time key generation time, the proof
construction time by the prover, and the verification time by the verifier.

Privacy-preserving smart contracts. Hawk [47] is a recently proposed cryptocurrency system
that enables users to run privacy-preserving decentralized applications on top of the blockchain,
such as private auctions, crowdfunding, etc. In order to achieve privacy, Hawk relies mainly on
zk-SNARKs to main its guarantees. The original Hawk paper [47] used the transformation in

19

Table 5: Application – nonoutsourceable puzzles for thwarting mining pools (Type
II) [53].

Transformation in Section 3

Hyb. Enc. w/ ECDH Hyb. Enc. w/ RSA
RSA

Naive RSA
Chaskey LTS Speck AES Chaskey LTS Speck AES Baseline

KeyGen(s) 109.23 119.73 173.99 152.07 155.84 179.08 244.36 383.46
Proof(s) 35.48 43.78 61.09 50.17 52.06 61.57 86.41 134.31
Verify(s) 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
Eval. Key(MB) 182.27 200.62 296.58 256.39 263.26 303.05 446.85 710.03
Ver. Key(KB) 6.43 6.43 6.43 6.36 6.36 6.36 9.3 9.3

Transformation in Section 4

Hyb. Enc. w/ ECDH Hyb. Enc. w/ RSA
RSA

Chaskey LTS Speck AES Chaskey LTS Speck AES

KeyGen(s) 59.39 62.58 89.41 113.38 116.1 135.37 163.2
Proof(s) 23.2 23.31 32.44 43.28 43.38 46.51 57.89
Verify(s) 0.01 0.01 0.01 0.01 0.01 0.01 0.01
Eval. Key(MB) 95.53 101.09 147.41 189.85 194.72 230.53 272.43
Ver. Key(KB) 4.75 4.75 4.75 6.64 6.64 6.64 7.34

Transformation in Section 5

Hyb. Enc. w/ ECDH Hyb. Enc. w/ RSA
RSA

Chaskey LTS Speck AES Chaskey LTS Speck AES

KeyGen(s) 47.34 52.18 73.48 101.3 103.95 133.17 95.53
Proof(s) 16.56 19.26 26 34.69 34.72 48.45 34.71
Verify(s) 0.01 0.01 0.01 0.01 0.01 0.01 0.01
Eval. Key(MB) 73.81 80.67 120.47 168.16 173.03 216.82 157.61
Ver. Key(KB) 5.03 5.03 5.03 7.2 7.2 7.2 5.66

Section 3 , using only unoptimized RSA for encryption and signature. We investigate how the
proposed transformation can provide better performance.

We applied our transformations to two Hawk circuits: pour and freeze, which mainly enable
users to spend or commit to secret coin values that they own. Table 3 presents the results at the
112-bit security level. It can be noted that the transformation presented in Section 5 achieves better
performance compared to other transformations. Furthermore, for both pour and freeze circuits,
usage of SNARK-friendly cryptographic schemes using ECDH and the lightweight ciphers achieved
more than 5× speedup compared to the näıve implementation used for the first transformation.
As stated in the Hawk paper, Hawk has now switched their implementation to using the C∅C∅
framework.

Anonymous credentials. In this application, a user has a secret credential with multiple at-
tributes. The credential is signed by a trusted public authority, and the main purpose of the circuit
is to prove a property regarding one attribute of the credential in zero knowledge, i.e. without
leakage any of the credential details. In our experiments, we assume the credential has a total size
of 1 KB, and that the credential is signed using RSA-PSS with a 2048-bit key and using SHA-256
as the hash function. The main statement being proved is a simple inequality over a numeric
attribute, e.g. check if the age attribute in a secret credential is greater than a certain age.

Table 4 provides the benchmarks for this application at the 112-bit security level, showing more
than 5× speedup compared to the näıve implementation used for the first transformation. The
main reason for why the speedup in this application is higher than the previous one is due to the
size of the secret witness here, which makes the encryption modules dominant in the circuit.

20

Nonoutsourceable puzzles. Motivated by the prevalence of Bitcoin mining coalitions, which
is harmful to the decentralization goal of cryptocurrency, Miller et al. proposed a technique for
deterring coalitions using what is called: Nonoutsourceable Puzzles [53]. These puzzles aims to
discourage pool operators from outsourcing mining work to other workers, as they can enable a
worker to steal the reward without being implicated. The implementation of these nonoutsourceable
puzzles relied on zk-SNARKs as well, and hence we investigate how our techniques will perform in
the context of this application.

Table 5 provides the benchmarks at the 112-bit security level, showing that using SNARK-
friendly schemes along with the third transformation (the transformation in Section 5) can achieve
8× speedup compared to the näıve implementation used for the first transformation.

Discussion: transformation cost. Although we have noted the perils of non-composability in
protocol design, we nonetheless evaluate the cost of our SNARK lifting transformations in Table 6.
This table reflects the most efficient transformation (Section 5). Note that the proof size in the
table includes any additional outputs that are not part of the original statement. As the table
shows, the additional proof size correlates with the size of the secret witness. This is why the
anonymous credential application has the largest proof size. In terms of the proof computation
time, the transformation we employed resulted in nearly 2× higher proof time in the worst case,
which is still practical within the context of the applications we considered.

Table 6: Cost comparison with non-UC secure scheme. Proof size includes any additional outputs
that are not part of the original statement, e.g. encrypted witness.

Application
(Witness Size)

Metric Non-UC secure
Transformation
in Section 5

Hawk [Pour]
(0.18KB)

KeyGen(s) 73.76 92.43
Prove(s) 21.09 28.12
Verify(s) 0.009 0.01
Proof Size (KB) 0.28 0.62
Eval. Key (MB) 123.3 155.25
Ver. Key (KB) 5.59 8.25

Hawk [Freeze]
(0.18KB)

KeyGen(s) 43.42 62.61
Prove(s) 12.51 20.84
Verify(s) 0.008 0.01
Proof Size (KB) 0.28 0.62
Eval. Key (MB) 68.96 103.87
Ver. Key (KB) 2.16 4.82

Anonymous
Credential
(1KB)

KeyGen(s) 109.458 154.48
Prove(s) 40.44 54.56
Verify(s) 0.008 0.011
Proof Size (KB) 0.28 1.43
Eval. Key (MB) 177.42 264.34
Ver. Key (KB) 5.1 15.05

Nonoutsourceable
Puzzle (0.16KB)

KeyGen(s) 28.92 47.44
Prove(s) 9.49 16.54
Verify(s) 0.008 0.01
Proof Size (KB) 0.28 0.6
Eval. Key (MB) 41.87 73.81
Ver. Key (KB) 2.51 5.03

21

8 Conclusion

We design and implement a framework called C∅C∅, making composable zero-knowledge proofs
a practically efficient and accessible building block for non-specialist programmers for the first
time. In comparison with earlier works, C∅C∅ makes it much easier for programmers to code up
composable NIZKs for general statements — in particular, the programmer now only needs to
code up the high-level application and need not express the SNARK lifting transformation itself
as algebraic circuits. We formally prove the security of our constructions, and demonstrate the
practical performance of C∅C∅ in several applications that require zero-knowledge proofs. We show
that through careful optimizations and design of SNARK-friendly cryptographic primitives, C∅C∅
provides 5× to 8× performance improvement in comparison with naive implementations.

Acknowledgments

We gratefully acknowledge Jonathan Katz for helpful technical discussions about the zero-knowledge
proof constructions. We also thank Dario Fiore for pointing out an error in the previous version in
one of the optimizations in the baseline schemes we compare with 1. This work is funded in part
by NSF grants CNS-1314857, CNS-1453634, CNS-1518765, CNS-1514261, a Packard Fellowship, a
Sloan Fellowship, two Google Faculty Research Awards, a VMWare Research Award, as well as
grants from the DARPA Safeware and DARPA Brandeis programs. This work was done in part
while a subset of the authors were visiting the Simons Institute for the Theory of Computing,
supported by the Simons Foundation and by the DIMACS/Simons Collaboration in Cryptography
through NSF grant CNS-1523467.

References

[1] Intel SGX for dummies (intel SGX design objectives). https://software.intel.com/en-us/blogs/

2013/09/26/protecting-application-secrets-with-intel-sgx.

[2] jsnark: A java library for building snarks. oblivm.com/jsnark.

[3] Personal communication with vitalik buterin.

[4] Trusted computing group. http://www.trustedcomputinggroup.org/.

[5] M. R. Albrecht, R. Player, and S. Scott. On the concrete hardness of learning with errors. 2015.

[6] M. Backes, M. Barbosa, D. Fiore, and R. M. Reischuk. Adsnark: nearly practical and privacy-preserving
proofs on authenticated data. In Security and Privacy (SP), 2015 IEEE Symposium on. IEEE, 2015.

[7] P. S. L. M. Barreto and M. Naehrig. Pairing-friendly elliptic curves of prime order. Cryptology ePrint
Archive, Report 2005/133, 2005.

[8] R. Beaulieu, D. Shors, J. Smith, S. Treatman-Clark, B. Weeks, and L. Wingers. The simon and speck
families of lightweight block ciphers. Cryptology ePrint Archive, Report 2013/404, 2013.

1In our earlier version, to give the baseline schemes the benefit of the doubt, we made an optimization whose secu-
rity needs to rely on a relativized assumption as Dario Fiore pointed out [35]. We have removed those optimizations.
This, however, did not affect any of our implementations (including the Hawk application [47]), because our imple-
mentations adopted the most efficient version described in Section 5 that does not make use of this optimization. The
effect of removing the optimization from the baseline only makes our performance comparison results better because
now the baseline schemes we compare with are more expensive.

22

https://software.intel.com/en-us/blogs/2013/09/26/protecting-application-secrets-with-intel-sgx
https://software.intel.com/en-us/blogs/2013/09/26/protecting-application-secrets-with-intel-sgx
oblivm.com/jsnark
http://www.trustedcomputinggroup.org/

[9] R. Beaulieu, D. Shors, J. Smith, S. Treatman-Clark, B. Weeks, and L. Wingers. Simon and speck:
Block ciphers for the internet of things. Cryptology ePrint Archive, Report 2015/585, 2015.

[10] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-cryptographic fault-
tolerant distributed computation. In STOC, 1988.

[11] E. Ben-Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, and M. Virza. Zerocash:
Decentralized anonymous payments from bitcoin. In S & P, 2014.

[12] E. Ben-Sasson, A. Chiesa, D. Genkin, and E. Tromer. Fast reductions from rams to delegatable succinct
constraint satisfaction problems: extended abstract. In ITCS, 2013.

[13] E. Ben-Sasson, A. Chiesa, D. Genkin, E. Tromer, and M. Virza. Snarks for C: verifying program
executions succinctly and in zero knowledge. In CRYPTO, 2013.

[14] E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza. Scalable zero knowledge via cycles of elliptic
curves. In Advances in Cryptology–CRYPTO 2014, pages 276–294. Springer, 2014.

[15] E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza. Succinct non-interactive zero knowledge for a von
neumann architecture. In USENIX Security, 2014.

[16] D. J. Bernstein. Curve25519: new diffie-hellman speed records. In Public Key Cryptography-PKC 2006,
pages 207–228. Springer, 2006.

[17] D. J. Bernstein, N. Duif, T. Lange, P. Schwabe, and B.-Y. Yang. High-speed high-security signatures.
Journal of Cryptographic Engineering, 2(2):77–89, 2012.

[18] D. J. Bernstein and T. Lange. Safecurves: choosing safe curves for elliptic-curve cryptography. http:

//safecurves.cr.yp.to. Accessed: 2016-05-20.

[19] N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer. From extractable collision resistance to succinct
non-interactive arguments of knowledge, and back again. In ITCS, pages 326–349, 2012.

[20] M. Blum, P. Feldman, and S. Micali. Non-interactive zero-knowledge and its applications. In STOC,
1988.

[21] M. Blum, A. D. Santis, S. Micali, and G. Persiano. Non-interactive zero knowledge. SIAM Jornal of
Computation, 1991.

[22] J. Camenisch, S. Hohenberger, and A. Lysyanskaya. Compact e-cash. In EUROCRYPT, 2005.

[23] J. Camenisch and A. Lysyanskaya. An efficient system for non-transferable anonymous credentials with
optional anonymity revocation. In EUROCRYPT, 2001.

[24] R. Canetti. Universally composable security: A new paradigm for cryptographic protocols. In FOCS,
2001.

[25] R. Canetti, Y. Dodis, R. Pass, and S. Walfish. Universally composable security with global setup. In
TCC. 2007.

[26] R. Canetti, Y. Lindell, R. Ostrovsky, and A. Sahai. Universally composable two-party and multi-party
secure computation. In STOC, 2002.

[27] R. Canetti and T. Rabin. Universal composition with joint state. In CRYPTO, 2003.

[28] J. Carlsson. snarklib: a c++ template library for zero knowledge proofs.
https://github.com/jancarlsson/snarklib.

[29] Y. Chen and P. Q. Nguyen. Bkz 2.0: Better lattice security estimates. In ASIACRYPT, 2011.

[30] Y. Chen and P. Q. Nguyen. Bkz 2.0: Better lattice security estimates (full version), 2012.

[31] A. Chiesa, E. Tromer, and M. Virza. Cluster computing in zero knowledge. In EUROCRYPT. 2015.

23

http://safecurves.cr.yp.to
http://safecurves.cr.yp.to

[32] C. Costello, C. Fournet, J. Howell, M. Kohlweiss, B. Kreuter, M. Naehrig, B. Parno, and S. Zahur.
Geppetto: Versatile verifiable computation. In S&P, 2014.

[33] G. Danezis, C. Fournet, M. Kohlweiss, and B. Parno. Pinocchio Coin: building Zerocoin from a succinct
pairing-based proof system. In PETShop, 2013.

[34] A. Delignat-Lavaud, C. Fournet, M. Kohlweiss, and B. Parno. Turning shabby x.509 certificates into
elegant anonymous credentials with the magic of verifiable computation. In S& P, 2016.

[35] D. Fiore and A. Nitulescu. On the (in)security of snarks in the presence of oracles. Cryptology ePrint
Archive, Report 2016/112, 2016. http://eprint.iacr.org/2016/112.

[36] C. Garman, M. Green, and I. Miers. Accountable privacy for decentralized anonymous payments. In
Financial Crypto’16, 2016.

[37] R. Gennaro, C. Gentry, B. Parno, and M. Raykova. Quadratic span programs and succinct NIZKs
without PCPs. In Eurocrypt, 2013.

[38] C. Gentry and D. Wichs. Separating succinct non-interactive arguments from all falsifiable assumptions.
In STOC, 2011.

[39] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game. In ACM symposium on
Theory of computing (STOC), 1987.

[40] R. Granger, T. Kleinjung, and J. Zumbragel. On the discrete logarithm problem in finite fields of fixed
characteristic. IACR ePrint Archive 2015/685, 2015.

[41] J. Groth. Simulation-sound nizk proofs for a practical language and constant size group signatures. In
ASIACRYPT, 2006.

[42] J. Groth, R. Ostrovsky, and A. Sahai. Perfect non-interactive zero knowledge for NP. In EUROCRYPT,
2006.

[43] S. Hohenberger, S. Myers, R. Pass, and a. shelat. Anonize: A large-scale anonymous survey system. In
S & P, 2014.

[44] J. Jonsson and B. Kaliski. Public-Key Cryptography Standards (PKCS) #1: RSA Cryptography
Specifications Version 2.1, 2003. RFC 3447.

[45] A. Joux and C. Pierrot. The special number field sieve in Fpn , application to pairing-friendly construc-
tions. Cryptology ePrint Archive, Report 2013/582, 2013.

[46] A. Juels, A. Kosba, and E. Shi. The ring of gyges: Using smart contracts for crime. Manuscript, 2015.

[47] A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou. Hawk: The blockchain model of cryptography
and privacy-preserving smart contracts. In IEEE Symposium on Security and Privacy, 2016.

[48] A. E. Kosba, D. Papadopoulos, C. Papamanthou, M. F. Sayed, E. Shi, and N. Triandopoulos. Trueset:
Nearly practical verifiable set computations. In Usenix Security Symposium, 2014.

[49] A. K. Lenstra. Using cyclotomic polynomials to construct efficient discrete logarithm cryptosystems
over finite fields. In Information Security and Privacy, pages 126–138. Springer, 1997.

[50] R. Lindner and C. Peikert. Better key sizes (and attacks) for lwe-based encryption. In CT-RSA, Berlin,
2011.

[51] C. C. Martin R. Albrecht, J.-C. Faugère, R. Fitzpatrick, and L. Per-ret. On the complexity of the bkw
algorithm on lwe. In Designs, Codes and Cryptography, volume 74, pages 325–354, 2015.

[52] D. Micciancio and O. Regev. Lattice-based cryptography. In Bernstein et al, pages 147–191, 2009.

[53] A. Miller, E. Shi, A. Kosba, and J. Katz. Nonoutsourceable Scratch-Off Puzzles to Discourage Bitcoin
Mining Coalitions (preprint), 2014.

24

http://eprint.iacr.org/2016/112

[54] N. Mouha, B. Mennink, A. Van Herrewege, D. Watanabe, B. Preneel, and I. Verbauwhede. Chaskey:
An efficient mac algorithm for 32-bit microcontrollers. In Selected Areas in Cryptography. 2014.

[55] B. Parno, J. Howell, C. Gentry, and M. Raykova. Pinocchio: Nearly practical verifiable computation.
In S & P, 2013.

[56] L. G. Pierrick Gaudry and M. Videau. Collecting relations for the number field sieve in gf(p6). IACR
ePrint Archive 2016/124, 2016.

[57] A. J. Razvan Barbulescu, Pierrick Gaudry and E. Thome. A heuristic quasi-polynomial algorithm for
discrete logarithm in finite fields of small characteristic. In EUROCRYPT’14, 2014.

[58] M. Rückert and M. Schneider. Estimating the security of lattice-based cryptosystems. 2010.

[59] A. Sahai. Non-malleable non-interactive zero knowledge and adaptive chosen-ciphertext security. In
FOCS ’99, 1999.

[60] A. D. Santis, G. D. Crescenzo, R. Ostrovsky, G. Persiano, and A. Sahai. Robust non-interactive zero
knowledge. In CRYPTO, 2001.

[61] S. Setty, V. Vu, N. Panpalia, B. Braun, A. Blumberg, and M. Walfish. Taking proof-based verified
computation a few steps closer to actual practicality. In USENIX security, 2012.

[62] R. S. Wahby, S. Setty, Z. Ren, A. J. Blumberg, and M. Walfish. Efficient ram and control flow in
verifiable outsourced computation. In NDSS, 2015.

[63] R. S. Wahby, S. T. V. Setty, Z. Ren, A. J. Blumberg, and M. Walfish. Efficient RAM and control flow
in verifiable outsourced computation. In NDSS, 2015.

[64] M. Walfish and A. J. Blumberg. Verifying computations without reexecuting them. Communications
of the ACM, 58(2):74–84, 2015.

[65] G. Wood. Ethereum: A secure decentralized transaction ledger. http://gavwood.com/paper.pdf.

[66] Y. Zhang, J. Katz, and C. Papamanthou. Integridb: Verifiable SQL for outsourced databases. In ACM
CCS, 2015.

[67] Y. Zhang, C. Papamanthou, and J. Katz. ALITHEIA: towards practical verifiable graph processing. In
ACM CCS, 2014.

Appendix

A Sample Code

Figure 2 illustrates a code example written using C∅C∅ for a circuit that computes a certain property
over a secret document or credential that is signed by some authority.

B UC 10-Minute Crash Course and Why the Practitioner Should
Care

Although universal composability (UC) [24] and later variants [25, 27] are often considered as a
theoretical framework for composability, we stress that they are of vital importance in practical
engineering of cryptographic protocols. To aid the reader, we explain what UC provides in non-
technical terms below.

25

http://gavwood.com/paper.pdf

pub l i c c l a s s AnonymousCredentials extends
Ci rcu i tGenerator {

p r i v a t e s t a t i c f i n a l i n t BITWIDTH PER WIRE = 64 ;
p r i v a t e s t a t i c f i n a l i n t CREDENTIAL SIZE = 1024 ∗ 8 ; // in b i t s
p r i v a t e s t a t i c f i n a l i n t RSA KEY SIZE = 1024 ; // in b i t s

@Override
pub l i c void b u i l d C i r c u i t () {

// The pub l i c key o f the t ru s t ed author i ty (Part o f the pub l i c statement)
// Only the modulus i s s p e c i f i e d here f o r s i m p l i c i t y .
Wire [] pkWires = createInputWireArray (RSA KEY SIZE / BITWIDTH PER WIRE) ;

// The s e c r e t s i g n a t u r e wi r e s
Wire [] s i gnatureWires = createProverWitnessWireArray (RSA KEY SIZE

/ BITWIDTH PER WIRE, BITWIDTH PER WIRE) ;

// The s e c r e t c r e d e n t i a l w i r e s
Wire [] s e c r e tCreden t i a lWi r e s = createProverWitnessWireArray (

CREDENTIAL SIZE / BITWIDTH PER WIRE, BITWIDTH PER WIRE) ;

// Ver i fy the s i g n a t u r e
Wire i s V a l i d S i g n a t u r e = checkRSASignature (pkWires , s ignatureWires ,

s e c r e tCredent i a lWire s , RSA KEY SIZE , BITWIDTH PER WIRE) ;

// Check whether a c e r t a i n f i e l d in the s e c r e t document i s ze ro or not .
Wire revea l edProper ty = sec r e tCreden t i a lWi r e s [0] . checkNonZero () ;

// Def ine the pub l i c statement
Wire [] inStmt = pkWires ;
Wire [] outStmt = new Wire [] { revea ledProperty , i s V a l i d S i g n a t u r e } ;
// Spec i f y the w i tne s s e s
Wire [] w i tn e s s e s = U t i l . concat (s e c r e tCredent i a lWire s , s ignatureWires) ;

// Apply the SNARK L i f t i n g Transformation
SnarkL i f t i ng . s n a r k L i f t (inStmt , outStmt , wi tnes se s , BITWIDTH PER WIRE) ;

}

// . .
}

Figure 2: A code example for an anonymous credential circuit using C∅C∅.

UC allows abstraction of cryptography. Cryptographic building blocks and protocols are com-
plex. When programmers in the real world program cryptography, they should not have to think
about cryptography at the abstraction of modular exponentiations or RSA hardness. Rather, they
should be able to think about cryptography as a blackbox while abstracting away the implementa-
tion details.

UC provides a technically correct way for doing this. The programmer can now think about
cryptographic building blocks simply as making remote procedural calls to a trusted third party.

26

UC guarantees that every (in)security property that holds in this virtual world where the trusted
third party exists would hold in the real world as well — when the cryptographic building blocks
are instantiated with building blocks that UC-realize the this trusted third party. Moreover, this
holds no matter how many instances of the cryptographic building block or other cryptographic
protocols are running, possibly concurrently.

Spirit of UC is in action and perils of non-composability. The spirit of UC is applied in the
real world all the time. Programmers never think of cryptographic systems as their full expanded
implementation details but rather as ideal boxes. For example, trusted hardware such as TPMs [4]
and Intel SGX [1] run complex cryptographic protocols, but the programmer should not have to
be aware of the concrete implementation details. In fact, abstraction is often quoted as one ofthe
most powerful tools in all of computer science.

Clearly, it is common practice for programmers to abstract away cryptographic implementation
details, i.e., the spirit of UC is implicitly in action every day.

Unfortunately, making up abstractions without formal backing leads to numerous perils and
pitfalls. A textbook, introductory example of failure of composability is the following:

Imagine that Alice and Bob play rock-paper-scissors over the Internet. Alice calls a crypto-
graphic commitment scheme to commit “rock”, Bob commits “scissors”. Alice and Bob then both
open their commitments to decide the winner. Traditionally, we think of commitments as a build-
ing block that provides two important properties, “hiding” and “binding”. Unfortunately, it turns
out that simply hiding and biding are not sufficient for this application. In particular, if the com-
mitment scheme is malleable, Bob will be able maul Alice’s commitment into a commitment of a
winning choice (and later maul Alice’s opening accordingly too)!

The fundamental reason of this failure example is the following: While tempting, it is technically
incorrect to think of a “hiding” and “binding” commitment as a simple trusted third party that
remembers what is committed upon a “commit” invocation, and later reveal what is committed
upon an “open” invocation. In other words, simply hiding and binding are not sufficient to realize
a UC-secure commitment scheme.

Why should you care? UC provides a formal technical tool to allow programmers to cor-
rectly abstract cryptography as simple ideal boxes in practice. UC-secure building blocks are thus
the recommended best practice especially for programmers who are not cryptographers, to allow
“worry-free” adoption of cryptographic building blocks as if they were ideal boxes, while avoiding
many subtle pitfalls and attacks that arise from non-composability.

C From SSE-NIZK to UC-Secure NIZKs

As mentioned earlier in Section 2.1, the notion of simulation sound extractability (SSE) is roughly
speaking equivalent to UC-secure NIZKs. We now elaborate on the relation between SSE-NIZKs
and UC-Secure NIZKs.

Recall that in Sections 2 and 5, we defined a weak and a strong notion of SSE respectively.
Groth [41] showed that the stronger notion of SSE can be used to instantiate a NIZK ideal func-
tionality FNIZK. In a similar fashion, it is not hard to show that the a weak SSE secure NIZK can
be used to realize a weaker version of the ideal functionality called FWEAK-NIZK (see Figure 3)

The main difference between the weaker and the stronger version is that the weaker version
may permit an adversary to maul an existing proof to a new proof, but for the same statement.

27

Functionality FWEAK-NIZK(sid,L)

Prove: On input (prove, stmt, w) from party P ignore if (stmt, w) /∈ L. Send (prove, stmt) to A and wait
for answer (proof, π). Upon receiving the answer store (proof, stmt, π) and send (proof, π) and
send (proof, π) to P .

Maul: On input (maul, stmt, π) from A, ignore unless (stmt, x) is already stored for some π′. Record
(stmt, π) and send ok to A.

Verify: On input (verify, stmt, π) from party P , check whether (stmt, π) is stored. If not, then send
(verify, stmt, π) to A and wait for an answer (witness, w). Upon receiving the answer, check
whether (stmt, w) ∈ L and in that case, store (stmt, π). If (stmt, π) has been stored return
(verification, 1) to P , and otherwise return (verification, 0) to P .

Figure 3: A weak NIZK UC ideal functionality

Both versions prevent the adversary from mauling a proof to a related statement. Depending on
the application, sometimes the weak SSE notion suffices in protocol design, e.g., in Hawk [47].

D Witness Optimization for Basic SNARK Lifting Transforma-
tion

In this section, we show an improvement of Section 3. The idea is simple:
Note in the construction of Section 3, for a witness to be valid for RL′ , either w or σ is valid,

but not both. Hence, instead of encrypting both (concatenation), we only need to encrypt the one
we actually use.

For language L with NP relation RL, let L′ be
(
(stmt, c, pks, pke), (r, w)

)
∈ RL′ iff:

c = Enc(pke, w; r)∧(
(stmt, w) ∈ RL ∨ Verify(pks, stmt, w) = 1

)
The construction is defined as follows:

• K(1λ,L):
snark.crs← snark.K(1λ,L′);
(pke, ske)← KeyGenEnc(1

λ);
(pks, sks)← KeyGenSig(1

λ);
return crs := (snark.crs, pks, pke).

• P(crs, stmt, w):
Parse crs := (snark.crs, pks, pke);

Abort if (stmt, w) /∈ RL; z0, r1
$← {0, 1}λ; c = Enc(pke, w; r1);

snark.π ← snark.P(snark.crs, (stmt, c, pks, pke), (r1, w));
return π := (c, snark.π).

• V(crs, stmt, π):
Parse crs := (snark.crs, pks, pke) and π := (c, snark.π);
Call snark.V(snark.crs, (stmt, c, pks, pke), snark.π).

28

• K̂(1λ,L): Run K to get ĉrs := crs, but keep trapdoor τ := sks, extraction key ek := ske.

• P̂(ĉrs, τ, stmt):
Parse ĉrs := (snark.crs, pks, pke) and τ := sks;

z1, r1
$← {0, 1}λ; c = Enc(pke, σ; r1);

σ ← Sign(sks, stmt)
snark.π ← snark.P(snark.crs, (stmt, c, pks, pke),
(r1, σ));
return π := (c, snark.π).

• We also define the extractor here:
E(ĉrs, ek, stmt, π): Parse π := (c, snark.π);
w ← Dec(ek, c); return w.

Note that in a SNARK circuit realizing this construction, the size of w has to be the maximum of
the signature size and the size of the witness that L accepts. In other words, the shorter component
will be padded inside the circuit.

We next prove the construction is a SSE-NIZK.

Theorem 4. Assume that the underlying NIZK scheme satisfies perfect completeness, computa-
tional soundness, and computational zero-knowlege, that the signature scheme satisfies existential
unforgeability under chosen message attack, and that the encryption scheme is semantically secure
and perfectly correct, then the above construction is a zero-knowledge proof system satisfying perfect
completeness, computational zero-knowledge, and simulation sound extractability.

Proof. Completeness is obvious. Next we show zero-knowledge and simulation sound extractability.

Lemma 1. The construction is zero-knowledge.

Proof. The lemma can be proved similarly as previous one.

Lemma 2. The construction is simulation sound extractable.

Proof. The proof follows the same idea as the previous proof, We only sketch the hybrid games:

Expt0: Actual game.

Expt1: Change the return condition to, w ← Dec(ek, c):

(1) stmt /∈ Q; (2) V(ĉrs, stmt, π) = 1;

(3) (stmt, w) /∈ RL Verify(pks, stmt, w) = 1

We argue that Pr[Expt0] ≤ Pr[Expt1] + negl(λ): By the soundness of the underlying NIZK, we
know that (stmt, c, pks, pke) ∈ L′ except for negligible probability. Hence we only focus on such
cases. By the perfectly correctness of the underlying encryption scheme, all valid witnesses must
use the unique w decrypted.

If (stmt, w) /∈ RL then we must have Verify(pks, stmt, w) = 1, which gives Pr[Expt0] ≤ Pr[Expt1]+
negl(λ).

Next we argue that Pr[ExptA1] ≤ negl(λ): Consider otherwise, then we use ExptA1 as an adversary
for the security game of the signature scheme: Get pks from the game; Run ExptA1 with the same
pks; Replace signature with oracle calls (hence sks is no longer); Output the w decrypted.

29

E Omitted Proofs

Notation. We adopt several conventions for the convenience of readers following along with our
experiment proofs. Sometimes we need placeholders that correspond to different variables in the
experiments. To avoid confusing the names, we reserve z0, z1, . . . for this purpose. For example, z3
replaces witness “w” in Expt0, although z3 need not be a valid witness. To highlight the difference
between successive experiments, we color the new line red, and may reproduce the previous line it
replaces, striken through.

E.1 Proof of Theorem 1

Proof of Theorem 1. The proof of perfect completeness is obvious. We now show that this trans-
formation gives a zero knowledge and simulation sound extractable NIZK.

Proof of zero-knowledge. We now show that no polynomial-time adversary A can win the zero
knowledge game except with negligible probability.

We construct the following hybrid games:

ExptA. K̂(1λ,L) and P̂1(ĉrs, τ, stmt, w) are run as defined. Recall that P̂1 checks the witness w and
then calls (c, π)← P̂(ĉrs, τ, stmt).

ExptB.

• K̂(1λ,L): Use the underlying simulator setup algorithm nizk.K̂. Return the simulated ĉrs :=
(nizk.ĉrs, pk, pke), and trapdoor τ := (nizk.τ, sk).

• P̂1(ĉrs, τ, stmt, w): Abort if (stmt, w) /∈ L. Output (c, π), where c is an encryption of (⊥, σ)
and π ← nizk.P̂(nizk.ĉrs, nizk.τ, (stmt, c)).

ExptC,t, where t is a polynomial function of λ.

• K̂(1λ,L): Same as before.

• P̂1(ĉrs, τ, stmt, w): Check if (stmt, w) ∈ L, and abort otherwise. For the first t− 1 queries, let
c be an encryption of (w,⊥), and output (c, π) where π ← nizk.P̂(nizk.ĉrs, nizk.τ, (stmt, c)).
However, for the tth and all subsequent queries, behave the same as in ExptB.

ExptD.

• K̂(1λ,L): Same as before.

• P̂1(ĉrs,⊥, stmt, w): Check if (stmt, w) ∈ L, and abort otherwise. Let c be an encryption of
(w,⊥), and output (c, π) where π ← nizk.P̂(ĉrs, τ, (stmt, c)).

ExptE.

• K̂(1λ,L): Actually just run K(1λ,L), and output (crs,⊥,⊥).

• P̂1(crs,⊥, stmt, w): Actually just run P(crs, stmt, w).

30

First, ExptA and ExptB are indistinguishable by reduction to zero knowledge property of the
underlying NIZK. Next, notice that ExptB and ExptC,1 are identical. We can also prove for every
polynomial function t ≥ 1 that ExptC,t and ExptC,t+1 are indistinguishable by a reduction to the
semantic security of the underlying encryption scheme. Suppose A distinguishes between ExptC,t
and ExptC,t+1. Then we can construct an adversary A′ for the semantic security game as follows:

• Generate (ĉrs, τ, ek)← K̂(1λ,L)

• Call b ← AP̂
†(ĉrs,τ,·,·), where P̂†(ĉrs, τ, stmt, w) checks if (stmt, w) ∈ L, and then does as

follows:

– For the first t− 1 queries, behave as in ExptC,t.

– For the (t+ 1)th and all subsequent queries, behave as in ExptC,t+1.

– On the tth query, let σ := Σ.Sign(sk, stmt), and choose m1 := (w,⊥) and m2 := (⊥, σ)
as the adversary’s plaintexts in the sematic security game. Let c† be the resulting
challenge ciphertext obtained from the semantic security game. Output (c†, π†), where
π† ← nizk.P̂(ĉrs, τ, (stmt, c†)).

• Output b

This reduction succeeds because conditioned on the challenger choosing m1 or m2, the resulting
distribution is identical to ExptC,t or ExptC,t+1 respectively. Next, suppose A is able to distinguish
between ExptB and ExptD. Let t∗ > 1 be a polynomial function that bounds the number of oracle
calls made by A. Notice that ExptC,t∗ is identical to ExptD when run with A. By induction using
the argument above, ExptC,1 is indistinguishable from ExptC,t∗ . Finally, ExptD is indistinguishable
from ExptE because the underlying proof system is zero knowledge.

Proof of simulation sound extractability. We construct the following extractor:

• E(ĉrs, ek, stmt, π′): parse π′ := (c, π), and let (w, σ) := Dec(ske, c). Output w.

We now show that no polynomial-time adversary A can win the simulation sound extractable
game except with negligible probability.

Given that the encryption scheme is perfectly correct, we can assume that the (w, σ) decrypted
by E is the unique plaintext that produces c as a ciphertext.

Suppose σ is a valid signature, but stmt is not one of the statements signed via an oracle
query to P̂. Since the underlying signature scheme is unforgeable, this event occurs with negligible
probability.

Otherwise, suppose w is not a valid witness under language L (and hence (stmt, c) is not a
statement in L′). This reduces to breaking the computational soundness of the underlying NIZK.
Note that the adversary A′ for the computational soundness game must take in a real crs and must
generate a valid proof for a false statement. We can therefore construct A′(crs) from A as follows:
First, A′ runs (ĉrs, τ, ek)← K̂(1λ,L), but then discards ĉrs. The crs provided as input will be used
instead. Notice that crs and ĉrs here are identically distributed, since both the soundness game

and K̂ both run the ordinary setup nizk.K directly. Next, A′ runs (stmt, (c, π)) ← AP̂(crs,τ,·) as in
the simulation sound extractable game, and returns ((stmt, c), π) to the computational soundness
game, winning both games with similar probability. Notice that the oracle P̂(crs, τ, ·) does not have
access to any trapdoor for the underlying NIZK and cannot generate false proofs.

31

E.2 Proof of Theorem 2

Proof. Completeness is obvious.

Proof of simulation sound extractability.

Lemma 3. The construction is simulation sound extractable.

Proof. We define the simulation soundness extractablility experiment as follows:

Expt0 (Actual game):

1. Setup:
nizk.crs← nizk.K(1λ,L′);
(pke, ske)← KeyGenEnc(1

λ); s0, r0
$← {0, 1}λ;

ρ := comm(s0; r0); ĉrs := (nizk.crs, pke, ρ).

2. Define function O(stmtx):

z3, r1
$← {0, 1}λ; µ = fs0(stmtx);

c = Enc(pke, (z3, µ); r1);
nizk.π ← nizk.P(nizk.crs, (stmtx, c, pke, ρ),
(µ, r1, r0, z3, s0));
return π := (c, nizk.π).

3. (stmt, π)← AO(·)(ĉrs, ek);

4. Parse π := (c, nizk.π); (w, µ)← Dec(ek, c);

5. Let Q be the set of stmtx queried by A.
Output 1 iff: (1) stmt /∈ Q; and (2) V(ĉrs, stmt, π) = 1; and (3) (stmt, w) /∈ RL.

Note that this is exactly the definition. We next show that Pr[Expt0] = negl(λ) by a series of
hybrid games, which proves simulation sound extractablility.

Expt1 (Relax return condition):

1. Setup:
nizk.crs← nizk.K(1λ,L′);
(pke, ske)← KeyGenEnc(1

λ); s0, r0
$← {0, 1}λ;

ρ := comm(s0; r0); ĉrs := (nizk.crs, pke, ρ).

2. Define function O(stmtx):

z3, r1
$← {0, 1}λ; µ = fs0(stmtx);

c = Enc(pke, (z3, µ); r1);
nizk.π ← nizk.P(nizk.crs, (stmtx, c, pke, ρ),
(µ, r1, r0, z3, s0));
return π := (c, nizk.π).

3. (stmt, π)← AO(·)(ĉrs, ek);

4. Parse π := (c, nizk.π); (w, µ)← Dec(ek, c);

32

5. Let Q be the set of stmtx queried by A.
Output 1 iff: (1) stmt /∈ Q; and (2) V(ĉrs, stmt, π) = 1; and (3) fs0(stmt) = µ.

Claim 1. If the underlying encryption scheme is perfectly correct, and that the commitment scheme
scheme is perfectly binding, and that the underlying NIZK is computationally sound, then we have
Pr[Expt0] ≤ Pr[Expt1] + negl(λ).

Proof. From the (computational) soundness of the underlying NIZK, we know that (stmt, c, pke, ρ) ∈
L′ holds except for negligible probability.

Since the underlying encryption scheme is perfectly correct, the decrypted (w, µ) is the only
possible values that encrypts to c, hence it is unique for all valid witnesses. Given (stmt, w) /∈ RL,
we consider all such valid witnesses for RL′ , there must exist s′0, r

′
0 such that: (1) ρ = comm(s′0; r

′
0);

(2) µ = fs′0(stmt). From the perfectly binding property of the underlying commitment scheme, all
witnesses must use the unique value s′0 = s0 (recall s0 is from setup).

Hence, assuming soundness holds, we have fs0 = µ.

Expt2 (Use simulation setup):

1. Setup:
(nizk.ĉrs, nizk.τ)← nizk.K̂(1λ,L′);
(pke, ske)← KeyGenEnc(1

λ); s0, r0
$← {0, 1}λ;

ρ := comm(s0; r0); ĉrs := (nizk.ĉrs, pke, ρ).

2. Define function O(stmtx):

z3, r1
$← {0, 1}λ; µ = fs0(stmtx);

c = Enc(pke, (z3, µ); r1);
nizk.π ← nizk.P̂1(nizk.ĉrs, nizk.τ, (stmtx, c, pke, ρ),
(µ, r1, r0, z3, s0));
Equivalent:
nizk.π ← nizk.P̂(nizk.ĉrs, nizk.τ, (stmtx, c, pke, ρ));
return π := (c, nizk.π).

3. (stmt, π)← AO(·)(ĉrs, ek);

4. Parse π := (c, nizk.π); (w, µ)← Dec(ek, c);

5. Let Q be the set of stmtx queried by A.
Output 1 iff: (1) stmt /∈ Q; and (2) V(ĉrs, stmt, π) = 1; and (3) fs0(stmt) = µ.

Claim 2. Assuming the underlying NIZK is computationally zero-knowledge, we have Pr[Expt1] ≤
Pr[Expt2] + negl(λ).

Proof. Given any polynomial adversary A, we construct the following adversary B for the zero-
knowledge game of the underlying NIZK.

Run Expt2, with nizk.ĉrs obtained from the zero-knowledge game. Replace all calls to nizk.P̂1
with oracle calls to the game. Note that we do not have nizk.τ , which is not used anymore.

Observe that Expt1,Expt2 corresponds to running the game with honest and simulated se-
tup/prover, respectively. I.e., Pr[B] = Pr[Expt1] with honest setup and Pr[B] = Pr[Expt2] with

33

simulation setup. As the underlying NIZK is computationally zero-knowledge, and that ExptA2
runs in polynomial time, the claim holds.

Expt3 (Separate s0):

1. Setup:
(nizk.ĉrs, nizk.τ)← nizk.K̂(1λ,L′);
(pke, ske)← KeyGenEnc(1

λ); s0, s
′
0, r0

$← {0, 1}λ;
ρ := comm(s′0; r0); ĉrs := (nizk.ĉrs, pke, ρ).

2. Define function O(stmtx):

z3, r1
$← {0, 1}λ; µ = fs0(stmtx);

c = Enc(pke, (z3, µ); r1);
nizk.π ← nizk.P̂(nizk.ĉrs, nizk.τ, (stmtx, c, pke, ρ));
return π := (c, nizk.π).

3. (stmt, π)← AO(·)(ĉrs, ek);

4. Parse π := (c, nizk.π); (w, µ)← Dec(ek, c);

5. Let Q be the set of stmtx queried by A.
Output 1 iff: (1) stmt /∈ Q; and (2) V(ĉrs, stmt, π) = 1; and (3) fs0(stmt) = µ.

Claim 3. If the underlying commitment scheme is computationally hiding, we have Pr[Expt2] ≤
Pr[Expt3] + negl(λ).

Proof. By the hiding property of the commitment scheme, we know that for all polynomial adver-
sary B, we have

Pr[x0, x1
$← {0, 1}λ; b

$← {0, 1} : B(x0, x1, comm(xb)) = b]
≤ 1

2 + negl(λ)

Consider the following adversary B: Run ExptA2 , except with s0 = x1, s
′
0 = x0 and ρ = comm(xb).

Return the output of Expt2.
Observe that getting a commitment of s0 actually corresponds to ExptA2 , while s′0 corresponds

to ExptA3 . Hence by the hiding property, we have

Pr[B = b] =
1

2
Pr[B = 0|b = 0] +

1

2
Pr[B = 1|b = 1]

=
1

2
(1− Pr[Expt3]) +

1

2
Pr[Expt2]

≤1

2
+ negl(λ)

which gives Pr[Expt2]− Pr[Expt3] ≤ negl(λ).

Expt4 (Replace PRF):
Let F be a true random function.

34

1. Setup:
(nizk.ĉrs, nizk.τ)← nizk.K̂(1λ,L′);
(pke, ske)← KeyGenEnc(1

λ); s0, s
′
0, r0

$← {0, 1}λ;
ρ := comm(s′0; r0); ĉrs := (nizk.ĉrs, pke, ρ).

2. Define function O(stmtx):

z3, r1
$← {0, 1}λ; µ← F (stmtx);

c = Enc(pke, (z3, µ); r1);
nizk.π ← nizk.P̂(nizk.ĉrs, nizk.τ, (stmtx, c, pke, ρ));
return π := (c, nizk.π).

3. (stmt, π)← AO(·)(ĉrs, ek);

4. Parse π := (c, nizk.π); (w, µ)← Dec(ek, c);

5. Let Q be the set of stmtx queried by A.
Output 1 iff: (1) stmt /∈ Q; and (2) V(ĉrs, stmt, π) = 1; and (3) F (stmt) = µ.

Claim 4. If the underlying pseudo-random function family {fs}s∈{0,1}λ is secure, then we have
Pr[Expt3] ≤ Pr[Expt4] + negl(λ).

Proof. By the security of the underlying pseudo-random function family, no polynomial-time algo-
rithm can distinguish a PRF from a true random function F .

We construct the following adversary B for the security game of PRF: Run ExptA4 , replace each
call to F (·) with an oracle call to the game. Return the output of Expt4.

Observe that we have Pr[B = 1|Run with PRF] = Pr[Expt3] and also Pr[B = 1|Run with Random] =
Pr[Expt4], which completes the proof.

Claim 5. We have Pr[Expt4] ≤ 2−λ.

Proof. We have stmt /∈ Q. As F is true random function, we can view F (stmt) as newly generated
random bits independent from µ. The result follows.

The above claims complete the proof for simulation sound extractability.

Proof of computational zero-knowledge. We prove the following lemma first:

Lemma 4. If (KeyGenEnc,Enc,Dec) is a semantically secure encryption scheme, then for all poly-
nomial adversary A, we have the following:

Pr
[
(pk, sk)← KeyGenEnc(1

λ) : AO0(pk,·,·)(pk) = 1
]

≈ Pr
[
(pk, sk)← KeyGenEnc(1

λ) : AO1(pk,·,·)(pk) = 1
]

where Ob(pk,m0,m1) : Abort if |m0| 6= |m1|. Return Enc(pk,mb;Uλ).

35

Proof. Let t∗ be the polynomial bound on the maximum number of queries. We define ora-
cles Ot(m0,m1) : Abort if |m0| 6= |m1|. Return Enc(pk,m1;Uλ) for the the first t queries and
Enc(pk,m0;Uλ) otherwise.

Observe that O0 = O0 and Ot∗ = O1. We next prove Ot and Ot+1 are indistinguishable by the
security game of the encryption.

We construct the following adversary B for the security game of the encryption: Get pk from
the game; Run AOt(·,·) with the (t + 1)-th query answered by oracle call to the game. Return the
output of A. Observe that Pr[B|ansered by O0] = Pr[AOt] and Pr[B|ansered by O1] = Pr[AOt+1]

By the cipher-text indistinguishability of the encryption scheme, we have Pr[AOt] ≈ Pr[AOt+1]

Lemma 5. The construction is computational zero-knowledge.

Proof. We prove zero-knowledge by showing any adversary A can not distinguish a series of hybrid
games.

Expt0 (actual game):

1. Setup: (just K̂)
nizk.crs← nizk.K(1λ,L′);
(pke, ske)← KeyGenEnc(1

λ); s0, r0
$← {0, 1}λ;

ρ := comm(s0; r0); ĉrs := (nizk.crs, pke, ρ).

2. Define function O(stmtx, w): (just P̂1)
Abort if (stmtx, w) /∈ RL; z3, r1

$← {0, 1}λ;
µ = fs0(stmtx); c = Enc(pke, (z3, µ); r1);
nizk.π ← nizk.P(nizk.crs, (stmtx, c, pke, ρ),
(µ, r1, r0, z3, s0));
return π := (c, nizk.π).

3. b← AO(·,·)(ĉrs); Output b.

Expt1 (use simluation setup):

1. Setup:
(nizk.ĉrs, nizk.τ)← nizk.K̂(1λ,L′);
(pke, ske)← KeyGenEnc(1

λ); s0, r0
$← {0, 1}λ;

ρ := comm(s0; r0); ĉrs := (nizk.ĉrs, pke, ρ).

2. Define function O(stmtx, w):

Abort if (stmtx, w) /∈ RL; z3, r1
$← {0, 1}λ;

µ = fs0(stmtx); c = Enc(pke, (z3, µ); r1);
nizk.π ← nizk.P̂1(nizk.ĉrs, nizk.τ, (stmtx, c, pke, ρ),
(µ, r1, r0, z3, s0));
Equivalent:
nizk.π ← nizk.P̂(nizk.ĉrs, nizk.τ, (stmtx, c, pke, ρ));
return π := (c, nizk.π).

36

3. b← AO(·,·)(ĉrs); Output b.

Claim 6. If the underlying NIZK is zero-knowledge, then we have Pr[Expt0] ≤ Pr[Expt1] + negl(λ).

Proof. Consider the following adversary B for the zero-knowledge game: Get crs from the game;
Run Expt1 with crs; Replace all calls to P̂1 with oracle calls. Output the same as Expt1

By the zero-knowledge property, we have Pr[B|honest] ≈ Pr[B|simulated]. Observe that Pr[B|honest] =
Pr[Expt0] while Pr[B|simulated] = Pr[Expt1].

Expt2 (encrypt true witness):

1. Setup:
(nizk.ĉrs, nizk.τ)← nizk.K̂(1λ,L′);
(pke, ske)← KeyGenEnc(1

λ); s0, r0
$← {0, 1}λ;

ρ := comm(s0; r0); ĉrs := (nizk.ĉrs, pke, ρ).

2. Define function O(stmtx, w):

Abort if (stmtx, w) /∈ RL; z3, z0, r1
$← {0, 1}λ;

µ = fs0(stmtx); c = Enc(pke, (w, z0); r1);
nizk.π ← nizk.P̂(nizk.ĉrs, nizk.τ, (stmtx, c, pke, ρ));
return π := (c, nizk.π).

3. b← AO(·,·)(ĉrs); Output b.

Claim 7. If the underlying encryption scheme is secure, we have Pr[Expt1] ≈ Pr[Expt2].

Proof. We construct the following adversary B for the game in Lemma 4: Get pk from the game;
Run Expt2 with pk; Replace Enc with oracle calls to the game (providing both (z3, µ), (w, z0) as
two messages). Output as Expt2.

By Lemma 4, we have Pr[B|encrypting w] ≈ Pr[B|encrypting z3]. And observe they corresponds
to Expt2 and Expt1.

Expt3 (Use nizk.P̂1):

1. Setup:
(nizk.ĉrs, nizk.τ)← nizk.K̂(1λ,L′);
(pke, ske)← KeyGenEnc(1

λ);

s0, r0
$← {0, 1}λ; ρ := comm(s0; r0);

ĉrs := (nizk.ĉrs, pke, ρ).

2. Define function O(stmtx, w):

Abort if (stmtx, w) /∈ RL; z0, z1, z2, r1
$← {0, 1}λ;

c = Enc(pke, (w, z0); r1);
nizk.π ← nizk.P̂1(nizk.ĉrs, nizk.τ, (stmtx, c, pke, ρ),
(z0, r1, z1, w, z2));
return π := (c, nizk.π).

37

3. b← AO(·,·)(ĉrs); Output b.

Claim 8. We have Pr[Expt3] = Pr[Expt2].

Proof. The two probabilities are equal, by the definition of nizk.K̂1 and that (z0, r1, z1, w, z2) is
valid.

Expt4 (Back to P):

1. Setup:
nizk.crs← nizk.K(1λ,L′);
(pke, ske)← KeyGenEnc(1

λ); s0, r0
$← {0, 1}λ;

ρ := comm(s0; r0); ĉrs := (nizk.crs, pke, ρ).

2. Define function O(stmtx, w):

Abort if (stmtx, w) /∈ RL; z0, z1, z2, r1
$← {0, 1}λ;

c = Enc(pke, (w, z0); r1);
nizk.π ← nizk.P(nizk.crs, (stmtx, c, pke, ρ), (z0, r1, z1, w, z2));
return π := (c, nizk.π).

3. b← AO(·,·)(ĉrs); Output b.

Claim 9. If the underlying NIZK is zero-knowledge, then we have Pr[Expt4] ≈ Pr[Expt3].

Proof. We construct the following adversary B for the zero-knowledge game: Get crs from the
game; Run ExptA4 with crs; Replace nizk.P with oracle calls. Return the output of ExptA4 .

By the zero-knowledge property, we have Pr[B|honest] ≈ Pr[B|simulated]. And observe the two
probabilities correspond two Pr[Expt4] and Pr[Expt3].

Note that the last experiment is just the honest prover, which completes the proof of the zero-
knowledge property.

The proof of simulation sound extractable and the proof of zero-knowledge completes the the-
orem.

E.3 Proof of Theorem 3

Proof of Theorem 3. Completeness is obvious, we next prove it is also strongly simulation sound
extractable and zero-knowledge.
Strong simulation sound extractability.

Lemma 6. The construction is strongly simulation sound extractable.

Proof. The game for strong simulation sound extractability is defined as follows:

Expt0 (Actual game):

38

1. Setup:
nizk.crs← nizk.K(1λ,L′);
(pke, ske)← KeyGenEnc(1

λ); s0, r0
$← {0, 1}λ;

ρ := comm(s0; r0). ĉrs := (nizk.crs, pke, ρ).

2. Define function O(stmtx):
(pks, sks)← KeyGenSig(1

λ); µ = fs0(pks);

z3, r1
$← {0, 1}λ; c = Enc(pke, z3; r1);

nizk.π ← nizk.P(nizk.crs, (stmtx, c, µ, pks, pke, ρ),
(r1, r0, z3, s0));
σ ← Sign(sks, (stmt, c, µ, nizk.π));
return π := (c, µ, nizk.π, pks, σ).

3. (stmt, π)← AO(·)(ĉrs, ek);

4. Parse π := (c, µ, nizk.π, pks, σ); w ← Dec(ek, c);

5. Let Q be the set of statement-proof pairs generated by O(·)
Output 1 iff: (1) (stmt, π) /∈ Q; and (2) V(ĉrs, stmt, π) = 1; and (3) (stmt, w) /∈ RL.

Expt1 (Relax return condition):

1. Setup:
nizk.crs← nizk.K(1λ,L′);
(pke, ske)← KeyGenEnc(1

λ); s0, r0
$← {0, 1}λ;

ρ := comm(s0; r0); ĉrs := (nizk.crs, pke, ρ).

2. Define function O(stmtx):
(pks, sks)← KeyGenSig(1

λ); µ = fs0(pks);

z3, r1
$← {0, 1}λ; c = Enc(pke, z3; r1);

nizk.π ← nizk.P(nizk.crs, (stmtx, c, µ, pks, pke, ρ),
(r1, r0, z3, s0));
σ ← Sign(sks, (stmt, c, µ, nizk.π));
return π := (c, µ, nizk.π, pks, σ).

3. (stmt, π)← AO(·)(ĉrs, ek);

4. Parse π := (c, µ, nizk.π, pks, σ); w ← Dec(ek, c);

5. Let Q be the set of statement-proof pairs and T be the set of verification keys generated by
O(·). The experiment outputs 1 iff:
(1) (stmt, π) /∈ Q; and (2) V(ĉrs, stmt, π) = 1; and (3) pks /∈ T ; and (4) µ = fs0(pks).

Claim 10. If the underlying one-time signature scheme is strongly unforgeable, and that the un-
derlying NIZK is sound, then we have Pr[Expt0] ≤ Pr[Expt1] + negl(λ).

39

Proof. Note that if (stmt, π) /∈ Q and “pks has been generated by O(·)”, then the (stmt, c, µ, nizk.π)
(from stmt and π) is a valid message/signature pair. Hence by the unforgeability of the signature
scheme, we know that (stmt, π) /∈ Q and “pks has been generated by O(·)” happens with negligible
probability, which allows us to focus on pks /∈ T .

The decrypted w is unique for all valid witnesses. Further, if some witness is valid for L′ and
that (stmt, w) /∈ RL, we know it must be the case that there exists some s′0, such that ρ is a valid
commitment of s′0 and that µ = fs′0(pks), which implies µ = fs0(pks), by the perfectly binding
property.

Expt2 (Use simulation setup):

1. Setup:
(nizk.ĉrs, nizk.τ)← nizk.K(1λ,L′);
(pke, ske)← KeyGenEnc(1

λ); s0, r0
$← {0, 1}λ;

ρ := comm(s0; r0); ĉrs := (nizk.ĉrs, pke, ρ).

2. Define function O(stmtx):
(pks, sks)← KeyGenSig(1

λ);

µ = fs0(pks); z3, r1
$← {0, 1}λ;

c = Enc(pke, z3; r1);
nizk.π ← nizk.P̂1(nizk.ĉrs, nizk.τ,
(stmtx, c, µ, pks, pke, ρ), (r1, r0, z3, s0));
Equivalent:
nizk.π ← nizk.P̂(nizk.ĉrs, (stmtx, c, µ, pks, pke, ρ));
σ ← Sign(sks, (stmt, c, µ, nizk.π));
return π := (c, µ, nizk.π, pks, σ).

3. (stmt, π)← AO(·)(ĉrs, ek);

4. Parse π := (c, µ, nizk.π, pks, σ); w ← Dec(ek, c);

5. Let Q be the set of statement-proof pairs and T be the set of verification keys generated by
O(·). The experiment outputs 1 iff:
(1) (stmt, π) /∈ Q; and (2) V(ĉrs, stmt, π) = 1; and (3) pks /∈ T ; and (4) µ = fs0(pks).

Claim 11. If the underlying NIZK is zero-knowledge, then we have Pr[Expt1] ≤ Pr[Expt2]+negl(λ).

Proof. By the zero-knowledge property, no polynomial-time algorithm can distinguish an honest
setup from an simulation setup. Also note that our experiment runs in polynomial time. This
completes the proof.

Expt3 (Separate s0):

1. Setup:
(nizk.ĉrs, nizk.τ)← nizk.K(1λ,L′);
(pke, ske)← KeyGenEnc(1

λ); s0, s
′
0, r0

$← {0, 1}λ;
ρ := comm(s′0; r0); ĉrs := (nizk.ĉrs, pke, ρ).

40

2. Define function O(stmtx):
(pks, sks)← KeyGenSig(1

λ);

µ = fs0(pks); z3, r1
$← {0, 1}λ;

c = Enc(pke, z3; r1);
nizk.π ← nizk.P̂(nizk.ĉrs, (stmtx, c, µ, pks, pke, ρ));
σ ← Sign(sks, (stmt, c, µ, nizk.π));
return π := (c, µ, nizk.π, pks, σ).

3. (stmt, π)← AO(·)(ĉrs, ek);

4. Parse π := (c, µ, nizk.π, pks, σ); w ← Dec(ek, c);

5. Let Q be the set of statement-proof pairs and T be the set of verification keys generated by
O(·). The experiment outputs 1 iff:
(1) (stmt, π) /∈ Q; and (2) V(ĉrs, stmt, π) = 1; and (3) pks /∈ T ; and (4) µ = fs0(pks).

Claim 12. If the underlying commitment scheme is computationally hiding, then we have Pr[Expt2] ≤
Pr[Expt3] + negl(λ).

Proof. By the hiding property, no polynomial algorithm can distinguish the commitment of two
elements.

Expt4 (Replace PRF):
Let F be a true random function.

1. Setup:
(nizk.ĉrs, nizk.τ)← nizk.K(1λ,L′);
(pke, ske)← KeyGenEnc(1

λ); s0, s
′
0, r0

$← {0, 1}λ;
ρ := comm(s′0; r0); ĉrs := (nizk.ĉrs, pke, ρ).

2. Define function O(stmtx):
(pks, sks)← KeyGenSig(1

λ);

µ = F (pks); z3, r1
$← {0, 1}λ;

c = Enc(pke, z3; r1);
nizk.π ← nizk.P̂(nizk.ĉrs, (stmtx, c, µ, pks, pke, ρ));
σ ← Sign(sks, (stmt, c, µ, nizk.π));
return π := (c, µ, nizk.π, pks, σ).

3. (stmt, π)← AO(·)(ĉrs, ek);

4. Parse π := (c, µ, nizk.π, pks, σ); w ← Dec(ek, c);

5. Let Q be the set of statement-proof pairs and T be the set of verification keys generated by
O(·). The experiment outputs 1 iff:
(1) (stmt, π) /∈ Q; and (2) V(ĉrs, stmt, π) = 1; and (3) pks /∈ T ; and (4) µ = F (pks).

Claim 13. If the underlying PRF is secure, then we have Pr[Expt3] ≤ Pr[Expt4].

41

Proof. Since the PRF is secure, no polynomial-time algorithm can distinguish F from fs0 .
We convert Expt4 to an adversary for the security game of PRF, similar to the proof of Claim 4.

It corresponds to Expt4 and Expt3 when running with random function and PRF, respectively. This
completes the proof.

Claim 14. We have Pr[Expt4] ≤ 2−λ.

Proof. Since pks /∈ T , we know that F (pks) has not been queried before. Hence we may view
F (pks) as newly generated random bits independent from µ. This completes the proof.

Computationally Zero-knowledge.

Lemma 7. The construction is computationally zero-knowledge.

Proof. We prove this by showing a series of indistinguishable hybrids, where the first one is the
simulation setup and the last one is the honest setup.

Expt0 (actual game):

1. Setup:
nizk.crs← nizk.K(1λ,L′);
(pke, ske)← KeyGenEnc(1

λ); s0, r0
$← {0, 1}λ;

ρ := comm(s0; r0); ĉrs := (nizk.crs, pke, ρ).

2. Define function O(stmtx, w):
Abort if (stmtx, w) /∈ RL;
(pks, sks)← KeyGenSig(1

λ); µ = fs0(pks);

z3, r1
$← {0, 1}λ; c = Enc(pke, z3; r1);

nizk.π ← nizk.P(nizk.crs, (stmt, c, µ, pks, pke, ρ),
(r1, r0, z3, s0));
σ ← Sign(sks, (stmt, c, µ, nizk.π));
return π := (c, µ, nizk.π, pks, σ).

3. b← AO(·,·)(ĉrs); Output b.

Expt1 (use simulation setup):

1. Setup:
(nizk.ĉrs, nizk.τ)← nizk.K̂(1λ,L′);
(pke, ske)← KeyGenEnc(1

λ); s0, r0
$← {0, 1}λ;

ρ := comm(s0; r0); ĉrs := (nizk.ĉrs, pke, ρ).

2. Define function O(stmtx, w):
Abort if (stmtx, w) /∈ RL;
(pks, sks)← KeyGenSig(1

λ); µ = fs0(pks);

z3, r1
$← {0, 1}λ; c = Enc(pke, z3; r1);

42

nizk.π ← nizk.P̂1(nizk.ĉrs, nizk.τ,
(stmt, c, µ, pks, pke, ρ), (r1, r0, z3, s0));
Equivalent: nizk.π ← nizk.P̂(nizk.ĉrs, nizk.τ,
(stmt, c, µ, pks, pke, ρ));
σ ← Sign(sks, (stmt, c, µ, nizk.π));
return π := (c, µ, nizk.π, pks, σ).

3. b← AO(·,·)(ĉrs); Output b.

Claim 15. If the underlying NIZK is zero-knowledge, then we have Pr[Expt1] ≈ Pr[Expt0].

Expt2 (Encrypt true witness):

1. Setup:
(nizk.ĉrs, nizk.τ)← nizk.K̂(1λ,L′);
(pke, ske)← KeyGenEnc(1

λ); s0, r0
$← {0, 1}λ;

ρ := comm(s0; r0); ĉrs := (nizk.ĉrs, pke, ρ).

2. Define function O(stmtx, w):
Abort if (stmtx, w) /∈ RL;
(pks, sks)← KeyGenSig(1

λ); µ = fs0(pks);

z3, r1
$← {0, 1}λ; c = Enc(pke, w; r1);

nizk.π ← nizk.P̂(nizk.ĉrs, nizk.τ,
(stmt, c, µ, pks, pke, ρ));
σ ← Sign(sks, (stmt, c, µ, nizk.π));
return π := (c, µ, nizk.π, pks, σ).

3. b← AO(·,·)(ĉrs); Output b.

Claim 16. If the underlying encryption scheme is semantically secure, then we have Pr[Expt2] ≈
Pr[Expt1].

Proof. By Claim 4, no polynomial-time algorithm can distinguish an oracle that always encrypt
the first message from one that always encrypt the second.

We construct the following adversary: Run Expt2 but get pke from the game; Replace generating
c with the oracle call, with the two messages being z3 and w.

Note that encrypting z3 is identical to the normal Expt2, while encrypting w is identical to
running Expt1. The claim follows.

Expt3 (Separate s0):

1. Setup:
(nizk.ĉrs, nizk.τ)← nizk.K̂(1λ,L′);
(pke, ske)← KeyGenEnc(1

λ); s0, s
′
0, r0

$← {0, 1}λ;
ρ := comm(s′0; r0); ĉrs := (nizk.ĉrs, pke, ρ).

43

2. Define function O(stmtx, w):
Abort if (stmtx, w) /∈ RL;
(pks, sks)← KeyGenSig(1

λ); µ = fs0(pks);

r1
$← {0, 1}λ; c = Enc(pke, w; r1);

nizk.π ← nizk.P̂(nizk.ĉrs, nizk.τ, (stmt, c, µ, pks, pke, ρ));
σ ← Sign(sks, (stmt, c, µ, nizk.π));
return π := (c, µ, nizk.π, pks, σ).

3. b← AO(·,·)(ĉrs); Output b.

Claim 17. If the underlying commitment scheme is computationally hiding, then we have Pr[Expt3] ≈
Pr[Expt2].

Expt4 (Replace PRF):

1. Setup:
(nizk.ĉrs, nizk.τ)← nizk.K̂(1λ,L′);
(pke, ske)← KeyGenEnc(1

λ); s0, s
′
0, r0

$← {0, 1}λ;
ρ := comm(s′0; r0); ĉrs := (nizk.ĉrs, pke, ρ).

2. Define function O(stmtx, w):
Abort if (stmtx, w) /∈ RL;

(pks, sks)← KeyGenSig(1
λ); µ

$← {0, 1}λ;

r1
$← {0, 1}λ; c = Enc(pke, w; r1);

nizk.π ← nizk.P̂(nizk.ĉrs, nizk.τ,
(stmt, c, µ, pks, pke, ρ));
σ ← Sign(sks, (stmt, c, µ, nizk.π));
return π := (c, µ, nizk.π, pks, σ).

3. b← AO(·,·)(ĉrs); Output b.

Claim 18. If the underlying PRF is secure and that the underlying one-time signature scheme is
unforgeable, then we have Pr[Expt4] ≈ Pr[Expt3].

Proof. First note that the generated pks’s are distinct except for negligible probability, as otherwise
it would break the one-time signature scheme.

Also, we can replace fs0 in Expt3 with a true random function F , which is identical to Expt4
when the pks’s are all distinct.

Expt5 (Use nizk.P̂1):

1. Setup:
(nizk.ĉrs, nizk.τ)← nizk.K̂(1λ,L′);
(pke, ske)← KeyGenEnc(1

λ); s′0, r0
$← {0, 1}λ;

ρ := comm(s′0; r0); ĉrs := (nizk.ĉrs, pke, ρ).

44

2. Define function O(stmtx, w):
Abort if (stmtx, w) /∈ RL;

(pks, sks)← KeyGenSig(1
λ); µ

$← {0, 1}λ;

z1, z2, r1
$← {0, 1}λ; c = Enc(pke, w; r1);

nizk.π ← nizk.P̂1(nizk.ĉrs, nizk.τ,
(stmt, c, µ, pks, pke, ρ), (r1, z1, w, z2));
σ ← Sign(sks, (stmt, c, µ, nizk.π));
return π := (c, µ, nizk.π, pks, σ).

3. b← AO(·,·)(ĉrs); Output b.

Claim 19. We have Pr[Expt5] = Pr[Expt4].

Expt6 (Use P):

1. Setup:
nizk.crs← nizk.K(1λ,L′);
(pke, ske)← KeyGenEnc(1

λ); s′0, r0
$← {0, 1}λ;

ρ := comm(s′0; r0); ĉrs := (nizk.crs, pke, ρ).

2. Define function O(stmtx, w):
Abort if (stmtx, w) /∈ RL;

(pks, sks)← KeyGenSig(1
λ); µ

$← {0, 1}λ;

z1, z2, r1
$← {0, 1}λ; c = Enc(pke, w; r1);

nizk.π ← nizk.P(nizk.crs, (stmt, c, µ, pks, pke, ρ),
(r1, z1, w, z2));
σ ← Sign(sks, (stmt, c, µ, nizk.π));
return π := (c, µ, nizk.π, pks, σ).

3. b← AO(·,·)(ĉrs); Output b.

Claim 20. If the underlying NIZK is zero-knowledge, then we have Pr[Expt6] ≈ Pr[Expt5].

Note that the last experiment is exactly the definition. This completes the proof for the zero-
knowledge part.

F The Concrete Hardness of SIS and Ajtai Hash

The Ajtai hash is a lattice-based collision-resistant hash function that shows great promise for use
in SNARK-friendly cryptographic applications (e.g., Merkle trees, just for one example). [14, 47].

Ben-Sasson et al. have suggested a parameterization that they conjecture to be secure based on
heuristic extrapolation of earlier estimates [14]. However, this extrapolation is delicate, and a lack
of confidence in this heuristic has apparently stalled its use (e.g., it was not used in Zerocash [11], a

45

practical real-world application for which this construction would provide a significant performance
enhancement).

The collision-resistance of the Ajtai hash relies on the hardness of the SIS problem. Hence, it is
natural to estimate the hardness of Ajtai hash by evaluating its corresponding SIS problem. So far,
the best concrete security analysis of SIS is based on empirical observation of the running time of
the best known attack algorithms (LLL,BKZ,BKZ2.0) over a range of parameterizations [5,30,51].
However, to reap the performance benefits of using this within a SNARK, we must choose a
parameterization that lies outside the range covered in this experiment (i.e., the arity of the lattice
must be a large prime q ∼ 2254, the native field of the SNARK, whereas prior experiments cover
only small prime n2 ≤ p ≤ n8). Therefore it is not apparent a priori if the concrete security
estimates can safely be extrapolated here.

In this note, we review the concrete security analysis for SIS, and reproduce (in part) the
empirical experiments from [58], extended to the parameter ranges appropriate for SNARK-friendly
crypto. We provide a step-by-step algorithm for concrete security analysis of arbitrary SIS instance,
and use the algorithm to estimate the security of Ajtai hash functions.

Based on our experiments and calculations, we conclude that:

1. It is indeed reasonable to extrapolate from prior concrete hardness estimates of SIS based
primitives, such as Ajtai hash, even in the SNARK-friendly parameter ranges.

2. To achieve 80 bits of security based on reduction to SIS (against the best-known attacks
today), we should increase the dimension of the Ajtai hash to n = 3 (rather than n = 1 as
suggested in [14]).

F.1 Preliminaries

Notations. We denote with log the logarithm to base 2. Vectors and matrices are written in
boldface, e.g., v and M. We use |v|p to denote the lp norm of vector v. In particular, we denote
with |v| the l2 norm of vector v.

Definition 1 (Lattice). A (full-dimensional) lattice in Rm is a discrete subgroup L = {Bx |x ∈
Zm}, where typically B = [b1, . . . ,bm] ∈ Zm×m is a matrix of linearly independent vectors. The
matrix B is a basis of the lattice L and we write L = L(B). The rank of a lattice L is the rank of
the basis matrix B. If the rank equals m, we say that L is full-rank..

The Shortest Vector Problem (SVP) is probably the most fundamental hard problem in lattice
literature [52].

Definition 2 (Shortest Vector Problem (SVP)). Given a basis B of L and an approximation factor
γ ≥ 1, the task of SVP is to find a set v ∈ L such that |v| ≤ γL0, where L0 denotes the shortest
vector in lattice L.

We are only concerned with a type of lattices called “q-array” lattice. Note that every q-ary
lattice is full-rank.s

Definition 3 (q-ary). A lattice L is called a q-ary if qZ ⊆ L.

For q ∈ N and A ∈ Zn×mq , we define two most important q-arys.

Λq(A) = {w ∈ Zn | ∃e ∈ ZmA>e = w (mod q)} (1)

46

Λ⊥q (A) = {v ∈ Zm |Av = 0 (mod q)} (2)

Lemma 8. Let q be a prime and m = O(n log(n)). With high probability, the rows of A are linearly
independent over Zq and det(Λ⊥q (A)) = qn.

The Short Integer Solution (SIS) problem is defined over the q-arry Λ⊥q (A).

Definition 4 (Short Integer Solution (SIS)). Given n,m, q ∈ N, a randomly picked A ∈ Zn×mq ,

and a norm bound 1 ≤ β < q, the SIS problem, denoted as SIS(n,m, q, β), is to find v ∈ Λ⊥q (A)
with 0 < |v| ≤ β.

Definition 5 (Ajtai Hash). Given n,m, q ∈ N, a randomly picked A ∈ Zn×mq , the Ajtai Hash
hAjtai(n,m,q) : {0, 1}m → Znq is defined as

h(x) = Ax (mod q) (3)

F.2 High Level Idea

Our goal is to study the concrete hardness of the Ajtai hash function. Specifically, given an instance
hAjtai(n,m,q), what level of bit-security does it satisfy?

The collision-resistance of the Ajtai hash reduces to SIS: In particular, if the adversary can
find a collision for hAjtai(n,m,q), then it would also break SIS(n,m, q,

√
m). Hence, it is natural to

estimate the hardness of the Ajtai hash by evaluating its corresponding SIS problem. We focus on
the security analysis of the SIS problem next.

The best known algorithm for solving SIS relies on Lattice Reduction Algorithms such as LLL
and BKZ. Given the original input lattice basis B, the goal of lattice basis reduction is to find a
basis B̄ with short, nearly orthogonal vectors. If the basis after reduction B̄ is of “good quality”,
the shortest row vector in the reduced basis can be a relatively good estimation of the shortest
vector in the lattice. We adopt the convention that the first non-zero vector, denoted as b̄0, is
the shortest vector in the reduced basis B̄. Intuitively, given SIS(n,m, q, β), the lattice reduction
based attack keeps reducing the basis of the q-array Λ⊥q (A) until its b̄0 is ≤ β.

In practice, finding the shortest vector for hard lattice instances requires at least exponential
running time. The hardness of SIS is estimated by the time cost for the lattice reduction algorithm
to find a basis with a certain level of “quality”. The quality of a basis B of m-dimensional lattice
L is characterized by the root Hermite factor δ0, which is defined such that |b0| = δm0 |det(L)|1/m.
Notice that the q-array Λ⊥q (A) of SIS(n,m, q, β) has determinant det(Λ⊥q (A)) = qn. The concrete
hardness of SIS(n,m, q, β) is estimated by the time cost the for lattice reduction algorithm to find
a basis with δ0 = (β/qn/m)1/m.

F.3 Lattice Reduction Algorithm: BKZ, BKZ2.0

Several works in literature have studied the running time of BKZ [5, 30, 50, 58]. Specifically, they
provide estimated running time for BKZ/BKZ2.0 to find a basis with certain δ0 root Hermite factor.
The running time below is measured by clock cycles.

1. Ruckert and Schneider [58] provides a table of δ0 and BKZ running time based the estimation
by extrapolation on “dollar-days” cost.

2. Lindner and Peikert [50] gives the estimate on BKZ as: TLP11 = 21.8/ log δ0−78.9

47

n δ0 m = 2n log q m∗ λ = log TACF15 λ = log TCN12

1 1.0139 508 114 26.8 27.8
2 1.0085 1016 204 63.8 60.6
3 1.0064 1524 289 111.1 107.5
4 1.0052 2032 379 167.2 162.0

Table 7: Security level of the Ajtai Hash for n = 2, 3, 4. Prime modulo is set to q = 2254. We set
m equal to 2n log q (i.e., as appropriate for a Merkle tree application).

3. Albrecht et al. [51] extrapolate a model similar to [50] on BKZ2.0 as: TACF15 = 20.009/ log
2 δ0+4.1

4. Chen and Nguyen [30] provide a simulation-based estimate for BKZ2.0. We denote the
estimated running time as TCN12(m

∗, δ0) (The simulation also takes the lattice dimension m∗

as input).

Notice that the experiments in the above works are run with relatively small prime modulo p.
In order to show that the empirical results also apply under the setting where the prime modulo is
very large q >> p. We repeat the experiments in [58] on BKZ with q = 2254. Specifically, we run
the BKZ reduction algorithm on q-array of randomly generated SIS instance with various (n,m, β)
settings. Our running time matches theirs except for a constant speed up (due to a faster CPU)
whenever the root Hermite factors under the two settings are equivalent.

BKZ2.0 [29] is an upgraded version of BKZ. These improvements include early termination,
extreme pruning, limiting the enumeration radius to the Gaussian Heuristic, and local block pre-
processing [29]. We assume with confidence that the empirical results for BKZ2.0 apply in the
setting with large prime q. We use the BKZ2.0 estimations TACF15 and TCN12 in the security
analysis next.

Set q = 2254. We evaluate the concrete security level of the Ajtai hash hAjtai(n,m,q) for n =
1, 2, 3, 4 by calling Security−SIS on input n, q,

√
m. Note that we require input length m > n log q

in order to obtain a hash function that compresses its input. Also, m ≥ 2n log q is required for
Merkle Tree applications. See Table 7.

F.4 Calculating The Bit-Security

F.4.1 Choose the optimal sample size m∗

The root Hermite factor δ0 measures the quality of a lattice basis. Specifically, assume q-array
lattice Λ⊥q (A) of SIS(n,m, q, β) has root Hermite factor δ0, its shortest basis vector b0 satisfies

|b0| = δm0 q
n/m. (4)

The goal of the lattice reduction algorithm is to find the shortest possible b0. The right hand side
is minimized when

m = m∗ =

√
n log q

log δ0
. (5)

This optimal value m∗ is the optimal sample size for lattice reduction algorithm, and is sometimes
called the “optimal sub-dimension” [52]. Following many other works [5, 30, 50, 51, 58], we assume
m∗ is always chosen for BKZ/BKZ2.0.

48

F.4.2 Calculate the bit-security of SIS

Recall that the security level of SIS(n,m, q, β) can be estimated by the time cost for lattice reduc-
tion algorithm to find a basis with δ0 = (β/qn/m)1/m. The problem here is that m is chosen as the

optimal value m∗ =
√

n log q
log δ0

, which is an expression of δ0. Following the arguments in [58], we give

a simple expression of the optimal m∗ that is only dependent on (n, q, β) for SIS problem.

m∗ = d2n log q

log β
e. (6)

Fixing δ0 value, the minimum of δm0 q
n/m achieves when m = m∗ =

√
n log q
log δ0

. Equivalently, fixing

m = m∗, some lattice reduction algorithm can find a basis with δ0 = 2n log q/m∗2 . Therefore, there is
some lattice reduction algorithm can find vector of length δm

∗
0 qn/m

∗
= 2n log q/m∗qn/m

∗
= q2n/m

∗
in

m∗-dimensional lattice. It requires q2n/m
∗ ≤ β to break SIS(n,m, q, β), which gives m∗ = d2n log q

log β e.
Combining the above arguments gives us the following algorithm for calculating the bit-security

of the SIS problem.

Algorithm 1: Calculate the bit-security of SIS(n,m, q, β)

Input : (n, q, β)
Output: λ
begin

Compute m∗ = d2n log q
log β e;

Compute δ0 = (β/qn/m
∗
)1/m

∗
;

Compute TBKZ using the BKZ2.0 estimation either by TACF15(δ0) or TCN12(m
∗, δ0);

Return λ = log TBKZ .
end

G Additional Results

In this section, additional results showing the micro-benchmarks and application results using RSA-
OAEP with 1024-bit key, and field extension with µ = 4. Table 8 provides the number of gates
needed to encrypt 200 bytes, while Tables 9 , 10 and 11 provide the results of applying these
primitives in the three applications considered in the paper.

49

Table 8: # gates for encrypting 200 bytes at 80-bits of security. RSA uses 1024-bit key, and Field
extension assume µ = 4.

Total Cost Cost Per Bit Ratio

RSA-OAEP only 820k 512.5 6.77

RSA-OAEP + AES 500k 312.5 4.13
RSA-OAEP + Speck 294k 183.75 2.43
RSA-OAEP + Chaskey LTS 268k 167.5 2.21

Field Extension + AES 353k 220.62 2.92
Field Extension + Speck 147k 91.88 1.21
Field Extension
+ Chaskey LTS
[Baseline]

121k 75.62 1.0

50

Table 9: Application – Privacy-preserving smart contracts: Benchmarks for pour and freeze
circuits in Hawk [47].

Transformation in Section 3

Hyb. Enc. w/ Field Ext. Hyb. Enc. w/ RSA
RSA

Naive RSA
Chaskey LTS Speck AES Chaskey LTS Speck AES Baseline

[Pour] KeyGen(s) 166.29 170.5 203.27 178.74 186.76 199.7 288.02 396.68
[Pour] Proof(s) 54.88 55.04 69.07 55.15 64.4 67.61 99.3 132.14
[Pour] Verify(s) 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
[Pour] Eval. Key(MB) 284.41 292.38 365.51 307.76 320.94 360.02 531.81 727.87
[Pour] Ver. Key(KB) 8.46 8.46 8.46 8.46 8.46 8.46 12.39 12.39

[Freeze] KeyGen(s) 126.99 123.38 162.56 131.16 134.39 159.72 340.92 340.92
[Freeze] Proof(s) 43.12 41.5 52.94 41.06 41.37 51.77 110.41 110.41
[Freeze] Verify(s) 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
[Freeze] Eval. Key(MB) 202.22 210.19 279.34 225.57 230.78 273.84 637.71 637.71
[Freeze] Ver. Key(KB) 5.03 5.03 5.03 5.03 5.03 5.03 8.95 8.95

Transformation in Section 4

Hyb. Enc. w/ Field Ext. Hyb. Enc. w/ RSA
RSA

Chaskey LTS Speck AES Chaskey LTS Speck AES

[Pour] KeyGen(s) 103 106.89 138.63 123.66 126.52 151.09 188.49
[Pour] Proof(s) 32.92 35.59 46.95 41.32 41.43 49.88 64.83
[Pour] Verify(s) 0.01 0.01 0.01 0.01 0.01 0.01 0.01
[Pour] Eval. Key(MB) 173.83 179.73 233.3 211.24 216.46 257.52 337.66
[Pour] Ver. Key(KB) 7.9 7.9 7.9 8.74 8.74 8.74 10.42

[Freeze] KeyGen(s) 76.87 77.05 110.62 97.12 96.59 122.39 165.62
[Freeze] Proof(s) 24.28 24.84 43.39 31.99 32.06 42.96 55.14
[Freeze] Verify(s) 0.01 0.01 0.01 0.01 0.01 0.01 0.01
[Freeze] Eval. Key(MB) 120.66 128.06 187.6 157.57 162.79 209.83 283.99
[Freeze] Ver. Key(KB) 4.47 4.47 4.47 5.31 5.31 5.31 6.99

Transformation in Section 5

Hyb. Enc. w/ Field Ext. Hyb. Enc. w/ RSA
RSA

Chaskey LTS Speck AES Chaskey LTS Speck AES

[Pour] KeyGen(s) 97.52 100.52 126.24 122.7 122.24 143.09 161.56
[Pour] Proof(s) 32.6 32.77 44.06 41.71 41.6 44.47 49.91
[Pour] Verify(s) 0.01 0.01 0.01 0.01 0.01 0.01 0.01
[Pour] Eval. Key(MB) 163.7 168.92 215.96 203.15 208.36 247.44 276.9
[Pour] Ver. Key(KB) 8.11 8.11 8.11 9.23 9.23 9.23 9.79

[Freeze] KeyGen(s) 65.03 68.56 95.66 85.74 89.63 118.97 131.17
[Freeze] Proof(s) 20.87 21.36 35.08 27.01 27.03 42.96 41.81
[Freeze] Verify(s) 0.01 0.01 0.01 0.01 0.01 0.01 0.01
[Freeze] Eval. Key(MB) 108.34 113.56 160.6 143.8 149.01 200.04 225.52
[Freeze] Ver. Key(KB) 4.68 4.68 4.68 5.8 5.8 5.8 6.36

51

Table 10: Application – anonymous credential

Transformation in Section 3

Hyb. Enc. w/ Field Ext. Hyb. Enc. w/ RSA
RSA

Naive RSA
Chaskey LTS Speck AES Chaskey LTS Speck AES Baseline

KeyGen(s) 214.65 235.25 364.38 226.33 238.73 364.73 922.65 922.65
Proof(s) 81.73 83.67 138.8 82.11 82.46 140.76 339.17 339.17
Verify(s) 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
Eval. Key(MB) 392.68 418.57 685.2 416.03 439.16 679.71 1823.48 1823.48
Ver. Key(KB) 15.26 15.26 15.26 15.26 15.26 15.26 26.47 26.47

Transformation in Section 4

Hyb. Enc. w/ Field Ext. Hyb. Enc. w/ RSA
RSA

Chaskey LTS Speck AES Chaskey LTS Speck AES

KeyGen(s) 161.23 180.87 300.89 182.26 194.71 311.3 551.61
Proof(s) 54.63 64.21 117.91 63.68 65.16 117.6 202.12
Verify(s) 0.01 0.01 0.01 0.01 0.01 0.01 0.01
Eval. Key(MB) 276.79 308.57 555.64 314.2 337.33 577.87 1040.03
Ver. Key(KB) 14.7 14.7 14.7 15.54 15.54 15.54 25.63

Transformation in Section 5

Hyb. Enc. w/ Field Ext. Hyb. Enc. w/ RSA
RSA

Chaskey LTS Speck AES Chaskey LTS Speck AES

KeyGen(s) 156.38 176.36 288.67 179.01 187.79 307.69 524.38
Proof(s) 53.88 64.2 107.12 63.76 64.65 121.06 191.97
Verify(s) 0.01 0.01 0.01 0.01 0.01 0.01 0.01
Eval. Key(MB) 268.82 299.91 532.49 308.26 331.39 571.93 985.36
Ver. Key(KB) 14.91 14.91 14.91 16.03 16.03 16.03 25

52

Table 11: Application – nonoutsourceable puzzles for thwarting mining pools (Type
II) [53].

Transformation in Section 3

Hyb. Enc. w/ Field Ext. Hyb. Enc. w/ RSA
RSA

Naive RSA
Chaskey LTS Speck AES Chaskey LTS Speck AES Baseline

KeyGen(s) 106.92 108.4 150.16 120.53 123.27 142.72 215.37 292.6
Proof(s) 35.92 35.12 48.91 43.24 43.6 49.81 84.37 96.98
Verify(s) 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
Eval. Key(MB) 171.13 178.75 248.63 202.45 207.32 243.13 386.84 531.29
Ver. Key(KB) 5.24 5.24 5.24 5.24 5.24 5.24 8.18 8.18

Transformation in Section 4

Hyb. Enc. w/ Field Ext. Hyb. Enc. w/ RSA
RSA

Chaskey LTS Speck AES Chaskey LTS Speck AES

KeyGen(s) 62.04 65.39 94.8 80.42 84.4 106.82 154.42
Proof(s) 23.32 23.48 37.12 27.08 29.38 37 52.01
Verify(s) 0.01 0.01 0.01 0.01 0.01 0.01 0.01
Eval. Key(MB) 100.05 105.61 155.92 131.49 138.35 178.15 260.91
Ver. Key(KB) 4.68 4.68 4.68 5.52 5.52 5.52 7.34

Transformation in Section 5

Hyb. Enc. w/ Field Ext. Hyb. Enc. w/ RSA
RSA

Chaskey LTS Speck AES Chaskey LTS Speck AES

KeyGen(s) 51.29 54.09 77.66 70.72 73.62 99.5 120.51
Proof(s) 18.87 19.11 28.52 23.16 23.36 36.66 43.56
Verify(s) 0.01 0.01 0.01 0.01 0.01 0.01 0.01
Eval. Key(MB) 80.27 85.14 125.44 115.73 120.6 164.38 202.41
Ver. Key(KB) 4.89 4.89 4.89 6.01 6.01 6.01 6.71

53

	Introduction
	Our Results and Contributions
	Related Work

	Preliminaries
	Non-Interactive Zero-Knowledge Proofs
	SNARKs

	Basic Lifting Transformation
	Improved SNARK Lifting
	A Stronger Version
	SNARK-Friendly Cryptography
	Encryption
	Other Cryptographic Primitives

	End-to-end Applications
	Conclusion
	Sample Code
	UC 10-Minute Crash Course and Why the Practitioner Should Care
	From SSE-NIZK to UC-Secure NIZKs
	Witness Optimization for Basic SNARK Lifting Transformation
	Omitted Proofs
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3

	The Concrete Hardness of SIS and Ajtai Hash
	Preliminaries
	High Level Idea
	Lattice Reduction Algorithm: BKZ, BKZ2.0
	Calculating The Bit-Security
	Choose the optimal sample size m*
	Calculate the bit-security of SIS

	Additional Results

